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Abstract 
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the 
goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate 
between processors. On each processor, tasks are scheduled with rate-monotonic. We propose an algorithm 
which can schedule all task sets that any other possible algorithm can schedule assuming that our algorithm 
is given processors that are √2/(√2−1) ≈ 3.41 times faster. No such guarantees are previously known for 
partitioned static-priority scheduling on uniform multiprocessors..  
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Abstract

Consider the problem of scheduling a set of sporadically
arriving tasks on a uniform multiprocessor with the goal of
meeting deadlines. A processorp has the speedSp. Tasks
can be preempted but they cannot migrate between proces-
sors. On each processor, tasks are scheduled according to
rate-monotonic. We propose an algorithm that can schedule
all task sets that any other possible algorithm can sched-
ule assuming that our algorithm is given processors that
are

√
2√

2−1
≈ 3.41 times faster. No such guarantees are pre-

viously known for partitioned static-priority schedulingon
uniform multiprocessors.

1. Introduction

Consider the problem of preemptive scheduling of a set
τ of n sporadically arriving tasks onm processors. A task is
given a unique index within the range 1..n and a processor
is given a unique index within the range 1..m. The speed
of processorp is denoted bySp, with the interpretation that
if a task executesL time units on processorp, it performs
L × Sp units of execution.

A task τi generates a (potentially infinite) sequence of
jobs. The time when these jobs arrive cannot be controlled
by the scheduling algorithm and the time of a job arrival is
unknown to the scheduling algorithm before the job arrives.
It is assumed that the time between two consecutive arrivals
of jobs from the same taskτi is at leastTi. We say that a job
generated byτi finishes execution at the time when it has
performedCi units of execution. If a job finishes execution
at mostTi time units after its arrival, then we say that the
job meets its deadline; otherwise it misses its deadline. Itis
assumed that 0< Ci and 0< Ti, and thatTi andCi are real
numbers. Note thatCi is permitted to be greater thanTi.

The scheduling algorithm is allowed to preempt the exe-
cution of a job and there is no cost associated with preemp-
tion. Migration is not permitted; when a job resumes exe-
cution after being preempted, the job must execute on the
same processor as it executed on before it was preempted.
Also, if any two jobs are generated by the same task then
these two jobs must execute on the same processor. It is
assumed that a processor cannot execute two or more jobs
simultaneously, and a job cannot execute on two or more
processors simultaneously. It is also assumed thatTi and
Ci of all tasks are known to the scheduling algorithm.

Our goal is to design an algorithm that schedules tasks to
meet the deadlines of all jobs. Unfortunately, the problem
of deciding if a set of tasks can be partitioned such that all
tasks on each processor meet deadlines is NP-complete [3].
Consequently, the problem of assigning tasks to processors
is intractable. For this reason, we will allow an algorithm
to fail to assign tasks to processors even when it would be
possible to assign tasks to processors such that deadlines
would be met. For such scheduling algorithms, it is com-
mon to characterize the performance with the notion of a
utilization bound[13]. This notion has the additional ad-
vantage of allowing designers to find out if a specific task
set will meet deadlines before run-time; this is often called
schedulability analysis. Unfortunately, the standard defini-
tion of a utilization bound used in uniprocessor scheduling
[13] and on multiprocessors with identical processors [1]
cannot be applied on uniform processors. For this reason,
we will instead use another performance metric: thespeed
competitive ratio.

The speed competitive ratio of an algorithmA is denoted
CPTA. It is the lowest number such that for every task set
τ and for every uniform multiprocessorΠ′, characterized
by the speed of processorsS′

1,S′
2,. . .,S′

m, it holds that if it is
possible (using migration if necessary) to meet all deadlines
of τ onΠ′ then algorithmA meets all deadlines ofτ onΠ,



whereΠ is a uniform multiprocessor where each processor
has a speedCPTA greater than the corresponding processor
in Π′.

A low speed competitive ratio indicates high perfor-
mance. A speed competitive ratio of 1 is the best achievable.
And a speed competitive ratio of two is the best achievable
[2] for scheduling algorithms that do not allow migration. If
a scheduling algorithm has a finite speed competitive ratio
then one can solve every problem instance using processors
that are sufficiently fast. If no finite speed competitive ratio
has been proven for a scheduling problem then one cannot
know if faster processors will ever help.

