

WCET Measurement-based and Extreme Value
Theory Characterisation of CUDA Kernels

Technical Report

*CISTER Research Center
CISTER-TR-141009

2014/10/08

Kostiantyn Berezovskyi*
Luca Santinelli
Konstantinos Bletsas*
Eduardo Tovar*

Technical Report CISTER-TR-141009 WCET Measurement-based and Extreme Value Theory ...

WCET Measurement-based and Extreme Value Theory Characterisation of CUDA
Kernels
Kostiantyn Berezovskyi*, Luca Santinelli, Konstantinos Bletsas*, Eduardo Tovar*

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: kosbe@isep.ipp.pt, ksbs@isep.ipp.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
The massive computational power of graphics processor units (GPUs), combined with novel programming models
such as CUDA, makes them attractive platforms for many parallel applications. This includes embedded and real-
time applications, which, however, also have temporal constraints: computations must not only be correct but also
completed on time. This poses a challenge because the characterisation of the worst-case temporal behaviour of
parallel applications on GPUs is still an open problem. To address this situation, this paper proposes a
measurement-based and statistical approach for the probabilistic characterisation of the worst-case execution
time of such an application.

© CISTER Research Center
www.cister.isep.ipp.pt

1

WCET Measurement-based and Extreme Value Theory
Characterisation of CUDA Kernels

Kostiantyn Berezovskyi+, Luca Santinelli∗, Konstantinos Bletsas+ and Eduardo Tovar+
+CISTER/INESC-TEC ISEP, Portugal, ∗ONERA Toulouse, France

ABSTRACT
The massive computational power of graphics processor units
(GPUs), combined with novel programming models such as
CUDA, makes them attractive platforms for many parallel
applications. This includes embedded and real-time applica-
tions, which, however, also have temporal constraints: com-
putations must not only be correct but also completed on
time. This poses a challenge because the characterisation of
the worst-case temporal behaviour of parallel applications
on GPUs is still an open problem. To address this situa-
tion, this paper proposes a measurement-based and statis-
tical approach for the probabilistic characterisation of the
worst-case execution time of such an application.

1. INTRODUCTION
Graphics processor units (GPUs) offer processing capac-

ity orders-of-magnitude greater than CPUs. Novel parallel
programming models, such as Nvidia CUDA and OpenCL,
brought us General-Purpose GPU (GPGPU) computing: the
use of GPUs as accelerators for computationally intensive
(non-graphics) functions.

But GPUs are designed for high throughput via massive
parallelism; not via executing any single thread particu-
larly fast. Therefore, the applications best-suited for GPUs:
(i) are easily decomposable in thousands of parallel threads;
(ii) have minimal dependency across data (no need for syn-
chronisation; maximum parallelism); (iii) are computation-
ally intensive, to justify the costly copying of the GPU input
and output over the bus.

To provide temporal guarantees for GPU-accelerated ap-
plications, we need a technique for upper-bounding their ex-
ecution time on the GPU. Traditional WCET analyses for
CPUs are inapplicable because they focus on the WCET of
a single thread. Yet, on GPUs the result is pieced together
from thousands of threads, competing for GPU resources,
and we are not interested in the WCET of any single thread
in particular. Rather, we seek to bound the time, from when
the earliest GPU thread starts executing until all of them

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
RTNS 2014 , October 8 - 10 2014, Versailles, France
Copyright 2014 ACM 978-1-4503-2727-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2659787.2659827 .

have completed.
To that end, we undertake a measurement-based proba-

bilistic approach, based on Statistic Analysis and Extreme
Value Theory (EVT). This technique allows the derivation
of highly accurate estimates on the probability that any run
of the GPU application exceeds a respective time threshold,
even if such high execution times are not observed in any of
the measurements. It advances the state of the art because
it accurately captures the overall behaviour of the memory
subsystem. By comparison, our prior approaches [3, 4] for
deriving WCET estimates for GPU applications were opti-
mistic in their assumptions on cache misses and the mem-
ory subsystem in general. Extending them, as originally
intended, to also consider the effects of cache and memory,
was not practical for two reasons. First, due to tractability
issues, inherent in those approaches, which kicked in when
considering long-latency operations (e.g. hundreds of cy-
cles for an L1 miss). Secondly, because the exact cache ar-
chitectures and replacement policies for modern GPUs are
trade secrets, thus not openly documented. A probabilistic
measurement-based approach bypasses both hurdles.

This paper considers the NVIDIA CUDA programming
model but the main idea can also be applied to other anal-
ogous technologies (such as AMD APP).

In terms of outline, the next section offers additional back-
ground and discusses related work. Section 3 elaborates on
measurement collection and Section 4 offers background on
the statistical analysis of the measurements and on EVT,
which we use to obtain highly accurate probabilistic WCET
estimates. Section 5 discusses our experiments. Section 6
concludes.

2. BACKGROUND
The Compute Unified Device Architecture (CUDA) pro-

gramming model by NVIDIA implements the stream pro-
cessing computational paradigm on GPUs for general-purpose
computation conveniently and efficiently. In stream process-
ing, there is a set of input data (the stream) upon all of which
a series of operations (termed the kernel function; not to be
confused with operating system kernels) is performed. In
CUDA, this is implemented as numerous ultra-lightweight
identical threads (instances of the CUDA kernel) with mini-
mal or no data dependencies, designed for execution in paral-
lel. Because CUDA threads have a single-GPU-cycle context
switch, they can efficiently extract all the available potential
for parallelism. When a thread stalls, the GPU switches to
executing another one. And even if a stall takes hundreds of
cycles (e.g. to access memory), the functional units of the

Figure 1: The NVIDIA Kepler GK104 has 8 SMs.
Each SM has many CUDA cores and load/store, spe-
cial function and double precision units.

