

Finding an Upper Bound on the Increase in
Execution Time Due to Contention on the
Memory Bus in COTS-Based Multicore
Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-100104

Version:

Date: 01-25-2010

Björn Andersson

Arvind Easwaran

Jinkyu Lee

Technical Report HURRAY-TR-100104 Finding an Upper Bound on the Increase in Execution Time Due to Content

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Finding an Upper Bound on the Increase in Execution Time Due to
Contention on the Memory Bus in COTS-Based Multicore Systems
Björn Andersson, Arvind Easwaran, Jinkyu Lee

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Contention on the memory bus in COTS based multicore systems isbecoming a major determining factor of the
execution time of atask. Analyzing this extra execution time is non-trivial because(i) bus arbitration protocols in such
systems are oftenundocumented and (ii) the times when the memory bus isrequested to be used are not explicitly
controlled by the operatingsystem scheduler; they are instead a result of cache misses.We present a method for finding
an upper bound on the extraexecution time of a task due to contention on the memory bus in COTSbased multicore
systems. This method makes no assumptions on the busarbitration protocol (other than assuming that it iswork-
conserving).

Finding an Upper Bound on the Increase in Execution Time Due to Contention on
the Memory Bus in COTS-Based Multicore Systems

Björn Andersson and Arvind Easwaran
Polytechnic Institute of Porto, Portugal

bandersson@dei.isep.ipp.pt, aen@isep.ipp.pt

Jinkyu Lee
Dept. of Computer Science, KAIST, South Korea

jinkyu@cps.kaist.ac.kr

Abstract—Contention on the memory bus in COTS based
multicore systems is becoming a major determining factor of
the execution time of a task. Analyzing this extra execution
time is non-trivial because (i) bus arbitration protocols in such
systems are often undocumented and (ii) the times when the
memory bus is requested to be used are not explicitly controlled
by the operating system scheduler; they are instead a resultof
cache misses. We present a method for finding an upper bound
on the extra execution time of a task due to contention on the
memory bus in COTS based multicore systems. This method
makes no assumptions on the bus arbitration protocol (other
than assuming that it is work-conserving).

I. I NTRODUCTION

The multicore processor is today a generic building block
in the design of embedded real-time computing systems.
Typically, a multicore processor chip is comprised of a
set of processor cores, each with a private cache memory
(L1) and potentially a cache memory (L2) that is shared
among the processor cores. This chip is connected through
an interconnection network (such as a bus) to a set of main-
memory modules. When an instruction cannot be served
by the on-chip caches, it is necessary for the processor
to perform a transaction on the interconnection network
in order to fetch data from the main-memory modules.
Already today, this interconnection network is a performance
bottleneck for many applications [1]. Moreover, since the
number of processor cores in a multicore chip is increasing
dramatically, the amount of traffic on the interconnection
network increases accordingly, and consequently this prob-
lem is expected to be exacerbated in the future [1], [2].

The interconnection network has an impact also on the
execution time of an individual task. Consider a taskτ1

executing on processorP1 and another taskτ2 executing
on processorP2. The taskτ2 generates a cache miss but
before the transaction on the interconnection network has
finished, taskτ1 generates a cache miss as well. Then in
this case, serving the cache miss ofτ1 requires more time
than would have been the case ifτ1 was the only task in
the system because the bus must finish serving the other
processor. Therefore, it is important to develop a method
for finding an upper bound on the extra execution time of
a task due to contention on the interconnection network

between processor cores. This problem differs from studies
in Worst-Case Execution-Time (WCET) analysis because
WCET analysis is performed on a task in isolation, whereas
our problem concerns the interaction of tasks. It is also
different from works in real-time communication because
these studies find an upper bound on the queuing time
of individual message transmission requests, whereas our
problem concerns the cumulative waiting time of many
requests to perform transactions on the memory bus.

