
computer science

saarland
university

CAMA
A Predictable Cache-Aware Memory Allocator

Jörg Herter, Peter Backes, Jan Reineke, Florian Haupenthal

Department of Computer Science
Saarland University

computer science

saarland
university

J. Herter et al. CAMA 1 / 24



computer science

saarland
universityCurrent Situation

What we have ...

1 Precise WCET analysis
2 Dynamic Memory Allocation

I often clearer program structure
I easy memory reuse (e.g. in-situ transformations)

... but can we have both together?

J. Herter et al. CAMA 2 / 24



computer science

saarland
universityDynamic Memory Allocation & WCET Analysis

What are the challenges?

...
x = malloc(8);

...

x->data = y->data + 2;
...

      How long will
malloc take?

(a) allocation
to cache sets
unknown!

(b) effects of
calls to malloc
on cache? 

      Is the access to y 
         a cache hit?

y = malloc(4);

J. Herter et al. CAMA 3 / 24



computer science

saarland
universityCache-Aware Memory Allocation

...
x = camalloc(8,2);

...

x->data = y->data + 2;
...

   How long will
camalloc take?

allocation
to cache sets

known!

effects of
calls to camalloc
on cache known! 

      Is the access to y 
         a cache hit?

y = camalloc(4,32);

1
2

constant response
times! 

J. Herter et al. CAMA 4 / 24



computer science

saarland
universityConstant Time Allocators

Constant time allocators:
(One level) Segregated list allocators

I Idea:
F manage free blocks in segregated free lists
F blocks within the same free list fall into the same size class

I Drawbacks: potential for high fragmentation
TLSF1 (two-level segregated fit)

I Idea:
F manage free blocks in segregated free lists
F use two-level approach to building size classes to decrease the

potential for fragmentation
I Drawbacks: no cache predictability

1
M. Masmano, I. Ripoll, A. Crespo, and J. Real, "TLSF: A new dynamic memory allocator for real-time systems," ECRTS ’04

J. Herter et al. CAMA 5 / 24



computer science

saarland
universityOne-Level Segregated List Allocators

Take set of all free blocks . . .

J. Herter et al. CAMA 6 / 24



computer science

saarland
universityOne-Level Segregated List Allocators

size:
(
25,26

]
size:

(
28,29

]

size:
(
210,211

]

Partition this set into sets containing blocks of the same size class . . .

J. Herter et al. CAMA 7 / 24



computer science

saarland
universityOne-Level Segregated List Allocators

size:
(
25,26

]
size:

(
28,29

]

size:
(
210,211

]

Finally, organize these subsets in segregated free lists.
List addressed by i contains blocks of sizes ∈

(
2i ,2i+1].

J. Herter et al. CAMA 8 / 24



computer science

saarland
universityTwo-Level Segregated Fit Allocator (TLSF)

size:
(
25,26

]
size:

(
28,29

]

size:
(
210,211

]

Segregated list addressed by pair (i , j) contains blocks of
sizes ∈

(
2i + 2i

L · j ;2i + 2i

L · (j + 1)
]
, L number of linear classes.

J. Herter et al. CAMA 9 / 24



computer science

saarland
universityCache-Aware Memory Allocation

CAMA adds a third layer to this scheme:

i-1 i i+1... ...

j-1 j j+1... ...

k... ... n0 k-1 k+1

Segregated list addressed by (k , i , j) contains blocks starting in cache
set k of sizes ∈

(
2i + 2i

L · j ;2i + 2i

L · (j + 1)
]
.

J. Herter et al. CAMA 10 / 24



computer science

saarland
universityHow are we doing so far?

Problems solved:
constant execution times
explicit cache set mapping of allocated blocks
cache influence of (de)allocation routines predictable

Open issues:
still potential for high fragmentation, cannot just copy TLSF’s
splitting and merge operations

J. Herter et al. CAMA 11 / 24



computer science

saarland
universitySplitting & Merging

Constant-time, cache-aware splitting and merging?
1 splitting: split large free blocks to satisfy requests for smaller

blocks
2 merging: merge consecutive free blocks to satisfy later requests

for larger blocks

J. Herter et al. CAMA 12 / 24



computer science

saarland
universitySplitting & Merging

Problem: Splitting/Merging has unknown effects on cache

Merging. During deallocation, we do not know:
whether merging will occur,
how large the block we merge are, and hence,
at which cache set the merged blocks start.

J. Herter et al. CAMA 13 / 24



computer science

saarland
universitySplitting & Merging

How to ’make splitting/merging cache-aware’?

