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heterogeneous signals coexist as a standard. In such di�erent
environments, the detection and recognition of complex sig-
nals are necessary to maintain signal �delity [6].

Deep learning is a computational paradigm that allows
models to learn abstractly with applications in images like
the classi�cation of objects and regression and model identi-
�cation for di�erent purposes [7–10], [11, 12]. Zhang et al.
and Guo et al. [13, 14] presented a deep learning approach
to remove the noise from the images, but it is very necessary
to classify the noise-a�ected patterns to remove those noises.
Qiang et al. proposed the Gaussian related spatial-spectral
gradient network to remove the mixed noises and the Bayes-
ian posterior deep learning model to remove the non-
independent identically distributed noise from the images
[15, 16]. There are many studies reported in the literature
to study the classi�cation of digital and analog signal schemes
deploying deep learning based neural network architectures
such as adaptive multistream network incorporating a super-
position convolutional unit in each stream [17], adversarial
transfer learning architecture [18], polar coordinate
approach based network [19], deep neural network consist-
ing of a Convolutional Neural Network (CNN) followed by
a long short-term memory network as the classi�er which
can e�ciently explore the temporal and spatial correlations
of a signal [20], and exploitation of co-channel signals based
on deep learning techniques using a CNN architecture [21].
Di�erent from other works, we deployed novel CNN based
architectures on 2D images rather than 1D signals to study
multiclass classi�cation problem using COVID-19 lung X-
ray samples. Our architectures were designed to study dishar-
mony between Batch Normalization (BN) and dropout (DO)
techniques in the presence of data augmentation, to study
the impact of di�erent data augmentation techniques such as
random rotation, translation, re�ection, and shear, without
BN and without data augmentation schemes. Higher dimen-
sional signals are known to carry more information and thus
can be exploited to achieve better results. To e�ectively under-
stand the challenges posed by di�erent modulated signals
(images modulated by di�erent signals) passed through fading
and noisy channel models, we deployed di�erent CNNs to dif-
ferentiate COVID-19 patients and normal people lungs X-ray
images thus solving a multiclass classi�cation problem.

In this paper, our contributions are as follows:

(i) Through development of a dataset with the multi-
class (24 classes) modulated images of COVID-19
disease for transmission in Additive White Gaussian
Noise(AWGN) and fading channels and classi�ed
using deep learning architectures

(ii) We developed a systematic deep learning approach
to evaluate the e�ects of training with a small num-
ber of samples for the multiclass classi�cation task

(iii) We estimated our models’ competencies on an inde-
pendent dataset using 5 and 10-fold cross-validation
(CV) approaches

(iv) To understand the e�ect of more data on the classi-
�cation performance and CNN architectures, we
deployed data augmentation methods such as ran-

dom rotation, translation, re�ection, and shear to
improve the performance of models

(v) We evaluated the e�ect of the absence of BN on the
classi�cation performance and deployed architec-
tures without it. The architectures are found to have
performance bottlenecks such as mean and variance
issues in the absence of BN

(vi) Finally, to understand the “variance shift” phenom-
enon associated with the disharmony (DH) between
the BN and DO techniques as mentioned in [22], we
deployed a con�guration with a small value of DO
before softmax and after every convolution and fully
connected layer along with BN layers in the presence
of data augmentation

The rest of the article is organized as follows. Section 2
presents related work and the mathematical formulation of
the modulation schemes, CNNs, AWGN, Rayleigh, and
Rician channels. In the methodology Section 3, we present
the details of the datasets used in the experiments as well as
2D-CNN architectures for the novel and consistent achieve-
ment of the results. Section 4 presents the experimental
results of the paper. Section 5 presents the discussion
followed by a conclusion in Section 6.

2. Related Work

CNNs are believed to learn equivariance, invariance, and
equivalence properties [23] e�ectively. Spatial transforma-
tion methods such as per-pixel �ow, mean blur, and di�eren-
tiable bilinear interpolation can also be used to deform the
input images bene�tting from visual recognition tasks [24].