It is challenging to design a partitioned algorithm
with a finite speed competitive ratio. Nonetheless, such
an algorithm was designed [2]; this algorithm assumed
that Earliest-Deadline-First (EDF) [13] was used on each
processor. But most real-time operating systems do not sup-
port EDF. Instead, they support static-priority scheduling
and here, the priority-assignment scheme Rate-Monotonic
(RM) [13] is frequently used. For this reason, there is a
need to prove a speed competitive factor for uniform multi-
processors scheduling without migration and using RM on
each processor.

Therefore, in this paper we propose a partitioned
scheduling algorithm for uniform multiprocessors; it allows
preemption and it uses RM [13] on each processor. We
prove its speed competitive ratio: it is at most

√
2√

2−1
≈

3.41. For the special case, where the maximum utilization
of tasks does not exceed the speed of the slowest processor,
the performance is better; we show that the speed compet-
itive ratio is1 +

√
2 ≈ 2.41. Moreover, with simulation of

randomly generated task sets, we show that for many task
sets our new algorithm needs only a small amount of extra
resources (significantly less than 3.41).

The remainder of this paper is organized as follows. Sec-
tion 2 gives a background on uniform multiprocessors. Sec-
tion 3 presents our new algorithm which does not migrate
tasks and Section 4 proves its speed competitive ratio. Sec-
tion 5 evaluates the new algorithm through simulation ex-
periments, while Section 6 discusses the ability of previous
work to solve the addressed problem. Finally, conclusions
are drawn in Section 7.

2. Background

Recall that task migration is not permitted. Therefore,
when a job resumes execution after being preempted, the
job must execute on the same processor as it executed on
before it was preempted. We also assume that if any two
jobs are generated by the same task, then these two jobs
must execute on the same processor. This type of schedul-
ing is calledpartitioned multiprocessor schedulingbecause
it is equivalent to partitioning the set of tasks such that all

tasks in a partition are assigned to its dedicated processor
and then a uniprocessor scheduling algorithm is used at run-
time. We assume that Rate-Monotonic (RM) is used. It as-
signs a static-priority to each task; that is, the priority of a
task does not change at run-time. A task releases a (possi-
bly infinite) sequence of jobs. A job has the same priority
as the task that released the job. At run-time, at every time,
the scheduling algorithm selects for execution the job that
has the highest priority among the set of tasks that has ar-
rived at that time and still has not finished execution. It
is well-known that preemptive Rate-Monotonic (RM) is an
optimal static-priority scheduling algorithm on a uniproces-
sor with our task model; that is, it meets deadlines if there
is any static-priority preemptive uniprocessor scheduling al-
gorithm that meets deadlines. For this reason, we will, in
the remainder of the paper, assume that preemptive RM is
used on each processor. For convenience we will refer to
RM with the meaning of preemptive RM.

The problem of partitioning the task set is however non-
trivial. It is important that the task assignment algorithmis
aware of the scheduling algorithm used on a uniprocessor
and it must use a uniprocessor schedulability test to know
this. For RM it is known [13] that:

Theorem 1. Let p be a processor of speedSp = 1 and let
np denote the number of tasks assigned to processorp. If∑np

i=1
Ci

Ti
≤ np × (21/np − 1) and tasks are scheduled with

RM onp then all deadlines are met.

We can easily remove the restrictionSp = 1 from Theo-
rem 1 and phrase Theorem 2 as follows.

Theorem 2. Let p be a processor of speedSp and letnp

denote the number of tasks assigned to processorp. If∑np

i=1
Ci

Ti
≤ Sp × np · (21/np − 1) and tasks are scheduled

with RM onp then all deadlines are met.

When assigning tasks to processors, the speed of a
processor clearly is used in the schedulability test, for ex-
ample the one in Theorem 2. But it is also important that
processors are considered in the right order, in order to
achieve a finite speed competitive ratio. Example 1 illus-
trates this.

Example 1. Let k be an arbitrary integer such thatk ≥ 3.
Considern=k3+1 tasks to be scheduled onm=k3 proces-
sors. All tasks haveTi = 1. Tasks withi ∈ 1..m, haveCi =
1 and the taskm+1 hasCm+1 = k+1. Processor 1 has the
speedS1 = (k+2) × 5/4 and the processors with index 2..m
have the speedSp = 1.