GPU can be kept almost always busy this way.
Characteristically, under CUDA, at any time, groups of

32 threads (termed warps) execute in lockstep. Namely,
the threads from the same warp (i) execute during the same
cycles as each other and (ii) execute the same kernel instruc-
tion. Although there are exceptions to this (e.g. when the
threads of a warp diverge in control flow), they are avoided
by design, when possible, for performance reasons.

2.1 On GPU architectures and CUDA
Modern GPUs are immensely parallel architectures. A

GPU (Figure 1) contains several “Streaming Multiproces-
sors” (SMs). Each SM is a complex manycore in itself, as it
includes many (i) CUDA cores, for integer and floating-point
arithmetic, (ii) “load/store” units that load data from/store
data to cache or DRAM, (iii) special function units, imple-
menting sine, cosine, square root etc in H/W and (iv) double
precision (64-bit) units.

For example the Kepler GK104 [26] has 8 SMs and sup-
ports gigabytes of global GPU memory. The SMs share 1.5
MB of L2. Each SM has (i) a very fast dedicated memory
(64 KB), divided into shared memory and L1 cache (con-
figurable as 48/16, 32/32 or 16/48 KB) and (ii) a 48 KB
read-only cache. The L1, shared among all threads on a
given SM, has register-like latency. But many aspects (e.g.
replacement policy) of this complex memory hierarchy are
not publicly documented.

At run-time, warps are bundled together in groups termed
thread blocks and each thread block is sent to one SM for
execution. Each SM has a few thread blocks assigned to it
at any time. Thread blocks do not migrate among SMs. The
CUDA engine tries to keep the processing units of each SM
busy but exactly how warps are dispatched is not publicly
documented.

2.2 Work on the timing behaviour of GPUs
Characterising the timing behaviour of such complex ar-

chitectures, with so little available information, is challeng-
ing. Nevertheless, serious efforts are made to either make
GPU computing more time predictable or to derive appro-
priate WCET analysis.

Many works have attempted to make the scheduling on the
GPU more predictable [2, 18] and provide multitasking [19]
among different GPU contexts and efficiently manage shared
resources. In [17], data transfers between CPU and GPU
are made preemptable, to reduce the related blocking times.
The GPU management infrastructure in [28] supports data
transfer and computation overlap and multi-GPU systems.
The lock-based management framework for multi-GPU sys-
tems in [11] allocates GPU resources to tasks according to
an execution cost predictor that infers costs (e.g. computa-

tion time, data transfer delay) from a few runs. Mangharam
et al. [24] discussed adaptive runtime scheduling of anytime
algorithms. In the case-study provided, the worst-case sce-
narios for GPU kernels are empirically derived by running
few experiments.

Other works seek to provide WCET analysis for GPUs.
In [3] we presented the first (to the best of our knowledge)
work aimed at computing safe upper bounds on the WCET
of a CUDA kernel. That approach was ILP-based and safely
extrapolated the WCET from that of a smaller problem in-
stance (i.e. fewer threads). However, it suffered from many
limitations: it only considered execution on a single SM, it
was not tractable with respect to longer kernels (due to con-
trol variable explosion) and crucially, the output was only
safe subject to an optimistic assumption regarding cache
misses. Therefore, we next [4] formulated an alternative
more tractable metaheuristic-based technique for estimating
the WCET. That estimate, however, was no longer provably
safe, hence only useful for soft (not hard) real-time systems.
Moreover, optimistic assumptions regarding cache misses re-
mained. In fact, our efforts, to extend [3] or [4] to account
for the effects of the memory subsystem, were unfruitful,
mainly due to (i) inherent tractability problems when mod-
eling latencies of hundreds of cycles (as in L1 misses) and
(ii) the lack of public documentation.

Betts et al. also presented [5] two techniques for esti-
mating the WCET of CUDA kernel functions. They relied
on the simulator GPGPU-sim [1], configured for NVIDIA
Fermi. The first technique (dynamic) estimates from the re-
spective high-water mark measurements the maximum “re-
lease jitter”(delay in launch, measured from the kernel launch)
and WCET (including the effects of contention for shared re-
sources, e.g., cache, GPU main memory) of the GPU warps.
The second technique (hybrid) assumes a fixed delay for
launching of each additional warp and uses static analysis
based on instrumentation point graphs annotated with exe-
cution time parameters obtained from the measurements.
This assumes thread blocks arriving in “waves” and pro-
cessed in round-robin. However, static instrumentation point
graphs tend to be pessimistic; conversely, high-water mark
times may be optimistic.

This brings us to this work, which uses measurements on
real hardware but, through Statistic Analysis and EVT, can
“predict” worst-case timing behaviour even when that is not
observable in the high-water mark times. In using measure-
ments, we also largely sidestep the lack of public knowledge
about the characteristics of the memory subsystem, which
hampered us in previous work. Next we describe this new
approach.

3. ON COLLECTING MEASUREMENTS
In the typical CUDA setup, the following sequence of ac-

tions is performed by a CUDA-C program [16].

S1: The program allocates memory on the host for the
input and output of the CUDA kernel.

