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Abstract

Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the
goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate
between processors. On each processor, tasks are scheduled with rate-monotonic. We propose an algorithm
which can schedule all task sets that any other possible algorithm can schedule assuming that our algorithm
is given processors that are \2/(N2—1) =~ 3.41 times faster. No such guarantees are previously known for
partitioned static-priority scheduling on uniform multiprocessors..
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Abstract The scheduling algorithm is allowed to preempt the exe-

cution of a job and there is no cost associated with preemp-
Consider the problem of scheduling a set of sporadically tion. Migration is not permitted; when a job resumes exe-
arriving tasks on a uniform multiprocessor with the goal of cution after being preempted, the job must execute on the
meeting deadlines. A processohas the speed,. Tasks same processor as it executed on before it was preempted.
can be preempted but they cannot migrate between procesAlso, if any two jobs are generated by the same task then
sors. On each processor, tasks are scheduled according tahese two jobs must execute on the same processor. It is
rate-monotonic. We propose an algorithm that can scheduleassumed that a processor cannot execute two or more jobs
all task sets that any other possible algorithm can sched- simultaneously, and a job cannot execute on two or more
ule assuming that our algorithm is given processors that processors simultaneously. It is also assumed Thaind

are \/_‘2/3 ~ 3.41 times faster. No such guarantees are pre- C; of all tasks are known to the scheduling algorithm.

viously known for partitioned static-priority scheduliog Our goal is to design an algorithm that schedules tasks to
uniform multiprocessors. meet the deadlines of all jobs. Unfortunately, the problem
of deciding if a set of tasks can be partitioned such that all
tasks on each processor meet deadlines is NP-complete [3].
1. Introduction Consequently, the problem of assigning tasks to processors
is intractable. For this reason, we will allow an algorithm
1 to fail to assign tasks to processors even when it would be
possible to assign tasks to processors such that deadlines

given a unique index within the rangerdand a processor  Would be met. For such scheduling algorithms, it is com-
is given a unique index within the ranger.. The speed ~ MON to characterize the performance with the notion of a

of processop is denoted bys,,, with the interpretation that utilization bound_[13]. This notion _has the_ addition_ql ad-
if a task executed time units on processgr, it performs vanta_ge of aIIowmg designers to f|n_d out |_f a specific task
L x S, units of execution. set will me_e_t deadllngs before run-time; this is often ci_all_e
A task r; generates a (potentially infinite) sequence of s_chedulab|.ll_ty gnaIySISUnfortungtely,_the standard defln!-
jobs. The time when these jobs arrive cannot be controlledtion of a utilization bound used in uniprocessor scheduling
by the scheduling algorithm and the time of a job arrival is [13] @nd on multiprocessors with identical processors [1]
unknown to the scheduling algorithm before the job arrives. €@nnot be applied on uniform processors. For this reason,
Itis assumed that the time between two consecutive arrivalsV€ Will instead use another performance metric: sheed
of jobs from the same task is at leasf;. We say thatajob ~ COmMPpetitive ratio
generated by; finishes execution at the time when it has The speed competitive ratio of an algorithhis denoted
performed”; units of execution. If a job finishes execution CPT4. Itis the lowest number such that for every task set
at mostT; time units after its arrival, then we say that the 7 and for every uniform multiprocessd¥, characterized
job meets its deadline; otherwise it misses its deadlins. It by the speed of processd#$,55,. . .,S,,, it holds that if it is
assumed that & C; and 0< T}, and thafl; andC; are real possible (using migration if necessary) to meet all deadlin
numbers. Note thaf; is permitted to be greater than. of 7 onII’ then algorithmA meets all deadlines af on1I,

Consider the problem of preemptive scheduling of a se
7 of n sporadically arriving tasks am processors. Ataskis



wherell is a uniform multiprocessor where each processor tasks in a partition are assigned to its dedicated processor
has a spee@ PT'4 greater than the corresponding processor and then a uniprocessor scheduling algorithm is used at run-
in IT". time. We assume that Rate-Monotonic (RM) is used. It as-