Observe Figure 1. It can be seen (from Figure 1a) that
this task set can be scheduled by assigningτm+1 to proces-
sor 1 and one of the other tasks to processor 1, and the
other tasks given one dedicated processor each. However,
consider Figure 1b. If the task assignment scheme consid-
ers tasks and processors in order of their index and uses a



Figure 1. It is important to exploit knowledge of the speed of the processors when assigning tasks
to processors. Otherwise, the speed competitive ratio can a pproach infinity.

normal bin-packing algorithm, then a deadline is missed. A
deadline is still missed even if processors are k times faster.
We can see this as follows. Processor 1 will have the speed
S1 = (k2+2k) × 5/4 and processors 2,3,4,. . .,m will have
speedSp = k. The speed of processor 1 is not enough to
host all the tasks 1, 2, 3,. . ., m because their cumulative
utilization isk3 and this exceeds the speed of processor 1,
which isS1 = (k2+2k) × 5/4 (it is true thatk3 ≥ (k2+2k)
× 5/4 sincek ≥ 3). Consequently, taskτm+1 will not be as-
signed to processor 1 and henceτm+1 must be assigned to
one of the processors with index 2,3,. . .,m. Butτm+1 can-
not be assigned to a processor with index 2,3,. . .,m because
the utilization ofτm+1 is k+1 and the speed of each of the
processors isk.

We have seen that algorithms using bin-packing can fail
if the speed of the processors is not considered in the assign-

ment algorithm. This can happen although these algorithms
are given processors that arek times faster. We can do this
reasoning for anyk ≥ 3. By lettingk → ∞ we obtain that
the speed competitive ratio is infinite for these bin-packing
schemes that do not take the speed of each processor into
consideration. This stresses the importance of taking the
speed of processors into account when the task assignment
algorithm makes decisions.

We will now discuss feasibility testing of scheduling
with migration permitted; that is, we will state conditions
such that if and only if these conditions are true for a task
set then it is possible to schedule the task set. These results
are useful for proving the speed competitive ratio of the new
algorithm in Section 3.

We have showed in [2] by simple reformulation of re-
sults in [4] that: A task set is feasible on a uniform mul-



tiprocessor platform if and only ifl ≤ 1 for the following
optimization problem.

minimizel
subject to:

∀i ∈ {1, 2, . . . , n} :

m∑

p=1

ui,p =
Ci

Ti
(1)

∀i ∈ {1, 2, . . . , n} :

m∑

p=1

ui,p

Sp
≤ l (2)

∀p ∈ {1, 2, . . . , m} :
n∑

i=1

ui,p

Sp
≤ l (3)

∀i ∈ {1, 2, . . . , n}, p ∈ {1, 2, . . . , m} : 0 ≤ ui,p (4)

Intuitively, ui,p in (1)-(4) means the utilization that task
τi is assigned to processorp.

From (1),(2),(3) and (4) we obtain Lemma 1.

Lemma 1. If it holds that:

m∑

p=1

Sp <

n∑

i=1

Ci

Ti

then no scheduling algorithm can meet all deadlines.

Proof. This lemma was proven in [2].

3. The new algorithm

The new algorithm is described in Algorithm 1. It is
called RM-DU-IS-FF because it uses RM on each proces-
sor, it sorts tasks in order of Decreasing-Utilization, it sorts
processors in order of Increasing-Speed and it uses First-Fit
bin-packing. Line 12 is the schedulability test from Theo-
rem 2.

It is straightforward to see that the algorithm has the time
complexityO(n× m+n log n+m log m). The performance
of RM-DU-IS-FF is given by Theorem 3.

Theorem 3. CPTRM−DU−IS−FF ≤
√

2√
2−1

≈ 3.41.

We have now seen the speed competitive ratio of RM-
DU-IS-FF. But previous work [3] in the real-time schedul-
ing on uniform multiprocessors has focused on the interest-
ing special case where∀i,p it holds that: Ci/Ti ≤ Sp. It
behooves us to analyze the performance of RM-DU-IS-FF
for that case as well. Theorem 4 does that.

