
     

1ZIGBEE OVER TINYOS: IMPLEMENTATION AND EXPERIMENTAL  CHALLENGES 

André Cunha1, Ricardo Severino1, Nuno Pereira1, Anis Koubâa1,2, Mário Alves1 
1 IPP-HURRAY Research Group, Polytechnic Institute of Porto (ISEP/IPP),Porto, Portugal 
2 Al-Imam Muhammad Ibn Saud University, Computer Science Dept., Riyadh, Saudi Arabia 

{arec, rars, nap, aska, mjf}@isep.ipp.pt 
 

Abstract: The IEEE 802.15.4/Zigbee protocols are a promising technology for Wireless 
Sensor Networks (WSNs). This paper shares our experience on the implementation and 
use of these protocols and related technologies in WSNs. We present problems and 
challenges we have been facing in implementing an IEEE 802.15.4/ZigBee stack for 
TinyOS in a two-folded perspective: IEEE 802.15.4/ZigBee protocol standards 
limitations (ambiguities and open issues) and technological limitations (hardware and 
software). Concerning the former, we address challenges for building scalable and 
synchronized multi-cluster ZigBee networks, providing a trade-off between timeliness 
and energy-efficiency. On the latter issue, we highlight implementation problems in terms 
of hardware, timer handling and operating system limitations. We also report on our 
experience from experimental test-beds, namely on physical layer aspects such as 
coexistence problems between IEEE 802.15.4 and 802.11 radio channels. 
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1. INTRODUTION 

IEEE 802.15.4/ZigBee [1,2] and TinyOS [3] are 
currently buzzwords, since these technologies have 
been playing and important role in leveraging a new 
generation of large-scale networked embedded 
systems. The IEEE 802.15.4/ZigBee protocol stack 
has several interesting technical features for serving 
as a federating communication technology for 
Wireless Sensor Networks (WSN). TinyOS is the 
most widespread operating system for embedded 
resource-constrained systems. 
Within this context, we have been investigating the 
potentiality of the IEEE 802.15.4/ZigBee protocols 
for time-critical WSN applications. We have 
developed the open-ZB [4] open source toolset, 
encompassing a simulation model [5] and a protocol 
stack over TinyOS [11], for the MICAz/TelosB [6] 
motes. This toolset has been mainly used to test, 
validate and demonstrate our theoretical proposals 
through a number of experimental test-beds. 
This paper describes the most important problems 
encountered in the implementation of the IEEE 
802.15.4/ZigBee protocol stack over TinyOS and 
also in our experimental test-beds, identifying some 
of the most relevant challenges to be addressed. 
The remainder of the paper is organized as follows: 
Section 2 overviews relevant aspects of the IEEE 
802.15.4/ZigBee protocols, focusing on the Cluster-

Tree topology. The major problems related to the 
open-ZB protocol stack implementation are 
presented in Section 3. Section 4 reports some 
experience from experimental test-beds. Finally, 
Section 5 provides some concluding remarks. 

2. ON THE IEEE 802.15.4/ZIGBEE PROTOCOLS 

2.1 Protocols Overview 
The IEEE 802.15.4 protocol [1] specifies the 
Medium Access Control (MAC) sub-layer and the 
Physical Layer of Low-Rate Wireless Private Area 
Networks (LR-WPANs). The ZigBee protocol [2] 
relies on the IEEE 802.15.4 layers, building up the 
Network and Application Layers. 
ZigBee defines three types of devices: (1) ZigBee 
Coordinator (ZC): one for each PAN, initiates and 
configures the network formation; (2) ZigBee Router 
(ZR): associated (as a child node) with the ZC or 
with a previously associated ZR, participates in 
multi-hop message routing; (3) ZigBee End Device 
(ZED): device with sensing/actuating capabilities but 
that does not allow other devices to associate with it 
and does not participate in routing. 
The IEEE 802.15.4 Physical Layer is responsible for 
data transmission and reception using a certain radio 
channel. It offers three operational frequency bands: 
2.4 GHz, 915 MHz and 868 MHz. There is one 
channel between 868 and 868.6 MHz, ten channels 