A low speed competitive ratio indicates high perfor- signs a static-priority to each task; that is, the priorityao
mance. A speed competitive ratio of 1 is the best achievable task does not change at run-time. A task releases a (possi-
And a speed competitive ratio of two is the best achievable bly infinite) sequence of jobs. A job has the same priority
[2] for scheduling algorithms that do not allow migratioh. |  as the task that released the job. At run-time, at every time,
a scheduling algorithm has a finite speed competitive ratiothe scheduling algorithm selects for execution the job that
then one can solve every problem instance using processorhas the highest priority among the set of tasks that has ar-
that are sufficiently fast. If no finite speed competitivéaat rived at that time and still has not finished execution. It
has been proven for a scheduling problem then one cannots well-known that preemptive Rate-Monotonic (RM) is an
know if faster processors will ever help. optimal static-priority scheduling algorithm on a unipese

It is challenging to design a partitioned algorithm sor with our task model; that is, it meets deadlines if there
with a finite speed competitive ratio. Nonetheless, such is any static-priority preemptive uniprocessor schedjgih
an algorithm was designed [2]; this algorithm assumed gorithm that meets deadlines. For this reason, we will, in
that Earliest-Deadline-First (EDF) [13] was used on each the remainder of the paper, assume that preemptive RM is
processor. But most real-time operating systems do not supused on each processor. For convenience we will refer to
port EDF. Instead, they support static-priority schedwlin RM with the meaning of preemptive RM.
and here, the priority-assignment scheme Rate-Monotonic The problem of partitioning the task set is however non-
(RM) [13] is frequently used. For this reason, there is a trivial. It is important that the task assignment algorittsm
need to prove a speed competitive factor for uniform multi- aware of the scheduling algorithm used on a uniprocessor
processors scheduling without migration and using RM on and it must use a uniprocessor schedulability test to know
each processor. this. For RM it is known [13] that:

Therefore, in this paper we propose a partitioned
scheduling algorithm for uniform multiprocessors; it alto denote th ber of task ianed t of
preemption and it uses RM [13] on each processor. We "'p, J€NOTE the NUMbEr oT 1asks assigned to proceas

"o Ci <y x (27 — 1) and tasks are scheduled with
prove its speed competitive ratio: it is at mo;%@1 ~ gzl\;licl)n% tﬁenpall éeadlines ;re met

3.41. For the special case, where the maximum utilization _ o
of tasks does not exceed the speed of the slowest processor, We can easily remove the restrictiéh = 1 from Theo-
the performance is better; we show that the speed competfem 1 and phrase Theorem 2 as follows.

itive ratio is1 + /2 ~ 2.41. Moreover, with simulation of Theorem 2. Let p be a processor of speef}, and letn

. D
randomly generate_d task sets, we show that for many taskjanote the number of tasks assigned to processolf
sets our new algorithm needs only a small amount of extrazyzpl % < S, xn,- (21/7» — 1) and tasks are scheduled

resources (significantly less than 3.41). with RM onp then all deadlines are met.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a background on uniform multiprocessors. Sec- When assigning tasks to processors, the speed of a
tion 3 presents our new algorithm which does not migrate processor clearly is used in the schedulability test, for ex
tasks and Section 4 proves its speed competitive ratio. Secample the one in Theorem 2. But it is also important that
tion 5 evaluates the new algorithm through simulation ex- processors are considered in the right order, in order to
periments, while Section 6 discusses the ability of previou achieve a finite speed competitive ratio. Example 1 illus-
work to solve the addressed problem. Finally, conclusionstrates this.
are drawn in Section 7.

