
ORTE - open source implementation of Real-Time Publish-Subscribe protocol

Petr Smolik, Zdenek Sebek, Zdenek Hanzalek
Czech Technical University

Faculty of Electrical Engineering, Dept. of Control
Technicka 2, Praha 6, CZ-16000

xsmolik,sebek,hanzalek@fel.cvut.cz

Abstract

The Ocera Real-Time Ethernet (ORTE) is open
source implementation of Real-Time Publish-Subscribe
(RTPS) communication protocol developed under Linux.
RTPS is an application layer protocol targeted to real-
time communication area, which is build on the top of
standard UDP stack.

Deadline

no new issue
Min. separation

new issue acceptable

Persistance

Take strongest Take any

Last issue Last issue

Time-
out

Figure 1. Subscription parameters. Figure 2. Publisher parameters

1. Introduction

The communication protocols (such as IP, TCP, UDP,
HTTP, FTP or DCOM) are very well suited for standard
Internet applications but none of them is suited for real-
time distributed applications, imposing deadlines on the
data delivery. Ethernet in general is not deterministic due
its CSMA/CD MAC method and its behavior under
transient overload is not sufficient for any real-time
application. On the other hand, when the applications
have predictable and bounded number of requests,
behavior of Ethernet is "nearly" real-time (very low
probability of delayed data delivery) [2] due to the
reasonably low number of accesses compared to the high
performance
of this
communicatio
n media [3].
Therefore
Real-Time
Publish-
Subscribe
(RTPS) [1]
compliant
middleware is used to satisfy different deadline
requirements of applications on one side and to
determine a number of accesses on the other side. This is
quite natural since distributed control applications have
big portion of synchronous requests (usually related to
periodic tasks) and small portion of asynchronous
requests (usually related to asynchronous events).

Since there are many TCP/IP stack implementations
under many operating systems and RTPS protocol does
not have any other special HW/SW requirements, it

should be easily ported to many HW/SW target
platforms. Because it uses only UDP protocol, it retains
control of timing and reliability.

2. Real-Time Publish-Subscribe protocol

Real-time applications require more functionality than
the one provided by traditional publish-subscribe
semantics. Real-Time Publish-Subscribe protocol
(RTPS) adds publication and subscription timing
parameters and properties so that the application
developer can control different types of data flows and
therefore the application's performance and reliability
goals can be achieved – see fig. 1, 2.

Publication parameters: topic & type - identifies a
specific publication, strength - relative weight of
publication compared to the publications of the same
topic and type, persistence - specifies how long time an
issue is valid.

Subscription parameters: topic & type - identifies a
specific publication, minimum separation - period during
which no new issue is accepted, deadline - specifies how
long time a new issue is expected.

2.1. RTPS Architecture overview
The RTPS protocol is implemented as a set of objects.

Objects are of the following types:
• Manager (M)
• ManagedApplication (MA)
• Writers (Publication, CSTWriter)
• Readers (Subscription, CSTReader)

The Manager is an independent process, which is
created during application startup. It is a special

Example of communication between two nodes (N1,
N2) is shown on fig. 3. There are two applications
running on each node - MA1.1, MA1.2 on node N1 and
MA2.1, MA2.2 on node N2. Each node has it own
manager (M1, M2).

Application that helps applications to automatically
discover each other on the Network. Every Manager
keeps track of its managees and their attributes. To
provide this information on the Network, every Manager
has the special CSTWriter writerApplications. The
Composite State (CS) provided by the CSTWriter
writerApplications are the attributes of all the
ManagedApplications the Manager manages (its
managees). Whenever the Manager accepts a new
ManagedApplication as its managee, whenever the
Manager loses a ManagedApplication as a managee or
whenever an attribute of a managee changes, the CS of
the writerApplications changes. Each such change
creates new instance of CSChange, which has to be
transferred to all network objects (Managers and
ManagedApplications) by means of CST protocol.

