.
IPP HURRAY!

www.hurray.isep.ipp.pt

Technical Report

Finding an Upper Bound on the Increase In
Execution Time Due to Contention on the
Memory Bus in COTS-Based Multicore
Systems

Bjobrn Andersson
Arvind Easwaran
Jinkyu Lee

HURRAY-TR-100104
Version:
Date: 01-25-2010

Technical Report HURRAY-TR-100104 Finding an Upper Bound on the Increase in Execution Time Due to Content

Finding an Upper Bound on the Increase in Execution Time Due to
Contention on the Memory Bus in COTS-Based Multicore Systems

Bjorn Andersson, Arvind Easwaran, Jinkyu Lee

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Antonio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail:

http://iwww.hurray.isep.ipp.pt

Abstract

Contention on the memory bus in COTS based multicore systems ishecoming a major determining factor of the
execution time of atask. Analyzing this extra execution time is non-trivial because(i) bus arbitration protocols in such
systems are oftenundocumented and (ii) the times when the memory bus isrequested to be used are not explicitly
controlled by the operatingsystem scheduler; they are instead a result of cache misses.We present a method for finding
an upper bound on the extraexecution time of a task due to contention on the memory bus in COTSbased multicore
systems. This method makes no assumptions on the busarbitration protocol (other than assuming that it iswork-
conserving).

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

Finding an Upper Bound on the Increase in Execution Time Dued Contention on
the Memory Bus in COTS-Based Multicore Systems

Bjorn Andersson and Arvind Easwaran Jinkyu Lee
Polytechnic Ingtitute of Porto, Portugal Dept. of Computer Science, KAIST, South Korea
bandersson@dei.isep.ipp.pt, aen@isep.ipp.pt jinkyu@cps.kaist.ac.kr

Abstract—Contention on the memory bus in COTS based between processor cores. This problem differs from studies
multicore systems is becoming a major determining factor of jn Worst-Case Execution-Time (WCET) analysis because
the execution time of a task. Analyzing this extra execution \yCET analysis is performed on a task in isolation, whereas
time is non-trivial because (i) bus arbitration protocols in such . . .
systems are often undocumented and (i) the times when the OY' problem concerns the |n_teract|0n of ftaslfs. It is also
memory bus is requested to be used are not explicitly contrted different from works in real-time communication because
by the operating system scheduler; they are instead a resutif ~ these studies find an upper bound on the queuing time
cache misses. We present a method for finding an upper bound of individual message transmission requests, whereas our
on the extra execution time of a task due to contention on the problem concerns the cumulative waiting time of many
memory bus in COTS based multicore systems. This method .
makes no assumptions on the bus arbitration protocol (other requests .to pgrform trans_actlons on the memory ,bUS-
than assuming that it is work-conserving). The scientific community has nonetheless provided some
initial insights into the problem of contention on the inter
connection network. The software of a task can be structured
to be separated into a fetch phase (where cache misses are

The multicore processor is today a generic building blockallowed) and an execution phase (where cache misses are not
in the design of embedded real-time computing systemsallowed) and then the memory bus and tasks are scheduled
Typically, a multicore processor chip is comprised of ato ensure that no two processor cores are in a fetch phase
set of processor cores, each with a private cache memorsimultaneously [3], thus eliminating contention. Or, aerat
(L1) and potentially a cache memory (L2) that is sharedimiter is added to the memory controller to ensure that
among the processor cores. This chip is connected througho processor core will generate too much traffic in a time
an interconnection network (such as a bus) to a set of mainnterval of pre-specified duration and then network calsulu
memory modules. When an instruction cannot be serveis used to analyze the processor cores [4]. Unfortunately,
by the on-chip caches, it is necessary for the processamommon to these approaches is that they require control of
to perform a transaction on the interconnection networkthe arbitration of the memory bus and hence they cannot be
in order to fetch data from the main-memory modules.used on COTS-based multicores.