Theorem 1. Letp be a processor of speef), = 1 and let

Example 1. Letk be an arbitrary integer such that > 3.
Considern=Fk3+1 tasks to be scheduled en=%> proces-
2. Background sors. All tasks hav&, = 1. Tasks withi € 1..m, haveC; =
1 and the taskn+1 hasC,,,1 = k+1. Processor 1 has the

Recall that task migration is not permitted. Therefore, speedS; = (k+2) x 5/4 and the processors with index2..
when a job resumes execution after being preempted, thenave the speef, = 1.
job must execute on the same processor as it executed on Observe Figure 1. It can be seen (from Figure 1a) that
before it was preempted. We also assume that if any twothis task set can be scheduled by assigning; to proces-
jobs are generated by the same task, then these two jobsor 1 and one of the other tasks to processor 1, and the
must execute on the same processor. This type of schedulether tasks given one dedicated processor each. However,
ing is calledpartitioned multiprocessor schedulilgcause  consider Figure 1b. If the task assignment scheme consid-
it is equivalent to partitioning the set of tasks such thht al ers tasks and processors in order of their index and uses a
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{a) Using bin-packing that takes the speed of processors into account leads to that all deadlines are met.
A dotted line shows the assignment of a task to a processor.
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(b} Using bin-packing without taking the speed of processors into account leads to a deadline miss. A
dotted line shows the assignment of a task to a processor.

Figure 1. It is important to exploit knowledge of the speed of the processors when assigning tasks
to processors. Otherwise, the speed competitive ratio can a pproach infinity.

normal bin-packing algorithm, then a deadline is missed. A ment algorithm. This can happen although these algorithms
deadline is still missed even if processors are k timesifaste are given processors that afetimes faster. We can do this
We can see this as follows. Processor 1 will have the speedeasoning for any: > 3. By lettingk — oo we obtain that

S1 = (k%2+2k) x 5/4 and processors 2,3,4,,m will have the speed competitive ratio is infinite for these bin-pagkin
speedS, = k. The speed of processor 1 is not enough to schemes that do not take the speed of each processor into
host all the tasks 1, 2, 3,., m because their cumulative consideration. This stresses the importance of taking the
utilization is k3 and this exceeds the speed of processor 1, speed of processors into account when the task assignment
which isS; = (k2+2k) x 5/4 (it is true thatk® > (k2+2k) algorithm makes decisions.

x 5/4 sincek > 3). Consequently, task,; will not be as- ) i e i )
signed to processor 1 and hengg.., must be assigned to _We WI|| now dlsc_uss feaS|p|I|ty test_lng of sched_u_llng
one of the processors with index 2,3,m. Butr,..1 can- with migration permitted; that is, we will state conditions

not be assigned to a processor with index 2,3 because such that if and only if these conditions are true for a task
the utilization ofr,, .1 is k+1 and the speed of each of the S€t then it is possible to schedule the task set. Thesesesult

processors ig. are useful for proving the speed competitive ratio of the new
algorithm in Section 3.
We have seen that algorithms using bin-packing can fail We have showed in [2] by simple reformulation of re-
if the speed of the processors is not considered in the assignsults in [4] that: A task set is feasible on a uniform mul-



tiprocessor platform if and only if < 1 for the following Algorithm 1 RM-DU-IS-FF, a task assignment algorithm

optimization problem. for a uniform multiprocessor.
minimize! 1: sort processors such thgf < S, <...< S,
subject to: 2: sort tasks such that, /Ty > ColTy > ...> C,IT,
m c 3 forallpinl.mdo
Vie{l,2,...,n}: Uiy = — 1 4 Ulp]=0
{ } Z_; P @) 5. n[p]:=0
=
6: end for
7.1:=1
. N Uip 8: while (i<=n)do
WE{LZHWM.Z;&)SZ (2) o pi=1
P= 10: allocated := FALSE
11:  while (p<=m)and (allocated=FALSE}lo
. " wip 12: if U[p]+ Ci/T; <=
Vp S {1,2, .. .,m} : Z Sp < l (3) 13: Sp % (n[p] + 1) % (21/(n[p]+1) _ 1) then