Do not store free blocks directly in the segregated free list, but
management units (descriptors) for these blocks!
Store descriptors only in memory locations mapped to a known,
bounded range of cache sets!

J. Herter et al. CAMA 14 / 24



computer science

saarland
universityDescriptor Blocks

What information do we have to store in a descriptor?

ptr_pred
_freelist

ptr_succ
_freelist

size_managed
_block

ptr_managed
_block

ptr_left
_mem

ptr_right
_mem

FB

J. Herter et al. CAMA 15 / 24



computer science

saarland
universityDescriptor Blocks

ptr_pred
_freelist

ptr_succ
_freelist

size_managed
_block

ptr_managed
_block

ptr_left
_mem

ptr_right
_mem

FB

Splitting Merging

1 update size of managed
block,

2 update right memory
neighbor,

3 add new descriptor for
remainder.

1 update size of managed
block,

2 update right memory
neighbor,

3 remove descriptors of
merged blocks.

J. Herter et al. CAMA 16 / 24



computer science

saarland
universityCache-Aware Memory Allocation

back

free_list
content/payload

next

Figure 2. A memory block managed by CAMA. back is a pointer to the
associated descriptor (for a large block); next points to the next block in
the free list (for a small block that is free); free list points to the free list
of the associated size class (for a small black that is in use).

sufficient to enable cache-aware constant-time merging upon
deallocation as discussed later.

A descriptor block contains the following information. A
pointer to the free block for whose management it is used as
well as the size of this block. This pointer start and the size
entry size are used to compute the address triple (k, i, j) to
identify the appropriate free list to insert the block into when
it is deallocated.

k =

�
start

sizecline

�
mod sets,

i = �log2(size)� ,

j =

�
size − 2i

2i−jmax

�
.

where sizecline again denotes the size of a cache line.
One bit of the size entry is used as a free bit indicating

whether the memory block referred to by this descriptor
block is currently free or in-use. To enable merging, the
descriptor block further stores pointers to the free blocks
physically adjacent to the memory block associated with
this descriptor. Finally, as descriptor blocks are organized
in doubly-linked lists, pointers to its pre- and successors in
the list are also stored at each block. CAMA guarantees to
place such descriptor blocks exclusively at memory locations
mapped to a predefined range of cache sets. Figures 2 depicts
the layout memory blocks.

Figure 3 illustrates this memory management. The figure
shows a fragment of memory with 3 free memory blocks
managed by our algorithm. Each block has a corresponding
descriptor block located in a part of memory that is mapped
to the predefined range of cache sets (depicted as dark gray
shaded areas).

Storing management information in descriptor blocks
instead of the free blocks themselves enables us to do
splitting—and merging—in a cache-aware manner. However,
this comes at the price of increasing internal fragmentation.
Working on descriptor blocks instead of working directly
on the free blocks they manage, reduces inserting a block
b2 split from a larger block to creating a new descriptor
block and inserting this descriptor block into the appropriate
free list. This way, all memory accesses performed during
insertion are to memory locations whose cache-set mappings

prev:

next:

left:

right:

start:

prev:

next:

left:

right:

start:

prev:

next:

left:

right:

start:

Figure 3. A fragment of memory managed by CAMA. The dark gray
shaded memory area may be used for descriptor blocks, light gray areas
are for the free or in-use memory blocks managed by the allocator only.

are statically known.
Merging denotes the ability to merge consecutive free

blocks into a single large free block at deallocation time in
order to later satisfy requests for larger blocks. As noted
earlier, each in-use block stores a pointer to its descriptor
block. Such a descriptor block contains pointers to managed
blocks residing in memory locations adjacent to the memory
location the block managed by this descriptor resides in.
If a memory block is deallocated, we just have to check
if its left-adjacent or right-adjacent neighboring blocks are
currently free. To determine whether a memory block is
currently in-use or free, we use an additional bit within
the block’s descriptor block. If one or both adjacent blocks
are currently free, we merge these blocks into a single
free block. This merging again reduces to updating entries
in descriptor blocks requiring only predictable memory
accesses. Upon merging two memory blocks, one descriptor
block becomes free. As the memory blocks are merged into
one block, one descriptor is used to manage this new block,
while the descriptor of the second memory block is not
needed anymore. For deallocating descriptor blocks, CAMA
manages an additional free list for descriptors into which
after merging unneeded descriptor blocks are inserted. The
splitting operation uses this free list to allocate and thus
reuse descriptor blocks. Only if the descriptor free list is
empty, new memory for descriptor blocks is requested from
the underlying operating system.

