

1ZIGBEE OVER TINYOS: IMPLEMENTATION AND EXPERIMENTAL CHALLENGES

André Cunha1, Ricardo Severino1, Nuno Pereira1, Anis Koubâa1,2, Mário Alves1
1 IPP-HURRAY Research Group, Polytechnic Institute of Porto (ISEP/IPP),Porto, Portugal
2 Al-Imam Muhammad Ibn Saud University, Computer Science Dept., Riyadh, Saudi Arabia

{arec, rars, nap, aska, mjf}@isep.ipp.pt

Abstract: The IEEE 802.15.4/Zigbee protocols are a promising technology for Wireless
Sensor Networks (WSNs). This paper shares our experience on the implementation and
use of these protocols and related technologies in WSNs. We present problems and
challenges we have been facing in implementing an IEEE 802.15.4/ZigBee stack for
TinyOS in a two-folded perspective: IEEE 802.15.4/ZigBee protocol standards
limitations (ambiguities and open issues) and technological limitations (hardware and
software). Concerning the former, we address challenges for building scalable and
synchronized multi-cluster ZigBee networks, providing a trade-off between timeliness
and energy-efficiency. On the latter issue, we highlight implementation problems in terms
of hardware, timer handling and operating system limitations. We also report on our
experience from experimental test-beds, namely on physical layer aspects such as
coexistence problems between IEEE 802.15.4 and 802.11 radio channels.

Keywords: Wireless Sensor Networks, ZigBee, IEEE 802.15.4, TinyOS

1 This work was partially funded by FCT under the CISTER Research Unit (FCT UI
608), PLURALITY and CMU-PT projects, and by the ARTIST2/ARTISTDesign NoEs.

1. INTRODUTION

IEEE 802.15.4/ZigBee [1,2] and TinyOS [3] are
currently buzzwords, since these technologies have
been playing and important role in leveraging a new
generation of large-scale networked embedded
systems. The IEEE 802.15.4/ZigBee protocol stack
has several interesting technical features for serving
as a federating communication technology for
Wireless Sensor Networks (WSN). TinyOS is the
most widespread operating system for embedded
resource-constrained systems.
Within this context, we have been investigating the
potentiality of the IEEE 802.15.4/ZigBee protocols
for time-critical WSN applications. We have
developed the open-ZB [4] open source toolset,
encompassing a simulation model [5] and a protocol
stack over TinyOS [11], for the MICAz/TelosB [6]
motes. This toolset has been mainly used to test,
validate and demonstrate our theoretical proposals
through a number of experimental test-beds.
This paper describes the most important problems
encountered in the implementation of the IEEE
802.15.4/ZigBee protocol stack over TinyOS and
also in our experimental test-beds, identifying some
of the most relevant challenges to be addressed.
The remainder of the paper is organized as follows:
Section 2 overviews relevant aspects of the IEEE
802.15.4/ZigBee protocols, focusing on the Cluster-

Tree topology. The major problems related to the
open-ZB protocol stack implementation are
presented in Section 3. Section 4 reports some
experience from experimental test-beds. Finally,
Section 5 provides some concluding remarks.

2. ON THE IEEE 802.15.4/ZIGBEE PROTOCOLS

2.1 Protocols Overview
The IEEE 802.15.4 protocol [1] specifies the
Medium Access Control (MAC) sub-layer and the
Physical Layer of Low-Rate Wireless Private Area
Networks (LR-WPANs). The ZigBee protocol [2]
relies on the IEEE 802.15.4 layers, building up the
Network and Application Layers.
ZigBee defines three types of devices: (1) ZigBee
Coordinator (ZC): one for each PAN, initiates and
configures the network formation; (2) ZigBee Router
(ZR): associated (as a child node) with the ZC or
with a previously associated ZR, participates in
multi-hop message routing; (3) ZigBee End Device
(ZED): device with sensing/actuating capabilities but
that does not allow other devices to associate with it
and does not participate in routing.
The IEEE 802.15.4 Physical Layer is responsible for
data transmission and reception using a certain radio
channel. It offers three operational frequency bands:
2.4 GHz, 915 MHz and 868 MHz. There is one
channel between 868 and 868.6 MHz, ten channels