@
Il
a
[
a &

assign task i to processor p

U[p] := Ulp]+ Gi/T;
Vie{1,2,...,n},pe{1,2,...,m}: 0 <y, 4) 16: n[p] := n[p]+ 1
17: allocated := TRUE
Intuitively, u, , in (1)-(4) means the utilization that task ;. i=i+1
7; is assigned to processpr 19: else
From (1),(2),(3) and (4) we obtain Lemma 1. 20: p=p+1
Lemma 1. If it holds that: 21: end if
22:  end while
m ", 23: if (allocated=FALSE}hen
DS <> T 24 declare FAILURE
p=1 =1 25:  end if

26: end while

then no scheduling algorithm can meet all deadlines.
27: declare SUCCESS

Proof. This lemma was proven in [2]. O

We see that the algorithm RM-DU-IS-FF can obtain a
tighter bound for such task sets. In fact, Theorem 4 can be
seen as a generalization of Oh and Baker’s result [14] in
real-time scheduling on identical multiprocessors; ieosf
the same performance bound as the analysis by Oh but for
a less restrictive computer platform.

3. The new algorithm

The new algorithm is described in Algorithm 1. It is
called RM-DU-IS-FF because it uses RM on each proces-
sor, it sorts tasks in order of Decreasing-Utilization gitts
processors in order of Increasing-Speed and it uses Ftrst-F
bin-packing. Line 12 is the schedulability test from Theo-
rem 2. 4. Proof of speed competitive ratio

Itis straightforward to see that the algorithm has the time

complexityO(n x m+n log n+mlog m). The performance  Theorem 3. CPTry_ pu—15-rr < -2 ~ 3.41.

of RM-DU-IS-FF is given by Theorem 3. Va1
/3 Proof. We will prove the theorem using contradiction. We
Theorem 3. CPTry-pu-r1s-FF < V21~ 3.41. will do so and show that a failed task set must request more

M- thany/2—1 of the processing capacity of a subset of proces-
sors. We will then consider this task set to be scheduled us-
ing a scheduling algorithm where migration is allowed and
a computing platform with lower speed is used. It will turn
out that every such migrative algorithm must utilize more
than the sum of the computing capacity of the subset of
processors. This will contradict Lemma 1 and it will prove
Theorem 4. If we only consider task sets whétip it holds the theorem. Let us elaborate this reasoning.

that: C,/T; < Sp thenCPTry—pu—15—FF < 1+v/2. If the theorem was false then there exists a task set

We have now seen the speed competitive ratio of R
DU-IS-FF. But previous work [3] in the real-time schedul-
ing on uniform multiprocessors has focused on the interest-
ing special case where,p it holds that: C;/T; < Sp. It
behooves us to analyze the performance of RM-DU-IS-FF
for that case as well. Theorem 4 does that.



1: sort processors such
that$; < S < ... <

Sm

2: sort tasks such that
CilTy > Colln >

> CulT,

3: forallpin1..m do

4: U[p]:=0

5 n[p]:=0

6: end for

7:i=1

8: while (i<=n)do

90 p=1

10: allocated := FALSE

11 while (p<=m) and

(allocated=FALSE}o
if Ulpl+ Ci/T; <=

Sp % (n[p] +

1) x (21/(7L[P]+1) —1)

then

14: assign task i to
processor p

U[p] := U[p]+

12:
13:

15:

16: n[p] :=n[p]+ 1

17 allocated :=

TFTRIGE that RM-DU-IS-FF declares FAILURE on mul-
fiprocessorplatfornil. But if T'F is to be scheduled orl’

Figure 2. An algorithm for assigning tasks to processors.

fi%n it i€'pssible to meet all deadlines. It must be that on When RM — DU — IS — FF is run, no tasks are