Theorem 4. If we only consider task sets where∀i,p it holds
that: Ci/Ti ≤ Sp thenCPTRM−DU−IS−FF ≤ 1+

√
2.

Algorithm 1 RM-DU-IS-FF, a task assignment algorithm
for a uniform multiprocessor.

1: sort processors such thatS1 ≤ S2 ≤ . . . ≤ Sm

2: sort tasks such thatC1/T1 ≥ C2/T2 ≥ . . .≥ Cn/Tn

3: for all p in 1..m do
4: U[p] := 0
5: n[p] := 0
6: end for
7: i := 1
8: while (i<=n) do
9: p := 1

10: allocated := FALSE
11: while (p<=m) and (allocated=FALSE)do
12: if U[p]+ Ci/Ti <=
13: Sp × (n[p] + 1) × (21/(n[p]+1) − 1) then
14: assign task i to processor p
15: U[p] := U[p]+ Ci/Ti

16: n[p] := n[p]+ 1
17: allocated := TRUE
18: i := i + 1
19: else
20: p := p + 1
21: end if
22: end while
23: if (allocated=FALSE)then
24: declare FAILURE
25: end if
26: end while
27: declare SUCCESS

We see that the algorithm RM-DU-IS-FF can obtain a
tighter bound for such task sets. In fact, Theorem 4 can be
seen as a generalization of Oh and Baker’s result [14] in
real-time scheduling on identical multiprocessors; it offers
the same performance bound as the analysis by Oh but for
a less restrictive computer platform.

4. Proof of speed competitive ratio

Theorem 3. CPTRM−DU−IS−FF ≤
√

2√
2−1

≈ 3.41.

Proof. We will prove the theorem using contradiction. We
will do so and show that a failed task set must request more
than

√
2−1 of the processing capacity of a subset of proces-

sors. We will then consider this task set to be scheduled us-
ing a scheduling algorithm where migration is allowed and
a computing platform with lower speed is used. It will turn
out that every such migrative algorithm must utilize more
than the sum of the computing capacity of the subset of
processors. This will contradict Lemma 1 and it will prove
the theorem. Let us elaborate this reasoning.

If the theorem was false then there exists a task set



1: sort processors such
that S1 ≤ S2 ≤ . . . ≤
Sm

2: sort tasks such that
C1/T1 ≥ C2/T2 ≥
. . .≥ Cn/Tn

3: for all p in 1..m do
4: U[p] := 0
5: n[p] := 0
6: end for
7: i := 1
8: while (i<=n) do
9: p := 1

10: allocated := FALSE
11: while (p<=m) and

(allocated=FALSE)do
12: if U[p]+ Ci/Ti <=
13: Sp × (n[p] +

1) × (21/(n[p]+1) − 1)
then

14: assign task i to
processor p

15: U[p] := U[p]+
Ci/Ti

16: n[p] := n[p]+ 1
17: allocated :=

TRUE
18: i := i + 1
19: else
20: p := p + 1
21: end if
22: end while
23: if (allo-

cated=FALSE)then
24: declare FAILURE
25: end if
26: end while
27: declare SUCCESS

1. for p in 1..m do 18. for i := L+1 to n do
2. U[p] := 0 19. if U[p]+Ci/Ti ≤ SEPthen
3. lo split[p] := 0 20. U[p] := U[p] + Ci/Ti

4. hi split[p] := 0 21. τi.processorid1 := p
5. end for 22. τi.processorid2 := p
6. Letτheavy denote the set of tasks such thatCi/Ti > SEP 23. else
7. Letτ light denote the set of tasks such thatCi/Ti ≤ SEP 24. if p+1≤ m then
8. L := | heavy| 25. hi split[p] := SEP-Ci/Ti

9. Order tasks such thatτi with i in 1..L are all inτheavy 26. lo split[p+1] :=Ci/Ti-hi split[p]
10. andτi with i in L+1..n are all inτ light 27. τi.processorid1 := p
11. Sort tasks in L+1..m such thatTL+1 ≤ TL+2 ≤ . . . ≤ Tm 28. τi.processorid2 := p+1
11. for i in 1..L do 29. U [p] := U [p] + hi split[p]
12. p := i 30. U [p+1] := U [p+1] + lo split[p+1]
13. U[p] := U[p] + Ci/Ti 31. p := p+1
14. τi.processorid1 := p 32. else
15. τi.processorid2 := p 33. declare FAILURE
16. end for 34. endif
17. p := L + 1 35. end if

36. end for
37. declare SUCCESS

Figure 2. An algorithm for assigning tasks to processors.