0. Managers M1 and M2 discovere each other.
1. MA1.1 introduces itself to local manager M1
2. M1 sends list of remote managers Mx and other

local applications MA1.x
3. MA1.1 is introduced to all Mx by M1
4. All remote MAs are reported now to M1.1
5. Local MAs are queried for their CS (composite

state)
6. All local MAs are sending their CS
7. Remote MAs are queried for their CS
8. All remote MAs are sending their CS
The corresponding publishers and subscribers with

matching Topic and Type are connected and their data
communication starts.

The Publication is used to publish issues to matching
Subscription. The CSTWriter and CSTReader are the
equivalent of the Publication and Subscription,
respectively, but are used solely for the state-
synchronization protocol.

MA1,2
pub
sub

MA2,1
pub
sub

pub
sub

MA1,1

MA2,2
pub
sub

Manager M1

ORTE/RTI

Manager M2

ORTE/RTI

Node N1
IP/UDP 7400 IP/UDP 7400

Node N2

1 2 7

8

5

6

3

4

0

Figure 3. Network communication

A ManagedApplication is an Application that is
managed by one or more Managers. Every
ManagedApplication is managed by at least one
Manager. TheManagedApplication has a special
CSTWriter writerApplicationSelf. The Composite State
of the ManagedApplication's writerApplicationSelf
object contains only one NetworkObject - the application
itself. The writerApplicationSelf of the
ManagedApplication must be configured to announce its
presence repeatedly and does not request nor expect
acknowledgements. A Manager that discovers a new
ManagedApplication through its readerApplications
must decide whether it must manage this
ManagedApplication or not. For this purpose, the
attribute managerKeyList of the Application is used. If
one of the ManagedApplication's keys (in the attribute
managerKeyList) is equal to one of the Manager's keys,
the Manager accepts the Application as a managee. If
none of the keys are equal, the managed application is
ignored. At the end of this process all Managers have
discovered their managees and the ManagedApplications
know all Managers in the Network. 2.2. ORTE Implementation

Although object concept of RTPS would be ideal for
its implementation using an object-enabled programming
language such as C++, we decided to implement ORTE
using poor C language because it allows to transfer
ORTE into kernel space easily afterwards. Initial
implementation has been developed on Linux kernel 2.4,
but it should be able to run on both 2.2 and 2.5 branches
as well.

The ManagedApplications now use the CST Protocol
between the writerApplications of the Managers and the
readerApplications of the ManagedApplications in order
to discover other ManagedApplications in the Network.
Every ManagedApplication has two special CSTWriters,
writerPublications and writerSubscriptions, and two
special CSTReaders, readerPublications and
readerSubscriptions.

Internal structure of ORTE layer is shown of figure 4.
There are two main objects in ORTE layer. There is one
instance of Manager (M) per each node and one instance
of ManagedApplication (MA) per each user’s
application running on such node. Object Manager is
not part of any user application, it is created and

Once ManagedApplications have discovered each
other, they use the standard CST protocol through these
special CSTReaders and CSTWriter to transfer the
attributes of all Publications and Subscriptions in the
Network. The managedApplication is composed from
seven kinds of objects.

In order to exchange user data, the application must
create the publications of its variables. The application
which wants to receive issues from a publication must
create corresponding subscription. Properties of
publication and subscription contain specification of
Topic and TypeName, which specify an application
variable within whole network. It is allowed to have
more publications of same Topic and TypeName. If it
subscribes to such publication, it will receive issues from
all publications of the same Topic and TypeName. A
publication will be created by function
ORTEAppPublAdd. Once the publication is created, it is
ready to publish data using function ORTEAppPublSend.

executed by independent program (ORTEManager).
User application should never create any instance of
object Manager. Manager is designed as a single thread
handling both incoming as well as outgoing metatraffic.

ManagedApplication is object which represents user
application inside of ORTE layer. It is designed as two
threaded process. One thread processes metatraffic
(network exploatation) and second thread processes data
publication and reception of data issues from another
nodes.

Figure 4. ORTE internals

Whole ORTE is designed as a library, which should
be linked with each user application, which require
usage of ORTE layer.