I?P a proc@ssd’r‘h&s a speed which ig &f the speed of its

Sgrresepgn%ng processorihandz > \/

o3.Consider the sitiygdion when RM-DU-IS-FF was given
T'F @gdppth ey fdi-DU-1S-FF declared FAILURE. There
must hajezlheama U ... that was considered when
BM-Ddukd 8-FF declared FAILURE. We can delete all tasks
witremdehilgreater thamy,;i.- and we still would have a
ﬁisld%‘é@fﬁﬂdqgﬁstﬁe theorem was false. We ldenote
thﬁs 3?ﬁ ﬁ“ejt C®%rly we have:

3.  losplit[p] :=0

4.  hisplitlp] :=0 )
5. end for Applying Ton II

BsingtRM v deFote he et df hekssuerd diby P RESERS)

7 Letr'9"* denote the set of tasks such tiday7T; < SEP

agd | = | heavy|
heav
Itg 65?0%’5%2 ir v?ntsﬁu CP %ﬂg}aﬁe ]ﬁ X are,pa c%er&zllme?s

1£e‘%9ﬂ gekolhaekniidlaeclarda fature in ’(”59 Let
F?(Stb [Eh]e hifber of processors such $jak C,/T,,.

Dﬂe to Lﬂejso[ﬁfw?pgrjgrmed on line 1 and line 2 we obtain

lﬁ.‘ T;.processaidl := p
15. 7;.processaid2 :=p
6.end f
gr?v__efgL(]f, i) such that p € 1,2,... k and for

n it holds that : S, < C;/T;.  (7)

everyt € 1,2,...,

From (7) it follows that:

(8)

We let U[p] denote the value of the variable U[p] in Al-
gorithm 1 when RM-DU-IS-FF declared FAILURE. Anal-
ogously, we lets,, denote the value of the variabigp] in
Algorithm 1 when RM-DU-IS-FF declared FAILURE.

We have that Fact 1 is true.

assigned to processor p withp € 1,2, .. k.

18.for i:=L+1tondo

19. PhdinlF WWHerr RFPDENIS-FF declares failure, it
20 holdPter PPl 4<T+2 .m: Ulp] > (v2-1) -
21. g Ti- processaidl :=

22. "P7,.processaid2 := p
23.
24.
25.
26.

Sﬁf We WI|| prove this using contradiction.

Let Fact 1 was false. Then
it mu%jﬁcﬂﬁ q?t{%ggii Lﬁhf@ declares failure
27. andﬂp &e%s@]d >< Sp. Letus

28. consgd@,%tg&gm@ssg@nd consider the follow-

29. INQ Ca3EPF= U[p] + hi_split[p]
30. Casd/dpitHeT Ulp+1] + lo-splitfp+1]

31, —p=p+i-
Thgpdt follows that U[p]=0 and sinc€’,/T;, <

32.
33. S, it igdlguye tat preould have been assigned to
pragessop. This contradicts (5).

34.
35. @QgéerLp
endior 271
JBuis-doseRFtiRe; N line 2 in Algorithm 1 we have

36.
37.
thatC,/T,, < (v/2-1) x S,. And hencer,, could



have been assigned to procesgorThis contra-
dicts (5).

Case 3n, > 2.

We obtain that there is a tas#g assigned on
processop such thaC;/T; < 1 x (v/2-1) x S,,.
Due to sortlng on I|ne 2in Algonthm 1 we have
CnlT, < 1 x (v2-1) x S,. But thenr, could
have been assigned to procesppaccording to
Theorem 2. This contradicts (5).

It can be seen that regardless of the case, we ob-
tain a contradiction and it implies that the fact is
true. (|

From Fact 1 we obtain that when RM-DU-IS-FF declares
failure it holds that:

Y. (V2-1)-8,< > U ©)
p=k+1 p=k+1
Sincery, 72, . . ., To—1 Were assigned, we obtain from (9)
that:
m n—1 O
Z(\/ﬁ—1)-sp<zf (10)
p=k+1 =1

Let us consider two cases.