TF such that RM-DU-IS-FF declares FAILURE on mul-
tiprocessor platformΠ. But if TF is to be scheduled onΠ′

then it is possible to meet all deadlines. It must be that on
Π′ a processor has a speed which is 1/x of the speed of its
corresponding processor inΠ andx >

√
2√

2−1
.

Consider the situation when RM-DU-IS-FF was given
TF as input and RM-DU-IS-FF declared FAILURE. There
must have been a taskτfailure that was considered when
RM-DU-IS-FF declared FAILURE. We can delete all tasks
with index greater thanτfailure and we still would have a
task set such that the theorem was false. We letτ denote
this task set. Clearly we have:

Applying τon Π

using RM − DU − IS − FF declares FAILURE . (5)

and

It is possible to schedule τon Π′ to meet deadlines . (6)

Let τn denote the task that declared failure in (5). Let
k denote the number of processors such thatSp < Cn/Tn.
Due to the sorting performed on line 1 and line 2 we obtain
that:

For every (p, i) such that p ∈ 1, 2, . . . , k and for

every i ∈ 1, 2, . . . , n it holds that : Sp < Ci/Ti. (7)

From (7) it follows that:

When RM − DU − IS − FF is run, no tasks are

assigned to processor p with p ∈ 1, 2, .., k. (8)

We let U[p] denote the value of the variable U[p] in Al-
gorithm 1 when RM-DU-IS-FF declared FAILURE. Anal-
ogously, we letnp denote the value of the variablen[p] in
Algorithm 1 when RM-DU-IS-FF declared FAILURE.

We have that Fact 1 is true.

Fact 1. When RM-DU-IS-FF declares failure, it
holds forp ∈ k+1,k+2,. . .,m: U[p] > (

√
2-1) ·

Sp.

Proof. We will prove this using contradiction.
Let us assume that the Fact 1 was false. Then
it must hold that RM-DU-IS-FF declares failure
and∃p ∈ k+1..m: U[p] ≤ (

√
2-1) × Sp. Let us

consider this processorp and consider the follow-
ing cases.

Case 1.np=0.

Then it follows that U[p]=0 and sinceCn/Tn ≤
Sp it follows thatτn could have been assigned to
processorp. This contradicts (5).

Case 2.np=1.

Due to sorting on line 2 in Algorithm 1 we have
thatCn/Tn ≤ (

√
2-1) × Sp. And henceτn could



have been assigned to processorp. This contra-
dicts (5).

Case 3.np ≥ 2.

We obtain that there is a taskτj assigned on
processorp such thatCj /Tj ≤ 1

2 × (
√

2-1)× Sp.
Due to sorting on line 2 in Algorithm 1 we have
Cn/Tn ≤ 1

2 × (
√

2-1) × Sp. But thenτn could
have been assigned to processorp, according to
Theorem 2. This contradicts (5).

It can be seen that regardless of the case, we ob-
tain a contradiction and it implies that the fact is
true.

From Fact 1 we obtain that when RM-DU-IS-FF declares
failure it holds that:

m∑

p=k+1

(
√

2 − 1) · Sp <

m∑

p=k+1

U [p] (9)

Sinceτ1, τ2, . . ., τn−1 were assigned, we obtain from (9)
that:

m∑

p=k+1

(
√

2 − 1) · Sp <
n−1∑

i=1

Ci

Ti
(10)

Let us consider two cases.
Case 1.k ≥ 1.
Let us study a migrative scheduling algorithm that meets

all deadlines ofτ onΠ′. Hence the optimization (1)-(4) has
a solution withl ≤ 1. Fact 2 and Fact 3 reason about this
solution.