between 902 and 928 MHz, and sixteen channels
between 2.4 and 2.4835 GHz. Direct Sequence
Spread Spectrum (DSSS) modulation is used.
The IEEE 802.15.4 MAC protocol supports two
operational modes that may be selected by the ZC:
(1) the non beacon-enabled mode, in which the
MAC is simply ruled by non-slotted CSMA/CA; (2)
the beacon-enabled mode, ruled by slotted
CSMA/CA, in which beacons are periodically sent by
the ZC to synchronize nodes that are associated with
it, and to identify the PAN. In beacon-enabled mode,
the ZC defines a Superframe structure (Fig. 1) which
is constructed based on: (1) the Beacon Interval (BI),
which defines the time between two consecutive
beacon frames; (2) the Superframe Duration (SD),
which defines the active portion in the BI, and is
divided into 16 equally-sized time slots, during
which frame transmissions are allowed. Optionally,
an inactive period is defined if BI > SD. During the
inactive period (if it exists), all nodes may enter in a
sleep mode (to save energy).
BI and SD are determined by two parameters - the
Beacon Order (BO) and the Superframe Order (SO):

 0 14
2

2

BO

SO
for SO BO

BI aBaseSuperframeDuration

SD aBaseSuperframeDuration
≤ ≤ ≤

= ⋅

= ⋅

⎫⎪
⎬
⎪⎭

aBaseSuperframeDuration = 15.36 ms (assuming
250 kbps in the 2.4 GHz band) denotes the minimum
Superframe Duration, corresponding to SO = 0.
During the SD, nodes compete for medium access
using slotted CSMA/CA, in the Contention Access
Period (CAP). IEEE 802.15.4 also supports a
Contention-Free Period (CFP) within the SD, by the
allocation of Guaranteed Time Slots (GTS).

Fig. 1 Superframe structure [1]

It can be easily observed in Fig. 1 that low duty-
cycles can be configured by setting small SO values
as compared to BO, resulting in greater sleep
(inactive) periods.
ZigBee supports three network topologies – star,
mesh and cluster-tree, illustrated in Figs. 2 and 3.

a) star topology b) mesh topology

Fig 2. ZigBee star and mesh network topologies

In the star topology (Fig. 2a) communications must
always be relayed through the ZC. In the mesh

topology (Fig. 2b) each node can directly
communicate with any other node within its radio
range or through multi-hop. The cluster-tree
topology (Fig. 3) is a special case of a mesh network
where there is a single routing path between any pair
of nodes and a distributed synchronization
mechanism (operates in beacon-enabled mode).

2.2 Cluster-tree network model
The Cluster-Tree network concept is outlined in the
ZigBee specification and exemplified in Fig. 3. A
unique ZC identifies the entire network and each ZR
assumes the role of cluster-head, allowing the
association of other ZRs and ZEDs in a parent-child
relationship. Inside each cluster, messages must be
relayed by the cluster-head, i.e. as in star topologies.
However, the IEEE 802.15.4/ZigBee specifications
do no clearly describe how the cluster-tree model can
be implemented, providing just a broad view on how
the cluster-tree network should operate and on the
tree routing algorithm.

Fig. 3 Cluster-tree network topology

More specifically, the Cluster-Tree model includes
more than one ZigBee Router that periodically
generates beacons to synchronize nodes (or clusters
of nodes) in their neighbourhood. If these periodic
beacon frames are sent in an unorganized fashion,
without any particular schedule, they will collide
with each other or with other frames. These
collisions result in the loss of synchronization
between a parent ZigBee Router and their child
devices, which prevents them to communicate.
Only some basic approaches dealing with this
problem were proposed for discussion by the Task
Group 15.4b [7], which is a group aiming to improve
some inconsistencies of the original specification.
Therefore, beacon scheduling mechanisms such as
the one proposed in [10] are required to avoid beacon
frame collisions in ZigBee cluster-tree networks.

2.3 Cluster-tree vs mesh topologies
Table 1 summarizes some of the differences between
ZigBee mesh and cluster-tree topologies.