Case 1k > 1.

Let us study a migrative scheduling algorithm that meets
all deadlines of- onII’. Hence the optimization (1)-(4) has
a solution with! < 1. Fact 2 and Fact 3 reason about this
solution.

Fact 2. For anys, it holds that
k
Zui_’p S Sl/c
p=1
Proof. From (2) we obtain that in a migrative

schedule where deadlines are met, it holds that:

Uy,

/
1Sp

Ms

L <

S
Il

Taking the sum over only a subset yields:

Mw
lE
IA
A

]
[
-

Using the fact that the speeds of processors are
sorted in ascending order yields:

P
} : P

g <!
p=1 "k

By a simple rewriting this gives us Fact 2. [

Fact 3. For anys, it holds that

C;
T Y w

p=k+1

Proof. Let i denote the index of any task and let
p denote the index of any processorin 1, 2, k.
From (7) we obtain:

Gi

Sy <
P

(11)

Based on (11),(1) and the sorting of processors,
we have:

Sk <Y iy (12)
=1

From the assumption di andIl’ we obtain:
S
s <2k (13)
x

Combining Fact 2 and (14) yields:

x

k
> wip < S (14)
p=1
From (15) we obtain:
Zw
Combining (13) and (16) yields:

m Zm: ui, m
Doy €IS 3wy (1)
p=1

p=k+1

2k Z Ui p (15)

p=k+1

Rewriting (17) and using (1) yields:

f]r' E: Ui,p

p=k+1

&
2~
T, —



Recall from (10) that when we used partitioning we had:

m n—1
> (\/5—1)-SP<Z%
p=k+1 =1 "

Applying Fact 3 yields:

m n—1 m
Z(ﬁ_l)' xl.ZZUW
p=k+1 i=1 p=k+1

We haveS), < S,/z, whereS), is the speed of processpr
in II". Applying this yields:

m

> (Va2

p=k+1

1)~x~51’7<

Rewriting (and using the knowledge thatis positive)
yields:

> s

ZZUW

V2 -

p=k+1 i=1 p=k+1

1 . .

S|nce$ > \/— m < 1. USIng It
yields:

m n—1 m
!
Z S < Z Z Wi,p
p=k+1 i=1 p=k+1

Swapping the order of the indices of the summation on the
right-hand side yields:

3 s«

p=k+1

m n—1
> D Ui

p=k+1 i=1

This requires that there ispac k + 1..m such that:

n—1
SI/7< E Ui, p
1=1

Dividing by S;, yields:

<> 1;,5’

And hence it is impossible to satisfy (3) ahg 1. Con-
sequently, a deadline will be missed dh But this contra-
dicts (6). (End of Case 1)

Case 2k =0.

We haveS), < S,/z, whereS), is the speed of processor

pinII'. We also have: > \/\5/21' Combining this with (10)
yields:

m

> (V2-1)-

p=k+1

iy
A<y

Simplifying the left-hand side, relaxing it and adding the
utilization of 7,, to the right-hand side yields:

- Ci
T

K2

> sy

p=k+1

(17)

From (11) and Lemma 1, it follows that no algorithm can
schedule the task set aff even if migration is permitted.
This contradicts (6). (End of Case 2)

We can see that regardless of the case, we obtain a con-
tradiction and hence Theorem 3 is true. O

Theorem 4. If we only consider task sets whéfgp it holds
that: C;/T; < Sp thenCPTry—pU—1s—FF < 1+\/§

Proof. If the theorem was incorrect then it follows (using
the same reasoning as in Theorem 3) that there is a task set
7 and a computer platforfi and a computer platforii’
such that.

