

Worst-case Stall Analysis for Multicore
Architectures with Two Memory Controllers

Conference Paper

*CISTER Research Centre

CISTER-TR-180401

2018/07/03

Muhammad Ali Awan*

Pedro F. Souto

Konstantinos Bletsas*

Benny Åkesson*

Eduardo Tovar*

Conference Paper CISTER-TR-180401 Worst-case Stall Analysis for Multicore Architectures with ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Worst-case Stall Analysis for Multicore Architectures with Two Memory Controllers

Muhammad Ali Awan*, Pedro F. Souto, Konstantinos Bletsas*, Benny Åkesson*, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: muaan@isep.ipp.pt, ksbs@isep.ipp.pt, kbake@isep.ipp.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
In multicore architectures, there is potential for contention between cores when accessing sharedresources, such
as system memory. Such contention scenarios are challenging to accurately analyse,from a worst-case timing
perspective. One way of making memory contention in multicoresmore amenable to timing analysis is the use of
memory regulation mechanisms. It restricts thenumber of accesses performed by any given core over time by
using periodically replenished percorebudgets. Typically, this assumes that all cores access memory via a single
shared memorycontroller. However, ever-increasing bandwidth requirements have brought about
architectureswith multiple memory controllers. These control accesses to different memory regions and
arepotentially shared among all cores. While this presents an opportunity to satisfy bandwidthrequirements,
existing analysis designed for a single memory controller are no longer safe.This work formulates a worst-case
memory stall analysis for a memory-regulated multicorewith two memory controllers. This stall analysis can be
integrated into the schedulability analysisof systems under fixed-priority partitioned scheduling. Five heuristics for
assigning tasks andmemory budgets to cores in a stall-cognisant manner are also proposed. We
experimentallyquantify the cost in terms of extra stall for letting all cores benefit from the memory space offeredby
both controllers as well as also evaluate the five heuristics for different system characteristics.

Worst-case Stall Analysis for Multicore1

Architectures with Two Memory Controllers2

Muhammad Ali Awan3

CISTER Research Centre and ISEP, Porto, Portugal4

muaan@isep.ipp.pt5

https://orcid.org/0000-0001-5817-22846

Pedro F. Souto7

University of Porto, Faculty of Engineering and CISTER Research Centre, Porto, Portugal8

pfs@fe.up.pt9

https://orcid.org/0000-0002-0822-342310

Konstantinos Bletsas11

CISTER Research Centre and ISEP, Porto, Portugal12

ksbs@isep.ipp.pt13

https://orcid.org/0000-0002-3640-023914

Benny Akesson15

Embedded Systems Innovation, Eindhoven, the Netherlands16

benny.akesson@tno.nl17

https://orcid.org/0000-0003-2949-208018

Eduardo Tovar19

CISTER Research Centre and ISEP, Porto, Portugal20

emt@isep.ipp.pt21

https://orcid.org/0000-0001-8979-387622

Abstract23

In multicore architectures, there is potential for contention between cores when accessing shared24

resources, such as system memory. Such contention scenarios are challenging to accurately ana-25

lyse, from a worst-case timing perspective. One way of making memory contention in multicores26

more amenable to timing analysis is the use of memory regulation mechanisms. It restricts the27

number of accesses performed by any given core over time by using periodically replenished per-28

core budgets. Typically, this assumes that all cores access memory via a single shared memory29

controller. However, ever-increasing bandwidth requirements have brought about architectures30

with multiple memory controllers. These control accesses to different memory regions and are31

potentially shared among all cores. While this presents an opportunity to satisfy bandwidth32

requirements, existing analysis designed for a single memory controller are no longer safe.33

This work formulates a worst-case memory stall analysis for a memory-regulated multicore34

with two memory controllers. This stall analysis can be integrated into the schedulability analysis35

of systems under fixed-priority partitioned scheduling. Five heuristics for assigning tasks and36

memory budgets to cores in a stall-cognisant manner are also proposed. We experimentally37

quantify the cost in terms of extra stall for letting all cores benefit from the memory space offered38

by both controllers, and also evaluate the five heuristics for different system characteristics.39

2012 ACM Subject Classification Computer systems organization → Real-time systems, Com-40

puter systems organization → Real-time operating systems, Computer systems organization →41

Real-time system architecture42

Keywords and phrases multiple memory controllers, memory regulation, multicore43

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.244

© Muhammad Ali Awan, Pedro F. Souto, Konstantinos Bletsas, Benny Akesson, and Eduardo Tovar;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 2; pp. 2:1–2:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:muaan@isep.ipp.pt
https://orcid.org/0000-0001-5817-2284
mailto:pfs@fe.up.pt
https://orcid.org/0000-0002-0822-3423
mailto:ksbs@isep.ipp.pt
https://orcid.org/0000-0002-3640-0239
mailto:benny.akesson@tno.nl
https://orcid.org/0000-0003-2949-2080
mailto:emt@isep.ipp.pt
https://orcid.org/0000-0001-8979-3876
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

Funding This work was partially supported by National Funds through FCT (Portuguese Found-45

ation for Science and Technology), within the CISTER Research Unit (CEC/04234).46

1 Introduction47

The strong trend towards increasing integration in hardware for embedded real-time systems48

has led to multicores becoming mainstream platforms of choice for such systems. Multicores49

have significant advantages in terms of computing power, energy usage and weight over50

single-cores. Yet, one issue with multicores is that worst-case timing analysis becomes more51

complicated. In particular, the fact that multiple cores contend for the same shared system52

resources (buses, caches, memory) must be accounted for [8].53

Focusing specifically on the problem of main memory contention, we note various research54

efforts [21, 22, 15, 10, 5, 11, 13, 20, 14, 3] that employ memory regulation to make the memory55

access patterns of the different cores more amenable to worst-case timing analysis. Under56

memory regulation schemes, each core gets an associated periodically-replenished memory57

access budget. When a core attempts to issue more memory accesses than its budget, it gets58

temporarily stalled, until the next replenishment.59

However, engineering practice forges ahead and analysis has to catch up. In recent years,60

in response to memory bandwidth often becoming a performance bottleneck, multicore chips61

that integrate, not one, but two memory controllers, have become commercially available.62

In such platforms, both controllers are accessible by all cores, with little to no difference63

in latency. Examples include various multicore processors from the NXP QorIQ series [16],64

ranging from the P5020 with 2 cores to the P4080 with 8 cores. For existing approaches65

to apply to systems with multiple controllers, one could statically map cores to memory66

controllers and apply the analyses to each partition independently. This simple approach67

efficiently reduces contention between cores. Still, it may be hard to find a partition such68

that no tasks depend on data from the memory space of the other memory controller. Core-69

to-controller partitioning also reduces flexibility in bandwidth allocation, as a partition’s70

bandwidth requirements must be met by just the associated memory controller. In cases71

when no such partitions can be found, there are currently no good solutions, because existing72

approaches can be unsafe when applied to platforms with two controllers. The reason is that73

the worst-case memory access pattern for each controller in isolation will not necessarily lead74

to the worst-case stall, as we demonstrate in Section 5. This reality motivated the present75

work, whose main contributions are the following:76

First, we show via counter-examples that existing techniques for upper-bounding the77

memory stall, conceived for memory-regulated architectures with a single memory controller,78

are not necessarily safe in the presence of multiple controllers. Our second and more important79

contribution is new worst-case memory stall analysis for architectures with two memory80

controllers, shared by all cores. This analysis, which presumes fixed task-to-core partitioning81

and fixed-priority scheduling, can then be integrated to the schedulability analysis for the82

system. Finally, we explore five different stall-cognisant heuristics for combined memory-83

bandwidth-to-core assignment and task-to-core assignment and evaluate their performance84

in terms of schedulability via experiments with synthetic task sets capturing different system85

characteristics. These experiments also highlight the performance implications of having86

fully shared memory controllers vs. partitioning the controllers to different cores, in cases87

when the latter arrangement would be viable from the application perspective (i.e., no data88

sharing across memory domains).89

Next, in Section 2, we discuss related work. Section 3 defines our system model and90

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar 2:3

Section 4 discusses some relevant existing results from the single-controller case. Section 591

contains our analysis. Section 6 describes five proposed stall-cognisant task-to-core assignment92

heuristics. Section 7 provides an experimental evaluation of our analysis and heuristics in93

terms of theoretical schedulability using synthetic task sets. Section 8 concludes the paper.94

2 Related work95

Several software-based approaches for mitigating memory interference in multi-core plat-96

forms [21, 22, 15, 10, 5, 11, 3] have been proposed in recent years. These approaches consider97

a periodic server implemented in software that manages the memory budgets of the cores.98

This is combined with run-time monitoring through performance counters that keep track of99

the number of memory accesses and with an enforcement mechanism that suspends tasks100

whenever they exhaust their budget. Our work is similar to these, as it exploits such a101

memory throttling mechanism to enforce budgets on memory requests.102

The memory regulation techniques used to mitigate the interference on shared memory103

controllers introduce new stalls and the existing analyses are unsafe unless adapted to104

account for them. Some efforts in this direction exist for partitioned fixed-priority schedul-105

ing [21, 13] and hierarchical scheduling in [5]. Mancuso et al. [13], under their Single-Core106

Equivalence framework [18], addressed the problem of fixed-priority partitioned schedulability107

on a multicore. They employ the periodic software-based memory regulation mechanism108