CNNs are already translation equivariant; that is, small
input image translations produce proportionate changes in
feature maps, which is not the case for rotations [25]. Aggres-
sive data augmentation helps in improving the performance
of translationally variant systems [7]. In response to manu-
ally generated perturbations to the input, such as image
transformations, a quantitative approach towards analyzing
networks measures output changes [26]. However, neither
the architectural changes nor the data augmentation may
help in achieving the desired invariance [27]. Deformations
such as pose, a�ne transformations such as translation, scal-
ing, rotation, or shear, as well as optical �ow, are commonly
used for object recognition tasks [28]. Colour information
instead of a grayscale image may also improve prediction
performance [29]. Visualization of CNN representations is
a promising way to explore network representations. It pro-
vides a technical foundation for many approaches of CNN
representations [30].

A re�ned invariant representation is a typical image con-
structed with a cascade of invariants, which retains transla-
tion, rotation, skin, and shear information [31]. CNN
mainly depends upon satisfying the requirements laid down
by the Nyquist sampling theorem. While this will not
completely restore rotational equivalence, it shows that the
aliasing introduced through the downsampling is signi�-
cantly reduced [32]. CNNs deal with shift variance far better
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than scale invariance. At the same time, invariance helps in
building robust input transformations through regulariza-
tion in the network [33, 34]. Furthermore, dataset bias is a
major hurdle for the generalization of CNN to the real world
and has applications in recognition and detection tasks [35,
36]. Bruna and Mallat presented the invariant scattering
technique for the CNNs to reduce the variabilities such as
rigid translations, rotations, or scaling as well as nonrigid
deformations [37].

Sohn and Lee studied the transformation equivariant
architectures trying to infer the best matching �lters by trans-
forming them using linear transformation matrices to learn
locally invariant features that can be useful in classi�cation
tasks [38]. While Ruderman et al. �nd that the deformation
of networks with pooling increases signi�cantly throughout
the training process [39]. Bruna et al. stated the relationship
between group invariances in CNNs providing an under-
standing of their classi�cation function performance and
explaining why the weight sharing caused by convolutions
in the presence of a deformations group is an authentic reg-
ularization method [40].

Ngiam et al. show that the sparsity of lifetime is accom-
plished when the feature is selective and permits examples
to be found. High dispersal is achieved for a particular row
of features when the distribution has similar statistics for all
rows [41]. Cohen and Welling proposed transformation
properties of learned visual representations, an invariant
CNN group that could be used to develop a scalable represen-
tation learning system [42]. Bengio et al. presented the repre-
sentation learning for complex real-world distributions [43].

When a complex neural network is trained on a small
training set, it usually performs poorly on a held-out test
set that can be mitigated by a random omission of feature
detectors. Over�tting can be reduced by using the DO tech-
nique [44]. Methods for applying DO to CNN layers as well
as to recurrent neural networks are reported consistently in
the literature [45].

The internal covariance shift is a signi�cant problem
when training deep networks. BN mitigates this problem by
normalizing each training minibatch. Eliminating the inter-
nal covariance shift also speeds up the training of deep net-
works. BN may lead the layer jacobians to have singular
values close to identity, which is known to be bene�cial for
learning. Training without DO but with BN is also a promis-
ing approach for achieving higher prediction accuracy but
has di�erent train-test calculations [22, 46].

Hong et al. worked on deep learning-based methods such
as Graph Convolutional Networks (GCNs) and CNNs which
are fused together for hyperspectral image classi�cation tasks
[47], for the classi�cation and identi�cation of the materials
lying over or beneath the earth’s surface by designing a mul-
timodal deep learning framework [48], to address spectral
variability [49], for feature extraction of hyperspectral images
[50] and semisupervised transfer learning with limited cross-
modality data in remote sensing [51].

2.1. Theoretical Analysis. This section includes a brief math-
ematical formulation of the CNNs, modulation schemes
including the Binary Phase Shift Keying (BPSK), Quadrature

Phase Shift Keying (QPSK), 16-Quadrature Amplitude Mod-
ulation (16-QAM), and 64-QAM, and AWGN, Rayleigh, and
Rician channels.