Fact 2. For anyi, it holds that

k∑

p=1

ui,p ≤ S′
k

Proof. From (2) we obtain that in a migrative
schedule where deadlines are met, it holds that:

m∑

p=1

ui,p

S′
p

≤ 1

Taking the sum over only a subset yields:

k∑

p=1

ui,p

S′
p

≤ 1

Using the fact that the speeds of processors are
sorted in ascending order yields:

k∑

p=1

ui,p

S′
k

≤ 1

By a simple rewriting this gives us Fact 2.

Fact 3. For anyi, it holds that

Ci

Ti
≤ x

x − 1
·

m∑

p=k+1

ui,p

Proof. Let i denote the index of any task and let
p denote the index of any processor in 1, 2,. . ., k.
From (7) we obtain:

Sp <
Ci

Ti
(11)

Based on (11),(1) and the sorting of processors,
we have:

Sk <

m∑

p=1

ui,p (12)

From the assumption onΠ andΠ′ we obtain:

S′
k ≤ Sk

x
(13)

Combining Fact 2 and (14) yields:

k∑

p=1

ui,p ≤ Sk

x
(14)

From (15) we obtain:

m∑

p=1

ui,p ≤ Sk

x
+

m∑

p=k+1

ui,p (15)

Combining (13) and (16) yields:

m∑

p=1

ui,p ≤
∑m

p=1 ui,p

x
+

m∑

p=k+1

ui,p (16)

Rewriting (17) and using (1) yields:

Ci

Ti
≤ x

x − 1
·

m∑

p=k+1

ui,p



Recall from (10) that when we used partitioning we had:

m∑

p=k+1

(
√

2 − 1) · Sp <

n−1∑

i=1

Ci

Ti

Applying Fact 3 yields:

m∑

p=k+1

(
√

2 − 1) · Sp <
x

x − 1
·

n−1∑

i=1

m∑

p=k+1

ui,p

We haveS′
p ≤ Sp/x, whereS′

p is the speed of processorp
in Π′. Applying this yields:

m∑

p=k+1

(
√

2 − 1) · x · S′
p <

x

x − 1
·

n−1∑

i=1

m∑

p=k+1

ui,p

Rewriting (and using the knowledge thatx is positive)
yields:

m∑

p=k+1

S′
p <

1

(
√

2 − 1) · (x − 1)
·

n−1∑

i=1

m∑

p=k+1

ui,p

Sincex >
√

2√
2−1

it follows that 1
(
√

2−1)×(x−1)
< 1. Using it

yields:

m∑

p=k+1

S′
p <

n−1∑

i=1

m∑

p=k+1

ui,p

Swapping the order of the indices of the summation on the
right-hand side yields:

m∑

p=k+1

S′
p <

m∑

p=k+1

n−1∑

i=1

ui,p

This requires that there is ap ∈ k + 1..m such that:

S′
p <

n−1∑

i=1

ui,p

Dividing by S′
p yields:

1 <

n−1∑

i=1

ui,p

S′
p

And hence it is impossible to satisfy (3) andl ≤ 1. Con-
sequently, a deadline will be missed onΠ′. But this contra-
dicts (6). (End of Case 1)

Case 2.k = 0.
We haveS′

p ≤ Sp/x, whereS′
p is the speed of processor

p in Π′. We also havex >
√

2√
2−1

. Combining this with (10)
yields:

m∑

p=k+1

(
√

2 − 1) ·
√

2√
2 − 1

· Sp′ <

n−1∑

i=1

Ci

Ti

Simplifying the left-hand side, relaxing it and adding the
utilization of τn to the right-hand side yields:

m∑

p=k+1

Sp′ <
n∑

i=1

Ci

Ti
(17)

From (11) and Lemma 1, it follows that no algorithm can
schedule the task set onΠ′ even if migration is permitted.
This contradicts (6). (End of Case 2)

We can see that regardless of the case, we obtain a con-
tradiction and hence Theorem 3 is true.

Theorem 4. If we only consider task sets where∀i,p it holds
that: Ci/Ti ≤ Sp thenCPTRM−DU−IS−FF ≤ 1+

√
2.

Proof. If the theorem was incorrect then it follows (using
the same reasoning as in Theorem 3) that there is a task set
τ and a computer platformΠ and a computer platformΠ′

such that.