Table 1 – Mesh vs. Cluster-Tree
 Mesh Cluster-Tree

Synchronization No Yes

Inactive Periods ZEDs All Nodes
Real-Time
Communications No Yes (GTS)

Redundant Paths Yes No
Routing Protocol
Overhead Yes No

Commercially
Available Yes No

The synchronization (beacon-enabled mode) feature
of the cluster-tree model may be seen both as an
advantage and as a disadvantage, as reasoned next.
On one hand, synchronization enables dynamic duty-
cycle management in a per cluster basis, allowing
nodes (ZEDs and ZRs) to save their energy by
entering the sleep mode. In contrast, in the mesh
topology (as in [1]), only the ZEDs can have inactive
periods; note that as the mesh network model
supports no synchronization, ZRs are forced to be
always active for complying with their routing
duties. These energy saving periods enable the
extension of the network lifetime, which is one of the
most important requirements of WSNs. In addition,
synchronization allows the dynamic reservation of
guaranteed bandwidth in a per-cluster basis, through
the allocation of GTS in the CFP. This enables the
worst-case dimensioning of cluster-tree ZigBee
networks, namely to compute worst-case message
end-to-end delays and ZR buffer requirements [8].
On the other hand, managing the synchronization
mechanism all over a cluster-tree network is a very
challenging task. Even if we can cope with minor
synchronization drifts between ZRs, this problem can
grow for larger cluster-tree networks (higher depths).
As previously mentioned, the de-synchronization of
a cluster-tree network leads to collision problems due
to beacon frames and Superframes overlap. For
instance, the CAP of one cluster can overlap with the
CFP of another cluster, which is not tolerable.
Regarding the routing protocols, tree routing
(cluster-tree) is lighter than the AODV-like [9]
protocol (mesh) in terms of memory and processing
requirements. The routing overhead, as compared
with AODV, is reduced. Note that the tree routing
protocol considers just one path from any source to
any destination, thus it does not consider redundant
paths, in contrast to AODV. Therefore, the tree
routing protocol is prone to the single point of failure
problem, while that can be avoided in mesh networks
if alternative routing paths are available - ZRs have
more than one ZR within radio coverage.
Note that if there is a faulty ZigBee Router, network
inaccessibility times may be inadmissible for
applications with critical timing and reliability
requirements. Thus, designing and engineering
energy and time-efficient fault-tolerance mechanisms
to avoid/minimize the single point of failure problem
in ZigBee cluster-tree networks is crucial.
Besides the Beacon/Superframe scheduling and the
single-point-of-failure problems, there are other
challenges to effectively engineer ZigBee cluster-tree
networks, namely: (1) the dynamic network
resynchronization, for instance in case of a new ZR
joining or leaving the network; (2) the dynamic
rearrangement of the all the duty cycles in the case of
a ZR failure; (3) a new router association or even
rearranging the Superframe duration of some routers
to adapt the bandwidth allocated to that branch of the
tree; (4) the rearrangement of the addressing space
allocated to each router; and (5) supporting mobility
of ZEDs, ZRs or even whole clusters.
From our perspective, all these impairments have
lead to the lack of commercial or even academic

solutions based on the ZigBee cluster-tree model.
Nevertheless, we consider this model as a promising
and adequate solution for WSN applications with
real-time and energy-efficiency requirements.

3. OPEN-ZB STACK: PROBLEMS/CHALLENGES
3.1 Introduction
The main problems we have encountered during the
implementation of the IEEE 802.15.4/ZigBee
protocol stack [4,11] are related to both hardware
constraints and the lack of details in the standard
specifications regarding important aspects of the
beacon-enabled mode and of the cluster-tree model.
We have implemented the beacon-enabled mode of
the IEEE 802.15.4 MAC sub-layer and the required
functionalities in the ZigBee Network Layer to
support cluster-tree topologies. TinyOS v1 was used
over the MICAz and TelosB motes. More recently,
though still under testing, we ported our stack to
TinyOS v2.0, keeping the same software architecture
[11], as a result from our collaboration with the
TinyOS Network Protocol Working Group [12] to
implement a ZigBee compliant stack for TinyOS 2.0.