Already today, this interconnection network is a perforicen In this work we develop the first approach for finding
bottleneck for many applications [1]. Moreover, since thean upper bound on the extra execution time of a task due
number of processor cores in a multicore chip is increasingo contention on the memory bus in COTS-based multicore
dramatically, the amount of traffic on the interconnectionsystems. We also present a technique for characterizing the
network increases accordingly, and consequently this-prokinterconnection-network-traffic generation pattern oskis

lem is expected to be exacerbated in the future [1], [2]. which is then used as input for finding the upper bound on

The interconnection network has an impact also on thdask execution time. In taking this first step, we make the
execution time of an individual task. Consider a task following assumptions:

I. INTRODUCTION

executing on processaP; and another task, executing Al. The interconnection network is a shared bus (de-
on processorP,. The taskr, generates a cache miss but noted asmemory bus henceforth);

before the transaction on the interconnection network has A2. The shared L2 cache is either partitioned between
finished, taskr; generates a cache miss as well. Then in the processor cores or disabled if it cannot be
this case, serving the cache missmfrequires more time partitioned. The rationale for this assumption is

than would have been the caserif was the only task in explained in Section II-C;

the system because the bus must finish serving the other A3. Tasks are statically assigned to processors and all
processor. Therefore, it is important to develop a method jobs execute on the processor to which the task is
for finding an upper bound on the extra execution time of assigned (partitioned scheduling);

a task due to contention on the interconnection network A4. Non-preemptive scheduling is used on each pro-

cessor,; which succeeds another load instruction with the same row-
A5. The bus arbitration protocol is work-conserving address can be served faster because only the column address
(that is, the memory bus is idle only if no processor of the DRAM memory needs to be changed. We T&t

core requests to use the bus). denote an upper bound on the amount of time for performing
Additionally, the technique developed in this paper hasd bus transactlon._Thls tim&R, includes the time to assert
the following properties. the address, the time for the memory latency of the main-

memory module and the time for the main-memory module

to deliver the data to the processor. Note tid denotes

an upper bound on the amount of time for performing a bus

Il. SYSTEM MODEL transaction for the case that the bus was idle; therefbie,

A Task model does not include any qgeuing delay on the memory bus._

We make no assumption on the number of processor chips

We assume that the workload is comprised of a set of task§y the number of processor cores per processor chip. For

7 = {r,72,...,m}. We assume the constrained-deadlinegxample, we allow systems with a single processor chip

sporadic task model which characterizes a tasky Ci, T comprising two processor cores. We also allow systems

and D; (D; < T3), with the interpretation that; releases wjth two processor chips, each comprising four processor

a sequence of jobs such that two subsequent jobs #om cores. Further, we assume that tasks are already assigned to

are released at leagt time units apart and the exact times processor cores. Therefore, we tétdenote the set of tasks
of the releases of these jobs cannot be controlled by thgssigned to processor CoRy.

scheduling algorithm. Each job released hyrequests to

perform C; units of execution at mosb; time units from ¢c\yteqd on a processor f6r time units, then it performe;

its release; otherwise it misses its deadline. ~units of execution. Therefore, we can check schedulability
~ Note thatC; denotes an upper bound on the executionys 5| tasks assigned to processoby using a uniprocessor
time of a job of taskr; when the job executes with N0 gchequlability test on processgr but for each taskr;,
contention on the memory bus from other task$.can be replaceC; by C!. See for example [6].

found by WCET analysis techniques. In this work, we are !

interested in finding”; which denotes an upper bound on

the execution time when the job executeih contention ~C. BuS requests

on the memory bus from other tasks on other processors.

P1. Itdoes not assume any specific arbitration protocol
P2. It works for constrained-deadline sporadic tasks.