MemGuard [22] to ensure that each core gets an equal share of memory bandwidth in each109

regulation interval (or period) and stalls until the end of the regulation period once the110

budget has been depleted. Such stalls, resulting from the memory regulation together with111

contention stalls are integrated into the schedulability analysis in [13].112

Even if equal sharing of memory bandwidth is simple and facilitates porting applications113

from a single-core to multi-core platforms (by making the analysis akin to that for a single-114

core), it is inefficient when the memory requirements of the applications on different cores are115

diverse. Yao et al. [20], and Pellizzoni and Yun [17] generalise the arrangement along with116

the analysis to uneven memory budgets per core. The former approach considers round-robin117

memory arbitration, whereas the latter proposes a new analysis for First-Ready First Come118

First Served memory scheduling. Recently, Mancuso et al. [14] improved their memory stall119

analysis by considering the exact memory bandwidth distribution on other cores. However,120

all these approaches are designed to work with a single memory controller and are unsafe121

with more than one memory controller. The reason is that the worst-case memory access122

pattern for each controller in isolation no longer necessarily leads to the worst-case stall, as123

we show in Section 5. In contrast, our work provides a worst-case memory stall analysis for a124

memory-regulated multicore platform with two memory controllers and incorporates this stall125

analysis in the schedulability analysis for fixed-priority partitioned preemptive scheduling.126

We also present five memory bandwidth allocation and task-to-core assignment heuristics.127

To summarise, existing works on memory regulation rely on an assumption of a single128

memory controller. Here, we expand the state-of-the-art by proposing memory stall analysis,129

when each core can access two controllers, facilitating data sharing among applications130

and allowing more flexible use of bandwidth. We allow uneven distribution of the memory131

bandwidth of each controller to available cores. Each core is scheduled under fixed-priority132

preemptive scheduling, assuming a round-robin memory arbitration policy on both controllers.133

ECRTS 2018

2:4 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

3 System Model134

We consider a platform with m identical cores (P1 to Pm) and 2 memory controllers on the135

same chip, both uniformly accessible by all cores. The sets of memory regions accessible by136

the two controllers are non-overlapping. Examples of platforms with 2-8 identical cores and137

two memory controllers include NXP QorIQ P-series P4040, P4080, P5020 and P5040 [16].138

Assume a set of n sporadic tasks, τ1 to τn. Each task has a minimum interarrival time139

Ti, a deadline Di ≤ Ti, and a worst-case execution time (WCET) of Ci. Like Yao et al. [20],140

we assume that CPU computation and memory access do not overlap in time. Each task141

can access memory via both controllers. Therefore, Ci = Ce
i + Cm1

i + Cm2
i , where Ce

i is the142

worst-case CPU computation time and Cm1
i and Cm2

i are the worst-case total memory access143

times of a task via each respective controller in isolation.144

The tasks are partitioned to the cores (no migration) and fixed-priority scheduling is used.145

For the memory controllers and their interconnects, we assume a round-robin policy [22, 20].146

The last-level cache (furthest from the cores) is either private or partitioned to each core. Like147

Yao et al. [20], we assume that access to main memory is regulated, e.g., by Memguard [22]148

or in hardware. We also require performance monitoring counters to count the number149

of memory accesses issued to each controller from each core. As in [20], we assume each150

memory access takes a constant time L. This allows us to specify P and Ce
i , Cm1

i and Cm2
i151

as multiples of L. Our model is agnostic w.r.t. the points in time when memory accesses may152

occur within the activation of a task and hence imposes no particular programming model.153

Memory accesses are regulated as follows. Each core i has a memory access budget Q1i154

for memory controller 1, which is the maximum allowed memory access time (measured in155

multiples of L) via that controller, within a regulation period of length P . Likewise, it has156

a budget Q2i for controller 2. These budgets are set at design time and may be different.157

A core i that consumes its memory access budget for a given memory controller within a158

regulation period is stalled until the start of the next regulation period1. Regulation periods159

on all cores are synchronised. The memory bandwidth share of core i on controller 1 is160

b1i = Q1i

P
. Similarly for b2i and controller 2. By design,

∑

i b1i ≤ 1 and
∑

i b2i ≤ 1, i.e., the161

bandwidth of any controller is not overcommitted.162

4 Relevant existing results from the single-controller case163

We now summarise some existing results from [20], for a similar, albeit single-controller,164

system, in order to later show why those do not apply, and new analysis is needed.165

The technique in [20] calculates a worst-case stall term for each task, which is added to166

the right hand side of the standard worst-case response time (WCRT) recurrence relation167

for fixed priorities. For ease of presentation, the authors assume that there is a single task168

running on the core under consideration. Later on, for the case when many tasks are assigned169

to a core, they explain how to equivalently model the considered task τi and all higher-priority170

tasks as a single synthetic task, in order to apply their stall analysis and derive the worst-case171

stall term for τi. Below, we similarly assume a single task per core.172

A memory request may stall either (i) because of requests from other cores, contending173

for the memory controller simultaneously (a case of contention stall) or (ii) because the174

1 On practical grounds, we assume that a core is stalled immediately after the Qth memory access in a
regulation period via the respective controller is served. Yao et al [20], more generously, assume that it

is stalled immediately before attempting a (Q + 1)th access within the same regulation period.

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar 2:5

issuing core has exhausted its budget for the current regulation period (a regulation stall).175

Yao et al. identify worst-case patterns for memory accesses and computation within a176

single regulation period, characterised by maximum stall with the fewest memory accesses.177

Next, they use these patterns as main “building blocks" for the worst-case pattern for the178

entire task activation, over multiple regulation periods. In more detail:179

Case bi ≤ 1/m (regulation dominant): If bi ≤ 1/m, i.e., if the task’s bandwidth share180

is “fair" at most, then a task incurs worst-case stall when all its memory accesses are clustered181

at the start of its activation, before any computation. Another pessimistic assumption is182

that the task is released just after a regulation stall, so it waits for (P − Qi) until the next183

regulation period. The task will incur a stall of (P − Qi) within each of the next ⌊
Cm

i

Q
⌋184

regulation periods; whether this is entirely due to a regulation stall or partially also due185

to contention from other cores is irrelevant. Afterwards, any remaining memory accesses186

(which are too few to trigger a regulation stall), can each incur a worst-case contention stall187

of (m-1), i.e., one contending access from each other core due to round robin arbitration.188

Case bi > 1/m (contention dominant): In this case, the smallest number of memory189

accesses per period a core must issue to get the maximum stall is RBS
def
= Pi−Qi

m−1 , and occurs190

when the remaining budget is shared evenly among the other cores. From the assumption191

of the case, bi>1/m, it follows that RBS < Qi. Therefore, the worst-case pattern for one192

regulation period involves cm
i = RBS accesses, each suffering a maximum contention stall of193

(m − 1), for a total stall of P − Qi. This leaves Qi − RBS time units not filled by memory194

accesses or respective stalls. These are filled with computation; if memory accesses were195

added instead, they would incur no stall. To bound the stall for the entire task activation,196

this pattern is applied to as many regulation periods as possible. Two subcases exist: either197

memory accesses or computation will run out first.198

Due to space constraints, we refer to [20] for details. Meanwhile, some insights driving199

Yao’s analysis, for single-controller systems, are codified via the following lemmas from [20]:200

◮ Lemma 1. Considering the stall of a core due to memory regulation alone, the worst-case201

memory access pattern of one task is when all accesses within the task are clustered, and the202

stall is upper bounded by P − Qi for each regulation period P .203

◮ Lemma 2. If the memory is not overloaded and the regulation periods are the same and204

synchronized, the stall due to inter-core memory contention alone on each core i with assigned205

budget Qi is upper-bounded by P − Qi for every regulation period P .206

◮ Lemma 3. Considering the contention stall alone, the maximum stall for core i with207

budget Qi is obtained when the remaining budget P − Qi is evenly distributed among all other208

cores and they generate the maximum amount of accesses.209

5 Analysis210

In this section, we formulate the main contribution of this paper: a stall analysis for multicores211

with two memory controllers, which leverages on Yao et al [20] stall and schedulability analysis212

for multicores with a single memory controller. First, we look at Lemmas 1 to 3 and Yao’s213

analysis in general, and examine what holds over from [20] and what does not. For readability,214

we omit the core (task) index, since it is implied. Table 1 summarizes the symbols used.215

5.1 What holds over from Yao’s analysis and what does not216

When we have multiple controllers, with an assigned memory budget Qj for each, Lemma 1217

can be generalized as follows:218

ECRTS 2018

2:6 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

Table 1 Symbols used in the analysis

Q1, Q2 memory budget on controllers 1 and 2, respectively
Cm1, Cm2 maximum number of memory accesses via controllers 1 and 2, respectively
Ce worst-case computation time
P regulation period
m number of cores
b1, b2 core memory bandwidth shared on controllers 1 and 2, respectively
RBS1, RBS2 remaining budget share on controllers 1 and 2, respectively
cm1∗, cm2∗ worst-case number of accesses per period in contention-dominant case
K1∗ number of regulation periods of phase 1 in contention-dominant case

Ĉe, Ĉm1, Ĉm2 task computation parameters after phase 1 (in contention-dominant case)
∆ρ∗ worst-case reduction in regulation stalls w.r.t. maximum regulation stalls

in the third case (regulation is dominant only for one controller)
∆Ce additional “computation" added to contention-only phase by reducing the

number of regulation stalls by 1
∆Cm2∗

c additional number of contention stalls required when moving ∆Ce to en-

sure that the total stall is larger with one less regulation stall on controller 1
∆Cm2

c (max) maximum number of additional contention stalls obtained by moving ∆Ce

to the contention-only phase
∆Cm2

c (min) minimum number of additional contention stalls obtained by moving ∆Ce

to the contention-only phase

rm = Cm2

Cm1 ratio of memory accesses to each controller
Cm2

c̄ number of memory accesses via controller 2 without contention
single() worst-case single controller stall according to Yao’s analysis, ignoring the

regulation stall at the beginning of the execution

◮ Lemma 4. Considering the stall of a core due to memory regulation alone on controller219

j, with budget Qj, the worst-case memory access pattern of one task is when all accesses220

via controller j within the task are clustered, and the stall is upper bounded by P − Qj for221

each regulation period P .222

A corollary of this lemma is that the regulation stall on controller j is maximum when there223

are no memory accesses to a second controller in that period. Note also that a core can only224

regulation-stall on at most one memory controller in a given regulation period.225

