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Abstract 

In multicore systems tasks running on one coremay experience inter-task interference from tasks running onother 
cores. This inter-task interference is due to contention inusing shared resources such as caches, system bus and 
the mainmemory. In this work, we focus on one of the major sources ofcross-core interference in multicore 
systems, i.e., main memory.The idea is to allocate tasks to cores in a way that the totalmemory demand of all 
tasks executing at a time instant t is lessthan the minimum available memory bandwidth, i.e., DRAMmin.The 
problem is formulated as a server-to-core mapping problemwhere each server constitute a set of tasks 
corresponding toan application. As mapping problems in multicore systems areNP-hard, we use different heuristic 
and meta-heuristic basedapproaches to find a feasible solution. Results show that ourapproach can perform well 
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Abstract—In multicore systems tasks running on one core
may experience inter-task interference from tasks running on
other cores. This inter-task interference is due to contention in
using shared resources such as caches, system bus and the main
memory. In this work, we focus on one of the major sources of
cross-core interference in multicore systems, i.e., main memory.
The idea is to allocate tasks to cores in a way that the total
memory demand of all tasks executing at a time instant t is less
than the minimum available memory bandwidth, i.e., DRAMmin.
The problem is formulated as a server-to-core mapping problem
where each server constitute a set of tasks corresponding to
an application. As mapping problems in multicore systems are
NP-hard, we use different heuristic and meta-heuristic based
approaches to find a feasible solution. Results show that our
approach can perform well in multicore systems with ≤ 8
processing cores with the memory demand of each server upper
bounded by DRAMmin/2.

I. INTRODUCTION

Tasks executing on a multicore system may contend with

each other to access shared resources such as last level cache,

system bus and the main memory. The interference generated

in accessing these shared resources can affect the worst-case

execution/response time (WCET/WCRT) of tasks. For exam-

ple, two tasks τi and τj concurrently running on two different

cores of a multicore system may simultaneously need to

load data/instructions from the main memory. However, main

memory requests generated by τi may be delayed because

the memory controller was busy serving the memory requests

generated by τj . This delay in serving the main memory

requests of τi may result in increasing its WCET/WCRT.

Several techniques have been proposed in literature both

at hardware and software level to eliminate/minimize main

memory contention delay suffered by tasks executing on a

multicore system. Hardware based approaches [1]–[3] usu-

ally focus on designing customized memory controllers that

can be used to reduce inter-task interference at the main

memory. Software based techniques such as DRAM bank

partitioning [4], [5] and memory bandwidth reservation [6],

[7] are proposed to isolate memory requests generated by tasks

running on different cores of a multicore processor in order

to reduce main memory interference. Several other works in

literature [4], [8]–[11] target different hardware components

in order to estimate/minimize inter-task interference. It has

been identified in State-of-the-Art (SoA) [12] that the inter-

task interference suffered by tasks in a multicore system

mainly depends on two factors, i.e., workload and hardware

configuration. Workload defines the number of tasks that

may execute simultaneously with the task under consideration

and hardware configuration represents how different hardware

resources are configured, i.e., shared or partitioned cache, bus

arbitration protocol, memory bandwidth reservation etc. In this

work we will focus on the workload property of execution

environment to bound main memory interference suffered by

tasks. It is proved in [6] that if the total number of main

memory requests generated by all concurrently running tasks

at any time instance t are less than or equal to the minimum

available DRAM bandwidth the average main memory access

latency of tasks executing on the multicore platform can be

bounded. We build on the work in [6] to allocate tasks to cores

in a manner that the main memory demand of concurrently

executing tasks at any time instant t is kept as close to

the minimum available DRAM bandwidth as possible. We

model main memory contention problem as a task allocation

problem. The modeling is achieved by using the concept of

notional processors/servers [13], [14], where each task is first

allocated to a notional processor/server using a suitable bin

packing heuristics [15]. We realize that an optimal allocation

of servers/tasks to cores is proven to be NP-hard in strong

sense [15]. Moreover, for the problem at hand, the situation

is even more complex as in this case we are not only

interested in assigning servers/tasks to different cores but also

in minimizing the total number of main memory accesses due

to simultaneous execution of serves on different cores. This

indeed complicates the problem, since we not only have to

figure out on which core a server may execute but also at what

time it may execute in order to reduce memory interference

between servers as well as ensuring schedulability.