     

between 902 and 928 MHz, and sixteen channels 
between 2.4 and 2.4835 GHz. Direct Sequence 
Spread Spectrum (DSSS) modulation is used. 
The IEEE 802.15.4 MAC protocol supports two 
operational modes that may be selected by the ZC: 
(1) the non beacon-enabled mode, in which the 
MAC is simply ruled by non-slotted CSMA/CA; (2) 
the beacon-enabled mode, ruled by slotted 
CSMA/CA, in which beacons are periodically sent by 
the ZC to synchronize nodes that are associated with 
it, and to identify the PAN. In beacon-enabled mode, 
the ZC defines a Superframe structure (Fig. 1) which 
is constructed based on: (1) the Beacon Interval (BI), 
which defines the time between two consecutive 
beacon frames; (2) the Superframe Duration (SD), 
which defines the active portion in the BI, and is 
divided into 16 equally-sized time slots, during 
which frame transmissions are allowed. Optionally, 
an inactive period is defined if BI > SD. During the 
inactive period (if it exists), all nodes may enter in a 
sleep mode (to save energy). 
BI and SD are determined by two parameters - the 
Beacon Order (BO) and the Superframe Order (SO):  
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aBaseSuperframeDuration = 15.36 ms (assuming 
250 kbps in the 2.4 GHz band) denotes the minimum 
Superframe Duration, corresponding to SO = 0.  
During the SD, nodes compete for medium access 
using slotted CSMA/CA, in the Contention Access 
Period (CAP). IEEE 802.15.4 also supports a 
Contention-Free Period (CFP) within the SD, by the 
allocation of Guaranteed Time Slots (GTS). 

 
Fig. 1 Superframe structure [1] 

It can be easily observed in Fig. 1 that low duty-
cycles can be configured by setting small SO values 
as compared to BO, resulting in greater sleep 
(inactive) periods. 
ZigBee supports three network topologies – star, 
mesh and cluster-tree, illustrated in Figs. 2 and 3.  

 
a) star topology b) mesh topology 

Fig 2. ZigBee star and mesh network topologies 

In the star topology (Fig. 2a) communications must 
always be relayed through the ZC. In the mesh 

topology (Fig. 2b) each node can directly 
communicate with any other node within its radio 
range or through multi-hop. The cluster-tree 
topology (Fig. 3) is a special case of a mesh network 
where there is a single routing path between any pair 
of nodes and a distributed synchronization 
mechanism (operates in beacon-enabled mode). 

2.2 Cluster-tree network model 
The Cluster-Tree network concept is outlined in the 
ZigBee specification and exemplified in Fig. 3. A 
unique ZC identifies the entire network and each ZR 
assumes the role of cluster-head, allowing the 
association of other ZRs and ZEDs in a parent-child 
relationship. Inside each cluster, messages must be 
relayed by the cluster-head, i.e. as in star topologies. 
However, the IEEE 802.15.4/ZigBee specifications 
do no clearly describe how the cluster-tree model can 
be implemented, providing just a broad view on how 
the cluster-tree network should operate and on the 
tree routing algorithm. 

 
Fig. 3 Cluster-tree network topology 

More specifically, the Cluster-Tree model includes 
more than one ZigBee Router that periodically 
generates beacons to synchronize nodes (or clusters 
of nodes) in their neighbourhood. If these periodic 
beacon frames are sent in an unorganized fashion, 
without any particular schedule, they will collide 
with each other or with other frames. These 
collisions result in the loss of synchronization 
between a parent ZigBee Router and their child 
devices, which prevents them to communicate. 
Only some basic approaches dealing with this 
problem were proposed for discussion by the Task 
Group 15.4b [7], which is a group aiming to improve 
some inconsistencies of the original specification. 
Therefore, beacon scheduling mechanisms such as 
the one proposed in [10] are required to avoid beacon 
frame collisions in ZigBee cluster-tree networks. 

2.3 Cluster-tree vs mesh topologies 
Table 1 summarizes some of the differences between 
ZigBee mesh and cluster-tree topologies. 

Table 1 – Mesh vs. Cluster-Tree 
 Mesh Cluster-Tree 

Synchronization No Yes 

Inactive Periods ZEDs All Nodes 
Real-Time 
Communications No Yes (GTS) 

Redundant Paths Yes No 
Routing Protocol 
Overhead Yes No 

Commercially 
Available Yes No 



     