With multiple controllers Lemmas 2 and 3 apply to each controller separately. Furthermore,226

because a core may access memory via multiple controllers in a single regulation period, a227

consequence of Lemma 2 is the following:228

◮ Lemma 5. If the memory is not overloaded and the regulation periods are the same and229

synchronized, the stall due to inter-core memory contention alone on each core i with assigned230

budget Qji on controller j is upper-bounded by min
(

∑

j(P − Qji),
P
m

· (m − 1)
)

for every231

regulation period P .232

When there are multiple memory controllers, the maximum contention stall may occur when233

there are accesses via more than one controller. The first argument to the min operator in234

the above expression sums up the contention stall from each controller according to Lemma 2.235

The second argument expresses the fact that no more than P/m accesses (irrespective via236

which controller) can all suffer the worst-case per-access contention stall of (m − 1) because237

of round robin arbitration. Both terms independently bound the contention stall.238

When there are multiple shared controllers and we try to upper-bound the stall over239

multiple regulation periods, Yao’s analysis may not be safe, i.e., it may underestimate the240

worst-case stall, as illustrated by the example of Figure 1. Execution i) has the worst-case241

stall, according to Yao’s stall analysis, when in a regulation period all memory accesses are242

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar 2:7

Cm1 = Cm2 = 12 Q1 = 6 (RBS1 = 2) Q2 = 6 (RBS2 = 2) m = 4 P = 12

24

i)

ii)

0 12

0 12 36 48

Stall = 24

24 36 48

Stall = 72

96

contention stall access via controller 1 access via controller 2

Figure 1 As shown in this example, the worst-case total stall is when there are memory accesses

via more than one controller in the same regulation period.

via the same controller. In each period, the first two memory accesses suffer the maximum243

stall. However the remaining 4 memory accesses suffer no stall, because the maximum stall244

in every regulation period is 6, P − Qi, and it occurs in the first two memory accesses of the245

respective regulation period. Execution ii) shows the worst-case stall when there are accesses246

via both controllers in the same period. In each period, we have 2 memory accesses via each247

controller and each of these accesses suffers the maximum contention stall, m − 1. This is248

because the contention stall on accesses via one controller does not affect the contention stall249

on accesses via the other controller. Thus, in execution ii) all memory accesses suffer the250

maximum contention stall, whereas in execution i) only a third does.251

5.2 Two-controller Task Stall Analysis252

Having shown the need for a new analysis, we consider several cases depending on the values253

of b1 and b2. Some entail sub-cases. More specifically, we consider 3 cases:254

1. b1 ≤ 1
m

∧ b2 ≤ 1
m

255

2. b1 > 1
m

∧ b2 > 1
m

256

3. remaining cases, i.e. (b1 ≤ 1
m

∧ b2 > 1
m

) ∨ (b1 > 1
m

∧ b2 ≤ 1
m

)257

5.2.1 Case 1: b1 ≤ 1

m
∧ b2 ≤ 1

m
258

In this case, for each controller, the worst case occurs when there is a regulation stall, as259

shown in [20]. By Lemma 4, the following execution suffers the worst-case stall. In a first260

phase, there is the longest sequence of consecutive periods with regulation stalls on controller261

1, followed by a second phase consisting of the longest sequence of consecutive periods with262

regulation stalls on controller 2. Finally, there is a third phase with the remaining memory263

accesses via each controller, Cmi mod Qi, that suffer the maximum contention stall per264

memory access, m − 1, and any computation. Because in each of the two first phases all265

memory accesses are via a single controller, we can use Yao’s stall analysis to compute an266

upper bound on the stall in each of these phases. The upper bound of the total stall can267

then be computed by adding the upper bounds for each phase. I.e.:268

Stall =single(Cm =

⌊

Cm1

Q1

⌋

· Q1, Ce = 0, Q = Q1, P = P, m = m)

+ single(Cm =

⌊

Cm2

Q2

⌋

· Q2, Ce = 0, Q = Q2, P = P, m = m)

+ (Cm1 mod Q1 + Cm2 mod Q2) · (m − 1) (1)269

where single() is the stall based on Yao’s (single controller) stall analysis for the respective270

set of parameter values [20].271

ECRTS 2018

2:8 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

5.2.2 Case 2: b1 >
1

m
∧ b2 >

1

m
272

In this case, according to Yao’s analysis, for each controller, the worst case occurs when there273

is maximum contention stall in a regulation period with the minimum number of memory274

accesses. However, as shown in Figure 1, in this case the worst-case stall may occur when275

a task accesses memory via different controllers in the same regulation period. Therefore,276

the worst-case memory access pattern of a task in this case has 3 phases, as illustrated in277

Figure 2 i):278

Phase 1 In this phase, every regulation period incurs the maximum contention stall. This279

phase terminates when the task runs out of memory accesses via some controller, and280

therefore cannot sustain the maximum contention stall any more. In Figure 2 i), this281

phase spans the two first periods, and, in each period, there are RBS1 and RBS2 memory282

accesses via the respective controller.283

Phase 3 In this phase, all accesses are via a single controller. This phase may not exist, if the284

task runs out of memory accesses via both controllers in the same regulation period. In285

Figure 2 i), this is the 4th and last period and has memory accesses only via controller 1.286

Phase 2 This “middle" phase may also not exist, but if it exists, it has only one regulation287

period. In this phase, we have memory accesses via both controllers, but either there are288

not enough memory accesses via at least one of the controllers to ensure the maximum289

contention stall in that period, or there is not enough execution to fill the complete period.290

In Figure 2 i), this is the 3rd period, and has only one memory access via controller 2.291

According to Lemma 5, there are two main cases for the maximum contention stall in a292

regulation period. We analyse each of these cases separately.293

5.2.2.1 Sub-case 1: (P − Q1) + (P − Q2) < P
m

· (m − 1)294

In this case, the maximum contention stall in a regulation period occurs when a task295

performs RBS1 memory accesses via controller 1 and RBS2 memory accesses via controller296

2. Therefore, the maximum stall per period is (RBS1+RBS2)·(m−1) = (P −Q1)+(P −Q2).297

Because the task is non preemptive and (P − Q1) + (P − Q2) < P
m

· (m − 1), by the definition298

of the sub-case, there is a "hole" of size P − (RBS1 + RBS2) · m that must be filled with299

execution, i.e. either computation or memory accesses. An execution in which computation300

fills as many of these holes as possible suffers the maximum stall, because any additional301

memory accesses in these periods suffer no contention stall. This will minimize the number of302

memory accesses without contention in Phase 1, increasing the number of memory accesses303

in latter phases, and possibly their stall. Similar reasoning can be applied to Phase 2, as well.304

Figure 2 illustrates an execution pattern that leads to the worst-case stall, based on the305

above observations. In execution i) there is enough computation to fill in the holes in Phases306

1 (the first two periods) and 2. However, there is not enough computation to ensure that all307

memory accesses suffer contention: in the 4th and last period, which belongs to Phase 3,308

there are 4 memory accesses via controller 1 that do not suffer any contention. In execution309

ii) there is not enough computation to fill the holes in Phase 2, and therefore, we have 6310

memory accesses via controller 1 in Phase 2, the 3rd period, that do not suffer any contention,311

and there is no 3rd Phase. In execution iii) there is no Phase 2, because all memory accesses312

via controller 2 are used to fill the holes in Phase 1. Phase 3 consists only of a single memory313

access via controller 1. Finally, in execution iv) there is not enough computation, and Phase314

1, like Phase 2, has only one period, and there is no Phase 3.315

It can be shown, by case analysis, that in any of these executions swapping any com-316

putation or memory access in one regulation period with computation or memory accesses317

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar 2:9

Cm1 = 12 Cm2 = 5 Q1 = 18 (RBS1 = 2) Q2 = 18 (RBS2 = 2) m = 4 P = 24

48

i)

ii)

0 24 72 96

Ce = 36

contention stall access via controller 1 access via controller 2 computation

iii)

480 24 72 96

Ce = 20

iv)

480 24 72 96

Ce = 4

480 24 72 96

Ce = 8

Figure 2 Example execution patterns with worst case stall, for the contention-dominant case

when (P − Q1) + (P − Q2) < P
m

· (m − 1)

in later regulation periods does not lead to an increase in the total stall, and therefore the318

execution pattern shown suffers the maximum stall. The following stall analysis is based on319

the execution pattern shown in Figure 2.320

In order to reuse the analysis in other cases below, let cm1∗ and cm2∗ be the minimum321

values of cm1 and cm2, respectively, that maximize the contention stall in a regulation period,322

assuming that any holes are filled with computation. Note that by Lemma 5, it must be323

cm1∗ ≤ RBS1 and cm2∗ ≤ RBS2. In this sub-case, they are RBS1 and RBS2, respectively.324

In our analysis, we consider Phase 1 separately from the remaining phases, if any.325

Phase 1 stall: In Phase 1, the contention stall in every regulation period is maximum326

and equal to (cm1∗ + cm2∗) · (m − 1). The total stall in this phase is:327

Stall1 = K1∗ · (cm1∗

+ cm2∗

) · (m − 1) (2)328

where: K1∗ = min

(⌊

Cm1

cm1∗

⌋

,

⌊

Cm2

cm2∗

⌋

,

⌊

Ce + Cm1 + Cm2

P − (cm1∗ + cm2∗) · (m − 1)