Applying τon Π using RM − DU − IS − FF

declares FAILURE . (18)

and

It is possible to schedule τon Π′ to meet deadlines . (19)

and onΠ′ a processor has a speed which is at most 1/x of the
speed of its corresponding processor inΠ andx > 1+

√
2.

Following the reasoning in Theorem 3 we obtain that:

m∑

p=1

(
√

2 − 1) · Sp <
n−1∑

i=1

Ci

Ti
(20)

Combining our knowledge thatS′
p ≤ Sp/x andx > 1+

√
2

with (20) gives us:

m∑

p=1

(
√

2 − 1) · S′
p · (1 +

√
2) <

n−1∑

i=1

Ci

Ti
(21)

Simplifying yields:

m∑

p=1

S′
p <

n−1∑

i=1

Ci

Ti
(22)

From (22) and Lemma 1 we obtain thatτ misses a dead-
line onΠ′. But this contradicts (19). Hence the theorem is
correct.



5 Experimental Performance Evaluation

The speed competitive ratio offers a guarantee on how
much faster processors need to be in order for any task set
to be scheduled by RM-DU-IS-FF. This gives us a state-
ment about all task sets. But for individual task sets, let us
introduce the following definition.

Definition 1. Consider a task setτ and a computer plat-
form Π such thatτ is feasible (according to (1),(2),(3),(4))
but reducing the speed by an arbitrary amount makes the
task set infeasible. LetΠ(s) denote a computer system
where each processor has a speeds times greater than its
corresponding processor inΠ. We say that this task set
has a necessary multiplication of processor speed,s, for
algorithmA if the following holds:τ meets deadline when
scheduled by A onΠ(s) but for anys′ < s, it holds that a
deadline is missed whenA scheduledτ onΠ(s′).

We put forward the following hypothesis.

Hypothesis 1. For many task sets, the necessary multipli-
cation of processor speed for RM-DU-IS-FF is smaller than
3.41 (the value proven in Theorem 3).

The intuition behind our belief in the truth of the hypoth-
esis is due to the observation in the proof of Theorem 3 that
if the task that failed has a low utilization then processors
must be ”very loaded” and for such task sets the necessary
multiplication of processor speed is small.

We will test Hypothesis 1 using simulation experiments
on randomly generated task sets. The setup is as follows.
n is given by a uniformly distributed random variable in
the range 1..MAXn andm is given by a uniformly distrib-
uted random variable in the range 1..MAXm. We choose
MAXn=15 andMAXm=15. Tasks are given a utiliza-
tion which is a uniformly distributed random variable in the
range (0,1). The speed of processors are given by a uni-
formly distributed random variable in the range (0,1). For
this task set and this computer platform, we find the value of
l that satisfies (1),(2),(3),(4). Then we multiply the speed of
every processor by this value ofl. Then we obtain a com-
puter platform such that if we would solve (1),(2),(3),(4)
then we obtainl=1. This is the task set and the computer
platform that we will use.

We apply the algorithm RM-DU-IS-FF on this task set.
If it fails then we increase the speed of every processor by
1% and repeat this procedure until we obtain a computer
platform where the task set can be scheduled with RM-DU-
IS-FF. We have now obtained an approximation of the speed
competitive ratio of this task set. We run this procedure for
every task set and we do it for 20 000 task sets and obtain
the frequency distribution as shown in Figure 1.

We make two observations. First, it can be seen that the
speed competitive ratio of every task set in the experiment

is less than 1.7. Hence the hypothesis withstood our test.
Second, there is a peak, 1.3. This stems from the fact that
RM has uniprocessor utilization bound less than 100%. We
have run similar experiments with our previously proposed
algorithm EDF-DU-IS-FF [2] and observed that for EDF-
DU-IS-FF the peak occurs at 1.

6. Previous work

Algorithms in operations research have been proposed
for scheduling jobs with no real-time requirements assum-
ing that all jobs arrive at the same time and the goal is to
minimize the time when all jobs have been finished. (See for
example [11].) A solution to this problem can be used for
scheduling periodically arriving tasks with deadlines [3].
But unfortunately, that algorithm [3] allows task migration
and hence it cannot solve our problem.