The synchronization (beacon-enabled mode) feature 
of the cluster-tree model may be seen both as an 
advantage and as a disadvantage, as reasoned next. 
On one hand, synchronization enables dynamic duty-
cycle management in a per cluster basis, allowing 
nodes (ZEDs and ZRs) to save their energy by 
entering the sleep mode. In contrast, in the mesh 
topology (as in [1]), only the ZEDs can have inactive 
periods; note that as the mesh network model 
supports no synchronization, ZRs are forced to be 
always active for complying with their routing 
duties. These energy saving periods enable the 
extension of the network lifetime, which is one of the 
most important requirements of WSNs. In addition, 
synchronization allows the dynamic reservation of 
guaranteed bandwidth in a per-cluster basis, through 
the allocation of GTS in the CFP. This enables the 
worst-case dimensioning of cluster-tree ZigBee 
networks, namely to compute worst-case message 
end-to-end delays and ZR buffer requirements [8]. 
On the other hand, managing the synchronization 
mechanism all over a cluster-tree network is a very 
challenging task. Even if we can cope with minor 
synchronization drifts between ZRs, this problem can 
grow for larger cluster-tree networks (higher depths). 
As previously mentioned, the de-synchronization of 
a cluster-tree network leads to collision problems due 
to beacon frames and Superframes overlap. For 
instance, the CAP of one cluster can overlap with the 
CFP of another cluster, which is not tolerable.  
Regarding the routing protocols, tree routing 
(cluster-tree) is lighter than the AODV-like [9] 
protocol (mesh) in terms of memory and processing 
requirements. The routing overhead, as compared 
with AODV, is reduced. Note that the tree routing 
protocol considers just one path from any source to 
any destination, thus it does not consider redundant 
paths, in contrast to AODV. Therefore, the tree 
routing protocol is prone to the single point of failure 
problem, while that can be avoided in mesh networks 
if alternative routing paths are available  -  ZRs have 
more than one ZR within radio coverage.  
Note that if there is a faulty ZigBee Router, network 
inaccessibility times may be inadmissible for 
applications with critical timing and reliability 
requirements. Thus, designing and engineering 
energy and time-efficient fault-tolerance mechanisms 
to avoid/minimize the single point of failure problem 
in ZigBee cluster-tree networks is crucial. 
Besides the Beacon/Superframe scheduling and the 
single-point-of-failure problems, there are other 
challenges to effectively engineer ZigBee cluster-tree 
networks, namely: (1) the dynamic network 
resynchronization, for instance in case of a new ZR 
joining or leaving the network; (2) the dynamic 
rearrangement of the all the duty cycles in the case of 
a ZR failure; (3) a new router association or even 
rearranging the Superframe duration of some routers 
to adapt the bandwidth allocated to that branch of the 
tree; (4) the rearrangement of the addressing space 
allocated to each router; and (5) supporting mobility 
of ZEDs, ZRs or even whole clusters. 
From our perspective, all these impairments have 
lead to the lack of commercial or even academic 

solutions based on the ZigBee cluster-tree model. 
Nevertheless, we consider this model as a promising 
and adequate solution for WSN applications with 
real-time and energy-efficiency requirements.  

3. OPEN-ZB STACK: PROBLEMS/CHALLENGES 
3.1 Introduction 
The main problems we have encountered during the 
implementation of the IEEE 802.15.4/ZigBee 
protocol stack [4,11] are related to both hardware 
constraints and the lack of details in the standard 
specifications regarding important aspects of the 
beacon-enabled mode and of the cluster-tree model. 
We have implemented the beacon-enabled mode of 
the IEEE 802.15.4 MAC sub-layer and the required 
functionalities in the ZigBee Network Layer to 
support cluster-tree topologies. TinyOS v1 was used 
over the MICAz and TelosB motes. More recently, 
though still under testing, we ported our stack to 
TinyOS v2.0, keeping the same software architecture 
[11], as a result from our collaboration with the 
TinyOS Network Protocol Working Group [12] to 
implement a ZigBee compliant stack for TinyOS 2.0. 