The scientific community has nonetheless provided some
initial insights into the problem of contention on the inter-
connection network. The software of a task can be structured
to be separated into a fetch phase (where cache misses are
allowed) and an execution phase (where cache misses are not
allowed) and then the memory bus and tasks are scheduled
to ensure that no two processor cores are in a fetch phase
simultaneously [3], thus eliminating contention. Or, a rate-
limiter is added to the memory controller to ensure that
no processor core will generate too much traffic in a time
interval of pre-specified duration and then network calculus
is used to analyze the processor cores [4]. Unfortunately,
common to these approaches is that they require control of
the arbitration of the memory bus and hence they cannot be
used on COTS-based multicores.

In this work we develop the first approach for finding
an upper bound on the extra execution time of a task due
to contention on the memory bus in COTS-based multicore
systems. We also present a technique for characterizing the
interconnection-network-traffic generation pattern of tasks,
which is then used as input for finding the upper bound on
task execution time. In taking this first step, we make the
following assumptions:

A1. The interconnection network is a shared bus (de-
noted asmemory bus henceforth);

A2. The shared L2 cache is either partitioned between
the processor cores or disabled if it cannot be
partitioned. The rationale for this assumption is
explained in Section II-C;

A3. Tasks are statically assigned to processors and all
jobs execute on the processor to which the task is
assigned (partitioned scheduling);

A4. Non-preemptive scheduling is used on each pro-

cessor;
A5. The bus arbitration protocol is work-conserving

(that is, the memory bus is idle only if no processor
core requests to use the bus).

Additionally, the technique developed in this paper has
the following properties.

P1. It does not assume any specific arbitration protocol;
P2. It works for constrained-deadline sporadic tasks.

II. SYSTEM MODEL

A. Task model

We assume that the workload is comprised of a set of tasks
τ = {τ1, τ2, . . . , τn}. We assume the constrained-deadline
sporadic task model which characterizes a taskτi by Ci, Ti

and Di (Di ≤ Ti), with the interpretation thatτi releases
a sequence of jobs such that two subsequent jobs fromτi

are released at leastTi time units apart and the exact times
of the releases of these jobs cannot be controlled by the
scheduling algorithm. Each job released byτi requests to
perform Ci units of execution at mostDi time units from
its release; otherwise it misses its deadline.

Note thatCi denotes an upper bound on the execution
time of a job of taskτi when the job executes with no
contention on the memory bus from other tasks.Ci can be
found by WCET analysis techniques. In this work, we are
interested in findingC′

i which denotes an upper bound on
the execution time when the job executeswith contention
on the memory bus from other tasks on other processors.

B. Architecture

Many high-performance processors today allow more
than one instruction to be issued in parallel, executed in
parallel and committed in parallel. Our model allows this.
Some high-performance processors allow instructions to be
committed in another order than they were issued. Such pro-
cessors can significantly complicate WCET analysis [5] even
on a single processor without bus contention. Therefore, we
assume that processor cores are in-order processors. Also,
some processors may switch to another thread when a long-
latency instruction is executed (for example a data-cache
miss). We assume this is not the case, that is, we assume
that when a processor core waits for accessing the memory
bus, the processor core is simply stalled. For these reasons,
we can computeC′

i asC′
i = Ci +Qi, whereQi is an upper

bound on the amount of time that taskτi stalls execution
when it executes forC′

i time units because of waiting for
accessing the memory bus.

Some computer systems use split transaction buses, where
a memory transaction is split into a request part (address)
and a reply part (data). We assume that the computer system
does not use split transactions.

Different bus transactions may take different amount of
time. For example, a bus transaction resulting from a load

which succeeds another load instruction with the same row-
address can be served faster because only the column address
of the DRAM memory needs to be changed. We letTR
denote an upper bound on the amount of time for performing
a bus transaction. This time,TR, includes the time to assert
the address, the time for the memory latency of the main-
memory module and the time for the main-memory module
to deliver the data to the processor. Note thatTR denotes
an upper bound on the amount of time for performing a bus
transaction for the case that the bus was idle; therefore,TR
does not include any queuing delay on the memory bus.