⌋)

(3)329

330

is the number of regulation periods in Phase 1. Indeed, to sustain maximum contention stall331

in every regulation period of Phase 1, the task must have both:332

1. Enough memory accesses via controller 1, i.e. K1∗ ≤
⌊

Cm1

cm1∗

⌋

.333

2. Enough memory accesses via controller 2, i.e. K1∗ ≤
⌊

Cm2

cm2∗

⌋

.334

3. Enough execution, since when a core is not stalled it must be either computing or accessing335

memory, i.e. in every Phase 1 period a task must execute for P − (cm1∗ + cm2∗) · (m − 1).336

Therefore, K1∗ ≤
⌊

Ce+Cm1+Cm2

P −(cm1∗+cm2∗)·(m−1)

⌋

.337

We use the minimum of these 3 values, because this is the largest possible number of periods338

in Phase 1 and, as argued above, this leads to the worst-case stall.339

Remaining stall: Without loss of generality, let
⌊

Cm1

cm1∗

⌋

≥
⌊

Cm2

cm2∗

⌋

, i.e. controller 2 runs340

out of memory accesses entirely in Phase 2 the latest. (The other case is symmetric.)341

To analyse the stall in Phases 2 and 3, if any, we consider the stall of each controller342

separately. Since memory accesses via controller 2 occur only in Phase 2 (which has at most343

one regulation period) and not in Phase 3, the contention stall on controller 2 can be upper344

bounded by min(Ĉm2, RBS2) · (m − 1), where Ĉm2 is the number of memory accesses via345

controller 2 in Phase 2, if any. Observe that these memory accesses and respective stall346

can be taken into account as computation in the analysis of the stall of memory accesses347

via controller 1, in Phase 2. Furthermore, in Phase 3, if any, all memory accesses are via348

controller 1, only. Therefore, we apply Yao’s stall analysis to compute the stall of memory349

accesses via controller 1 in Phases 2 and 3, if they exist.350

ECRTS 2018

2:10 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

So, to complete analysis of this case, we compute Ĉm2, as well as parameters for Yao’s351

single controller stall analysis. Since in the latter we consider the remaining memory accesses352

via controller 2, Ĉm2, and respective stall, if any, as computation, Ce is obtained by adding to353

that value the remaining computation, Ĉe, i.e. the task computation that was not performed354

in Phase 1. Finally, the value of Cm to use in the single controller analysis is the number of355

memory accesses via controller 1 that were not performed in Phase 1, Ĉm1, if any. Thus,356

Stall =Stall1 + min(Ĉm2, RBS2) · (m − 1)

+ single(Ce = Ĉm2 + min(Ĉm2, RBS2) · (m − 1) + Ĉe,

Cm = Ĉm1, Q = Q1, P = P, m = m) (4)357

where Stall1 is given by (2). Next, we derive the expressions for Ĉe, Ĉm1 and Ĉm2.358

In every Phase 1 period a task must execute, i.e. either compute or access memory, when359

it is not stalled. Thus, in addition to the cm1∗ + cm2∗ memory accesses that lead to the360

maximum stall in a regulation period, a task may have to execute for the remaining time:361

P − (cm1∗ + cm2∗) · m. As we have argued, the total stall will be maximum in executions362

where computation fills as many of these "holes" as possible. Thus:363

Ĉe = max
(

0, Ce − K1∗ ·
(

P − (cm1∗ + cm2∗) · m
))

(5)364
365

If there is enough computation to fill all these holes, Ce ≥ K1∗ ·
(

P − (cm1∗ + cm2∗) · m
)

,366

then Ĉm1 = Cm1 − K1∗ · cm1∗ and Ĉm2 = Cm2 − K1∗ · cm2∗.367

If there is not enough computation to fill all these holes, then the remaining holes,368

K1∗ · (P − (cm1∗ + cm2∗) · m) − Ce, will be filled with memory accesses. Thus, the total369

number of memory accesses that will occur in the remaining phases, if any, is:370

Ĉm = Cm1 + Cm2 − K1∗ · (cm1∗ + cm2) − (K1∗ · (P − (cm1∗ + cm2∗) · m) − Ce)

= Cm1 + Cm2 − (K1∗ · (P − (cm1∗ + cm2∗) · (m − 1)) − Ce) (6)371

To determine Ĉm1 and Ĉm2, we distinguish two cases, depending on the value of K1∗.372

If K1∗ =
⌊

Cm2

cm2∗

⌋ (

≤
⌊

Cm1

cm1∗

⌋)

, then an execution that has at least min(Cm1 − K1∗ ·373

cm1∗, RBS1, Ĉm) controller 1 memory accesses in the first period of the remaining phases,374

will suffer maximum stall, because all these memory accesses suffer maximum contention375

stall. The first bound is the number of memory accesses not used to ensure maximum stall in376

Phase 1, the second bound is the maximum number of accesses via controller 1 that can suffer377

maximum stall in a regulation period, and the third bound is the number of memory accesses378

in the remaining phases. This ensures that controller 2 runs out of memory accesses before379

controller 1, as shown in Figure 2 iii). Thus the number of memory accesses via controller380

2 in Phase 2 is Ĉm2 = min
(

Ĉm − min(Cm1 − K1∗ · cm1∗, RBS1, Ĉm), Cm2 − K1∗ · cm2∗

)

381

i.e. the number of memory accesses via controller 2 in Phase 2 is the number of memory382

accesses not used to fill the holes in Phase 1, discounted by the minimum number of memory383

accesses via controller 1 that suffer maximum contention in Phase 2, and upper-bounded384

by the maximum number of controller 2 memory accesses that are not necessary to ensure385

maximum stall in Phase 1. Finally, Ĉm1 = Ĉm − Ĉm2.386

If K1∗ =
⌊

Ce+Cm1+Cm2

P −(cm1∗+cm2∗)·(m−1)

⌋

, there is not enough execution to complete the K1∗+1st387

regulation period, if any – the execution has at most one regulation period after Phase 1.388

In this case, the total stall is maximum in executions where the number of contention389

stalls in the last period is maximum. However, there cannot be more than RBS1 (RBS2)390

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar 2:11

contention stalls on controller 1 (2, respectively) in this period. Like in the previous sub-case,391

an execution with at least min(Cm1 − K1∗ · cm1∗, RBS1, Ĉm) controller 1 memory accesses392

in Phase 2, guarantees that controller 2 runs out of memory accesses no later than controller393

1, and suffers maximum stall, because all these memory accesses suffer maximum contention394

stall. Thus, the expressions we derived for Ĉm1 and Ĉm2 in the previous sub-case, are also395

valid for this one. Summarizing, we get the following expressions:396

Ĉm2 =

{

Cm2 − K1∗ · cm2∗, if Ce ≥ K1∗ ·
(

P − (cm1∗ + cm2∗) · m
)

min(Ĉm − min(Cm1 − K1∗ · cm1∗, RBS1, Ĉm), Cm2 − K1∗ · cm2∗), o.w
(7)397

Ĉm1 =

{

Cm1 − K1∗ · cm1∗ if Ce ≥ K1∗ ·
(

P − (cm1∗ + cm2∗) · m
)

Ĉm − Ĉm2 otherwise
(8)398

399

5.2.2.2 Sub-case 2: (P − Q1) + (P − Q2) ≥ P
m

· (m − 1)400

In this case (by the definition of RBS), RBS1 + RBS2 ≥ P
m

, and therefore it is possible401

to guarantee maximum contention stall in a period, without any computation or memory402

accesses without contention. To ensure the maximum stall, the memory accesses should be403

distributed in a “balanced” way so that both controllers run out of memory access at more404

or less the same time, thus ensuring that all Cm memory access suffers the maximum stall.405

Let cm1∗ and cm2∗ be the number of memory accesses via controllers 1 and 2 per regulation406

period that maximize the contention stall in a period. The goal is then to ensure:407

Cm1

cm1∗
=

Cm2

cm2∗
⇒ cm2∗ =

Cm2

Cm1
· cm1∗ ⇒ cm2∗ = rmcm1∗, where: rm def

=
Cm2

Cm1
(9)408

Without loss of generality, assume rm < 1; the other case is symmetrical. Then it must be:409

cm1∗ + cm2∗ =
P

m
⇒ (1 + rm) · cm1∗ =

P

m
⇒ cm1∗ =

P

m · (1 + rm)
(10)410

cm2∗ = rm · cm1∗ ⇒ cm2∗ = rm ·
P

m · (1 + rm)
(11)411

412

We now consider three sub-cases:413

Sub-case cm1∗ ≤ RBS1 ∧ cm2∗ ≥ 1: In this case it is possible to ensure that all memory414

accesses suffer the maximum contention stall, even without any computation. Thus:415

Stall = (Cm1 + Cm2) · (m − 1) (12)416

Note that even though cm1∗ or cm2∗ may be fractional, these are average values. This means417

that in an execution with worst-case stall, the number of memory accesses via any controller418

may not be the same across all the regulation periods. However, there is an execution such419

that cm1 + cm2 = P
m

, in all but possibly the last regulation period, and cm1 ≤ RBS1 and420

cm2 ≤ RBS2 in every regulation period.421

Sub-case cm1∗ > RBS1: In this case, both controllers would run out of computation at422

the same time only if the number of memory accesses via controller 1 exceeded RBS1, and423

therefore there would be memory accesses without any contention. An execution following424

the pattern illustrated in Figure 2, with cm1∗ = RBS1 and cm2∗ = min(P
m

− RBS1, RBS2)425

will have the worst-case stall, and therefore we can apply the analysis in Section 5.2.2.1.426

Sub-case cm2∗ < 1: In this case, both controllers would run out of computation at427

the same time only if there are some periods without memory accesses via controller 2.428

An execution following the pattern illustrated in Figure 2, with cm2∗ = 1 and cm1∗ =429

min(P
m

− 1, RBS1) will have the worst-case stall, and therefore we can apply the analysis in430

Section 5.2.2.1.431

ECRTS 2018

2:12 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

Cm1 = 4 Cm2 = 6 Q1 = 2 Q2 = 6 (RBS2 = 2) m = 4 P = 12

24

i)

ii)

0 12

0 12 36

Stall = 26

24 36

Stall = 30

contention stall access via controller 1 access via controller 2

Figure 3 Maximizing the number of regulation stalls may not lead to the worst-case stall.