3.2 Hardware platforms and debugging 
The TelosB and MICAz architectures are slightly 
different, NAMELY due to their 16-bits MSP430 
[13] and 8-bits Atmega128 [14] microcontrollers. 
This requires selecting the corresponding driver 
modules already provided in TinyOS and the 
adaptation of our first implementation version, which 
only supported the MICAz , to encompass the 16-bits 
memory block of the MSP430. Both platforms use 
the 2.4 GHz Chipcon CC2420 radio transceiver [15]. 
The MICAz requires the use of a programming 
interface (the MIB510), while the TelosB features an 
USB interface, enabling programming via the PC. 
Both motes provide a debug mechanism by sending 
data through the serial (COM/USB) port and reading 
it via a communication listener (e.g. ListenRaw, 
provided with the TinyOS distribution, or Windows 
HyperTerminal). This debugging mechanism raises a 
problem, since the transmission through the COM 
port blocks all the other mote operations, which 
usually causes synchronization problems.  
In order to overcome these local debugging issues 
and to have a total control over the network 
behaviour and of all transmitted packets, we have 
been using two different network/protocol analysers 
[16,17]. The CC2420 Packet Sniffer for IEEE 
802.15.4 v1.0 [16] provides a raw list of the packets 
transmitted. The software application works in 
conjunction with a CC2400EB evaluation board and 
a CC2420 radio transceiver. We have also been using 
the Daintree Sensor Network Analyser [17] that 
provides some additional functionality, such as 
geographically distributed sniffing, graphical 
topology of the network, statistics, message flows, 
PAN information and association details. 

3.3 Memory constraints 
The MICAz and TelosbB are very limited in terms of 
random access memory (RAM) – roughly 4 kB for 
the former and 10 kB for the latter. The RAM must 



     

be sufficient to fulfil the requirements of the TinyOS 
operating system, of the protocol stack and of the 
high level application. In this aspect, the MICAz 
motes are more constrained than the TelosB.  
Take the example of two TinyOS 2.0 demo 
applications in order to demonstrate the variation in 
RAM memory usage – the Blink and 
MultihopOscilloscopeApp applications, compiled for 
both platforms. The first uses approximately 55 bytes 
and the second 3348 bytes of RAM. Besides the 
RAM memory allocated at compilation time, the 
devices need to have enough free memory for the 
operating system stack. In our TinyOS 2.0 
implementation, the memory needed by an 
application that only uses the IEEE 802.15.4 beacon-
enabled mode needs approximately 2678 bytes of 
RAM while an application using the ZigBee network 
layer with the cluster-tree topology needs 
approximately 3224 bytes.  
Note that these demo applications are very simple 
and just used for testing purposes and that the 
different buffers used are very small. If the ZigBee 
Application Layer and more complex user-level 
applications are to be fit into these motes, memory 
limitations will surely come to the scene. 

3.4 CC2420 transceiver limitations 
The CC2420 transceiver (used by the MICAz and 
TelosB motes) also has some limitations in terms of 
turnaround time, i.e. the time that it takes to switch 
from receive mode to transmit mode and vice-versa.   
According to the IEEE 802.15.4 standard, the 
transceiver’s turnaround time must be 12 symbols 
(192 µs). This is the maximum time bound required 
to acknowledge messages. In fact, the CC2420 has 
the hardware configuration of auto-acknowledge 
messages but, besides generating several false 
acknowledgments (messages that are acknowledge 
but not received by the protocol stack), it needs to 
have the address decode functionalities activated.  
Unfortunately, similarly to several IEEE 802.15.4 
compliant transceivers, it is not possible to achieve 
the specified turnaround time. For instance, the 
Chipcon CC2420 can take up to 192 µs just to switch 
between these two modes, leaving no time for data 
transitions between the MAC sub-layer, the PHY 
layer and the chip transmit memory space. 
In addition, the processing power available in the 
motes microcontroller revealed to be quite limited to 
comply with the most demanding IEEE 802.14.5 
timing constrains, especially for small Beacon orders 
(BO < 3) and Superframe orders (SO < 3). This turns 
these Superframe configurations impossible to 
deploy, considering that the motes must also have 
availability for processing other tasks. It is 
reasonable to assume that the processing limitations 
can be easily overcome in the near future with the 
development of new and faster microcontrollers or 
by a hardware implementation of the protocol stack. 

3.5 Timing and synchronization requirements 
The timing requirements of the IEEE 802.15.4 
protocol are very demanding. In the beacon-enabled 
mode, all devices (ZRs and ZEDs) must synchronize 

with their parents (ZR or ZC) through beacon frames. 
If a device loses synchronization it cannot operate in 
the PAN. Moreover, if a node is not properly 
synchronized, there is a possibility of collisions in 
the GTS slots (when the CAP overlaps the CFP). 
From our experience, synchronization losses can be 
caused by multiple factors, such as: (1) the 
processing time of the beacon frame for low BO/SO 
configurations; (2) the mote stack overflow, that 
results in a processing block or a hard reset; and (3) 
the reduced processing capability of the 
microcontroller in conducting some fundamental 
protocol tasks (e.g. creating beacon frames, 
managing GTS and indirect transmissions). 
The implementation of the slotted CSMA/CA 
algorithm is also quite demanding in terms of timer 
accuracy, since the IEEE 802.15.4 protocol defines 
that each backoff period corresponds to 20 symbols 
(320 µs). A first difficulty in the implementation of 
the beacon-enabled mode was related to the TinyOS 
management of the hardware timers provided by the 
motes. These timers do not allow having the exact 
theoretical values of the BI, SD, time slot and backoff 
period durations as specified by the IEEE 802.15.4 
standard. This discrepancy, however, does not impact 
the correct behaviour of the implemented protocol, 
provided that the same mote platforms are used in the 
experiments (at least as ZC and ZRs). 