We make no assumption on the number of processor chips
or the number of processor cores per processor chip. For
example, we allow systems with a single processor chip
comprising two processor cores. We also allow systems
with two processor chips, each comprising four processor
cores. Further, we assume that tasks are already assigned to
processor cores. Therefore, we letτp denote the set of tasks
assigned to processor corePp.

Because of our definition ofC′
i it holds that if a task ex-

ecuted on a processor forC′
i time units, then it performsCi

units of execution. Therefore, we can check schedulability
of all tasks assigned to processorp by using a uniprocessor
schedulability test on processorp, but for each taskτi,
replaceCi by C′

i. See for example [6].

C. Bus requests

We assume thatBRi(t) is a function that denotes an
upper bound on the number of bus requests that taskτi can
generate during any time interval of durationt. We will use
BRi(t) in Section III for computingC′

i. It is also necessary
to find BRi(t); Section IV shows this.

The functionBRi(t) is clearly dependent on taskτi. The
task generates a bus request when it misses the shared L2
cache and before that it must also have missed its private L1
cache. Note that since the L2 cache is shared, the function
BRi(t) is actually not only a property of taskτi and the
caches but it is also a property of the interaction between
task τi and the tasks on other processor cores. This makes
the analysis very complicated. Therefore, in order to simplify
our study, we made assumption A2 regarding the shared L2
cache (partitioned or disabled). As a resultBRi(t) does not
depend on the behavior of tasks in other processor cores.

D. Problem statement

Our problem can therefore be stated as:

Given τ = {τ1, τ2, . . . , τn}, where eachτi is
characterized byTi, Di and Ci and the function
BRi(t), and given that each task is assigned to
a processor and executes on it non-preemptively,
find C′

i for eachτi.

III. A NALYSIS ON THE WORST-CASE EXECUTION TIME

WITH CONTENTION ON THEMEMORY BUS

In this section, we show how to calculate an upper bound
on the execution time when the job executes with contention
on the memory bus from other tasks on other processors
(i.e., C′

i) using givenBRi(t). We only assume that the bus
arbitration protocol is work-conserving, and do not assume
any other specific arbitration protocol.

Consider a jobJi,k released byτi. Bus transactions
requested fromJi,k during its execution can be delayed
due to: (a) bus transactions requested from other jobs on
other processors during the execution ofJi,k and (b) any
bus transactions requested but not performed before the
execution ofJi,k (backlogged bus transactions). Considering
this delay, we can calculateC′

i as follows.

C
′
i = Ci + BLi · TR +

X

τj∈(τ\τproc(τi))

BRj(C
′
i) · TR (1)

where BLi is the maximum number of backlogged bus
transactions at the beginning of the execution of a job
released byτi, andproc(τi) is a processor to whichτi is as-
signed. We consider (a) by

∑
τj∈(τ\τproc(τi)) BRj(C

′
i) ·TR.

Here note that we useBRj(C
′
i) instead ofBRj(Ci), so that

we can care for additional bus requests caused by additional
execution time (C′

i−Ci). We also consider (b) byBLi ·TR,
but we need to know how largeBLi is.

To calculateBLi, we first define the maximum busy
period of bus transactions (denoted asBP), and BP can
be calculated by the following recurrence equation.

BP = TR +
X

τj∈τ

BRj(BP) · TR (2)

The structure of this equation is similar to that of calcu-
lating response time. We knowBRj(·) is a non-decreasing
function so that we calculate Eq. (2) in an iterative manner
(i.e, BP (k+1) = f(BP (k)) starting fromBP (0) = TR. If
we replaceBP with t in Eq. (2), the right-hand side of the
equation means the longest time interval of bus transactions
requested duringt. If we consider that bus transactions are
continuously performed during the busy period,BLi can be
calculated by the following equation.