S2: The program allocates1 memory on the GPU for the
input and output of the CUDA kernel.

S3: The program initiates1 the copying of the input from
host memory to GPU memory. This is normally a

1Via the high-level CUDA Run-time API or directly the
Driver.

blocking operation, unless the copied data is less than
64KB ([27], Section 3.4.5.1).

S4: The program launches the CUDA kernel. This opera-
tion is non-blocking: the driver returns control to the
CPU immediately after the launch2.

S5: The kernel executes on the GPU until completion. In
parallel, the program on the host polls on the status
of its completion.

S6: Upon completion of the kernel, the program copies1

the output of the CUDA kernel from GPU memory to
host memory.

S7: The program continues its execution on the host.

The execution time of the kernel corresponds to stage S5.
Let that be denoted as TDEV. However, the combined dura-
tion of stages S2 to S6 is also of interest, since it determines
the acceleration attained via CUDA. Let us denote that by
THOST. If determining TDEV analytically (which our earlier
work attempted) is hard, for THOST it is even more so, since
it also includes the execution of the CUDA driver and the
I/O latency for copy over the PCI-e bus. Therefore, we at-
tempt to characterise both by collecting measurements over
a sufficiently large number of runs and applying EVT.

To measure THOST we used standard Linux primitives for
reading the system time. We placed those system calls just
before S2 and at the start of S7. Accurately measuring TDEV

is harder because the GPU cannot be probed. Any instru-
mentation code added to the kernel would be executed by
all CUDA threads so it would have to be extremely light-
weight/non-intrusive for the cumulative effect on TDEV to
not be significant. Recall that TDEV is the interval from
when the first kernel instruction by some thread (warp) exe-
cutes until the last kernel instruction by some thread (warp)
is completed. The tricky part is that we cannot know a pri-
ori which warp starts to execute first and which one com-
pletes last. We deal with this as follows:

There is a special clock-register on each SM, which counts
GPU cycles. We read/record its value via manually in-
serted assembly code, at the start/end of each thread. A
naive approach would use two respective per-thread vari-
ables, start cycle and end cycle. But this would use too
much shared memory (out of the 48 KBs, at most, per SM)
or else thrash the L1 cache, significantly altering the timing
behaviour. Hence we use a single per-SM pair of start cycle
and end cycle variables (Figure 2), and leverage the fact
that execution on the GPU is in-order. The first thread to
execute, whichever that is, sets the start cycle variable. All
subsequent threads detect this (if-condition at line 1) and
avoid overwriting its value. Upon completion, all threads
write to the stop cycle variable (line 4), which means that
the last value written to it is by the latest thread to com-
plete. Then TDEV (in GPU cycles) is derived3, with p de-
noting the index of the SM, as:

TDEV = max
p
{end cycle[p]} −min

p
{start cycle[p]} (1)

2Synchronous semantics (i.e. self-suspension until the GPU-
side computation completes) can still be obtained, e.g., via
custom CPU-side programming.
3In the rare case of clock-register overflow, the above code
does not work. We detect/discard such data, offline.

// start_cycle initialised to MAXINT

//if-condition TRUE only for the earliest thread
1. if (start_cycle > CLK_REG)
2. start_cycle := CLK_REG;

3. —– (The instructions of the kernel go here...) —-

4. stop_cycle := CLK_REG; //overwritten by every thread

Figure 2: High-level overview of the measurement-
collecting assembly inserted in each GPU thread.

To apply EVT, we need such measurements from many
runs of a given CUDA kernel. We therefore developed a tool
that repeatedly (i) launches the same kernel and (ii) records
its timing measurements. To eliminate interference from
screen rendering, we switch off the windowing system en-
tirely. To guarantee the safe application of the EVT, the
number of runs must be large enough; in the order of thou-
sands, as has been demonstrated. We conservatively opted
for 105 runs, which, as expected, proved more than enough.

4. STATISTICAL ANALYSES OF EXECU-
TION TIME

Statistical estimations of worst-case execution time are
becoming popular within the real-time community, [14, 8].
They lead to the notion of probabilistic WCET (pWCET),
alternative to the deterministic WCET, as distributions of
values Cj with an associated probability of being the WCET.
Cj upper-bounds the task execution time with a probability
pj . 1 − pj is the probability for a task instance having a
bound on its execution time different than Cj .

Definition 1 (probabilistic WCET). Given Ci, the
distribution of execution time measured in a certain config-
uration/condition i, the probabilistic Worst-Case Execution
Time distribution C∗ of a task is a tight upper bound on the
execution time distribution Ci of all possible execution con-
ditions4. Hence, ∀i, C∗ is larger than or equal to Ci. In
notation: C∗ � Ci ∀i.

The total ordering among distributions is defined such that,
a distribution Cj is greater than or equal to a distribution
Ck, Cj � Ck, iff P{Cj ≤ d} ≤ P{Ck ≤ d} for any d and the
two random variables are not identically distributed (two
different distributions), [10]. The tightest possible pWCET
distribution would be the exact pWCET, which is unknown.
However, we still need to come up with a safe pWCET es-
timation, meaning a pWCET estimation C∗ that is greater
than or equal to the (unknown) exact pWCET. And the
only information we can rely on, for constructing such a
pWCET estimation is the set of measurements ({Ci}) and
the execution conditions (i) under which they were taken.