5.2.3 Case 3: (b1 ≤ 1

m
∧ b2 >

1

m
) ∨ (b1 >

1

m
∧ b2 ≤ 1

m
)432

In this case, executions with the maximum number of regulation stalls do not always lead433

to the worst-case stall. This is shown in Figure 3. In execution i), all memory accesses434

via controller 1 are clustered, causing two regulation stalls on controller 1, in the first two435

regulation periods. All the memory accesses via controller 2, occur in the third regulation436

period. Of these, only the first two suffer the maximum contention stall. The remainder suffer437

no contention, because the memory budget of the remaining cores, P −Qi, is exhausted by the438

stalls of the first 2 memory accesses. In execution ii), there is one memory access via controller439

1 in each period, and thus there is no regulation stall on controller 1, but each of these440

accesses suffers the maximum contention stall. Furthermore, in each of the first 3 periods,441

there are 2 memory accesses via controller 2, each of which suffers the maximum contention442

stall. Thus all memory accesses via both controllers suffer the maximum contention stall,443

and the total stall for execution ii) exceeds that of execution i). This is counter-intuitive,444

because the contention stall by accesses via controller 1 in execution ii), 12, is smaller than445

the regulation stall, 20, caused by the same number of accesses via controller 1 in execution446

i). However, this loss is more than compensated by the contention stall in execution ii) of447

the 4 memory accesses via controller 2 that suffer no contention stall in execution i). I.e.,448

although we are trading off a regulation stall, P − Qi, for contention stalls, presumably with449

maximum contention stall, Qi · (m − 1) < P − Qi, we may also be adding stall to memory450

accesses via the second controller that previously suffered no stall.451

Depending on whether b1 ≤ 1
m

∧ b2 > 1
m

or b1 > 1
m

∧ b2 ≤ 1
m

, there are two sub-cases.452

Because they are symmetrical, we analyse only the former.453

5.2.3.1 Sub-case 3.1: b1 ≤ 1
m

∧ b2 > 1
m

454

Figure 3 shows that the maximum number of regulation stalls does not always lead to the455

worst-case stall. Furthermore, it can be shown that the total stall is maximum if there are456

no memory accesses via the second controller in periods with a regulation stall. Thus, the457

following memory access pattern with two phases leads to the worst-case stall: in the first458

phase, there is a number, possibly 0, of consecutive periods with regulation stalls; in the459

second phase, the contention-only phase, there is a number of consecutive periods, possibly460

only 1, with contention stalls only. Thus, the problem of finding the worst-case stall reduces461

to that of determining the number of regulation stalls that maximizes that stall. Actually, to462

simplify the mathematical expressions, we use the difference, ∆ρ∗, between this number and463

the maximum number of regulation stalls,
⌊

Cm1

Q1

⌋

. The total stall can then be determined464

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar 2:13

Algorithm 1 Compute stall for each task.

Input: Parameters: Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task’s index for simplicity)

Output: Stall

1: b1 = Q1

P
, b2 = Q2

P
, RBS1 = P −Q1

m−1
, RBS2 = P −Q2

m−1
and C = Ce + Cm1 + Cm2

2: if (b1 ≤ 1

m
∧ b2 ≤ 1

m
) then ⊲ Regulation stall is dominant for both controllers

3: Stall = Equation (1)

4: else if (b1 > 1

m
∧ b2 > 1

m
) then ⊲ Contention stall is dominant for both controllers

5: if ((P − Q1) + (P − Q2) < P
m

· (m − 1)) then

6: cm1∗ = RBS1, cm2∗ = RBS2

7: Compute Stall with Algorithm 2

8: else ⊲ (P − Q1) + (P − Q2) ≥ P
m

· (m − 1)

9: rm = Cm2

Cm1 , cm1∗ = Equation 10, cm2∗ = Equation 11

10: if (rm < 1) then

11: if (cm1∗ ≤ RBS1 ∧ cm2∗ ≥ 1) then

12: Stall = Equation 12

13: else if (cm1∗ > RBS1) then

14: cm1∗ = RBS1, cm2∗ = min(RBS2, P
m

− RBS1)

15: Compute Stall with Algorithm 2

16: else ⊲ cm2∗ < 1

17: cm1∗ = min(RBS1, P
m

− 1) cm2∗ = 1

18: Compute Stall with Algorithm 2

19: end if

20: else ⊲ rm ≥ 1: symmetric of previous case, swap indices

21: end if

22: end if

23: else ⊲ Regulation stall is dominant for only one controller

24: if (b1 ≤ 1

m
∧ b2 > 1

m
) then

25: Compute ∆ρ∗ using Algorithm 3

26: Stall = Equation 13

27: else ⊲ b2 ≤ 1

m
∧ b1 > 1

m
: symmetric of previous case

28: end if

29: end if

30: return Stall + = (P − min(Q1, Q2)) ⊲ This adds the stall when the task arrives.

Algorithm 2 Compute stall for contention dominant case.

Input: Parameters: cm1∗, cm2∗, Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task’s index)

Output: Stall

1: b1 = Q1

P
, b2 = Q2

P
, RBS1 = P −Q1

m−1
, RBS2 = P −Q2

m−1
and C = Ce + Cm1 + Cm2

2: K1∗ = Equation 3 ,

3: Stall1 = Equation 2

4: Ĉe = Equation 5, Ĉm1 = Equation 8, Ĉm2 = Equation 7

5: Stall23 = single(Ce = Ĉm2 · m + Ĉe, Cm = Ĉm1, Q = Q1, P = P, m = m)

6: return Stall = Stall1 + min(Ĉm2, RBS2) · (m − 1) + Stall23 ⊲ Equation 41

using Yao’s stall analysis:465

466

Stall = single(Q = Q1, Cm = Cm1 − Cm1 mod Q1 − ∆ρ∗Q1, Ce = 0)467

+ ((Cm1 mod Q1) + ∆ρ∗ · Q1) · (m − 1)468

+ single(Q = Q2, Cm = Cm2, Ce = Ce + ((Cm1 mod Q1) + ∆ρ∗ · Q1) · m) (13)469
470

where, for computing the stall on the memory accesses via controller 2 in the second phase, we471

account the memory accesses via controller 1 in the second phase and respective contention472

ECRTS 2018

2:14 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

0

i)

RBS2

P

ΔCe + st

0

ii)

P

ΔCe + st

P − RBS2 ·m Maximum number of memory accesses in each interval

Increase in execution time, including stall

Figure 4 Upper (i) and lower (ii) bounds on ∆Cm2
c .

stalls as computation, assuming that each of them suffers the maximum contention stall473

under round-robin, m − 1. Algorithms 1 an 2 detail the case analysis that we have described474

so far in this section. In the following, we determine the value of ∆ρ∗.475

We consider two main sub-cases depending on whether there is enough computation,476

including residual memory accesses via controller 1, to ensure that every memory access via477

controller 2 suffers maximum contention.478

5.2.3.2 Sub-case 1: Enough computation479

If Ce ≥
⌊

Cm2

RBS2

⌋

· (P − m · RBS2) − (Cm1 mod Q1) · m, then every memory access in the480

contention-only phase suffers maximum contention, and therefore the total stall is maximum481

when the number of regulation stalls is maximum, i.e. ∆ρ∗ = 0.482

5.2.3.3 Sub-case 2: Not enough computation483

In this case, as illustrated in Figure 3, if there are memory accesses in the contention-only484

phase that suffer no contention, the worst-case stall may occur when the number of regulation485

stalls is not maximum.486

When the number of regulation stalls is decremented by one, the regulation stall reduction487

by P − Q1 is partially compensated by an increase of the contention stall via controller 1 by488

Q1 · (m − 1). If the increase in contention stall via controller 2, ∆stall2
c is such that:489

∆stall2
c > ∆stall2∗

c

def
= P − Q1 − Q1 · (m − 1) = P − Q1 · m (14)490

then reducing the number of regulation stall leads to a larger total stall. In other words, the491

total stall will be worse if the increase in the number of memory accesses with maximum492

stall, ∆Cm2
c , satisfies the following inequality:493

∆Cm2
c > ∆Cm2∗

c

def
=

∆stall2∗

c

m − 1
=

P − Q1 · m

m − 1
(15)494

Like in the analysis in Section 5.2.2, to compute the stall on memory accesses via495

controller 2, we can view the memory accesses via controller 1 and respective contention496

stall as computation. Thus, we need to determine ∆Cm2
c when the computation in the497

contention-only phase increases by ∆Ce = Q1 · m. The challenge is that this value, ∆Cm2
c ,498

may not be constant. I.e., when we increase the computation by ∆Ce = Q1 · m, ∆Cm2
c may499

have different values depending on other parameter values.500

Our solution is to compute the maximum and minimum values of ∆Cm2
c , ∆Cm2

c (max)501

and ∆Cm2
c (min), respectively, and then finding ∆ρ∗ by case analysis, as described below.502