3.2 Hardware platforms and debugging
The TelosB and MICAz architectures are slightly
different, NAMELY due to their 16-bits MSP430
[13] and 8-bits Atmega128 [14] microcontrollers.
This requires selecting the corresponding driver
modules already provided in TinyOS and the
adaptation of our first implementation version, which
only supported the MICAz , to encompass the 16-bits
memory block of the MSP430. Both platforms use
the 2.4 GHz Chipcon CC2420 radio transceiver [15].
The MICAz requires the use of a programming
interface (the MIB510), while the TelosB features an
USB interface, enabling programming via the PC.
Both motes provide a debug mechanism by sending
data through the serial (COM/USB) port and reading
it via a communication listener (e.g. ListenRaw,
provided with the TinyOS distribution, or Windows
HyperTerminal). This debugging mechanism raises a
problem, since the transmission through the COM
port blocks all the other mote operations, which
usually causes synchronization problems.
In order to overcome these local debugging issues
and to have a total control over the network
behaviour and of all transmitted packets, we have
been using two different network/protocol analysers
[16,17]. The CC2420 Packet Sniffer for IEEE
802.15.4 v1.0 [16] provides a raw list of the packets
transmitted. The software application works in
conjunction with a CC2400EB evaluation board and
a CC2420 radio transceiver. We have also been using
the Daintree Sensor Network Analyser [17] that
provides some additional functionality, such as
geographically distributed sniffing, graphical
topology of the network, statistics, message flows,
PAN information and association details.

3.3 Memory constraints
The MICAz and TelosbB are very limited in terms of
random access memory (RAM) – roughly 4 kB for
the former and 10 kB for the latter. The RAM must

be sufficient to fulfil the requirements of the TinyOS
operating system, of the protocol stack and of the
high level application. In this aspect, the MICAz
motes are more constrained than the TelosB.
Take the example of two TinyOS 2.0 demo
applications in order to demonstrate the variation in
RAM memory usage – the Blink and
MultihopOscilloscopeApp applications, compiled for
both platforms. The first uses approximately 55 bytes
and the second 3348 bytes of RAM. Besides the
RAM memory allocated at compilation time, the
devices need to have enough free memory for the
operating system stack. In our TinyOS 2.0
implementation, the memory needed by an
application that only uses the IEEE 802.15.4 beacon-
enabled mode needs approximately 2678 bytes of
RAM while an application using the ZigBee network
layer with the cluster-tree topology needs
approximately 3224 bytes.
Note that these demo applications are very simple
and just used for testing purposes and that the
different buffers used are very small. If the ZigBee
Application Layer and more complex user-level
applications are to be fit into these motes, memory
limitations will surely come to the scene.

3.4 CC2420 transceiver limitations
The CC2420 transceiver (used by the MICAz and
TelosB motes) also has some limitations in terms of
turnaround time, i.e. the time that it takes to switch
from receive mode to transmit mode and vice-versa.
According to the IEEE 802.15.4 standard, the
transceiver’s turnaround time must be 12 symbols
(192 µs). This is the maximum time bound required
to acknowledge messages. In fact, the CC2420 has
the hardware configuration of auto-acknowledge
messages but, besides generating several false
acknowledgments (messages that are acknowledge
but not received by the protocol stack), it needs to
have the address decode functionalities activated.
Unfortunately, similarly to several IEEE 802.15.4
compliant transceivers, it is not possible to achieve
the specified turnaround time. For instance, the
Chipcon CC2420 can take up to 192 µs just to switch
between these two modes, leaving no time for data
transitions between the MAC sub-layer, the PHY
layer and the chip transmit memory space.
In addition, the processing power available in the
motes microcontroller revealed to be quite limited to
comply with the most demanding IEEE 802.14.5
timing constrains, especially for small Beacon orders
(BO < 3) and Superframe orders (SO < 3). This turns
these Superframe configurations impossible to
deploy, considering that the motes must also have
availability for processing other tasks. It is
reasonable to assume that the processing limitations
can be easily overcome in the near future with the
development of new and faster microcontrollers or
by a hardware implementation of the protocol stack.