The probabilistic worst-case execution time can also be de-
fined in terms of the exceeding thresholds and the 1-Cumulative
Distribution Function (1-CDF) representation. Given a prob-
ability of exceedence p∗, C∗ is the worst-case execution time
such that P{C∗ ≥ C∗} ≤ p∗. Alternative to the pWCET
distribution, we can call minimum probabilistic worst-case
execution time the tuple 〈C∗, p∗〉. In our experiments we
consider p∗ = 10−6, p∗ = 10−9, and p∗ = 10−12.

4We use calligraphic letters to represent probability distri-
butions. Non calligraphic letters are for single values.

Measurements, when used in conjunction with statistical
approaches such as the EVT, contribute at estimating safe
pWCETs. On their own, measurements are not enough to
obtain pWCETs since they may lack completeness: through
the measurements there is no guarantee to have experienced
all the execution conditions. Nonetheless, measurements are
important for extracting observable features such as aver-
age behaviours and trends that can appear while executing
tasks. Extreme value analysis is for the statistical inference
on the tail region of a distribution function. The statistical
estimation of the pWCET makes use of the EVT for ex-
ploring rare events, wherein the WCET and its probabilistic
version pWCET should lie. In the following we state the
basics for the EVT that we apply in our framework.

Classical EVT discusses the possible limiting laws for the
maximum Mn = max{X1, X2, . . . , Xn} of n independent
identically distributed (i.i.d.)5 random variables {Xn} as n
tends to infinite6. [13].

Theorem 1 (Fisher-Tippett-Gnedenko EVT). Let
X1, X2, . . . , Xn be a sequence of independent and identically-
distributed random variables, and Mn = max{X1, . . . , Xn}.
If a sequence of pairs of real numbers an, bn exists such that
each an > 0 and

lim
n→∞

P

{
Mn − bn

an
≤ x

}
= G(x), (2)

where G is a non degenerate distribution function, then the
limit distribution G belongs to either the Gumbel, the Frechet
or the Weibull family. These can be grouped into the gener-
alised extreme value distribution.

Theorem 1 expresses the EVT theory in case of indepen-
dence among samples: the maxima of an i.i.d. sequence
converge to a Generalised Extreme Value (GEV) distribu-
tion Gξ, which admits the following Cumulative Distribution
Function (CDF):

Gξ(x) =


exp(− exp(−x)), if ξ = 0

exp
(
−(1 + ξx)

− 1
ξ

)
, if ξ 6= 0

. (3)

The GEV distribution Gξ can be of three distinct types,
characterised by ξ = 0, ξ > 0 and ξ < 0, which correspond to
the Gumbel, Fréchet and Weibull distributions, respectively.

Usually, the EVT is established for i.i.d. observations, and
previous works have linked the safety of EVT estimations to
that hypothesis. Therein, it is claimed that if both indepen-
dence and identical distribution are verified, the EVT distri-
bution tail projection can be considered as a safe pWCET
estimation, [8].

However, more recent developments showed that indepen-
dence is not a necessary hypothesis for the EVT. Leadbetter
et al. [21], Hsing [15] and Northrop [25] developed EVT for

5Readers not already familiar with the concept of indepen-
dent and identically distributed variables, may peek ahead
to Sections 4.1.1 and 4.1.2, where we formally define and
discuss these concepts.
6{Xn} is the sequence of observations; each observation re-
sults from a distribution Xn. The identical distribution hy-
pothesis assumes that all the observations follow the same
distribution, thus X1 = X2 = . . .Xn = F . In our case, both
observations and distributions refer to execution time, hence
there is equivalence between {Xn} and {Cn} as well as Xn
and C, in terms of representation.

stationary weakly dependent time series. The latter two ref-
erences also established statistical tools for use under that
assumption.

Theorem 2 (Long Range Independence EVT, [20]).
Let {Xn} be a stationary sequence such that
Mn = max{X1, . . . Xn} has a non-degenerate limiting dis-
tribution G as in

P{an(Mn − bn) ≤ x} d→ G(x), (4)

for some constants an > 0, bn. Suppose that

D(un) : |Fi1,...,ip,j1,...,jq (un)−Fi1,...,ip(un)·Fj1,...,jq (un)| ≤ αn,l,

where liml→∞limn→∞αn,l = 0, holds for all sequences un
given by un = x/an + bn, −∞ < x < ∞. Then G is one of
the three classical types: Weibull, Frechet, Gumbel.

The distributional mixing condition D(un) alone is suffi-
cient to guarantee that the central classical result concern-
ing the possible extremal types (the EVT), holds also for
stationary sequences. Both an and bn can be computed as
best-fit of the input observations. D(un) is called long-range
dependence conditions, and if satisfied it means that there
is no dependence between far away observations.

In [20] it is introduced the local dependence condition

D′(un), D′(un) : limn→∞ supn ·
∑n/k
j=2 P{X1 > un, Xj >

un} → 0, slightly more constraining than D(un), seeking to
assure the independence between close-in-time observations.
If D′(un) holds with k → ∞ and for each un = x/an + bn,
then the particular distribution type which applies is the
same as if the sequence {Xn} were i.i.d, with the same
marginal distribution function, and the same normalizing
constants an, bn may be used.

Theorem 3 (Extremal Independence EVT, [20]).
Let {Xn} be a stationary sequence with marginal distribution
function F such that Mn = max{X1, . . . Xn}, and {un} a
sequence of constants such that D(un), D′(un) hold. Let
0 ≤ τ <∞, then

P{Mn ≤ un}
d→ exp(−τ) (5)

iff

n · [1− F (un)]→ τ. (6)

Theorem 3 states that if both D(un) and D′(un) are sat-
isfied, the resulting EVT is equal to the one obtained in case
of observing independence.