Modulation is fundamental to all wireless communica-
tion systems and the technique of impressing the data to be
transmitted on a high-frequency carrier. The objective is to
achieve spectral e�ciency by squeezing more data into the
least amount of spectrum possible. The issues related to
interference, hardware, and noise are quickly reduced in the
digitally modulated systems as it resists noise and interfer-
ence and o�ers bandwidth e�ciency, in comparison to the
analog modulated systems which need higher bandwidth to
transfer symbols. We used BPSK, QPSK, 16-QAM, and 64-
QAM digital modulation schemes in this study.

Mathematically, BPSK signal generation can be expressed
as

�m tð Þ =

�������
2Eb
Tb

s

cos 2�f ct + � 1 � mð Þð Þ, m = 0, 1: ð1Þ

Here, Ebis energy per bit, Tbis bit duration,
��������������
2Eb/Tb

p
is

the amplitude, f cis carrier signal frequency, and t is the time.
The BPSK signal transmits one bit per symbol and is mapped
to one of two possible phase states, 0 and �.

Mathematically, QPSK signal generation can be
expressed as

�m tð Þ =

�������
2Es
Ts

s

cos 2�f ct + 2m � 1ð Þ
�
4

� �
, m = 1, 2, 3, 4: ð2Þ

Here, Es is energy per symbol, Ts is symbol duration,�������������
2Es/Ts

p
is the amplitude, f cis carrier signal frequency, and

t is the time. The QPSK signal transmits two bits per symbol
and is mapped to one of the four possible phase states, 7�/4,
5�/4, 3�/4, and �/4 .

The complex envelope of the transmitted waveform with
QAM can be written as

~Z tð Þ = A�
n

c t � nT , Xnð Þ, ð3Þ

where cðt � nT , XnÞ = xnuaðtÞ, uaðtÞ is the amplitude
shaping wave, and xn = xI,n + jxQ,n is the complex-valued
data symbol that is transmitted at baud rate n.

With noise variance �2 and power constraint �, the
capacity of the (real) AWGN channel is

CAWGN =
1
2

log 1 +
�
�2

� �
: ð4Þ

For the optimal rate adaptation to channel fading with a
constant transmitting power, bandwidth B and signal to
noise ratio �, the Rayleigh channel capacity can be expressed
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as

CRayleigh = B
ð�

0
log2 1 + �ð Þp� �ð Þd�: ð5Þ

The Rician fading channel capacity for an indeterminate
number of transmitting/receiving antennas can be written as

CRician =
ð

�1,�,�k

�
k

i=1
log 1 +

P
NT

�i

� �
f �1,�,�k

�1, �, �kð Þd�1 � d�k:

ð6Þ

Here, � represents an upper-bound on the total average
power, NT is the number of transmit antennas, and � is any
unordered eigenvalue of the noncentral Wishart distributed
random matrix.

CNNs are a specialized form of neural networks common
with known topology for the processing of data. They use a
mathematical operation known as convolution which can
be de�ned as

s tð Þ =
ð

x að Þw t � að Þda = x x � wð Þt: ð7Þ

Here, x is the input while w is known as the kernel. The
output is widely known in the literature as a feature map.
Usually, we use discrete rather than the continuous version
of equation (7) de�ned as

s tð Þ = x � wð Þ tð Þ = �
�

a=��
x að Þw t � að Þ: ð8Þ

In machine learning applications, the input and the ker-
nel are usually tensors. In the case of two-dimensional input
and kernel, the convolution operation can be expressed as

S i, jð Þ = I � Kð Þ i, jð Þ = �
m

�
n

I m, nð ÞK i � m, j � nð Þ: ð9Þ

Usually, the convolution operation is implemented as
cross-correlation in the neural network software which is
de�ned as