The main contributions of this work are as follows: (1)

We model the main memory contention problem as a task

allocation problem using the concept of notional servers.

(2) We propose a heuristic, i.e., first-fit decreasing memory

demand (FFDM), that uses memory demand as the primary

criterion while mapping servers to cores. (3) We present

two neighborhood search algorithms to improve the initial

solution produced using FFDM. (4) Lastly, we present a meta-

heuristic based on Simulated Annealing (SA) to diversify the

search space and achieve global optima. Experimental results

show that the proposed heuristic and meta-heuristic based

approaches can perform well in multicore systems with ≤ 8
processing cores with the memory demand of each individual

server upper bounded by DRAMmin/2.

II. RELATED WORK

Optimal allocation of tasks to cores is proven to be NP-

hard in strong sense [16]. Different non-optimal heuristics are

usually used for task allocation. Dhall et al. [15] proposed

two heuristics based on task periods i.e. rate monotonic next-

fit and rate monotonic first-fit. In these heuristics tasks were

sorted in non-increasing order of their periods and assigned



to cores. Davari et al. [17] provided a variation of these

heuristics by ordering tasks w.r.t their utilization in descending

order. Lakshmanan et al. [18] developed a set of partitioning

bin-packing algorithms to deploy groups of communicating

tasks on different processors to reduce the bandwidth required

for communication between tasks. However, all the works

mentioned above do not consider the inter-task interference

due to task allocations and are explicitly aimed to provide

higher utilization bounds by effectively partitioning tasks

among different cores of a multicore processor. On the other

hand, most of the work done with regard to reducing inter-

task interference is done is context of hardware configurations

i.e. where hardware components such as cache, bus and

memory are configured in way that results in minimizing the

level of inter-task interference. Akesson et al. [1], Paolieri

et al. [2] and Reineke et al. [3] proposed memory controller

that can be configured to serialize memory requests of tasks

running on different cores to reduce interference inside the

memory controller. Wu et al. [19] presented worst-case Dy-

namic Random-Access Memory (DRAM) accesses latency

in multicore environment with separate DRAM banks being

assigned to different cores. Similarly, Kim et al. [4] proposed

an efficient bank partitioning scheme to estimate worst-case

memory access delay for tasks running on different cores using

private/shared DRAM banks. Yun et al. [6], [7] and Pellizzoni

et al. [20] presented a memory throttling mechanisms to bound

the number of memory requests generated by each core. Their

work focused on memory bandwidth isolation between cores.

All these approaches are difficult to implement without having

the exact knowledge of the underline hardware. Most relevant

to our approach are the work done by Aydin and Yang [21],

Paolieri et al. [12], Lakshmanan et al. [18] and Muralidhara et

al. [22]. In [21] authors proposed an energy-ware partitioning

of tasks on a multicore platform to achieve taskset feasibility

as well as energy optimization. The work is different from the

work done in this paper as they only emphasize on reducing

power consumption of the processor by balancing the task load

on all the cores in a partitioned system. Moreover, our work

focuses on memory interference optimization which may not

result from a balanced division of workload across all cores.

Similarly, the work presented in [12] proposes an interference

aware task allocation by considering a set of different WCETs

of tasks under different execution environment. Their work is

focused on reducing the number of resources i.e. the utilization

and cache size under different execution behaviors in a non-

preemptive system. Whereas in this work, we consider a

preemptive system and our focus is on reducing memory

interference along with ensuring feasibility of tasks running

on different cores. The work in [22] maps applications to

different memory channels (banks) to reduce inter-application

interference. Their approach is similar to work presented

in [4], [19] which also targets a specific hardware configuration

to reduce memory interference. Similarly, the work in [18]

propose allocation of tasks with shared resources (logical) i.e.

tasks are not independent and data is shared among them,

which is not the case with our approach as we assume that

tasks are independent and do not share any data between them.