When we increase the computation of the contention-only phase by ∆Ce, the total503

execution of that phase, including any contention, will increase at least by that much. This504

execution can replace memory accesses via controller 2 that did not have any contention, i.e505

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar 2:15

memory accesses in excess of RBS2 accesses per period, which can then be shifted towards506

the end of the execution. ∆Cm2
c will be maximum if the shifted memory accesses are added507

to a regulation period with no memory accesses via controller 2, up to a limit of RBS2508

memory accesses per regulation period, as shown in Figure 4 i). Thus, in this case, as a509

result of adding ∆Ce memory accesses we get:510

∆Cm2
c (max) = RBS2 ·

⌊

∆Ce

RBS2 + P − RBS2 · m

⌋

+ min(RBS2, ∆Ce mod (RBS2 + P − RBS2 · m))

= RBS2 ·

⌊

∆Ce

Q2

⌋

+ min(RBS2, ∆Ce mod Q2) (16)511

The first term corresponds to the number of additional periods with RBS2 memory accesses.512

(Note that ∆Ce is used both to shift memory accesses via controller 2, and to fill the "hole"513

in the remaining of the period, P − RBS2 · m.) The second term corresponds to the number514

of memory accesses in the last incomplete regulation period, if any: essentially, the memory515

accesses that can be replaced with the remaining of ∆Ce that was not used for the additional516

full periods, upper-bounded by RBS2.517

On the other hand, ∆Cm2
c will be minimum, if, before adding ∆Ce, the execution ended518

immediately after the RBS2 accesses with contention. This is shown in Figure 4 ii). In this519

case, the analysis is similar to the one above, and therefore we can also use (16), except520

that rather than using ∆Ce, we need to use max(∆Ce − (P − RBS2 · m), 0), because the521

remainder of the period at which the execution ended needs to be filled with "computation"522

before an earlier memory access via controller 2 without contention stall can experience the523

maximum contention stall by shifting it towards the end of the execution.524

We can now distinguish there sub-cases, depending on the relative values of ∆Cm2∗
c ,525

∆Cm2
c (max) and ∆Cm2

c (min).526

Sub-case ∆Cm2∗
c ≥ Cm2

c (max): In this case, the increase in the number of memory527

accesses with contention cannot make up for the eliminated regulation stall, so ∆ρ∗ = 0.528

Sub-case ∆Cm2∗
c < Cm2

c (min): In this case, the increase in the number of memory529

accesses with contention suffices to make up for the eliminated regulation stall. Therefore, the530

worst-case stall increases as we reduce the number of regulation stalls until one of the following531

3 cases occurs: 1) there are no more regulation stalls; 2) there are not enough memory532

accesses via controller 2, ∆Cm2∗
c , without the maximum contention stall, to compensate533

for the loss in the regulation stall; or 3) the number of memory accesses via controller 1534

in at least one period of the second phase exceeds Q1 − 1, in which case we would have a535

regulation stall, and therefore there would be no reduction in the number of regulation stalls.536

Because ∆Cm2 varies, we do not know a closed form expression for the number of537

regulation periods to reduce. Thus, we use the iterative procedure shown in Algorithm 3.538

We hence start with ∆ρ∗ = 0 and keep increasing it by one until one of the above 3 stop539

conditions is satisfied. Specifically, while there are still enough memory accesses via controller540

2 without maximum contention stall, Cm2
c̄ , and there is still one regulation stall (line 15),541

∆ρ∗ is tentatively increased by one. In each iteration, we tentatively compute the total stall542

using Yao’s analysis with the appropriate parameters (line 18) and the number of memory543

accesses via controller 2 that suffer no contention (line 20), for the tentative value of ∆ρ∗. If544

the number of memory accesses via controller 1 in all periods of the contention-only phase545

(line 21) does not exceed Q1 − 1, then the tentative values become definitive (line 22), and546

the algorithm loops again, otherwise it exits the loop and terminates.547

All other cases, i.e. Cm2
c (min) ≤ ∆Cm2∗

c < Cm2
c (max): In this case, the total stall548

ECRTS 2018

2:16 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

Algorithm 3 Compute ∆ρ∗

Input: Parameters: Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task index for simplicity)

Output: ∆ρ∗

1: RBS1 = P −Q1

m−1
, RBS2 = P −Q2

m−1
and C = Ce + Cm1 + Cm2

2: ∆Ce = m · Q1

3: ∆Cm2
c (max) = Equation 16

4: ∆Cm2
c (min) = Equation 16, but replacing ∆Ce with max(∆Ce − (P − m · RBS2), 0)

5: ∆Cm2∗

c =
⌊

P −m·Q1

m−1

⌋

6: if (Ce ≥
⌊

Cm2

RBS2

⌋

· (P − m · RBS2) − (Cm1 mod Q1) · m) then

7: ∆ρ∗ = 0 ⊲ There is enough "computation"

8: else if (∆Cm2
c (max) ≤ ∆Cm2∗

c) then ⊲ Which implies ∆Cm2
c (min) ≤ ∆Cm2∗

c

9: ∆ρ∗ = 0 ⊲ Maximize regulation stalls on Controller one

10: else if (∆Cm2
c (min) > ∆Cm2∗

c) then ⊲ Which implies ∆Cm2
c (max) > ∆Cm2∗

c

11: ∆ρ∗ = 0

12: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + (Cm1 mod Q1) · m)

13: R = Cm2 + Ce + (Cm1 mod Q1) · m + stall

14: Cm2
c̄ = Cm2 −

⌊

R
P

⌋

· RBS2 − min
(⌊

R mod P
m

⌋

, RBS2
)

15: while

(

Cm2
c̄ > ∆Cm2∗

c ∧ ∆ρ∗ <

⌊

Cm1

Q1

⌋)

do

16: ∆ρ∗

t = ∆ρ∗ + 1

17: Ĉm1 = Cm1 mod Q1 + ∆ρ∗

t · Q1 ⊲ Accesses via controller 1 in second phase

18: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + Ĉm1 · m)

19: R = Cm2 + Ce + Ĉm1 · m + stall

20: Cm2
c̄t = max

(

Cm2 −
⌊

R
P

⌋

· RBS2 − min
(⌊

R mod P
m

⌋

, RBS2
)

, 0
)

21: if
(

Ĉm1 − min
(

Q1 − 1, max
(

0,
⌊

R mod P
m

⌋

− RBS2
))

≤ (Q1 − 1) · R
P

)

then ⊲ Enough

reg. periods to ensure that there is no reg. stall in periods with accesses via both controllers.

22: ∆ρ∗ = ∆ρ∗

t , Cm2
c̄ = Cm2

c̄t

23: else break

24: end if

25: end while

26: else ⊲ ∆n2
c(min) ≤ ∆n2∗

c < ∆n2
c(max)

27: ∆ρ(max) = 0, stall(max) = 0 ⊲ Variables for maximum stall

28: for ∆ρ∗ = 0 to

⌊

Cm1

Q1

⌋

do ⊲ Do exhaustive search

29: Ĉm1 = Cm1 mod Q1 + ∆ρ∗

t · Q1

30: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + Ĉm1 · m) ⊲ Cont. stall on both controllers

31: R = Cm2 + Ce + Ĉm1 · m + stall ⊲ Duration of contention-only phase

32: if stall +
(⌊

Cm1

Q1

⌋

− ∆ρ∗

)

· (P − Q1) > stall(max)

∧
(

Ĉm1 − min
(

Q1 − 1, max
(

0,
⌊

R mod P
m

⌋

− RBS2
))

≤ (Q1 − 1) ·
⌊

R
P

⌋)

then

33: stall(max) = stall +
(⌊

Cm1

Q1

⌋

− ∆ρ∗

)

· (P − Q1)

34: ∆ρ∗(max) = ∆ρ∗

35: end if

36: end for

37: ∆ρ∗ = ∆ρ∗(max)

38: end if

39: return ∆ρ∗

sometimes increases when the number of regulations stalls decreases by one and sometimes it549

does not. Thus in this case, our approach to find the value of ∆ρ∗ is to compute the stall for550

every possible value of ∆ρ∗ and pick the one that leads to the maximum stall. Algorithm 3,551

lines 27-37, details the computation of ∆ρ∗ in this case.552

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar 2:17

Algorithm 4 Sensitivity analysis to reclaim memory bandwidth from both controllers

Input: b1, b2, m, ∆ (threshold to stop the algorithm)) and τ

Output: Minimum required memory bandwidth of both controllers

1: b1
min = 0, b1

max = b1, b2
min = 0, b2

max = b2

2: while (b1
max − b1

min > ∆ ∨ b2
max − b2

min > ∆) do

3: for each controller j ∈ {1, 2} do

4: if (bj
max − b

j
min > ∆) then

5: Xj = ⌊
b

j

min
+b

j
max

2
⌋

6: if (j == 1) then

7: Schedulability = MultiControllerSchedulabilityAnalysis(Xj , b2
max, m, τ)

8: else

9: Schedulability = MultiControllerSchedulabilityAnalysis(b1
max, Xj , m, τ)

10: end if

11: if (Schedulability == true) then bj
max = Xj

12: else b
j
min = Xj

13: end if

14: end if

15: end for

16: end while

17: return {b1
max and b2

max}

5.3 Schedulability analysis553

Until now, we assumed one task per core. When many tasks are assigned to a core, the task554

in consideration and those of higher priority can be modelled by one synthetic task, using the555

approach in [20], and schedulability analysis can be performed as summarized in Section 4.556