S i, jð Þ = I � Kð Þ i, jð Þ = �
m

�
n

I i + m, j + nð ÞK m, nð Þ: ð10Þ

3. Methodology

3.1. Dataset and Preprocessing. We downloaded (https://
www.kaggle.com/nabeelsajid917/covid-19-x-ray-10000-
images and https://github.com/ieee8023/covid-chestxray-
dataset/tree/master/images) a random dataset of images of
COVID-19 patients and normal people lungs X-rays from
the internet. Sample images are shown in Figure 1. These
images are, then, modulated by BPSK, QPSK, 16-QAM,
and 64-QAM schemes and passed through AWGN, Ray-
leigh, and Rician fading channels. We used �ve and 10-fold
CV procedures. The modulated images dataset description

for 10-fold and 5-fold CV is given in Tables 1 and 2, respec-
tively. We build datasets to study the 24 class classi�cation
problem.

We performed a series of experiments for the multiclass
classi�cation to study the impact of channel fading and noise
on the di�erent modulation schemes. In this study, we used
BPSK, QPSK, 16-QAM, and 64-QAM representation of the
images of COVID-19 patients and normal people lungs X-
rays after passing them through AWGN, Rayleigh, and
Rician channels as shown in Figure 2. The work�ow of the
proposed approach is illustrated in Figure 3.

The dataset is a crucial part before training a CNN. The
raw datasets have been pre-processed and are then passed
through a deep learning algorithm for the multiclass classi�-
cation task. Normalization ensures a uniform shape of image
during image processing to resize and sharpen the image.
The preprocessed images are modulated by BPSK, QPSK,
16-QAM, and 64-QAM signals and are then passed through
AWGN, Rayleigh, and Rician fading channels to add the
e�ect of the channel. The modulated images are distorted
and attenuated by channel e�ects. The images are then
divided into training, validation, and testing sets, and then,
training and validation sets are passed through the data aug-
mentation techniques. Data augmentation is a powerful
method to prevent over�tting and generates additional train-
ing and validation data from the smaller existing datasets.
Thereafter, the data augmentation process is used to produce
new images for the training of COVID-19 patients and nor-
mal people lung X-ray images. Practical data augmentation
techniques, including translation, rotation, re�ection, shear-
ing, �ipping, and so on, are the easiest way of generating
new data. We have used random rotation, translation, scal-
ing, re�ection, and shear. Finally, augmented data are fed to
di�erent 2D-CNN architectures for multiclass (24 classes)
classi�cation of modulated images.

3.1.1. Data Augmentation Techniques. Big datasets are
extremely expensive and are vital to the deep learning
model’s performance, whereas small datasets over�t during
the training process. Pre-trained models are vulnerable to
new invisible data and thus may not help in the generaliza-
tion of the validation set. Data augmentation is used in deep
learning models to solve the over�tting problem due to lim-
ited data. Data augmentation is a good approach for building
better datasets. In general, over�tting does not pose a prob-
lem with signi�cant data access. A massive amount of data
is required in the training of a deep learning model. It is a dif-
�cult task to collect so much amount of data so data augmen-
tation is employed, and the data already present is
transformed. It increases the dataset size and adds variability
to the dataset. A further enhancement is still required to gen-
eralize the e�ciency of deep learning models. By using data
augmentation, generalization performance can be enhanced.
These augmentations usually take the form of geometric or
colour augmentations for input images in image processing,
which have proven extremely successful in reducing CNN
over�tting.

In this work, experiments have been performed to study
multiclass (24-classes) classi�cation problems (1) without
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data augmentation, (2) with data augmentation, (3)
absence of BN in the CNN-based classi�cation architec-
tures, and (4) to understand disharmony between BN
and DO techniques in which we used a small value of
DO before softmax and after every convolution and fully
connected layer.

We deployed 5-fold and 10-fold CV [52] approaches to
select the optimal set of hyperparameters such as �lter size,
strides, and DO probabilities. We used grayscale images of
size 297 × 167 × 1. The intensity values of images that were
inputted into the classi�ers were in the range 0-255, and sam-
ple modulated images are shown in Figure 2.