Chernick [7], extending Loynes [22], showed that, if for
each τ > 0, un = un(τ) is defined to satisfy Equation (6),
under D(un) conditions alone, then any limit function for
P{Mn ≤ un(τ)} must be of the form

P{Mn ≤ un(τ)} d→ exp(−θτ), (7)

for some θ with 0 ≤ θ ≤ 1.
The parameter θ, called the extremal index of the time

series, is a measure of clustering at the extremes. It is useful
for analysing the behaviour of the extremes in the tail; a
small θ means greater clustering of the largest observations,
i.e., higher dependence between observations; a value of θ =
1 i.e., no extremal clustering, denotes independence.

Assuming C the pWCET EVT estimation in case of sta-

tionarity, and Ĉ the pWCET EVT estimation in case of inde-
pendence. Supposing that the execution time measurements

in the two cases follow the same marginal distribution, it is

C = Ĉθ with C � Ĉ, [6]. In case of independence at the ex-

tremes, θ = 1, C ≈ Ĉ, [6]. Once one of the above hypotheses
(either independence, extremal dependence, or stationarity)
is satisfied the EVT provides pWCET estimations which
are greater than or equal to the exact pWCET. In here, the
safety of pWCET EVT estimations.

In the present paper we apply these theoretical develop-
ments to the execution time analysis and safe pWCET esti-
mations. In doing so, we consider the Gumbel distribution
for EVT pWCETs, as it has been demonstrated to be the
most appropriate distribution for execution times, [8].

4.1 On the Verification of the EVT hypotheses
Hypothesis testing means to decide, from a number of ob-

servations, whether one should consider a property to be
true or not. We may never know for sure, but a statistical
test will give us guidance in making a decision. In statis-
tics we can state this problem using two hypotheses: H0

(named null hypothesis) that denotes the hypothesis that
the property is true, and H1 (namely alternative hypothe-
sis) denoting the hypothesis that the property is false. It
has to be decided whether to accept or reject the hypothesis
H0 based on a sample (set of observations). The ρ-value
is the result for hypothesis testing. ρ is the probability of
obtaining a test result at least as extreme as the one that
was actually observed, assuming that the null hypothesis is
true. Normally, ρ > 0.05 validates H0; ρ ≤ 0.05 rejects H0,
thus validates H1. Various alternative approaches exist for
calculating such an ρ-value, leading to different hypothesis
tests; we discuss, later on in this section, those ones that we
will be using.

4.1.1 Independence of Observations
In statistics, a collection of random variables is indepen-

dent (i.) if all the random variables are mutually indepen-
dent. By this, we mean whether individual observations
within the same execution trace are correlated with each
other or not. If knowing one observation tells you some-
thing about another, then the observations are dependent;
if knowing one observation tells you nothing about another,
in that case they are independent.

A test applied in [8] aims at proving that samples are
independent looking for randomness. This is called runs
test, where randomness is sought within the observed data
series by examining the frequency of “runs”; a “run” is a
series of similar responses.

In this paper we look to extend independence tests from
runs test, since randomness is not formally sufficient to ver-
ify independence. This type of independence can not be
proven or tested except for time series. Time series tests
are based on autoregression and autocorrelation. In par-
ticular, we aim at verifying stationarity, which gives more
information about the observation traces and applying it to
characterise system execution behaviour while looking for
the worst-case execution conditions.

4.1.2 Identical Distribution of Observations
In statistics, a collection of random variables is identically

distributed (i.d.) if each random variable has the same prob-
ability distribution. A common test for verifying identical
distribution in observations is the two-sample Kolmogorov-
Smirnov test: The trace of observations is divided into two

sets which are compared, to verify whether they represent
the same distribution.

4.2 Statistical Analyses
In practical applications, the independence assumption

may or may not be realistic. To test how realistic it is
on a given execution time data set, the autocorrelation can
be computed with lag plots, or a turning point test can be
performed. These are to test the relationship that exists be-
tween measured observations. We apply them in order to ex-
tract patterns and behavioural models which could describe
the observed system behaviour. In particular, we employ
autocorrelation tests together with the notion of stationar-
ity, which indirectly quantify the statistical independence
between observations.

With no means of formalism, a process is stationary if its
mean variance and autocovariance structure do not change
over time. This is what is called weak form of stationarity,
which means flat-looking observations, no trend, constant
variance over time, and no periodic fluctuations or autocor-
relation.

Autocorrelation, in a time series, is the similarity between
observations as a function of the time lag between them. In
our case, the time is given with the order of observations,
thus lags are in terms of number of observations. The sam-
ple Auto Correlation Function (ACF) is one of the most
important assessment tools for detecting data dependence
and fitting models to data. Although the model is not faced
at first, the observed data {X1, . . . , XN} are known.

An autoregressive (AR) model instead, is a representa-
tion of a type of random process. The AR model describes
the underlying stationarity model of a trace of observations
(time series): AR(0), the sequence of observations has no
dependence between the observations - white noise; AR(1),
a process where, with a positive parameter, only the previ-
ous observation in the process and the noise term contribute
to the output - very very light dependence; AR(2), a pro-
cess where the previous two observations and the noise term
contribute to the output. And so it goes on, increasing the
dependence pattern between observations.