3.5 Timing and synchronization requirements
The timing requirements of the IEEE 802.15.4
protocol are very demanding. In the beacon-enabled
mode, all devices (ZRs and ZEDs) must synchronize

with their parents (ZR or ZC) through beacon frames.
If a device loses synchronization it cannot operate in
the PAN. Moreover, if a node is not properly
synchronized, there is a possibility of collisions in
the GTS slots (when the CAP overlaps the CFP).
From our experience, synchronization losses can be
caused by multiple factors, such as: (1) the
processing time of the beacon frame for low BO/SO
configurations; (2) the mote stack overflow, that
results in a processing block or a hard reset; and (3)
the reduced processing capability of the
microcontroller in conducting some fundamental
protocol tasks (e.g. creating beacon frames,
managing GTS and indirect transmissions).
The implementation of the slotted CSMA/CA
algorithm is also quite demanding in terms of timer
accuracy, since the IEEE 802.15.4 protocol defines
that each backoff period corresponds to 20 symbols
(320 µs). A first difficulty in the implementation of
the beacon-enabled mode was related to the TinyOS
management of the hardware timers provided by the
motes. These timers do not allow having the exact
theoretical values of the BI, SD, time slot and backoff
period durations as specified by the IEEE 802.15.4
standard. This discrepancy, however, does not impact
the correct behaviour of the implemented protocol,
provided that the same mote platforms are used in the
experiments (at least as ZC and ZRs).

Fig. 4. Asynchronous events

The frequency of the asynchronous software events
(Fig. 4), the hardware events and the low
microprocessor processing ability may lead to an
insufficient processing time left to execute the
remaining protocol and higher-layer application
tasks, as a great amount of interrupts have to be
processed in short periods of time.
One hardware aspect that we had to take into account
while implementing the timers needed to run the
beacon-enabled mode of the IEEE 802.15.4 was the
different hardware timer granularities of the MICAz
and TelosB mote platforms. The timer granularities
were approximated as much as possible to the
theoretical values defined in the standard [11].

3.6 TinyOS task scheduler
The default TinyOS scheduler does not support tasks
prioritization and is non pre-emptive. Typically, there
are two different kinds of interrupt events in TinyOS:
(1) the timers and (2) the radio. These events are
captured by event handlers that normally post a task
to the FIFO task queue, which significantly impacts
the behaviour of the protocol stack.
In fact, sharing the microcontroller between all
protocols tasks, such as processing and generation of
the beacon frame or other messages, performing

protocol maintenance or routing, is very demanding,
specially for high duty cycles.
For example, processing and transmitting the beacon
frame is a critical task for the protocol, and should
take precedence over others. The problem is that the
TinyOS scheduler does not support this.
Nevertheless, there are several proposals [18,19] to
introduce prioritization in the TinyOS task scheduler.
Operating system support for priority-driven
multitasking is one relevant asset that could improve
our implementation. In that direction, our
future/ongoing work is to implement our protocol
stack [11] in ERIKA [20], which is a real-time
operating system for WSN platforms. We expect that
ERIKA can enable reliable synchronization, even
under high duty cycles. This will allow the
comparison between two different embedded
operating systems and assess all the features required
for the correct behaviour of the IEEE
802.15.4/ZigBee protocols.
However, even with the aforementioned problems,
the protocol stack behaves steadily for beacon and
Superframe orders higher than 3.

4. PHYSICAL LAYER-RELATED PROBLEMS
4.1 Introduction
In the course of our research work, several
experimental scenarios were built for testing and
validating our theoretical proposals. During these
implementation and experimental efforts, some
difficulties were encountered namely in what
concerns the behaviour of the hardware platforms –
the MICAz and TelosB motes. In this section, we
summarize some relevant problems we faced and
how they have been tackled.

4.2 Interference between radio channels
In order to experimentally analyse the behaviour of
the protocol, we devised several scenarios that
enabled us to evaluate different network metrics,
such as the Network Throughput and Probability of
Success as a function of the Network Load. In
general lines, these scenarios consisted of several
nodes programmed to generate packets at the
application layer with preset inter-arrival times,
enabling us to push the necessary traffic load into the
network. We used the previously referred IEEE
802.15.4 protocol analyzer [16] to log the received
packets and developed an application to parse the
message payload, which embedded relevant
performance information retrieved from the nodes in
order to compute the required metrics.
One requirement of the performance evaluation was
to achieve high traffic loads in the network, even
above 100% of the network capacity. We
immediately observed that it was not only difficult to
get a consistent behaviour of the Throughput metric
but also to get high offered loads. Moreover, it was
hard to ensure the stability of the network when the
nodes were generating packets with very low inter-
arrival times.
After performing several assessments, we reached
the conclusion that this behaviour was mostly related
to three factors: (1) the interference caused by close