3.2. Methods

3.2.1. 2D Convolutional Neural Networks. The 2D-CNN
architectures for this experiment are shown in Figure 4. In
the architecture shown in Figure 4, we used zero center nor-
malization to center the data around the origin. Seven convo-
lutional layers have been used to extract features using a �lter
of size 3 × 3 and stride 1 × 1 where the number of feature
maps varied from 8 to 96. Each convolutional layer has been
followed either by a BN layer or not and an Exponential Lin-
ear Unit (ELU) nonlinearity activation function with an �
value of 1. BN is used for reducing the mean and variance
problems and has been employed before ELU nonlinear acti-
vation to speed up the training process and to conform to the
commonly used practices [52]. Disharmony between DO and
BN are contradictory neuronal variances behaviours during
the transitioning process of the networks. The deduction of
“di�erential changes” observed in contemporary network
bottleneck blocks and �nding a su�cient explanation for this
confusion between DO and BN has been discussed in the lit-
erature [22]. After every nonlinear activation layer, the max
pooling layer has been adopted to reduce the number of fea-
ture maps. Three dense layers with global averaging with
ELU activation function are applied to connect the informa-
tion extracted by the fully convolutional layers. The dense
layer before the softmax classi�cation layer has 24 neurons
that are aimed at solving the 24-classes classi�cation
problem.
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Figure 1: Sample of COVID-19 patient’s lungs X-ray and normal people lungs X-ray images.

Table 1: COVID-19 and normal lungs X-ray images dataset
statistical approach using 10-fold CV.

Categories Training
set

Validation
set

Testing
set Total

Number of images 10368 1152 480 12000
Percentage (%) 86.4 9.6 4 100

Number of COVID-
19
Lungs X-ray images 5184 576 240 6000

Number of normal
Lungs X-ray images 5184 576 240 6000

5Wireless Communications and Mobile Computing



Three di�erent architectures have been adopted during
training. The �rst one is without BN with employed max
pooling after every two convolutional layers, which is given
on the top of Figure 4. The second one is to study the data
augmentation e�ect for higher precision during training is
shown in the middle of Figure 4. Finally, to study the e�ect
of disharmony (between BN with DO techniques) for best
training accuracy is given at the bottom of Figure 4.

The �rst architecture without BN has an input of size
297 × 167 × 1 and employed a zero-center normalization
procedure. After this input layer, there is a block employing
a 2D convolutional layer with �lter size 3 × 3 and stride 1
followed by an ELU activation layer with an alpha value of
1 followed by a 2D convolutional layer with �lter size 3 × 3
and stride 1 followed by an ELU activation layer with an
alpha value of 1 followed by a 2D max pooling layer with �l-
ter size 2 × 2 and stride 2. This block is repeated 3 times such
that the number of feature maps in the convolutional layers
are 8, 16, 32, 48, 64, and 80, respectively. After that there is
a convolutional layer with �lter size 3 × 3, a number of fea-
ture maps equal 96, with stride size 1 followed by an ELU
activation layer with an alpha value of 1 followed by a 2D
max pooling layer with �lter size 2 × 2 and stride 2 followed
by a DO layer with ratio 40% followed by 3 dense layers with
the number of neurons equal to 100, 50, and 24, respectively,
followed by a global average pooling layer with an ELU acti-
vation function, followed by a softmax probability layer and a
classi�cation layer.

The second architecture with and without data augmen-
tation has an input of size 297 × 167 × 1 and employed
zero-center normalization procedure. After this input layer,
there is a block employing a 2D convolutional layer with �lter
size 3 × 3 and stride 1 followed by a BN layer followed by an
ELU activation layer with an alpha value of 1 followed by a
2D max pooling layer with �lter size 2 × 2 and stride 2. This
block is repeated 7 times such that the number of feature
maps in the convolutional layers are 8, 16, 32, 48, 64, 80,
and 96, respectively. Finally, there is a DO layer with a prob-
ability of 50%, followed by three dense layers with 100, 50,
and 24 neurons each, followed by a global average pooling
layer with an ELU activation function, followed by a softmax
layer and a classi�cation layer.