Fig. 4. Asynchronous events 

The frequency of the asynchronous software events 
(Fig. 4), the hardware events and the low 
microprocessor processing ability may lead to an 
insufficient processing time left to execute the 
remaining protocol and higher-layer application 
tasks, as a great amount of interrupts have to be 
processed in short periods of time. 
One hardware aspect that we had to take into account 
while implementing the timers needed to run the  
beacon-enabled mode of the IEEE 802.15.4 was the 
different hardware timer granularities of the MICAz 
and TelosB mote platforms. The timer granularities 
were approximated as much as possible to the 
theoretical values defined in the standard [11]. 

3.6 TinyOS task scheduler 
The default TinyOS scheduler does not support tasks 
prioritization and is non pre-emptive. Typically, there 
are two different kinds of interrupt events in TinyOS: 
(1) the timers and (2) the radio. These events are 
captured by event handlers that normally post a task 
to the FIFO task queue, which significantly impacts 
the behaviour of the protocol stack.  
In fact, sharing the microcontroller between all 
protocols tasks,  such as processing and generation of 
the beacon frame or other messages, performing 



     

protocol maintenance or routing, is very demanding, 
specially for high duty cycles.  
For example, processing and transmitting the beacon 
frame is a critical task for the protocol, and should 
take precedence over others. The problem is that the 
TinyOS scheduler does not support this. 
Nevertheless, there are several proposals [18,19] to 
introduce prioritization in the TinyOS task scheduler.  
Operating system support for priority-driven 
multitasking is one relevant asset that could improve 
our implementation. In that direction, our 
future/ongoing work is to implement our protocol 
stack [11] in ERIKA [20], which is a real-time 
operating system for WSN platforms. We expect that 
ERIKA can enable reliable synchronization, even 
under high duty cycles. This will allow the 
comparison between two different embedded 
operating systems and assess all the features required 
for the correct behaviour of the IEEE 
802.15.4/ZigBee protocols. 
However, even with the aforementioned problems, 
the protocol stack behaves steadily for beacon and 
Superframe orders higher than 3. 

4. PHYSICAL LAYER-RELATED PROBLEMS 
4.1 Introduction 
In the course of our research work, several 
experimental scenarios were built for testing and 
validating our theoretical proposals. During these 
implementation and experimental efforts, some 
difficulties were encountered namely in what 
concerns the behaviour of the hardware platforms – 
the MICAz and TelosB motes. In this section, we 
summarize some relevant problems we faced and 
how they have been tackled. 

4.2 Interference between radio channels  
In order to experimentally analyse the behaviour of 
the protocol, we devised several scenarios that 
enabled us to evaluate different network metrics, 
such as the Network Throughput and Probability of 
Success as a function of the Network Load. In 
general lines, these scenarios consisted of several 
nodes programmed to generate packets at the 
application layer with preset inter-arrival times, 
enabling us to push the necessary traffic load into the 
network. We used the previously referred IEEE 
802.15.4 protocol analyzer [16] to log the received 
packets and developed an application to parse the 
message payload, which embedded relevant 
performance information retrieved from the nodes in 
order to compute the required metrics.  
One requirement of the performance evaluation was 
to achieve high traffic loads in the network, even 
above 100% of the network capacity. We 
immediately observed that it was not only difficult to 
get a consistent behaviour of the Throughput metric 
but also to get high offered loads. Moreover, it was 
hard to ensure the stability of the network when the 
nodes were generating packets with very low inter-
arrival times. 
After performing several assessments, we reached 
the conclusion that this behaviour was mostly related 
to three factors: (1) the interference caused by close 