Wi-Fi equipment; (2) TinyOS-related constraints;
and (3) others related to the node’s scarce processing
capability.
The interference between IEEE 802.11 and 802.15.4
radio channels, confirmed using a spectrum analyser,
had unpredictable effects on the results. We observed
that the interference of IEEE 802.11 networks often
generated collisions with data/beacon frames. This
effect, lead to data corruption and network de-
synchronization. Moreover, it also had implications
on the amount of traffic sent to the network because
in the IEEE 802.15.4 slotted CSMA/CA protocol, the
medium was often sensed as busy (during the Clear
Channel Assessment (CCA)), causing deference and
failed transmissions. This obviously affected the
behaviour of the network since it did not allow
reaching high traffic loads. We overcame the
interference problem by using the only IEEE
802.15.4 channel (Channel 26 in the 2480 MHz
frequency band) that is completely outside the IEEE
802.11 frequency spectrum (Fig. 5).

Fig. 5. IEEE 802.15.4/02.11 spectra [21]

Note that this interference must be really taken into
consideration for the reliable deployment of ZigBee
networks operating in the 2.4 GHz frequency band.
Nevertheless, besides the interference problem, we
have also identified other sources of inconsistencies.
As already discussed in Section 3, TinyOS imposes
several limitations that influence the behaviour of the
protocol stack, namely on the synchronization. We
have observed that when packet transmission
followed a very small inter-arrival time (in the order
of 50 packets per second) the de-synchronization was
a concern, mainly due to the high amount of tasks
posted to generate the required offered load. To
mitigate this problem, we programmed the nodes to
generate packets only during the active portion of the
Superframe, trying to guarantee that the beacon
frame would be parsed immediately upon the
reception. Nevertheless, when using a full duty cycle
the problem remained. Thus, we used a new timer
that fires a few milliseconds before the end of the
Superframe, stopping all the packet generation and
leaving the nodes ready to process the beacon frame.

4.3 RSSI-based localization inaccuracy
Another test-bed scenario consisted of a
Search&Rescue application to demonstrate the
ART-WiSe architecture [22]. A rescuer robot is
supposed to track and reach, in the minimum amount
of time, a steady or moving target (person or robot),
using a wireless sensor network for tracking and

localization. A first approach to this application was
reported in [23]. In this context we wanted to
develop a simple but effective localization
mechanism, relying as much as possible on COTS
technologies and taking advantage of the Received
Signal Strength Indicator (RSSI), available directly
in the CC2420 transceiver, for estimating distances
between source and destination nodes.
We immediately observed that these measurements
were highly sensitive to ambient conditions. The
proximity to metal and walls highly increased the
number of reflections leading to non-consistent RSSI
readings. Moreover, the RSSI value was not linear
with the distance and it varied with different mote
antenna orientations. This means that it was probable
to find different RSSI readings for the same distance.
To overcome this problem, several experiments were
carried out for different distances, transmission
powers and antenna orientations, in an attempt to get
a consistent set of values for different distances
[24,25]. After these experiments, it became possible
to establish a correspondence between distance range
levels and the window of RSSI values encountered
for that same range. This enabled us to engineer a
simple RSSI-based localization mechanism that is
characterized by an inaccuracy of roughly 60 cm,
which we consider acceptable for the envisaged
applications.

4. CONCLUDING REMARKS
In this paper, we have reported several problems and
challenges emerging from our experimental work on
the IEEE 802.15.4/ZigBee protocol stack [4,11]. We
have presented some issues that are either ambiguous
or actually left open in the 802.15.4/ZigBee protocol
specifications. We have also reported on our
experience concerning the implementation and use of
the open-ZB protocol stack.
Some open and ambiguous issues in the standard
specifications require some protocol add-ons and
appropriate system planning and network
dimensioning. This is particularly true for supporting
scalable, reliable, energy-efficient and time-sensitive
applications with ZigBee cluster-tree networks.
The hardware platforms under use – MICAz and
TelosB – seem to be too limited for the demanding
requirements of ZigBee cluster-tree networks, where
synchronization depends on the distributed
transmission of beacon frames. This also results from
the limitations of TinyOS to tackle this demanding
protocol behaviour. Therefore, we intend to migrate
the open-ZB protocol stack to real-time operating
systems (e.g. ERIKA) and to more powerful mote
platforms, as well as extending it for supporting
mesh topologies.