The third architecture that is designed to study the dis-
harmony between BN and DO techniques has an input layer
with size 297 × 167 × 1 and employed a zero-center normali-

zation procedure. After this layer, there is a block employing
a 2D convolutional layer with �lter size 3 × 3 and stride 1
followed by a BN layer followed by an ELU activation layer
with an alpha size of 1 followed by a 2D max pooling layer
with �lter size 2 × 2 and stride 2 followed by a DO layer with
a ratio of 10%. This block is repeated 7 times such that the
number of feature maps in the convolutional layers are 8, 16,
32, 48, 64, 80, and 96, respectively. After that, there are 3 dense
or fully connected layers with a number of neurons equal to
100, 50, and 24, respectively, followed by a global average
pooling layer with an ELU activation function, followed by a
softmax probability layer and a classi�cation layer. After every
dense layer, there is a DO layer with a ratio of 10%.

3.2.2. E�ect of Batch Normalization. Note that we used a sim-
pli�ed architecture in comparison to the previous architec-
tures to speed up the training process as the removal of BN
layers slows down the network training by a signi�cant mar-
gin. This architecture took the most amount of time to run.
The architecture without BN can slow the training cycle as
shown at top of Figure 4, and also, the model consistency is
disrupted by means and variance issues. It reduces the sum
by the covariance of the hidden unit values. BN allows each
network layer, separate from other layers, to learn by itself.
It adds a little noise to activations in the hidden layers. It is
important to use less DO if BN is used, because a lot of data
is lost with a higher DO ratio. Nonetheless, even BN is not
the last hope, it is better to use it with DO. BN norms the out-
put of previous activation layers by subtracting the batch
mean and dividing by the batch standard deviation, thus
enhancing neural network stability. But the weights in the
next layer are no longer suitable after changing activation
outputs with other arbitrarily initialized parameters. Adam
optimizer reverses this normalization because it is a way to
reduce the loss function. BN adds two trainable parameters
to each layer, then multiplying the standard output by the
parameter “standard deviation” (gamma) and adding the
parameter “means” (beta). BN allows Adam to denormalize
by adjusting these beta and gamma weights for each activa-
tion instead of sacri�cing all the network weights. But still,
the CNNs are unstable due to the inconsistency of variance
shifts.

3.2.3. E�ect of Disharmony between Batch Normalization and
Dropout Techniques. Over�tting and long training time are
two signi�cant issues in multi-layered neural network train-
ing, especially in deep learning. Two well-known approaches
to addressing these issues are DO and BN. DO works because
the mechanism produces many implicit sets of weight shar-
ing. The concept is that one randomly removes neurons for
each training set. Indeed, one has a �rst neural net subset that
runs inferences and updates its weights. To accomplish the
classi�cation, you have more neural networks, which work
as ensembles. BN works by normalizing the inputs dynami-
cally per minibatch. A study shows that the e�ect is much
quicker to learn without a loss of generalization when remov-
ing DO while using BN. One of the bene�ts of DO is that it
can reduce mutual information quadratically, and the corre-
lation between any neuron pair about the DO layer

Table 2: COVID-19 and normal lungs X-ray images dataset
statistical approach using 5-fold CV.

Categories Training
set

Validation
set

Testing
set Total

Number of images 9216 2304 480 12000
Percentage (%) 76.48 19.2 4 100

Number of COVID-19
lungs X-ray images 4608 1152 240 6000

Number of normal
lungs X-ray images 4608 1152 240 6000
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parameter can be reduced linearly. Although these two
methods share universal principles of design, multiple
research �ndings have shown that they have distinct
strengths to improve deep learning. Many tools simplify both
approaches as a simple call function, enabling �exible stack-
ing to build deep learning architectures. Although its usage
use directives are available, there are unfortunately no
de�ned guidelines or detailed studies on network con�gura-
tion, data input, accuracy, and learning e�ciency to investi-
gate them. It is unclear when users should consider using
both DO and BN, and how they can be combined (or used
as an alternative) to obtain optimized deep learning perfor-
mance. In CNNs, BN and DO should be used with precau-
tion and experimentation.