Wi-Fi equipment; (2) TinyOS-related constraints; 
and (3) others related to the node’s scarce processing 
capability. 
The interference between IEEE 802.11 and 802.15.4 
radio channels, confirmed using a spectrum analyser, 
had unpredictable effects on the results. We observed 
that the interference of IEEE 802.11 networks often 
generated collisions with data/beacon frames. This 
effect, lead to data corruption and network de-
synchronization. Moreover, it also had implications 
on the amount of traffic sent to the network because 
in the IEEE 802.15.4 slotted CSMA/CA protocol, the 
medium was often sensed as busy (during the Clear 
Channel Assessment (CCA)), causing deference and 
failed transmissions. This obviously affected the 
behaviour of the network since it did not allow 
reaching high traffic loads. We overcame the 
interference problem by using the only IEEE 
802.15.4 channel (Channel 26 in the 2480 MHz 
frequency band) that is completely outside the IEEE 
802.11 frequency spectrum (Fig. 5). 

Fig. 5. IEEE 802.15.4/02.11 spectra [21] 

Note that this interference must be really taken into 
consideration for the reliable deployment of ZigBee 
networks operating in the 2.4 GHz frequency band. 
Nevertheless, besides the interference problem, we 
have also identified other sources of inconsistencies. 
As already discussed in Section 3, TinyOS imposes 
several limitations that influence the behaviour of the 
protocol stack, namely on the synchronization. We 
have observed that when packet transmission 
followed a very small inter-arrival time (in the order 
of 50 packets per second) the de-synchronization was 
a concern, mainly due to the high amount of tasks 
posted to generate the required offered load. To 
mitigate this problem, we programmed the nodes to 
generate packets only during the active portion of the 
Superframe, trying to guarantee that the beacon 
frame would be parsed immediately upon the 
reception. Nevertheless, when using a full duty cycle 
the problem remained. Thus, we used a new timer 
that fires a few milliseconds before the end of the 
Superframe, stopping all the packet generation and 
leaving the nodes ready to process the beacon frame. 

4.3 RSSI-based localization inaccuracy 
Another test-bed scenario consisted of a 
Search&Rescue application to demonstrate the 
ART-WiSe architecture [22]. A rescuer robot is 
supposed to track and reach, in the minimum amount 
of time, a steady or moving target (person or robot), 
using a wireless sensor network for tracking and 



     

localization. A first approach to this application was 
reported in [23]. In this context we wanted to 
develop a simple but effective localization 
mechanism, relying as much as possible on COTS 
technologies and taking advantage of the Received 
Signal Strength Indicator (RSSI), available directly 
in the CC2420 transceiver, for estimating distances 
between source and destination nodes.  
We immediately observed that these measurements 
were highly sensitive to ambient conditions. The 
proximity to metal and walls highly increased the 
number of reflections leading to non-consistent RSSI 
readings. Moreover, the RSSI value was not linear 
with the distance and it varied with different mote 
antenna orientations. This means that it was probable 
to find different RSSI readings for the same distance.  
To overcome this problem, several experiments were 
carried out for different distances, transmission 
powers and antenna orientations, in an attempt to get 
a consistent set of values for different distances 
[24,25]. After these experiments, it became possible 
to establish a correspondence between distance range 
levels and the window of RSSI values encountered 
for that same range. This enabled us to engineer a 
simple RSSI-based localization mechanism that is 
characterized by an inaccuracy of roughly 60 cm, 
which we consider acceptable for the envisaged 
applications. 

4. CONCLUDING REMARKS 
In this paper, we have reported several problems and 
challenges emerging from our experimental work on 
the IEEE 802.15.4/ZigBee protocol stack [4,11]. We 
have presented some issues that are either ambiguous 
or actually left open in the 802.15.4/ZigBee protocol 
specifications. We have also reported on our 
experience concerning the implementation and use of 
the open-ZB protocol stack. 
Some open and ambiguous issues in the standard 
specifications require some protocol add-ons and 
appropriate system planning and network 
dimensioning. This is particularly true for supporting 
scalable, reliable, energy-efficient and time-sensitive 
applications with ZigBee cluster-tree networks. 
The hardware platforms under use – MICAz and 
TelosB – seem to be too limited for the demanding 
requirements of ZigBee cluster-tree networks, where 
synchronization depends on the distributed 
transmission of beacon frames. This also results from 
the limitations of TinyOS to tackle this demanding 
protocol behaviour. Therefore, we intend to migrate 
the open-ZB protocol stack to real-time operating 
systems (e.g. ERIKA) and to more powerful mote 
platforms, as well as extending it for supporting 
mesh topologies. 
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