BLi = max
0≤t≤BP

&

TR + (
P

τj∈τ
BRj(t) · TR) − t

TR

’

(3)

Now we know all variables in Eq. (1) and thus calculate
the equation similar to Eq. (2) since the right-hand side of
the equation is a non-decreasing function ofC′

i.

IV. A NALYSIS ON THE MAXIMUM NUMBER OF BUS

REQUESTS

In this section, we show how to calculate a function which
is an upper bound on the number of bus requests that task

τi can generate during any time interval of durationt (i.e.,
BRi(t)) from experimental results.

We assume the following can be obtained from experi-
ments:

1) An upper bound on the number of bus requests in an
interval [0, t] (denoted asARH

j
i (t)), where0 denotes

the beginning of execution of thejth execution path
of τi and t denotes some future time. Note that this
measurement only depends on the execution of taskτi,
because of our assumption A2 on the shared L2 cache.
Therefore, we obtainARH

j
i (t) from measurements by

executing jobs ofτi independently on a processor core;
2) An lower bound on the number of bus requests in an

interval [0, t] (denoted asARL
j
i (t)), where0 denotes

the beginning of execution of thejth execution path
of τi and t denotes some future time;

3) The execution time of thejth path of taskτi (denoted
asC

j
i).

We note that different executions of the same path may
result in different numbers of bus requests; this is the reason
why we distinguish betweenARH

j
i (t) andARL

j
i (t). We let

paths(τi) denote the set of all paths of taskτi. We assume
that ARH

j
i (t) and ARL

j
i (t) are non-decreasing functions

for eachi andj and regardCi asmaxj∈paths(τi) C
j
i .

To calculateBRi(t), we divide t into three parts: the
head, middle, and tail parts, and denote them asfH

i (tH),
fM

i (tM), and fT
i (tT), respectively. This idea of splitting

a path to simplify the analysis has been used before; for
instance, in [7], for analysis of recurring task models. As
shown in Figure 1(a), the duration of the middle part is a
multiple ofTi so that there exist several complete executions.
The duration of the head is less thanTi, so that there exists
either one partial execution or one complete execution. Ditto
for the tail. The head (tail) part includes the end (beginning)
point of an execution as shown in Figure 1(a). Since the
definition of BRi(t) is an upper bound on the number of
bus requests, it can be calculated as follows.

BRi(t) = max
tH ,tM ,tT

f
H
i (tH) + f

M
i (tM) + f

T
i (tT), (4)

wheretH + tM + tT = t, (5)

tH , tT < Ti, (6)

tM =

»—

t

Ti

�

− 1

–+

Ti or tM =

—

t

Ti

�

Ti (7)

where[A]+ meansmax{A, 0}. Note that Eq. (7) is derived
from Eq. (5) and (6). Also note thattM is a multiple ofTi.

The head part starts from any arbitrary point of an
execution but includes the end point of the execution, so
that the maximum number of bus requests of the head part
is equal to the maximum difference between the number of
bus requests during a complete execution and the one during
a partial execution.

Ti Ti Ti

Ci
1 Ci

2 Ci
3 Ci

4

t

tH tM tT

< Ci
1- tH

< tT

(a) For the general case

Ti Ti Ti

Ci
1 Ci

2 Ci
3 Ci

4

t

s

s+t

(b) For t < Ti

Figure 1. Calculation ofBRi(t)

f
H
i (tH) = max

j∈paths(τi)
ARH

j
i (Cj

i) − ARL
j
i ([C

j
i − tH]+) (8)

In the middle part, there exists exactly one instance of
execution for everyTi, and thus we choose the maximum
execution time among all paths.

f
M
i (tM) =

tM

Ti

· max
j∈paths(τi)

{ARH
j
i (Cj

i)} (9)

The tail part includes the beginning point of an execution
but ends at any arbitrary point, so we can calculate the
maximum number of bus requests of the tail part similarly
to that of the head part.

f
T
i (tT) = max

j∈paths(τi)
ARH

j
i (min{tT , C

j
i }) (10)