We also use the Ljung-Box test, which looks for any signif-
icant evidence for non-zero correlations between lags. Large
ρ-values from the test suggest that the series is not station-
ary, thus there is no trend between consecutive observations;
this supports non stationarity, and thus independence.

Valuable to time series analysis is also the test called ex-
tremogram [9], where the dependence at the extremes is es-
timated. The extremogram defines an analogue of the au-
tocorrelation function, which depends only on the extreme
values in the sequence of observations.

Finally, to compare with the independence case, there is
the extremal index θ of the observations which is another
tool for measuring the dependency of extreme values. We
make use of the blocks test to compute θ, based on esti-
mators [12]. We stress that there is equivalence between
the extremogram and the extremal index, for evaluating ex-
tremal dependences, thus ultimately the EVT applicability.
For completeness we apply both, although just one of the
two would have been enough to verify extremal behaviour
of observations.

Tests such as the above allow us to conclude about the
stationarity of execution time observations and their even-
tual extremal dependence. As earlier argued, under those

circumstances it is still possible to derive safe EVT distribu-
tions, thus safe pWCET estimations. More importantly, the
stationarity helps with describing the execution behaviour
and points out to us which are the worst-case conditions
necessary, in order to safely conclude about pWCETs.

5. EXPERIMENTS
Our testbed used a Kepler GK104 with 8 SMs (Figure 1),

configured with 32KB of shared memory and 32KB of L1
each. As benchmark, we developed in CUDA a Voronoi di-
agram generator, according to the raster-coloring massively
parallel approach [23]. Informally, a Voronoi diagram for a
2D-plane and K points on it, divides the plane into tiles,
each tile consisting of the points in the plane closer to one
of the K points than to any other. For a 2D-raster, this is
formed by calculating, for every pixel, the distance to each
of the K points. Our application uses a separate thread
per pixel. Therefore, the raster size (X by Y) determines
the number of threads, whereas the number of points K de-
termines the workload of a thread. For valid comparisons
(same per-thread workload) we used K = 32 in all setups
and simply varied the number of threads. The first setup
(VOR-1) used X=Y=32 which corresponds to 1024 threads
(32 warps), the maximum thread block size in Kepler. The
other setups involved 8, 28 and 32 thread blocks of this size.
The execution times are in nsec.

5.1 Timing Analysis
The experiments made provide execution time measure-

ment traces, to be statistically tested. As we will proceed
to show, although the TDEV and THOST traces behaved
very differently, all traces, upon testing, indeed support the
conditions that permit the safe application of EVT.

Table 1 groups the numerical results of the independence
tests carried out, i.e. runs test (runs), Ljung-Box (LB),
and autoregressive (AR). These results reveal the indepen-
dence of the TDEV case; hence realistic cases could be inde-
pendent, and the EVT could be applicable with no need for
artificially induced randomicity, as made in [8] with random
replacement caches. Instead, the THOST traces are not in-
dependent, but stationary. This is due to the filtering
effects that HOST exercises, which reduce variability and
thus the independence of the observations. This stationar-
ity is present at different degrees in the 4 different traces of
THOST , but EVT is still applicable to all of them (Eq. 7).

The combination of the autocorrelation tests, the station-
ary tests and the extremogram (Figure 5) gives more ac-
curacy and completeness to the independence/stationarity
verification than just the runs test. For example, in case of
VOR-32 THOST , the runs test would have concluded about
the trace independence; in reality though, it exhibits station-
arity – and, in particular, a strong stationary relationship
(AR(22)).

Noticeably, for TDEV the AR is at most 1 indicating
very very light dependence; together with the LB test with
ρ ≥ 0.1424, thus no evidence of stationarity at all. This
allows us to confirm the independence of the observations.
With THOST , AR is larger than 11, revealing stronger de-
pendence between observations in the form of stationarity;
LB has small ρ. Crucially for the applicability of EVT, the
stronger stationarity of the THOST cases does not reflect into
dependence of extreme observations, being the exponential
trend of the ACFs with respect to lags. This is also sup-

TDEV THOST

VOR-1 runs (ρ) 0.3175 5.235e− 13
VOR-8 runs (ρ) 0.7844 < 2.2e− 16
VOR-28 runs (ρ) 0.664 1.336− 07
VOR-32 runs (ρ) 0.5288 0.6189
VOR-1 KS (ρ) 0.9987 0.267
VOR-8 KS (ρ) 0.9601 0.532
VOR-28 KS (ρ) 0.6104 0.391
VOR-32 KS (ρ) 0.727811 0.5861
VOR-1 LB (ρ) 0.7407 < 2.2e− 16
VOR-8 LB (ρ) 0.1424 4.622e− 07
VOR-28 LB (ρ) 0.9205 < 2.2e− 16
VOR-32 LB (ρ) 0.9715 6.988e− 05
VOR-1 AR 1 26
VOR-8 AR 0 12
VOR-28 AR 0 22
VOR-32 AR 0 22
VOR-1 θ 1 1
VOR-8 θ 0.992 1
VOR-28 θ 1 1
VOR-32 θ 1 0.994

Table 1: Independence, stationarity and extremal
tests.

ported by the extremogram results, in Figure 5. In there, the
extremogram estimation ρ̂(h) varying lag h is represented.
Small ρ̂-values i.e., less than 0.05 suggest that the series
has no dependences at the extremes. The extremal index θ
confirms that, hence the resulting EVT pWCET estimation
for THOST is equal to the one in case of full independence,
Theorem 3, being θ ≈ 1.