6 Bandwidth Allocation and Task-to-core Assignment Heuristics557

We propose 5 heuristics for allocating tasks and memory bandwidth of both controllers to the558

cores. They are evaluated in terms of system schedulability. We use Audsley’s algorithm [1]559

to assign task priorities, even if it is no longer necessarily optimal in the presence of stalls.560

Even: The total memory bandwidth of both controllers is equally distributed among all561

cores. Subject to this even share, the task-to-core assignment is performed using first-fit.562

Uneven: Initially, this heuristic also distributes both controller’s bandwidth evenly563

among cores and employs the first-fit for task-to-core assignment. However, instead of564

declaring failure whenever a task does not fit on any core, it sets that task aside, and moves565

on to consider the next task. Any tasks that remain unassigned after considering all tasks,566

are handled in-order as follows. Each core’s memory bandwidth from both controllers is567

“trimmed” to the minimum value that preserves schedulability, via the sensitivity analysis568

of Algorithm 4, explained later in this section. Let the total reclaimed bandwidth from all569

cores be B1 and B2 from controllers 1 and 2, respectively. A second round of first-fit tries to570

assign the remaining tasks, assuming that the bandwidth of the target core i is increased by571

B1 and B2 for controllers 1 and 2, respectively. Upon successfully assigning such a task, we572

trim anew the target cores’s memory budgets via sensitivity analysis, adjust the available573

reclaimed budgets and move on to the next task in a similar manner.574

Greedy-fit: Initially, the total memory bandwidth of both controllers is assigned to the575

first core and the task-set is iterated over once (in a given order) to assign the maximum576

number of tasks to this core; if a task does not fit, we try the next one. Afterwards, the577

spare bandwidth from each controllers on this core is reclaimed via sensitivity analysis, and578

ECRTS 2018

2:18 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

is fully assigned to next core. And so on, until all tasks are assigned or the cores run out.579

Humble-fit: Similar to greedy-fit, except that when a task assignment fails, we move to580

the next core (attempting no more task assignments on the current one).581

Memory-fit: Initially, b1i = b2i = 0, for every core i, where bxi is the allocated memory582

bandwidth of controller x on core i. Each task is assigned to the core i that requires the583

least increase to b1i + b2i to accommodate it, subject to existing task assignments.584

“Uneven" explores a larger solution space than “Even. “Greedy-fit" and “Humble-fit"585

aggressively optimise for processing capacity use foremost. Conversely, “Memory-fit" optimises586

for bandwidth instead. Hence, all heuristics sample the solution space in different ways.587

Sensitivity analysis: Algorithm 4 presents the sensitivity analysis that trims the unused588

memory bandwidth from both controllers and outputs the least required memory bandwidth589

from each controller. This sensitivity analysis, used for bandwidth optimisation, is an590

adaptation of binary interval search ([19, 2]). It gives both controllers an equal chance to591

preserve their bandwidth in a round-robin fashion. By comparison, completely optimizing one592

controller followed by the second one, may lead to an imbalanced approach, hence avoided.593

7 Evaluation594

Experimental Setup We developed a Java tool for our experiments. Its first module595

generates the synthetic task sets and sets up a platform with the given input parameters. A596

second module performs task-to-core allocation and feasibility analysis with two controllers.597

We generate the task-set with a given target U = x · m : x ∈ (0, 1] using UUnifast-discard598

algorithm [6, 9] for unbiased distribution of task utilisations. The task-set size is given as599

input. Task periods are log-uniform-distributed, in the range 10-100 ms. We assume implicit600

deadlines, even if our analysis also holds for constrained deadlines. The WCET of a task is601

derived as Ci = Ui · Ti. The total memory accesses of each task are randomly selected in602

the range [0, Γ · Ci], with memory intensity factor Γ ∈ (0, 1] user-defined. The total memory603

accesses are randomly divided between the two memory controllers. By default the task-set604

is sorted in descending order of utilisation. For each set of input parameters, we generate605

1000 task-sets. We use independent pseudo-random number generators for the utilisations,606

minimum inter-arrival times/deadlines, memory accesses and reuse their seeds [12]. Table 2607

summarises all parameters, with default values underlined. We observed that size of the608

regulation period has no effect on the schedulability ratio.609

To avoid having hundreds of plots, in each experiment we vary only one parameter, with610

others conforming to the defaults from Table 2 and present the results as plots of weighted611

schedulability. This performance metric, adopted from [4], condenses what would have been612

three-dimensional plots into two dimensions. It is a weighted average that gives more weight to613

task-sets with higher utilisation, which are supposedly harder to schedule. Specifically, using614

notation from [7], let Sy(τ, p) represent the result (0 or 1) of the schedulability test y for a615

given task-set τ with an input parameter p. Then Wy(p), the weighted schedulability for that616

test y as a function p, is Wy(p) =
∑

∀τ

(

Ū(τ) · Sy(τ, p)
)

/
∑

∀τ Ū(τ). Here, Ū(τ)
def
= U(τ)/m617

is the system utilisation, normalised by the number of cores m.618

No other stall analysis with two controllers exists in the literature to compare with. We619

therefore compare our approach against a system where the two controllers are partitioned620

among cores that can only make requests to their assigned controller. The benefit of such621

partitioning is that it roughly cuts contention in half. On the other hand, tasks assigned to622

one controller cannot access data addressable by the other controller.623

For the comparison, half the cores are assigned to each controller. Since each core624

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar 2:19

Table 2 Overview of Parameters

Parameters Values Default

Number of cores (m) {4, 8, 12, 16} 4

Task-set size (n) {8, 16, 24, 32, 40, 48} 16

Regulation period (P) {1us, 10us, 100us, 1ms} 100us

Inter-arrival time (Ti) 10ms to 100ms N/A

Nominal utilisation (Ū = U
m

) {0.1 : 0.01 : 1} N/A

Memory intensity (Γ) {0.1 : 0.1 : 1} 0.5

accesses only one controller, the feasibility of the tasks assigned to it can be tested with Yao’s625

analysis [20]. We adapt the task-to-core assignment heuristics and bandwidth allocation626

schemes presented in Section 6 for the partitioned case: The even heuristic equally divides a627

controller’s bandwidth among its associated cores. Similarly, in the uneven heuristic, the628

readjustment of the controllers bandwidth is performed only among the controller’s associated629

cores. In the greedy-fit/humble-fit, all bandwidth of a given controller is only assigned to its630

first associated core with an objective to maximise the number of tasks assigned to it. The631

trimmed-off bandwidth from this controller is assigned to its remaining associated cores. If632

the task is not feasible on the cores associated to the first controller, its feasibility is next633

checked on the set of cores associated with the second controller. In the memory-fit, a task634

is assigned to the core with the lowest bandwidth requirement of its controller. We use Yao-635

and MC- prefixes to denote the partitioned and our approach, respectively, followed by the636

name of the heuristic (even, uneven, greedy-fit, humble-fit and memory-fit).637

Results Figure 5 presents the weighted schedulability for different number of cores for638

both systems with partitioned and shared controllers (our approach) using the proposed639

heuristics. The first important result is that all heuristics under partitioning perform better640

than their corresponding heuristic under shared controllers, which is due to the stall being641

roughly cut in half in the former approach. This difference ranges around 10% − 30% in642

absolute terms of weighted schedulability. Of course, this expected result applies only when643

there are no dependencies across partitions. However, in many systems, there is always644

some sharing/communication of data among tasks and this might make such partitioning645

impossible. In other cases, a single controller cannot deliver enough bandwidth. This may646

become more frequent in the future, as applications getting more demanding. Therefore safe647

analysis for predictable access to both controllers, like the one proposed here, is needed.648

In terms of heuristics, memory-fit, uneven, even, humble-fit and greedy-fit is the descending649

ordered list w.r.t. weighted schedulability ratio. The memory-fit heuristic, which optimises650

the use of memory bandwidth, performing best, implies that memory bandwidth is typically651

the scarce resource for the given set of parameters. The uneven and even heuristics are more652

balanced in terms of bandwidth and processing capacity distribution and hence, perform653

close to memory-fit. Humble-fit and greedy-fit are too aggressive in construction to optimise654

the use of processing capacity at the cost of memory resources and hence underperform655

the other heuristics in a memory-scarce setup. Greedy-fit manages the memory resources656

comparatively better than humble-fit and hence, outperforms it. Yet, if the applications are657

compute-intensive and the system is not scarce w.r.t. memory resource, the heuristics that658

optimise for processing resources may become handy and outperform their counterparts.659

With more cores, the contention from other cores increases and hence, the schedulability660

of the system decreases. Figure 6 presents the effect of memory intensity over the proposed661

ECRTS 2018

2:20 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

Number of cores

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

Yao−Even

Yao−Uneven

Yao−Greedyfit

Yao−Humblefit

Yao−Memoryfit

MC−Even

MC−Uneven

MC−Greedyfit

MC−Humblefit

MC−Memoryfit

Figure 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Memory intensity

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

Yao−Even

Yao−Uneven

Yao−Greedyfit

Yao−Humblefit

Yao−Memoryfit

MC−Even

MC−Uneven

MC−Greedyfit

MC−Humblefit

MC−Memoryfit

Figure 6

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Task−set sorting

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

Yao−Even

Yao−Uneven

Yao−Greedyfit

Yao−Humblefit

Yao−Memoryfit

MC−Even

MC−Uneven

MC−Greedyfit

MC−Humblefit

MC−Memoryfit

Figure 7

8 16 24 32 40 48
0

0.1

0.2

0.3

0.4

0.5

Task−set size

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty

Yao−Even

Yao−Uneven

Yao−Greedyfit

Yao−Humblefit

Yao−Memoryfit

MC−Even

MC−Uneven

MC−Greedyfit

MC−Humblefit

MC−Memoryfit

Figure 8

heuristics. Obviously, higher memory intensity increases the contention on the shared662

controllers, consequently decreasing the schedulability. We also compared the effect of663

the task indexing over the different heuristics as shown in Figure 7. The numbers 0, 1, 2664

and 3 on the X-axis correspond to task-set ordering w.r.t. descending order of deadlines,665

utilisation, total memory requests and memory density (i.e. total memory requests divided666

by the Ti), respectively. Task-set indexing w.r.t. utilisation benefits the memory-fit, even667

and uneven heuristics. Figure 8 shows that task-set size has very limited effect on the668

memory-fit, uneven and even approaches and they scale well when that increases. Conversely,669

the performance of humble-fit and greedy-fit degrade with greater task-set sizes due to their670

aggressive optimisation of processor usage at the expense of memory bandwidth.671