Descriptor blocks may pose a problem for very small
blocks. If a program allocates many small memory blocks
and the descriptor blocks for these are almost as large or
even larger than the blocks themselves, memory waste would
be overly high. And even worse, as descriptor blocks are
restricted to map to a certain cache set range, many small
blocks would force the allocator to request many almost
unused memory pages just to store management information.
Hence, descriptor blocks should only be used for memory
blocks of a reasonable minimal size. This size threshold
sizethresh is in our current implementation set to

sizethresh =
sizecpage − sizeds

numberds

where sizecpage denotes the size (in bytes) of a cache page1,

1The size of a cache page equals the size of a cache line multiplied by
the number of cache sets.

Summary:
Manage not free blocks but descriptors in segregated free lists.
’All’ accesses go to descriptor blocks.
Descriptor blocks mapped to dedicated cache sets.
Results in known number of accesses to known cache sets.
Third cache set level.

J. Herter et al. CAMA 17 / 24



computer science

saarland
universityBenchmark Results—WCET Bounds for

CAMA & TLSF
Provable2 WCET of the allocation routines on a MPC603e:

8 16 256 65,536

9
10
11
12
13
14
15
16
17

requested block size in bytes

W
C

E
T

(p
ro

ce
ss

or
cy

cl
es

/1
03

on
a

M
P

C
60

3e
)

TLSF

TLSF (repl. ld comp.)

CAMA

2Derived by AbsInt’s a3; http://www.absint.de/ait/
J. Herter et al. CAMA 18 / 24



computer science

saarland
universityBenchmark Results—WCET Bounds for

CAMA & TLSF

Provable WCET of the allocation routines on a MPC603e can be
bounded by:

CAMA: 9,935 cycles
TLSF: 13,026 cycles3

Provable WCET of the deallocation routines on a MPC603e:
CAMA: 6,891 cycles
TLSF: 5,703 cycles

316,260 cycles for the unmodified version of TLSF.
J. Herter et al. CAMA 19 / 24



computer science

saarland
universityBenchmark Results—Potential to Lower WCET

Bounds?

Assume a simple task scheduler with segregated task lists and a main
loop body:

struct task_descr* lowPriority = low;
struct task_descr* highPriority = high;

// loop bound: 16
for(i = 0; i < LP_LIST_SIZE; i++) {

// loop bound: 4
for(j = 0; j < HP_LIST_SIZE; j++) {

// high prioritized tasks waiting?
...
high = high->next;

}
high = highPriority;
// next lower prioritized task waiting?
...
low = low->next;

}
low = lowPriority;

1 allocate all objects with CAMA
s.t. high and low priority
objects map to disjoint cache
sets

2 allocate all objects with some
constant-time allocator without
explicit/known cache set
mapping

J. Herter et al. CAMA 20 / 24



computer science

saarland
universityBenchmark Results—Potential to Lower WCET

Bounds?

Assume a simple task scheduler with segregated task lists and a main
loop body:

struct task_descr* lowPriority = low;
struct task_descr* highPriority = high;

// loop bound: 16
for(i = 0; i < LP_LIST_SIZE; i++) {

// loop bound: 4
for(j = 0; j < HP_LIST_SIZE; j++) {

// high prioritized tasks waiting?
...
high = high->next;

}
high = highPriority;
// next lower prioritized task waiting?
...
low = low->next;

}
low = lowPriority;

1 provable WCET using CAMA
to segregate lists in cache:
6,505 cycles

2 provable WCET otherwise:
10,915 cycles

J. Herter et al. CAMA 21 / 24



computer science

saarland
universityMemory Consumption/Fragmentation

How to benchmark fragmentation?
Random (de)allocation traces?
Traces from (hard) real-time applications?

J. Herter et al. CAMA 22 / 24



computer science

saarland
universityBenchmark Results—Fragmentation

DLMalloc
TLSF
CAMA

m
em

or
y

co
ns

um
pt

io
n

(k
ilo

by
te

s)

A B C D E F

1,000

2,000

3,000

4,000

Absolute memory consumption for the following test cases taken from the MiBench
test suite: Susan small (A), Susan large (B), Patricia small (C), Patricia
large (D), Dijkstra small (E), and Dijkstra large (F).

J. Herter et al. CAMA 23 / 24



computer science

saarland
universityConclusions

Cache-awareness does not necessarily nor overly increase
fragmentation compared to other real-time allocators.
Predictable, cache-aware allocators do have potential do
drastically decrease WCET bounds, and . . .
. . . enable dynamic memory allocation for hard real-time
applications.

J. Herter et al. CAMA 24 / 24