2.3. ORTE API
ORTE API consists of three parts:

• Data structures holding parameters and
status of network objects

• Set of functions providing means for all node
management tasks such as ORTE application
and ORTE manager initialization and
deinitialization, creation of publication or
subscription, its management and deletion.

• Support macros for data type conversion etc.

2.4. Example application
The skeleton of an ORTE application is very simple:

#include <orte.h>
int main(int argc, char *argv[])
{
 ManagedApp *app1;
 ORTEAppCreate(&app1);
 /*

ManagerManagedApplication

Well known port

int h_pub;
NtpTime timePersistence;
long strength;
char msg[128];
u_long i=0;
NtpTimeAssembFromMs(timePersistence, 5, 0);
/* this issue is valid for 5 seconds */
strength=1; /* strength of this publication */

h_pub=ORTEAppPublAdd(app1,
 "HelloWorld", /* Topic */
 "HelloWorldData", /* TypeName */
 &timePersistence,
 strength);
while (1) {
 sprintf(msg,"Hello World count:%li\n",i);
 ORTEAppPublSend(app1,h_pub,msg,strlen(msg)+1);
 ORTESleepMs(1000); /* sleep for 1 second */
 i++;
}

Subscribing application needs to create a subscription
with publication’s Topic and TypeName. A callback
function will be then called when new issue from
publisher will be received.

ManagedApp *app1;
int h_sub;
NtpTime minimumSeparation,deadline;
NtpTimeAssembFromMs(minimumSeparation, 0, 0);
NtpTimeAssembFromMs(deadline, 5, 0);
h_sub=ORTEAppSubsAdd(app1,
 "HelloWorld", /* Topic */
 "HelloWorldData", /* TypeName */
 &minimumSeparation,
 &deadline,
 rcvCallBack); /* callback fn. */

while (1) {
 ORTESleepMs(1000);
}

The callback function is shown in the following
example:

void rcvCallBack(ORTERcvInfo *rcvInfo,u_char status)
{
 switch(status) {
 case 0: /* Issue */
 printf("%s",rcvInfo->data);
 break;
 case 1: /* Deadline */
 printf("\ndeadline\n");
 break;
 }
}

There must be the Manager process running on each
network node. This manager must be started here is your application dependent code

 */ manualy before any other ORTE-enabled application. }

3. Test tools

There are several tools already developed or under
development. The most important tools are Real-Time
Ethernet Analyzer and Object inspector.

3.1. Real-Time Ethernet Analyzer
Real-Time Ethernet Analyzer is not a standalone

program. It is a plug-in module which adds support for
RTPS protocol into Ethereal network analyzer [6],.
Ethereal is a free network protocol analyzer for Unix and
Windows. It allows you to examine data from a live
network or from a capture file on disk. You can
interactively browse the capture data, viewing summary
and detail information for each packet. This tool is
already available [4].

3.2. Object inspector
Object inspector is a Java application, which will

allow to browse whole network, inspect object’s
parameters. It will also provide means how to edit some
object’s parameters remotely. Since it will be written in
Java, it will be platform independent. This tool is not yet
available.

4. Conclusion

Further development of ORTE will be targeted to
several areas. First is to achieve full compatibility with
current or any new updated version of RTPS protocol
specification [1]. Second is to convert ORTE from user
space into kernel space including RTLinux support.
Third area is to add support for Microsoft Windows
NT/2000 platform.

References

 [1] Real-Time Publish-Subscribe Wire Protocol Specification,
Protocol Version 1.0, Draft Document version 1.17,
February 2002, by Real-time innovations
http://www.rti.com/products/ndds/literature.html

[2] Stan Schneider, Gerardo Pardo-Castellote, Mark Hamilton,
Can Ethernet be Real-Time, by Real-time innovations
http://www.rti.com/products/ndds/literature.html

[3] NDDS Performance Paper, by Real-time innovations
http://www.rti.com/products/ndds/literature.html

[4] Overall OpenSource project information,
http://sourceforge.net/projects/ocera/

[5] The official OCERA home page is at http://www.ocera.org/
[6] The Ethereal home page at http://www.ethereal.com

http://www.ocera.org/