The trends we could find in the measurement-bases distri-
butions through the stationarity tests, therefore give us sup-
port to further statistically investigate measurements seek-
ing the worst-case execution conditions.

The identical distribution, Kolmogorov-Smirnov (KS) test,
is verified for all traces, with ρ > 0.05. It suffices to check if
the observations follow the same distribution: indeed, this
is always the case whenever the observations are taken with
the same execution conditions.

To further comment on the different behaviour of TDEV

and THOST cases, notice the differences in Figure 3 and Fig-
ure 4. For TDEV , the non stationarity (LB test and ACF
residuals) is clearly explained with the trace of the standard-
ised residuals: there is no evident pattern, thus it resembles
white noise. In case of THOST , an execution pattern ap-
pears, more evident with VOR-32 THOST . The pattern is
not that strong since ACF residuals and Ljung-Box outline
stationarity until leg 5, VOR-32 THOST . Hence, it is not a
strong stationarity, but stationarity is present anyway. With
THOST we can see that there is no randomicity anymore, ex-
cept for VOR-32 THOST . Moreover, execution peaks with a
certain periodicity appear. Conversely, in case of TDEV the
appearances of peaks do not exhibit any periodic trend.

Seeking the worst case by investigating different execu-
tion conditions, we can see how the VOR-32, unsurpris-
ingly, represents the worst-case among the ones considered
(VOR-1, VOR-8, VOR-28, and VOR-32), being the case
with larger observations. In Figure 6 we have represented
the measurement-based distributions as Cumulative Distri-
bution Functions (CDFs). In there we can also see that there
is no measurable difference between VOR-28 and VOR-32 at
both TDEV and THOST cases. In future work we will eval-

Standardized Residuals

Time

0 10000 20000 30000 40000 50000

−
2

0
2

4
6

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of Residuals

● ● ●

●
●

●
●

●
●

●

2 4 6 8 10

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p
va

lu
e

(a) VOR-1 TDEV

Standardized Residuals

Time

0 10000 20000 30000 40000 50000

0
5

10

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of Residuals

●

●

●

●
●

●

●
●

● ●

2 4 6 8 10

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p
va

lu
e

(b) VOR-32 TDEV

Figure 3: Statistics from the autocorrelation func-
tion (ACF) and the Ljung-Box statistics. VOR-1
and VOR-32 TDEV compared.

uate more execution conditions and the applicability of the
statistical analysis to prove worst-cases. For example, by
also considering different shared memory/L1 configurations
(16/48 or 48/16 KB) rather than just different input sizes.

5.2 From the Measurements to the pWCET
Finally we apply the EVT, in particular the block maxima

version of the EVT [8]. In this paper we do not give any de-
tail about the complexity of the block maxima EVT due to
parameter decision (notably the block size), and we consider
a block size of 25 observations. The application of the EVT

Standardized Residuals

Time

0 10000 20000 30000 40000 50000

0
10

20
30

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of Residuals

●

● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p
va

lu
e

(a) VOR-1 THOST

Standardized Residuals

Time

0 10000 20000 30000 40000 50000

0
5

15
25

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of Residuals

●

●
● ●

●

● ● ●
● ●

2 4 6 8 10

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p
va

lu
e

(b) VOR-32 THOST

Figure 4: Statistics from the autocorrelation func-
tion (ACF) and the Ljung-Box statistics. VOR-1
and VOR-32 THOST compared.

is meant to compare the pWCETs of the different execution
conditions. Figures 7 and 8 illustrate the differences accu-
racy in between VOR-x cases. The CDF representation is
applied to the EVT pWCET distribution estimations. Al-
though the real pWCET is not known, we can still reason
about the accuracy of the pWCET estimations. For VOR-1
TDEV and VOR-8 TDEV , the EVT is closer to the measure-
ments while for VOR-28 TDEV and VOR-32 TDEV it is less
close. This is due to the shape of the measurement distri-
butions. Wider distributions (larger execution variability)
means that rare events could be far away from the average

1 2 5 10 20

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Lags

E
xt

re
m

og
ra

m

DEV
HOST

(a) VOR-1

1 2 5 10 20

0.
00

0.
01

0.
02

0.
03

0.
04

Lags

E
xt

re
m

og
ra

m

DEV
HOST

(b) VOR-8

1 2 5 10 20

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Lags

E
xt

re
m

og
ra

m

DEV
HOST

(c) VOR-28

1 2 5 10 20

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Lags

E
xt

re
m

og
ra

m

DEV
HOST

(d) VOR-32

Figure 5: Measurement extremogram up to 20 ob-
servations lag. TDEV and THOST compared.

10−6 10−9 10−12

VOR-1 TDEV 12083 12278 12474
VOR-8 TDEV 20600 20989 21248

VOR-28 TDEV 80061 104613 128051
VOR-32 TDEV 88252 115189 142510
VOR-1 THOST 6697335 9283349 12127964
VOR-8 THOST 6561744 9438101 12053516

VOR-28 THOST 8007463 11350140 14692817
VOR-32 THOST 8985862 12812711 16345188

Table 2: EVT estimates for TDEV and THOST at 10−6,
10−9, and 10−12 probability thresholds.