REFERENCES
[1] IEEE-TG15.4, "Part 15.4: Wireless Medium Access

Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs)," IEEE standard for
Information Technology, 2003.

[2] Zigbee-Alliance, "ZigBee specification,"
http://www.zigbee.org/, Dec 2006.

[3] TinyOS, www.tinyos.net, 2008.

[4] Open-ZB, “Open-source toolset for IEEE 802.15.4
and ZigBee” web site: www.open-zb.net.

[5] P. Jurcik, A. Koubaa, M. Alves, E. Tovar, Z.
Hanzalek, “A Simulation Model for the IEEE
802.15.4 Protocol: Delay/Throughput Evaluation of
the GTS Mechanism”, In Proc. IEEE International
Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems
(MASCOTS´07), Istanbul, Turkey, October 2007.

[6] Crossbow web site: http://www.xbow.com, 2007.
[7] IEEE 802.15.4b Task Group, web site:

http://grouper.ieee.org/groups/802/15/pub/TG4b.html
[8] A. Koubaa, M. Alves, E. Tovar, “Modelling and

Worst-Case Dimensioning of Cluster-Tree Wireless
Sensor Networks”, 27th IEEE Real-time Systems
Symposium (RTSS´06), Rio de Janeiro, Brazil,
December 2006.

[9] IETF, RFC 3561 Ad hoc On-Demand Distance
Vector (AODV) Routing, 2003.

[10] A. Koubâa, A. Cunha, M. Alves, “A Time Division
Beacon Scheduling Mechanism for IEEE
802.15.4/ZigBee Cluster-Tree Wireless Sensor
Networks”. 19th Euromicro Conf. on Real-Time
Systems (ECRTS 2007), Pisa, Italy, July 2007.

[11] A. Cunha, A. Koubâa, R. Severino, M. Alves,
“Open-ZB: an open-source implementation of the
IEEE 802.15.4/ZigBee protocol stack on TinyOS”, in
Proc. of the 4th IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS´07),
Pisa, Italy, October 2007.

[12] TinyOS Network Protocol Working Group web site:
http://tinyos.stanford.edu:8000/Net2WG

[13] Texas Instruments, “MSP430x1xx Family User’s
Guide”, 2004.

[14] ATmega128L 8-bit AVR Microcontroller Datasheet,
Ref. 2467MAVR-11/04, http://www.atmel.com.

[15] Chipcon, "CC2420 transceiver datasheet", 2004.
[16] Chipcon Packet Sniffer for IEEE 802.15.4 v1.0,

2006.
[17] Daintree Networks, http://www.daintree.net, 2006.
[18] C. Duffy, U. Roedig, J. Herbert, C. Sreenan, “Adding

Preemption to TinyOS”, Fourth Workshop on
Embedded Networked Sensors (EmNets 2007),
University College Cork, Ireland, ACM Digital
Library, June 2007.

[19] V. Subramonian, H. Huang, S. Datar, “Priority
Scheduling in TinyOS : A Case Study”, Washington
University Technical Report WUCSE-2003-74.

[20] E.R.I.K.A., http://erika.sssup.it, 2008.
[21] Crossbow Technology Inc., “Avoiding RF

Interference Between WiFi and Zigbee”, available at
http://www.xbow.com.

[22] The ART-WiSe research framework web site:
http://www.hurray.isep.ipp.pt/art-wise

[23] M. Alves, A. Koubaa, A. Cunha, R. Severino, E.
Lomba, “On the Development of a Test-Bed
Application for the ART-WiSe Architecture”, Work-
in-Progress Session of the 18th Euromicro
Conference on Real-Time Systems (ECRTS’06),
Dresden, Germany, July 2006.

[24] R. Severino, M. Alves, “On a Test-bed Application
for the ART-WiSe Framework”, HURRAY-TR-
061103, November 2006.

[25] R. Severino, M. Alves, “Engineering a Search and
Rescue Application with a Wireless Sensor Network
- based Localization Mechanism”, Poster Session of
the IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks
(WoWMoM’07), Helsinki, Finland, June 2007.