III. SYSTEM MODEL

We consider a multicore platform with m identical cores,

i.e., π1, π2, ...πm. The set of cores is defined as Π. A taskset

Γ consists of n tasks, i.e., Γ = {τ1, τ2, ...τn} where each

task τi is defined by a quadruple (Ci,MD i, Ti, Di). Ci is the

worst-case execution time (WCET) of τi, MD i is the worst-

case main memory demand of τi, i.e., the number of times τi
may accesses main memory during its execution, Ti is the

minimum inter-arrival between any two instances (or jobs)

of τi and Di is the relative deadline of τi. We assume task

deadlines are implicit, i.e., Di = Ti. The processor utilization

of a task τi is denoted by Ui where Ui =
Ci

Ti
. For scheduling

purposes, we use a server/notional processor based approach

proposed in [13], [14]. We assume that tasks corresponding

to one application are assigned to a single server Si, i.e.,

a set of tasks. The set of all servers is denoted by S. The

utilization of a server Si denoted by Usi and is given by the

sum of the utilizations of all tasks assigned to that server,

i.e., Usi =
∑

∀i∈Si
Ui. Where Usi ≤ 1 and US ≤ m. The

total main memory demand of a server Si is given by the

sum of the memory demand of all tasks assigned to that

server, i.e., MDsi =
∑

∀i∈Si
MD i. We consider partitioned

scheduling approach where servers are statically partitioned

among cores and once a server is assigned to a core it is

not allowed to migrate. All servers execute inside a periodic

reserve P . A periodic reserve is a fixed length time window

available every P time units where P is given such that

P = min(T1, T2, ...Tn). We assume that Earliest Deadline

First (EDF) scheduling algorithm is used to schedule tasks

inside a server. It is proved in [14] that implicit-deadline tasks

of cumulative utilization Usi will always be schedulable under

EDF if the length of the periodic reserve is equal to Usi ×P .

This is also the reason of using a server based mapping since

all tasks assigned to a server Si will always be schedulable

(under EDF) as long as the utilization based schedulability

condition holds (Usi <= 1).

IV. MOTIVATIONAL EXAMPLE AND PROBLEM

FORMALIZATION

Main memory requests generated by a server Si running

on one core of a multicore processor can be affected by the

memory requests generated by other servers running on other

cores. This may result in increasing the memory access latency

of Si which effectively results in increasing the WCET/WCRT

of tasks executing within Si. However, if the total number of

main memory requests generated by all the servers in a time

window of length t are less than or equal to the minimum

available DRAM bandwidth the memory access latency a

server may suffer can be bounded and is no larger than when

it is running in isolation on a dedicated albeit slower memory

system.

What we aim in this work is to propose a suitable allocation

heuristic that allocate servers to different cores such that

the total main memory demand of all concurrently running

servers at any time instance t is minimized and is less than

or equal to the minimum available DRAM bandwidth denoted

by DRAMmin. The allocation problem we are considering

is more complex in comparison to a traditional bin-packing



(a) Server allocation using FFDU (b) Server allocation considering
memory demand

Fig. 1: Example server-to-core allocation to highlight the

importance of considering memory demand of servers

problem. For this problem, we cannot simply partition servers

among cores based on their utilization but we also have to take

into account the number of main memory requests generated

by each server and at what time each server should be exe-

cuted, e.g., a general intuition is not to run memory intensive

servers on two or more cores at the same time. To illustrate,

consider the scenario depicted in Figure 1. We have four

servers S1, S2, S3 and S4 with utilization and main memory

demand of each server given by Usi = {0.5, 0.5, 0.5, 0.5}
and MDsi = {10, 4, 15, 8} respectively. The total number of

processor cores to allocate these servers are two, i.e., m = 2.

We set the periodic reserve P = 2, i.e., each server needs

to execute at least for 1 sec in order to be schedulable. We

also assume that the minimum available DRAM bandwidth

DRAMmin of the memory controller is 20. Figure 1a shows

a server-to-core allocation based on popular multicore task

allocation heuristic, i.e., first-fit decreasing utilization (FFDU),

where servers are ordered in a descending order based on their

utilizations and are assigned to the first available processor

core. We can see in Figure 1a that using FFDU server S1 and

S3 (also S2 and S4) are allocated to different cores however

they will execute in parallel. Since P = 2 seconds, so for

t = 1 the total memory demand will be MDs1 +MDs3 = 25
whereas for t = 2 we have a total memory demand of 12, i.e.,