Because of our definition o/ it holds that if a task ex-

We assume thaBR;(¢) is a function that denotes an
upper bound on the number of bus requests that taskan
generate during any time interval of durationWe will use

Many high-performance processors today allow moregp, (1) in Section Iil for computing”!. It is also necessary
than one instruction to be issued in parallel, executed iRy fing BR;(t); Section IV shows this.

parallel and committed in parallel. Our model allows this. The functionBR; (¢) is clearly dependent on task. The
Some high-performance processors allow instructions to b’f"ask generates a . '

itted | h der than th . 4. Such bus request when it misses the shared L2
committed in another order than they were issued. SUCh Pl sne and before that it must also have missed its private L1

cessors can significantly complicate WCET analysis [5] evenyope Note that since the L2 cache is shared, the function
on a single processor without bus contention. Therefore, w R;(t) is actually not only a property of task, and the
. T
assume that processor c_ort:‘s are m;]ord(;r prgcef‘sors. IAlsgaches but it is also a property of the interaction between
SOME processors may switch to another thread when a Ongéskn and the tasks on other processor cores. This makes
Iat_ency Instruction s _ex_ecuted (for example a d"’lt"’l'c"’u:h'?ne analysis very complicated. Therefore, in order to sifypl
miss). We assume this is not the case, that is, we assumg, study, we made assumption A2 regarding the shared L2
that when a processor core waits for accessing the memony, -he (partitioned or disabled). As a resBIR;(t) does not

bus, the processor core is simply stalled. For these reaSONgepend on the behavior of tasks in other processor cores.
we can comput€&’ asC; = C; + Q;, whereQ); is an upper

bound on the amount of time that task stalls execution
when it executes fot?/ time units because of waiting for D. Problem statement
accessing the memory bus.

Some computer systems use split transaction buses, where

B. Architecture

Our problem can therefore be stated as:

a memory transaction is split into a request part (address) Given 7 = {m,7,..., 7.}, where eachr; is
and a reply part (data). We assume that the computer system ~characterized byl;, D; and C; and the function
does not use split transactions. BR;(t), and given that each task is assigned to

Different bus transactions may take different amount of & processor and executes on it non-preemptively,
time. For example, a bus transaction resulting from a load ~ find C; for eachr;.

[1l. ANALYSIS ON THE WORSTCASE EXECUTION TIME 7, can generate during any time interval of duratio(.e.,
WITH CONTENTION ON THEMEMORY BUS BR;(t)) from experimental results.

In this section, we show how to calculate an upper bound We assume the following can be obtained from experi-
on the execution time when the job executes with contentiofnents:
on the memory bus from other tasks on other processors 1) An upper bound on the number of bus requests in an

(i.e, C) using givenBR;(t). We only assume that the bus interval [0, t] (denoted as4RHf (t)), where0 denotes
arbitration protocol is work-conserving, and do not assume the beginning of execution of thg" execution path
any other specific arbitration protocol. of 7; andt denotes some future time. Note that this

Consider a jobJ;, released byr;. Bus transactions measurement only depends on the execution oftask
requested fromJ; , during its execution can be delayed because of our assumption A2 on the shared L2 cache.
due to: (a) bus transactions requested from other jobs on Therefore, we obtaint RH (t) from measurements by
other processors during the execution £f;, and (b) any executing jobs of; independently on a processor core;
bus transactions requested but not performed before the 2) An lower bound on the number of bus requests in an
execution ofJ; ,, (backlogged bus transactions). Considering interval [0,] (denoted asARL(t)), where0 denotes
this delay, we can calculatg; as follows. the beginning of execution of thg” execution path

of , andt denotes some future time;
C!=C;+BL;-TR+ Z BR;(C)-TR (1) 3) The execution time of thg!" path of taskr; (denoted
riE(r\rProc(Ti)) as Clj)