Eq. (4) assumes that the head (tail) part includes the end
(beginning) of an execution. Ift is smaller thanTi, there
might be less than one entire execution duringt. In this
case, the assumption of Eq. (4) is broken, so we need to
analyzeBRi(t) in a different way. Once we consider the
time interval that starts and ends at an arbitrary point of an
execution as shown in Figure 1(b),BRi(t) can be found as:

BRi(t) = max
j∈paths(τi),0≤s≤Ci

ARH
j
i (min{s + t,C

j
i }) − ARL

j
i (s)

(11)

Finally, we can calculateBRi(t) in the following ways:
if t ≥ Ti, use the result of Eq. (4); and ift < Ti, choose
the maximum value between Eq. (4) and Eq. (11).

V. CONCLUSIONS ANDFUTURE WORK

We have presented an approach for finding an upper
bound on the extra execution of a task due to contention on
the interconnection network between processor cores and
memory in a COTS-based multicore system. To the best
of our knowledge, the problem of analyzing such extra
execution time was previously unsolved. Now, we are taking
measurements of real programs and using them to build a

model of the bus request pattern for each program. When
we finish it, we take measurements of the response time of
programs to test if our proposed methods for calculating an
upper bound on the extra execution time of a task is valid
in practice.

This paper is a starting point of considering the effect of
bus contention for real-time tasks on multicores, and thus
there are many potential research issues. Our future work
includes (i) allowing preemptive scheduling, (ii) analyzing
switched interconnection networks, (iii) avoiding the pes-
simism resulting from each task being analyzed individually
(that is, taskτ1 has to wait for all bus transactions from
τ2, and taskτ2 has to wait for all bus transactions from
τ1.), and (iv) developing processor scheduling algorithms
that facilitate the analysis of the memory bus contention.

REFERENCES

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: anin-
sightful visual performance model for multicore architectures,”
Communications of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[2] K. D. Bosschere, W. Luk, X. Martorell, N. Navarro,
M. OBoyle, D. Pnevmatikatos, A. Ramirez, P. Sainrat,
A. Seznec, P. Stenström, and O. Temam, “Challenge 2.2
in high-performance embedded architecture and compilation
roadmap,” inTransactions on HiPEAC, 2007, pp. 5–29.

[3] J. Rosén, A. Andrei, P. Eles, and Z. Peng, “Bus access
optimization for predictable implementation of real-timeappli-
cations on multiprocessor systems-on-chip,” inProc. of IEEE
Real-Time Systems Symposium, 2007, pp. 49–60.

[4] L. Steffens, M. Agarwal, and P. van der Wolf, “Real-time
analysis for memory access in media processing SoCs: A
practical approach,” inProc. of Euromicro Conference on Real-
Time Systems, 2008, pp. 255–265.

[5] T. Lundqvist and P. Stenström, “Timing anomalies in dynami-
cally scheduled microprocessors,” inProc. of IEEE Real-Time
Systems Symposium, 1999, pp. 12–21.

[6] G. Laurent, N. Rivierre, and M. Spuri, “Preemptive and non-
preemptive real-time uniprocessor scheduling,” Tech. Rep.,
1996.

[7] S. K. Baruah, “A general model for recurring real-time tasks,”
in Proc. of IEEE Real-Time Systems Symposium, 1998, pp.
114–122.

Acknowledgements

This work was partially supported by ARTISTDesign Net-
work of Excellence on Embedded Systems Design, funded by
the European Commission under FP7 with contract number ICT-
NoE-214373, the Portuguese Science and Technology Foundation
(Fundação para Ciência e Tecnologia - FCT), IT R&D pro-
gram of MKE/KEIT of Korea [2009-KI002090, Development of
Technology Base for Trustworthy Computing], National Research
Foundation of Korea (2009-0086964), and KAIST ICC, KIDCS,
KMCC, and OLEV grants. This paper has been produced partially
in a time when we have had general bus-contention discussions
with Stefan Petters and Dakshina Dasari.