MDs2 +MDs4 = 12. As DRAMmin = 20, we can see that

for t = 1, the DRAM will be overloaded which may result in

increasing the execution time of server S1 and S3. Whereas,

for t = 2 DRAM is effectively underutilized. Let us now

consider a different allocation shown in Figure 1b. we can see

in Figure 1b that for t = 1 the total memory demand of the

system, i.e., MDs2 +MDs3, is equal to 19 which is less than

the minimum available DRAM bandwidth of 20. Similarly the

memory demand in the next time slot (i.e., t = 2) is also less

than the minimum supported memory demand of the system,

i.e., MDs1 + MDs4 = 18 ≤ DRAMmin. Therefore, for the

server-to-core allocation in Figure 1b we can say that the

memory access latency of each server can be easily bounded

which is not true for the allocation shown in Figure 1a.

A. Problem Formalization

Our objective is to ensure that the memory demand of all

servers executing during the periodic reserve is less than or

equal to the minimum DRAM bandwidth DRAMmin. Let

MD tot(t) denoted the total memory demand of all the servers

executing concurrently at a time instant t, i.e.,

MDtot(t) =
∑

∀Siexecuting at t

MDsi (1)

Effectively, our objective function OBJ can be defined over

the periodic reserve P such that

OBJ = min

P
∑

t=1

(DRAMmin −MDtot(t)) (2)

We use a two-dimensional array of size m × P to represent

server-to-core allocation, where m is the total number of

processing cores and P is the value of the periodic reserve.




1 2 3 ... P
. 2 3 ... P
m 2 3 ... P





Using this above representation, the value of the objective

function is determined using the function mem demand()
that calculate the memory demand of all the servers executing

during an instant t inside the periodic reserve P and compare it

with the minimum available DRAM bandwidth. During imple-

mentation we realized that the overall value of the objective

function does not change significantly by applying different

moves (that will be discussed in next section). Therefore,

to better quantify the quality of server-to-core allocation we

define a function U(t)

U(t) =

{

1, if DRAMmin ≥ MDtot(t)

0 otherwise
(3)

U(t) is represented by matrix of order 1× P , i.e.,
[

1 0 ... P
]

The solution with more numbers of 1’s in matrix U(t) is

considered to be a better solution. If for two server-to-core

allocations the matrix U(t) is identical then we consider the

solution with lower value of the objective function to be a

better solution.

V. INITIAL HEURISTIC AND NEIGHBORHOOD SEARCH

For an initial solution, we develop a heuristics similar to

first-fit decreasing utilization (FFDU) and name it as first-fit

decreasing memory demand (FFDM), i.e., servers are sorted

by non-increasing memory demands and allocated to the

cores using first-fit heuristic. Assuming we have n servers

each defined by a tuple, i.e., server ID, utilization Usn and

MDsn. FFDM will start by first ordering the servers such that

MDs1 ≥ MDs2 ≥ ... ≥ MDsn and then applying the first-fit

bin packing. Initially all bins/processors are empty and we

start with current processor mi and server Si. We consider

all processors 1, 2, ...,m and place server Si in the first

processor that has sufficient available utilization. If no such

processor is available we increment m and repeat until server

Sn is allocated. Once the allocation is achieved function

mem demand() is used to calculate memory demand of all

the servers that execute concurrently on different cores for

every time instant t inside the periodic reserve P , where P
is selected considering the server with minimum utilization,

i.e., P = min(Us1, Us2, ...Usn). The resulting values from

the mem demand() function and the value of the minimum

available DRAM bandwidth DRAMmin are then used to

generate matrix U(t).
Example. Assume we have six servers S1, S2, ..., S6



(a) FFDM (b) swap servers(1,2) (c) swap servers(1,4)

Fig. 2: Different server-to-core allocations

with each defined as Si = {Id,MDsi, Usi} to be allocated

on two cores, i.e., m = 2. The set of servers S is given by S =
{{1, 50, 30}{2, 40, 20}{3, 20, 50}{4, 30, 30}{5, 20, 20}{6, 45, 40}},

where utilization is the % of processor time required by

the servers to execute. In first step, servers are sorted

in non-increasing order of their memory demands.

The sorted set of servers is given by Ŝ, i.e., Ŝ =
{{1, 50, 30}{6, 45, 40}{2, 40, 20}{4, 30, 30}{3, 20, 50}{5, 20, 20}}.