where BL; is the maximum number of backlogged bus We note that different executions of the same path may
transactions at the beginning of the execution of a jouesult in different numbers of bus requests; this is thearas
released by;, andproc(r;) is a processor to whick; is as- ~ Why we distinguish betweeARH; (t) andARL; (t). We let
signed. We consider (a) bZTjE(T\Tp”’C("i)) BR;(C))-TR. paths(t;) ?Ienote the set of all paths of task We assume
Here note that we usBR,(C/) instead ofBR;(C;), so that that ARH}(t) and ARL;(t) are non-decreasing functions
we can care for additional bus requests caused by addition" €achi and;j and regard”; asmax;epatns(r:) Ci -
execution time (' — C;). We also consider (b) b L;-TR, To calculate BR;(t), we divide ¢ into three parts: the
but we need to know how largBL; is. head, middle, and tail parts, and denote themfésty),

To calculate BL;, we first define the maximum busy fi" (tar), and f(tr), respectively. This idea of splitting
period of bus transactions (denoted &%), and BP can @ path to simplify the analysis has been used before; for

be calculated by the following recurrence equation. instance, in [7], for analysis of recurring task models. As
shown in Figure 1(a), the duration of the middle part is a

multiple of T;; so that there exist several complete executions.
The duration of the head is less th@j so that there exists
either one partial execution or one complete executiorioDit

Th_e structure of_this equation is similar to that of cz_zllcu-for the tail. The head (tail) part includes the end (begighin
lating response time. We knoW R;(-) is a non-decreasing point of an execution as shown in Figure 1(a). Since the
function so that we calculate Eq. (2) in an iterative manner,

) - definition of BR;(t) is an upper bound on the number of
(ie, BPUHD = f(BPW) starting fromBP©®) = TR.If requests, it can be calculated as follows.

we replaceBP with ¢ in Eq. (2), the right-hand side of the

equation means the longest time interval of bus transagtion

requested during. If we consider that bus transactions are BRi(t) = max)+ f) + £ (tr), (@)
continuously performed during the busy peridgiL; can be e
calculated by the following equation.

BP=TR+ Y BR;(BP)-TR @)

T;ET

wherety +tym +tr =1, (5)
tH7 tr < Ti7 (6)
N
BL — max TR+ (Z-,—je,,_ BRj(t) . TR) —t (3) tmr = H‘TLJ — 1] T; ortyr = \‘TLJ T; (7)
" 0<t<BP TR ¢ i
Now we know all variables in Eq. (1) and thus calculate Where[A]" meansmax{A,0}. Note that Eq. (7) is derived
the equation similar to Eq. (2) since the right-hand side offom Eg. (5) and (6). Also note thaj, is a multiple of7;.

the equation is a non-decreasing function(yf The head part starts from any arbitrary point of an
execution but includes the end point of the execution, so
IV. ANALYSIS ON THE MAXIMUM NUMBER OF BUS that the maximum number of bus requests of the head part
REQUESTS is equal to the maximum difference between the number of

In this section, we show how to calculate a function whichbus requests during a complete execution and the one during
is an upper bound on the number of bus requests that task partial execution.

model of the bus request pattern for each program. When

M we finish it, we take measurements of the response time of
N programs to test if our proposed methods for calculating an
DRk I T A T M S upper bound on the extra execution time of a task is valid

(a) For the general case in practice.
. This paper is a starting point of considering the effect of
st bus contention for real-time tasks on multicores, and thus

_!_iﬂ!'__!____ there are many potential research issues. Our future work

e poer e e includes (i) allowing preemptive scheduling, (i) analygi
D L switched interconnection networks, (iii) avoiding the pes
(b) Fort < T; simism resulting from each task being analyzed individuall

(that is, taskr; has to wait for all bus transactions from
T, and taskrm has to wait for all bus transactions from
71.), and (iv) developing processor scheduling algorithms
that facilitate the analysis of the memory bus contention.