The problem of partitioning a task set on a uniform mul-
tiprocessor has been considered previously when using EDF
on each processor [9] or using RM on each processor [8].
This is a similar problem as we addressed in this paper. We
find a drawback with those algorithms and analysis though.
The algorithms are analyzed by extending the utilization
bound from identical multiprocessors. But their utilization
bound is not a single number; it is a function of the max-
imum Ci/Ti of tasks. This causes a large amount of pes-
simism when (i) the difference in speeds of processors is
very large and (ii) the maximumCi/Ti is large. This pes-
simism is a consequence of neither the algorithm, nor the
analysis techniques, but it is a consequence of the definition
of the utilization bound in uniform multiprocessors. Exam-
ple 2 illustrates why the utilization bound is unsuitable asa
performance metric.

Example 2. Consider two tasks to be scheduled onm≥ 4
processors. The task set is characterized byT1 = 1, C1

= 1, T2 = 1, C2 = 1/L+1/L2 and the processors have the
speedS1 = 1 andS2 = S3 = . . . = Sm = 1/L, whereL ≥ 2.
In order to meet deadlines, it is necessary thatτ1 is as-
signed to processor 1. Now, it can be seen that whereverτ2

is assigned, the utilization of that processor becomes more
than its speed and hence it is impossible to meet deadlines.
By lettingL=

√
m andm approach infinity we obtain thatP

n
i=1

Ci/TiP
m
p=1

Sp
→ 0. Hence, if the utilization bound is a single

number (that is not a function of the maximum utilization
of tasks) then every partitioned algorithm for uniform mul-
tiprocessors have a utilization bound of 0. Consequently,
such a utilization bound cannot be used to distinguish be-
tween ”‘good”’ and ”‘bad”’ algorithms for assigning tasks
to processors. It would be possible to use the utilization
bound as a performance metric if the maximumCi/Ti could
be fixed and only such task sets are considered. But it is
unclear how such a restriction should be chosen and how
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Figure 3. The necessary multiplication of processor speed.

to justify which threshold of maximumCi/Ti that should be
used.

The problem we address can be solved using task assign-
ment algorithms for heterogeneous multiprocessors [6, 5].
The algorithm in [6] uses exhaustive enumeration of ”heavy
tasks” and this leads to a time complexity of O(mm). The
other algorithm [5] has polynomial time-complexity but it is
high; it requires that a linear program is solved. Real-time
scheduling algorithms for uniform multiprocessors have
been proposed [10, 7] but unfortunately they require that
tasks can migrate.

We have studied uniform multiprocessors and we stud-
ied how much extra processing power must be given to our
algorithm to ensure that our algorithm meets deadlines for
every task set which an optimal algorithm can schedule to
meet deadlines. This type of analysis was originally pro-
posed in [12, 15] but for a uniprocessor [12] and a multi-
processor where all processors have the same speed [15].
Such studies used the notion of ”‘resource augmentation
factor”’; this notion was used to study online scheduling,
that is, scheduling where the characteristics of arriving jobs
are unknown before they arrive. Our problem addresses of-
fline scheduling, that is, all characteristics of jobs (except
the exact arrival time) are known. We characterized the per-
formance using the notion of the ”‘speed competitive ra-
tio”’. The notion of ”‘speed competitive ratio”’ and ”‘re-
source augmentation factor”’ are very similar; both prove
that giving more resources can make the studied schedul-
ing algorithm A to succeed if there is any other schedul-
ing algorithm that succeeds. We used notion ”‘speed com-

petitive ratio”’ to emphasize that our problem is an offline
problem rather than an online problem and that our prob-
lem addressed is more similar to bin-packing problems.
(The notion of competitive ratio in bin-packing gives ”‘ex-
tra bins”’ and this notion is unclear in uniform multiproces-
sor scheduling because it is unclear what the size of these
”‘extra bins”’ should be.)

7. Conclusions

We have presented an algorithm to schedule sporadically
arriving tasks on a uniform multiprocessor and we have
proven its speed competitive ratio. It is at most

√
2√

2−1
≈

3.41. This is the first proven speed competitive ratio in real-
time scheduling on uniform multiprocessors where RM is
used on each processor and migration is not allowed.

We left open the questions (i) whether the bounds on
speed competitive ratio of RM-DU-IS-FF that is proven in
this paper is tight and (ii) whether it is possible to design a
better partitioning scheme.
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