Servers in Ŝ are then assigned to cores using the first-fit

decreasing memory (FFDM) heuristic as explained above. The

resulting server-to-core allocation is shown in Figure 2a. To

ensure schedulability of tasks executing within a server, each

sever should execute in proportion to its utilization Usi inside

the periodic reserve P , i.e., Usi% of P . As the minimum

server utilization is 20 hence the value of the periodic reserve

P will also be set to 20. Consequently, the execution time of

each servers will be set using the expression Usi%20, e.g.,

server S1 must execute for 6 time units (i.e., 30%20 = 6)

inside the periodic reserve P = 20 to ensure schedulability of

all tasks assigned to server S1. The initial solution resulting

from FFDM heuristic for m = 2 and P = 20 is given by
[

S1 S1 S1 S1 S1 S1 S6 S6 S6 S6 S6 S6 S6 S6 S2 S2 S2 S2 X X
S4 S4 S4 S4 S4 S4 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S5 S5 S5 S5

]

Using the above representation, the value of the objective

function is determined by summing up memory demand of all

servers executing at every time instant t inside the periodic re-

serve P . Assuming the minimum available DRAM bandwidth

DRAMmin is 60, the final formulation of function U(t) for

the server-to-core allocation of Figure 2a is given below

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1]

A. Moves

We have implemented two different type of moves, those

lead to efficient implementation of neighborhood search algo-

rithms. These moves are detailed as follows.

• Swap severs(): This move takes as input id’s of two

servers that are executing on the same processor cores

and swap them. It essentially changes the time at

which two servers will be executed, e.g., applying

swap servers(1, 2) to the server allocation shown in

Figure 2a will result in changing the time at which server

S1 and S2 will be executed (see Figure 2b).

• Swap processors(): Swap processors is similar to

Swap severs, but it changes the processors allocated to

two servers. The motive behind this move is to change

the state of two processors simultaneously in order to

reach a more feasible solution. To apply this move it is

necessary that the servers involved have equal utilization

or the destined processors have the capacity to execute the

swapped server, e.g., applying swap processors(1, 4)
to the allocation shown in Figure 2b results in a new

allocation shown in Figure 2c.

int i=0; j=0;
while i≤TotalNumberofServers do

i++; j=1;
while j≤TotalNumberofServers do

if i and j are on same procssor then
swap servers(i,j);
check mem demand;
accept new solution if better else discard;
j++;

end
if i and j are on different procssors then

swap processors(i,j);
check mem demand;
accept new solution if better else discard;
j++;

end
end

end

Algorithm 1: Single Swap based NS Algorithm1

B. Neighborhood Search (NS)

To find the best neighborhood solutions we have designed

two algorithms based on the moves defined in the previous

section.
1) NS Algorithm1: NS algorithm1 is based on single

swap moves. Pseudo code for NS algorithm1 is given by

Algorithm 1. NS Algorithm1 starts by selecting a server,

e.g., S1 and swap it with every other server running on

the same or different core in the system using the above

defined moves. For example, if the selected servers are on

the same core swap servers (id1, id2) is performed otherwise

executing processors are changed for the selected servers using

swap processors (id1,id2). After performing any move the

value of the objective function is calculated and compared

with the current value of the objective function. If the new

value is better than the current value then the initial solution

will be changed, otherwise the solution remain unchanged.
2) NS Algorithm2: NS algorithm2 is based on moves that

are similar to 2-opt move usually used in optimization prob-

lems. In this algorithm rather than just moving two servers,

we move four servers at the same time. This adds more

diversity to local search and improve results in comparison to

NS algorithm1. Due to space constraints we omit the formal

representation of NS algorithm2 in the paper. NS algorithm2

also start by selecting the first server and swap it with every

other server in the system. But after the first swap, we choose

the immediate next servers from the first swap and apply

the same moves described earlier. The value of the objective

function is updated after performing these moves using the

same methodology as in Algorithm 1.

VI. META-HEURISTIC APPROACH

Heuristics based on iterative improvement start with an ini-

tial solution and keep on rearranging the solution as long as the

solution keep on improving. This process continues unless no

further improvement is found. However, these approaches may

often get stuck into a local optimum rather than global optima.