Figure 1. Calculation ofBR;(t)

ftn) = _max ARH](C]) = ARL{((C] — tu]") (®) REFERENCES
jepaths(ri) [1] S. Williams, A. Waterman, and D. Patterson, “Roofline:ian
In the middle part, there exists exactly one instance of sightful _/lsu_al performance model for multicore architgets,”
execution for everyl}, and thus we choose the maximum Communications of the ACM, vol. 52, no. 4, pp. 65-76, 2009.

execution time among all paths. [2] K. D. Bosschere, W. Luk, X. Martorell, N. Navarro,
M. OBoyle, D. Pnevmatikatos, A. Ramirez, P. Sainrat,
M tar - A. Seznec, P. Stenstrom, and O. Temam, “Challenge 2.2
fio(ta) = T 'jepgi‘;’f;(r){ARHi (G} © in high-performance embedded architecture and compilatio
’ ' roadmap,” inTransactions on HiIPEAC, 2007, pp. 5-29.

The tail part includes the beginning point of an execution) .
but ends at any arbitrary point, so we can calculate thd3] J. Rosén, A. Andrei, P. Eles, and Z. Peng, "Bus access

. . . optimization for predictable implementation of real-timgpli-
maximum number of bus requests of the tail part similarly cgtions on multi,;rocessor sys?ems-on-chip,”ﬁmc. of IEEE

to that of the head part. Real-Time Systems Symposium, 2007, pp. 49-60.
T _ - [4] L. Steffens, M. Agarwal, and P. van der Wolf, “Real-time
fi (tr) :jepg}s%f(mARH@'](mm{tT’CzJ}) (10) analysis for memory access in media processing SoCs: A

]) practical approach,” ifProc. of Euromicro Conference on Real-
Eqg. (4) assumes that the head (tail) part includes the end Time Systems, 2008, pp. 255-265.

(beginning) of an execution. If is smaller thanT;, there)) o o)
[5] T. Lundgvist and P. Stenstrom, “Timing anomalies in dgmi-

might be less thaq one entire egecutlon duringn this cally scheduled microprocessors,” iroc. of IEEE Real-Time
case, the assumption of Eq. (4) is broken, so we need to Systems Symposium, 1999, pp. 12-21.

analyze BR;(t) in a different way. Once we consider the . . .
time interval that starts and ends at an arbitrary point of arf®] G. Laurent, N. Rivierre, and M. Spuri, “Preemptive andhno
execution as shown in Figure 1(B},R;(t) can be found as: preemptive real-time uniprocessor scheduling,” Tech. .Rep

1996.
() — (i Jvy J [7] S. K. Baruah, “A general model for recurring real-timeska,”
BRi(t jEpathsr(E?)},(OSsgci ARH (min{s +1,C7}) — ARL;(5) in Proc. of IEEE Real-Time Systems Symposium, 1998, pp.
(11) 114-122.
Acknowledgements

Finally, we can calculatdBR;(¢) in the following ways: . . .
if ¢ > T}, use the result of Eq. (4); and #f < T}, choose This work was partially supported by ARTISTDesign Net-

the maximum value between Eq. (4) and Eq. (11). work of Excellence on Embedded Systems Design, funded by
the European Commission under FP7 with contract number ICT-
V. CONCLUSIONS ANDFUTURE WORK NOE-214373, the Portuguese Science and Technology Faandat

We have presented an approach for finding an uppefFundagdo para Ciéncia e Tecnologia - FCT), IT R&D pro-
bound on the extra execution of a task due to contention ogram of MKE/KEIT of Korea [2009-K1002090, Development of
the interconnection network between processor cores antechnology Base for Trustworthy Computing], National Resh
memory in a COTS-based multicore system. To the besFoundation of Korea (2009-0086964), and KAIST ICC, KIDCS,
of our knowledge, the problem of analyzing such extraKMCC, and OLEV grants. This paper has been produced partiall
execution time was previously unsolved. Now, we are takingn a time when we have had general bus-contention discussion
measurements of real programs and using them to build @ith Stefan Petters and Dakshina Dasari.