Applying Ton 11 using RM — DU — IS — FF

declares FAILURE. (18)

and
It is possible to schedule Ton II' to meet deadlines. (19)

and onll’ a processor has a speed which is at masbithe
speed of its corresponding processoilrandz > 1+y/2.
Following the reasoning in Theorem 3 we obtain that:

m n—1
Z(\@—l)-sp<2%

p=1
Combining our knowledge that, < S,/z andx > 1+/2
with (20) gives us:

S (E-1)-8

p=1

(20)

=

S0

(14V2) < (21)

-
Il

Simplifying yields:

>0

From (22) and Lemma 1 we obtain thatmisses a dead-
line onII’. But this contradicts (19). Hence the theorem is
correct. O

=0

(22)

H'Mf



5 Experimental Performance Evaluation is less than 1.7. Hence the hypothesis withstood our test.
Second, there is a peak, 1.3. This stems from the fact that
The speed competitive ratio offers a guarantee on howRM has uniprocessor utilization bound less than 100%. We
much faster processors need to be in order for any task sehave run similar experiments with our previously proposed
to be scheduled by RM-DU-IS-FF. This gives us a state- algorithm EDF-DU-IS-FF [2] and observed that for EDF-
ment about all task sets. But for individual task sets, let us DU-IS-FF the peak occurs at 1.
introduce the following definition.

Definition 1. Consider a task set and a computer plat- 6. Previous work

formIT such thatr is feasible (according to (1),(2),(3),(4))

but reducing the speed by an arbitrary amount makes the Algorithms in operations research have been proposed
task set infeasible. Leffi(s) denote a computer system for scheduling jobs with no real-time requirements assum-
where each processor has a speetimes greater than its ~ Ing that all jobs arrive at the same time and the goal is to
corresponding processor ifl. We say that this task set Minimize the time when all jobs have been finished. (See for
has a necessary multiplication of processor speedor ~ example [11].) A solution to this problem can be used for
algorithm A if the following holds:r meets deadline when ~Scheduling periodically arriving tasks with deadlines. [3]
scheduled by A ofl(s) but for anys’ < s, it holds that a But unfortunately, that algorithm [3] allows task migratio

deadline is missed wheti scheduled- onII(s'). and hence it cannot solve our problem.
_ _ The problem of partitioning a task set on a uniform mul-
We put forward the following hypothesis. tiprocessor has been considered previously when using EDF

on each processor [9] or using RM on each processor [8].
This is a similar problem as we addressed in this paper. We
find a drawback with those algorithms and analysis though.
The algorithms are analyzed by extending the utilization
The intuition behind our belief in the truth of the hypoth- bound from identical multiprocessors. But their utilizeti
esis is due to the observation in the proof of Theorem 3 thatbound is not a single number; it is a function of the max-
if the task that failed has a low utilization then processors imum C;/T; of tasks. This causes a large amount of pes-
must be "very loaded” and for such task sets the necessargimism when (i) the difference in speeds of processors is
multiplication of processor speed is small. very large and (ii) the maximur@’;/T; is large. This pes-
We will test Hypothesis 1 using simulation experiments simism is a consequence of neither the algorithm, nor the
on randomly generated task sets. The setup is as followsanalysis techniques, but it is a consequence of the definitio
n is given by a uniformly distributed random variable in of the utilization bound in uniform multiprocessors. Exam-
the range 1M AXn andm is given by a uniformly distrib- ~ ple 2 illustrates why the utilization bound is unsuitableas
uted random variable in the range . AXm. We choose  performance metric.
MAXn=15 andM AXm=15. Tasks are given a utiliza-
tion which is a uniformly distributed random variable in the
range (0,1). The speed of processors are given by a uni+ - = 9
formly distributed random variable in the range (0,1). For = 1» 72 =1, C2 = 1/L+1/L” and the processors have the
this task set and this computer platform, we find the value of SPE8d1 =1and S, = 83 = ... = 5, = 1/L, whereL > 2.
I that satisfies (1),(2),(3),(4). Then we multiply the speed o |I’_l order to meet deadI|nes,_|t is necessary thatis as-
every processor by this value bf Then we obtain a com- signed to processor 1. Now, it can be seen that wherever

puter platform such that if we would solve (1),(2),(3).(4) is assigned, the utilization of that processor becomes more

then we obtairi=1. This is the task set and the computer than its speed and hence it is impossible to meet deadlines.