Therefore, to further improve the solution we need to diversify

and may be start from a randomly generated configuration

each time. To add diversification to our approach we used

simulated annealing (SA) based meta-heuristic approach. The

concept of simulated annealing comes from physical process

of ‘annealing’, i.e., a process used to obtain low energy sates of

a solid using a heat bath where temperature is varied from very



high to low, very slowly in order to get the required state [23].

Simulating annealing starts with a randomized state and in a

polling loop it moves to neighboring states always accepting

the moves that improve the value of the objective function

while only accepting bad moves according to a probability

distribution dependent on the “temperature”, i.e., based on

the difference between the initial feasible solution and the

randomly generated solutions by SA, i.e., SA may allow to

accept bad solutions. This is different from other local search

based techniques that only accept solutions that are better than

the initial solution. The simulating annealing approach used

in this paper is presented in Algorithm 2. SA algorithm starts

by defining the required parameters that are used to simulate

the annealing process. An initial solution is generated and

the value of objective function is calculated for the resulting

solution. If the resultant solution is better than the previous

solution we move to the new solution. Otherwise the algorithm

calculates delta, i.e., the difference between values of the

objective functions for the previous solution and the new

solution. SA does not immediately reject the new solution but

may keep it as long as the exponential value of ǫ−delta/temp

is greater than a randomly generated number between 0 and 1.

By doing so it adds diversity to the search space, exploring the

area that is not explored by NS algorithm1 and NS algorithm2.

The idea is to escape the local minima in order to reach an

optimum global solution.

Define variable required for SA Algorithm;
while temperature≥epsilon do

GenerateRandomSol();
if new solution is better then

Accept new solution;
else

delta = InitialSol − NewSol;

if RandomProb(0, 1) < ǫ(−delta/temperature) then
Accept new solution;

else
Discard new solution;

end
end
Gradually Reduce SA temperature;

end

Algorithm 2: Simulated Annealing Based Meta-heuristic

VII. EVALUATION AND RESULTS

For evaluation purposes, we simulated the intel Core2Quad

processor with 4 physical cores (m = 4). As shown in [6] this

platform has a minimum DRAM available bandwidth of 1.2

GB/s when all cores are running, i.e., DRAMmin= 1.2 GB/s

or 1200 MB/s. The maximum available DRAM bandwidth is

8490 MB/s. We generated random set of servers based on

SPEC2006 benchmarks [6]. The solution with lower value

of objective function and higher values of U(t) is consid-

ered a better solution. Separate set of servers with High(H),

Medium(M) and Low(L) memory intensity are generated and

evaluated using the proposed heuristics. Table I shows the

results produced in this case. We can see in Table I that

when we have only high and medium memory intensity tasks

the proposed heuristics may not perform well. This is due

to the limitation on the minimum available bandwidth of

DRAM memory i.e. DRAMmin= 1.2GB/s. For the same set

of servers, the results of the proposed approaches improve as

the minimum available DRAM bandwidth is increased. We

can observe this improvement from the last two entries in

Table I, i.e., when the minimum available DRAM bandwidth

is increased to 4.8GB/s, our approaches tend to perform better

even with high memory intensity servers. Also in case of low

memory intensity servers, i.e. MDsi = 100 500 MB/s, we

can see significant improvements over the initial incumbent

solution (i.e., FFDM heuristic).

TABLE I: Performance of proposed approaches against ran-

domly generated High (H), Medium (M) and Low (L) memory

intensity servers

Servers Cores Memory Intensity DRAMmin FFDM NS Algo-1 NS Algo-2 SA Algo

(MB/s) (MB/s) obj.val, U(t) obj.val, U(t) obj.val, U(t) obj.val, U(t)

10 4 1000-2000 (H) 1200 63092, 0 63092, 0 63092, 0 63092, 0

20 4 1000-2000 (H) 1200 77916, 0 77916, 0 77916, 0 77916, 0

10 4 500-1000 (M) 1200 26156, 0 26156, 0 26156, 0 26156, 0

20 4 500-1000 (M) 1200 23900, 0 23900, 0 21900, 0 21900, 0

10 4 100-500 (L) 1200 2308, 16 1700, 20 1700, 20 1700, 20

20 4 100-500 (L) 1200 2228, 8 2324, 12 3364, 16 3364, 16

10 4 1000-2000 (H) 4800 2748, 12 4556, 16 4140, 16 548, 20

20 4 1000-2000 (H) 4800 7076, 0 7612, 4 8868, 8 7868, 8

TABLE II: Results derived using servers with memory inten-

sity varying from 100 to 2000 MB/s

Servers Cores Memory Intensity DRAMmin FFDM NS Algo-1 NS Algo-2 SA Algo Optimal value