The phenomenon of variance shift causes the dishar-
mony between BN and DO techniques. DO's behaviour is
di�erent between the training and the testing stages, which
shift the input statistics that are learned in BN. DO will
change the variance of a speci�c neural unit as we switch
the network position from train to test. BN will, therefore,
preserve the statistical variation accumulated throughout
the test phase during the learning procedure. The inconsis-
tency of such variance (“variance shift”) results in numeri-
cally unstable behaviour in the inference that ultimately

leads to more incorrect predictions when DO is applied
before the BN.

BN technique is a way to achieve deterministic informa-
tion �ow where each neuron participates in a process to
achieve zero mean and unit variance. Let values of variable
x over a minibatch be represented with m instances
(B = fxð1Þ�ðmÞg). Mathematically, we can express the nor-
malize part as

	 =
1
m

�
m

i=1
x ið Þ, �2 =

1
m

�
m

i=1
x ið Þ � 	
� �2

, x� ið Þ =
x ið Þ � 	
������������
�2 + 


p , ð11Þ

where 	 and �2 appears in the backpropagation. Normal-
ization of activations based on the minibatch enables e�cient
training but is neither required nor desired during inference.
As a result, BN accumulates moving averages of neural
means and variances throughout learning to track a model
accuracy as it trains which can be expressed as

Emoving xð Þ � EB 	ð Þ, VarMoving xð Þ � ÉB �2� �
: ð12Þ

Here, EBð	Þ represents the expectation based on multiple
training minibatches, and ÉBð�2Þ signi�es the expectation
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Figure 2: Random sample modulated images of COVID-19 patient’s lungs X-ray and normal people lungs X-ray used in the experiments.
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based on the unbiased variance estimate over multiple train-
ing minibatches. They are all obtained by moving averages
implementations and are �xed during inference for linear
transform which can be expressed mathematically as

�x =
x � Emoving xð Þ
��������������������������������
VarMoving xð Þ + 


p : ð13Þ

We will now present theoretical analysis for the case
shown in Figure 5, where there is a single convolutional layer
sandwiched between a BN and a DO.

Here, X is obtained by �d
i=1wiaið1/pÞxi during training,

where w denotes the corresponding weights for x taking into
consideration the fact that DO has been applied. To ease the
analysis, we assume that weights of w remain constant so that
the gradients approach to zero. We can expand VarTrainðXÞ
as follows:

VarTrain Xð Þ = Cov �
d
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1
p
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where �ax = Covðaixi, ajxjÞ/
������������������
VarðaixiÞ

p �������������������
VarðajxjÞ

q
� ‰�

1, 1�.

Similarly, VarTestðXÞ can be written as follows:

VarTest Xð Þ = Cov �
d

i=1
wixi, �

d

i=1
wixi

 !

= v �
d

i=1
w2

i + �x �
d

i=1
�
d

j�i
wiwj

 !

,

ð15Þ

where �x = Covðxi, xjÞ/
���������������
VarðxiÞ

p ���������������
VarðxjÞ

q
� ‰�1, 1�.

Finally, variance shift can be expressed as

	 p, dð Þ =
VarTest Xð Þ
VarTrain Xð Þ

ð16Þ

Ideally, we would like 	ðp, dÞ � 1 which can be
achieved by eliminating DO or by growing the width of the
channel.

4. Experimental Results

As given in Tables 1 and 2, we deployed 5-fold and 10-fold
CV approaches to study the Automatic Modulation Classi�-
cation (AMC) problem. We performed experiments to study
disharmony between BN and DO techniques in the presence
of data augmentation methods, without BN, without data
augmentation, and with di�erent data augmentation
schemes. We performed a total of 66 experiments. 60 exper-
iments were done as part of 5- and 10-fold CV approaches to
select the optimum set of hyperparameters, while 6 experi-
ments were done on the testing dataset. Note that we did
not perform any experiments on the testing dataset while
tuning hyperparameters done on the experiments without
BN. We augment only the training dataset and validation
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Figure 3: Work�ow of the proposed approach for multiclass (24-classes) modulated images classi�cation.
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