8 Conclusion672

This paper demonstrated that worst-case memory stall analyses for single-memory-controller673

multicores with memory regulation are unsafe if applied to multicores with multiple memory674

controllers. We overcome this limitation by proposing a new memory stall analysis for675

multicore platforms with two memory controllers that captures the cases where all cores can676

access both controllers. We also proposed five memory allocation heuristics, each specialising677

in optimising processing capacity and/or memory bandwidth. The experimentally quantified678

cost of allowing all cores to flexibly access the memory space of two controllers is 10 − 30%679

in terms of weighted schedulability. Results further show that the proposed memory-fit680

heuristic performs well if bandwidth is scarce. The even and uneven heuristics are suitable for681

balanced systems, while greedy-fit and humble-fit are handy for compute-intensive systems.682

M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar 2:21

References683

1 N. C. Audsley. On priority asignment in fixed priority scheduling. Information Processing684

Letters, 79(1):39–44, 2001.685

2 M. A. Awan, K. Bletsas, P. F. Souto, and E. Tovar. Semi-partitioned mixed-criticality686

scheduling. In Proceedings of the 30th International Conference on the Architecture of Com-687

puting Systems (ARCS 2017), pages 205–218, 2017. doi:10.1007/978-3-319-54999-6_688

16.689

3 Muhammad Ali Awan, Pedro Souto, Konstantinos Bletsas, Benny Akesson, and Eduardo690

Tovar. Mixed-criticality scheduling with memory bandwidth regulation. In Proceedings of691

the 55th IEEE/ACM Conference on Design Automation and Test in Europe (DATE 2018),692

March 2018.693

4 A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Cache-related preemption and mi-694

gration delays: Empirical approximation and impact on schedulability. Proceedings of the695

OSPERT, pages 33–44, 2010.696

5 M. Behnam, R. Inam, T. Nolte, and M. Sjödin. Multi-core composability in the face of697

memory-bus contention. ACM SIGBED Review, 10(3):35–42, 2013. doi:10.1145/2544350.698

2544354.699

6 E. Bini and G. C. Buttazzo. Measuring the performance of schedulability tests. Journal700

of Real–Time Systems, 30(1-2):129–154, May 2005. doi:10.1007/s11241-005-0507-9.701

7 A. Burns and R. I. Davis. Adaptive mixed criticality scheduling with deferred preemption.702

In Proceedings of the 35th IEEE Real-Time Systems Symposium (RTSS 2014), pages 21–30,703

Dec 2014. doi:10.1109/RTSS.2014.12.704

8 D. Dasari, B. Akesson, V. Nélis, M. A. Awan, and S. M. Petters. Identifying the sources705

of unpredictability in cots-based multicore systems. In Proceedings of the 8th IEEE In-706

ternational Symposium on Industrial Embedded Systems (SIES 2013), pages 39–48, June707

2013.708

9 R. I. Davis and A. Burns. Priority assignment for global fixed priority pre-emptive schedul-709

ing in multiprocessor real-time systems. In Proceedings of the 30th IEEE Real-Time Systems710

Symposium (RTSS 2009), pages 398–409, Dec 2009. doi:10.1109/RTSS.2009.31.711

10 J. Flodin, K. Lampka, and W. Yi. Dynamic budgeting for settling dram contention of712

co-running hard and soft real-time tasks. In Proceedings of the 9th IEEE International713

Symposium on Industrial Embedded Systems (SIES 2014), pages 151–159, June 2014. doi:714

10.1109/SIES.2014.6871199.715

11 Rafia Inam, Nesredin Mahmud, Moris Behnam, Thomas Nolte, and Mikael Sjodin. Multi-716

core composability in the face of memory-bus contention. In Proceedings of the 20th IEEE717

Real-Time Technology and Applications Symposium (RTAS 2014), 2014.718

12 Raj Jain. The art of computer systems performance analysis - techniques for experimental719

design, measurement, simulation, and modeling. Wiley professional computing. Wiley, 1991.720

13 R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun. WCET(m) estimation in721

multi-core systems using single core equivalence. In Proceedings of the 27th Euromicro722

Conference on Real-Time Systems (ECRTS 2015), pages 174–183, July 2015. doi:10.723

1109/ECRTS.2015.23.724

14 Renato Mancuso, Rodolfo Pellizzoni, Neriman Tokcan, and Marco Caccamo. WCET Deriv-725

ation under Single Core Equivalence with Explicit Memory Budget Assignment. In Proceed-726

ings of the 29th Euromicro Conference on Real-Time Systems (ECRTS 2017), volume 76 of727

Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:23, Dagstuhl, Ger-728

many, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.729

15 J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and M. Schmidt. Multi-core730

interference-sensitive WCET analysis leveraging runtime resource capacity enforcement. In731

ECRTS 2018

http://dx.doi.org/10.1007/978-3-319-54999-6_16
http://dx.doi.org/10.1007/978-3-319-54999-6_16
http://dx.doi.org/10.1007/978-3-319-54999-6_16
http://dx.doi.org/10.1145/2544350.2544354
http://dx.doi.org/10.1145/2544350.2544354
http://dx.doi.org/10.1145/2544350.2544354
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/RTSS.2014.12
http://dx.doi.org/10.1109/RTSS.2009.31
http://dx.doi.org/10.1109/SIES.2014.6871199
http://dx.doi.org/10.1109/SIES.2014.6871199
http://dx.doi.org/10.1109/SIES.2014.6871199
http://dx.doi.org/10.1109/ECRTS.2015.23
http://dx.doi.org/10.1109/ECRTS.2015.23
http://dx.doi.org/10.1109/ECRTS.2015.23

2:22 Worst-case Stall Analysis for Multicore Architectures with Two Memory Controller

Proceedings of the 26th Euromicro Conference on Real-Time Systems (ECRTS 2014), pages732

109–118, 2014. doi:10.1109/ECRTS.2014.20.733

16 NXP. QorIQ Layerscape Processors Based on Arm Technology, 2018. www.nxp.734

com/products/processors-and-microcontrollers/applications-processors/735

qoriq-platforms/p-series.736

17 R. Pellizzoni and H. Yun. Memory servers for multicore systems. In Proceedings of the 22nd737

IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2016),738

pages 97–108, April 2016. doi:10.1109/RTAS.2016.7461339.739

18 Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki Yoon, Rodolfo Pel-740

lizzoni, Heechul Yun, Russel Kegley, Dennis Perlman, Greg Arundale, Bradford Richard,741

et al. Single core equivalent virtual machines for hard real—time computing on multicore742

processors. Technical report, Univ. of Illinois at Urbana Champaign, 2014.743

19 Paulo Baltarejo Sousa, Konstantinos Bletsas, Eduardo Tovar, Pedro Souto, and Benny744

Åkesson. Unified overhead-aware schedulability analysis for slot-based task-splitting.745

Journal of Real–Time Systems, 50(5-6):680–735, 2014.746

20 G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, and L. Sha. Schedulability ana-747

lysis for memory bandwidth regulated multicore real-time systems. IEEE Transactions on748

Computers, 65(2):601–614, Feb 2016.749

21 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control in750

multiprocessor for real-time systems with mixed criticality. In Proceedings of the 24th751

Euromicro Conference on Real-Time Systems (ECRTS 2012), pages 299–308, July 2012.752

doi:10.1109/ECRTS.2012.32.753

22 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth754

reservation system for efficient performance isolation in multi-core platforms. In Proceedings755

of the 19th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS756

2013), pages 55–64, April 2013. doi:10.1109/RTAS.2013.6531079.757

http://dx.doi.org/10.1109/ECRTS.2014.20
www.nxp.com/products/processors-and-microcontrollers/applications-processors/qoriq-platforms/p-series
www.nxp.com/products/processors-and-microcontrollers/applications-processors/qoriq-platforms/p-series
www.nxp.com/products/processors-and-microcontrollers/applications-processors/qoriq-platforms/p-series
www.nxp.com/products/processors-and-microcontrollers/applications-processors/qoriq-platforms/p-series
www.nxp.com/products/processors-and-microcontrollers/applications-processors/qoriq-platforms/p-series
http://dx.doi.org/10.1109/RTAS.2016.7461339
http://dx.doi.org/10.1109/ECRTS.2012.32
http://dx.doi.org/10.1109/RTAS.2013.6531079

	Introduction
	Related work
	System Model
	Relevant existing results from the single-controller case
	Analysis
	What holds over from Yao's analysis and what does not
	Two-controller Task Stall Analysis
	Case 1: b1 1m b2 1m
	Case 2: b1 > 1m b2 > 1m
	Case 3: (b1 1m b2 > 1m) (b1 > 1m b2 1m)

	Schedulability analysis

	Bandwidth Allocation and Task-to-core Assignment Heuristics
	Evaluation
	Conclusion