(MB/s) (MB/s) (U(t)) (U(t)) (U(t)) (U(t)) (U(t))

10 4 100-2000 1200 2 4 5 12 20

20 4 100-2000 1200 0 4 8 12 20

30 4 100-2000 1200 0 4 4 8 20

40 4 100-2000 1200 0 1 3 4 10

50 4 100-2000 1200 0 1 2 3 10

TABLE III: Results derived by keeping memory demand of

servers ≤ DRAMmin/2

Servers Cores Memory Intensity FFDM NS Algo-1 NS Algo-2 SA Algo Optimal value

(MB/s) (U(t)) (U(t)) (U(t)) (U(t)) (U(t))

10 2 ≤ DRAMmin/2 4 8 12 20 20

20 4 ≤ DRAMmin/2 2 8 12 16 20

30 6 ≤ DRAMmin/2 0 4 8 12 20

40 8 ≤ DRAMmin/2 0 2 4 10 20

50 10 ≤ DRAMmin/2 0 1 2 3 20

Table II shows the experimental results by generating mix

set of servers with different memory demands, i.e., high,

medium and low, with memory demand of each server ranging

between 100 MB/s to 2000 MB/s. The results show that the

proposed heuristics work very well when we have servers

with different memory intensities as often the case in real

applications. The initial incumbent solution (FFDM) turn out

to be the worst in each case. NS algorithm1 and NS algorithm2

perform similarly with the later dominating the former in most

of the cases. We used the simulating annealing approach to a

maximum of ten thousand iterations. However, we can see that

simulated annealing performs better than the other approaches

in all the cases. Note that we only show average results due

to space constraint but the actual experiments were performed

with 50-100 set of servers generated in every iteration. We can

also see in Table I and I that as the number of servers increase

the effectiveness of the proposed approaches decreases. This

is due to the fact that as we increase the number of servers

and processors the effectiveness of swap based moves that

involve only two servers is reduced. In another experiment,



we generated set of servers with each having memory intensity

bounded such that ≤ DRAMmin, we observed that by setting

a higher upper bound on memory intensity of servers as

the number of servers increase the gap between the optimal

and resultant solution also increased. We can also noticed

that SA perform better than other two algorithms even when

the number of servers are high. This effect is due to the

diverse nature of the algorithm. We can also observed a similar

situation by increasing the number of processor cores, i.e.,

m. For final phase of our evaluation we generated servers

with memory intensity ≤ DRAMmin/2. We observed that by

having this limitation on the memory demand of each server,

our proposed heuristic based approaches can work well with

up to 8 processing cores with up to five servers running on

each core. The results are shown in Table III, where we can

see that the performance of the proposed approaches is less

effected by the number of servers and processors but the gap

between the optimal and resultant solution still increases with

the increase in number of servers/processors.

VIII. CONCLUSION

In this work, we focused on main memory which is one

of the major sources of cross-core interference in multicore

systems. We modeled the memory contention problem as

an allocation problem. A server based approach is used to

ensure schedulability, where tasks are assigned to servers

and are executed within those servers under EDF scheduling

algorithm. As a first solution we proposed a simple heuristic

FFDM for server-to-core mapping. Two neighborhood search

algorithm are proposed to improve upon the initial solution

generated by FFDM. Finally, a simulated annealing based

meta-heuristic is used to diversify the search space and achieve

global optima. Experiments show that the proposed approaches

can generate solutions that are feasible as long as the number

of server/cores are less than a certain threshold. We also

concluded that to obtain better results memory demand of

each server should be less than half of the minimum available

DRAM bandwidth. In future, we will consider more diversified

approach to solve this problem. We also plan to generate

moves that can be applied to a number of servers at the same

time. For the case of large number of server and processing

core, the problem can be subdivided into separate problem

where each can be optimized separately. Use of population

based heuristics for this problem also present an interesting

area for future research.
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