platform that we W'i” use By letting L=+/m andm approach infinity we obtain that
We apply the algorithm RM-DU-IS-FF on this task set. Esz% — 0. Hence, if the utilization bound is a single

If it fails then we increase the speed of every processor bynumber (that is not a function of the maximum utilization
1% and repeat this procedure until we obtain a computerof tasks) then every partitioned algorithm for uniform mul-
platform where the task set can be scheduled with RM-DU- tiprocessors have a utilization bound of 0. Consequently,
IS-FF. We have now obtained an approximation of the speedsuch a utilization bound cannot be used to distinguish be-
competitive ratio of this task set. We run this procedure for tween "good™” and "bad™ algorithms for assigning tasks
every task set and we do it for 20 000 task sets and obtainto processors. It would be possible to use the utilization
the frequency distribution as shown in Figure 1. bound as a performance metric if the maximapil; could

We make two observations. First, it can be seen that thebe fixed and only such task sets are considered. But it is
speed competitive ratio of every task set in the experimentunclear how such a restriction should be chosen and how

Hypothesis 1. For many task sets, the necessary multipli-
cation of processor speed for RM-DU-IS-FF is smaller than
3.41 (the value proven in Theorem 3).

Example 2. Consider two tasks to be scheduledap 4
processors. The task set is characterizedIhy= 1, C;
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Figure 3. The necessary multiplication of processor speed.

to justify which threshold of maximu@/T; that should be  petitive ratio” to emphasize that our problem is an offline

used. problem rather than an online problem and that our prob-
lem addressed is more similar to bin-packing problems.

The problem we address can be solved using task assign(The notion of competitive ratio in bin-packing gives "ex-

ment algorithms for heterogeneous multiprocessors [6, 5].tra bins” and this notion is unclear in uniform multiproees

The algorithm in [6] uses exhaustive enumeration of "heavy sor scheduling because it is unclear what the size of these

tasks” and this leads to a time complexity ofr@(). The "extra bins™ should be.)

other algorithm [5] has polynomial time-complexity butst i

high; it requires that a linear program is solved. Real-time )

scheduling algorithms for uniform multiprocessors have 7. Conclusions

been proposed [10, 7] but unfortunately they require that

tasks can migrate. _ We have presented an algorithm to schedule sporadically
We have studied uniform multiprocessors and we stud- arriving tasks on a uniform multiprocessor and we have

ied hgw much extra processing power must be given to OUyroven its speed competitive ratio. It is at mo\%{l ~
algorithm to ensure that our algorithm meets deadlines for —1

task set which timal aldorith hedule t 3.41. This is the first proven speed competitive ratio in real-
ﬁ;/eeeri/dae?adl?r?e;v !I(':hisa? 02 I(;?aanzlgc;?s v:/gga:)r;isicnaell u erootime scheduling on uniform multiprocessors where RM is

) : yp . y gmnally Pro-,sed on each processor and migration is not allowed.
posed in [12, 15] but for a uniprocessor [12] and a multi-

processor where all processors have the same speed [15]. WZ left open the que?tll?ol\r)ISD(B \:VSh T__tEeLthe. bounds on
Such studies used the notion of ™resource augmentation>P¢€ competitive ratio o -DU-IS-FF that is proven in

factor™; this notion was used to study online scheduling, this paper is tight and (ii) whether it is possible to design a

that is, scheduling where the characteristics of arrivoizgj better partitioning scheme.

are unknown before they arrive. Our problem addresses of-

fline scheduling, that is, all characteristics of jobs (gtce Acknowledgements

the exact arrival time) are known. We characterized the per-

formance using the notion of the "'speed competitive ra-
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