behaviour. The EVT has to consider that in order to be safe:
possibly much larger values than the measured ones have to
be included. For the THOST cases, the measured distribu-
tions are consistently even wider, due to larger peaks on the
execution times and two different peaks, visible in the resid-
ual representation of Figure 4. This makes the measured
distributions resemble bi-variate distributions, Figure 8, and
motivates the smaller estimation accuracy from the EVT.
Table 2 shows the EVT estimations of the pWCET values
at probability 10−6, 10−9, and 10−12 for both TDEV and
THOST cases; the probabilistic worst-case execution times
are in ns. Those values are exceeding thresholds C, from the
1-CDF representation, and recall that the associated prob-
abilities p are the probabilities of exceeding that threshold,
p(C) = P{C∗ > C} being C∗ the EVT pWCET distribution
estimation. These results illustrate the pWCET variation at
different probability thresholds. To explain the large differ-
ences of the VOR-28 and VOR-32 TDEV EVT estimations
with respect to their measurements, again, we need to con-

20000 30000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

VOR−1
VOR−8
VOR−28
VOR−32

(a) TDEV

1e+06 2e+06 5e+06 1e+07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

VOR−1
VOR−8
VOR−28
VOR−32

(b) THOST

Figure 6: Measurements for all the VORONOI
cases. CDF representation of the distributions.

sider the variability of the measurement distributions: in
order to be safe, with large variabilities and stationarity,
the EVT looses accuracy. With narrow distributions like
VOR-1 and VOR-8, the EVT can better model the mea-
surements; the resulting pWCET estimations are closer to
the observed execution times. For THOST , the poorest ac-
curacy is due to the quality of the measured distribution.
We also notice that the exceeding values for THOST for all
VOR-x cases, for the same probability threshold, are of sim-
ilar magnitude at each other. We conclude, empirically, that
this is because THOST is dominated by the one-off costs of
the CUDA driver execution and bus transfer launch, rather

11500 12000 12500 13000 14000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

Measured
EVT

(a) VOR-1 TDEV

18000 19000 21000 23000 25000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

Measured
EVT

(b) VOR-8 TDEV

30000 40000 50000 60000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

Measured
EVT

(c) VOR-28 TDEV

30000 40000 50000 60000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

Measured
EVT

(d) VOR-32 TDEV

Figure 7: EVT applied to VOR-1, VOR-8, VOR-28
and VOR-32 TDEV . Comparison of measurements
vs EVT, CDF representations.

1e+06 2e+06 5e+06 1e+07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

Measured
EVT

(a) VOR-1 THOST

1e+06 2e+06 5e+06 1e+07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

Measured
EVT

(b) VOR-8 THOST

1e+06 2e+06 5e+06 1e+07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

Measured
EVT

(c) VOR-28 THOST

1e+06 2e+06 5e+06 1e+07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

Measured
EVT

(d) VOR-32 THOST

Figure 8: EVT applied to VOR-1, VOR-8, VOR-28
and VOR-32 THOST . Comparison of measurements
vs EVT, CDF representations.

than the size of the problem instance (number of thread
blocks). Indeed, THOST � TDEV in our experiments.

Figure 9 is to give informal evidence to EVT pWCET dif-

2e+04 5e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

VOR−1
VOR−8
VOR−28
VOR−32

(a) TDEV

1e+06 2e+06 5e+06 1e+07 2e+07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Execution time (ns)

P
ro

ba
bi

lit
y

VOR−1
VOR−8
VOR−28
VOR−32

(b) THOST

Figure 9: CDF EVT distributions for TDEV , THOST .

ferences. Although the EVT provides the pWCET from a
set of measurements C, alone it is not enough to conclude
about the task pWCET in any possible execution condi-
tion. Since the pWCET estimates for VOR-28 and VOR-32
(the cases with more thread blocks) are not inferable from
those of VOR-1 and VOR-8, it is necessary to include the
worst-case execution condition (in terms of thread blocks)
in order to guarantee safe pWCET estimations C∗. Among
the measurements made, VOR-32 is the worst-case for both
TDEV and THOST . The EVT statistical estimation out of
the VOR-32 can provide the safety guarantee that real-time
analyses require upper-bounding the pWCET estimation for

all the other measurements.
A few interesting observations on Table 2: (1) the gap be-

tween VOR-1 (1 thread block on 1 SM) and VOR-8 (8 thread
blocks in parallel, on different SMs) quantifies the effect of
contention across SMs for L2 and GPU main memory; (2)
unlike the measured values, the EVT for VOR-8 and VOR-
32 for a given probability, does not scale linearly with the
thread blocks; (3) the almost identical VOR-28 and VOR-32
pWCET estimations are evidence of a balanced thread block
assignment to SMs; the in VOR-28 (where some SMs get 3
and some get 4 thread blocks) is determined by those SMs
with 4 thread blocks (same as all SMs in VOR-32).

6. CONCLUSIONS
Through this work we demonstrated, for the first time,

that it is possible to apply a pWCET analysis approach
based on measurements, statistic analysis, and EVT to par-
allel applications running on GPUs. We have proficiently
extended applicability of EVT to less constraining hypothe-
ses than independence. And that provides a way for obtain-
ing accurate WCET estimates, for the desired confidence
level, despite the lack of detailed public documentation on
the GPU’s memory subsystem and its internal scheduling.

Acknowledgements:
Work partially supported by National Funds through FCT (Portuguese Foun-

dation for Science and Technology) and by ERDF (European Regional Devel-

opment Fund) through COMPETE (Operational Programme ’Thematic Factors

of Competitiveness’), within projects ref. FCOMP-01-0124-FEDER-037281 (CIS-

TER) and FCOMP-01-0124-FEDER-020447 (REGAIN); by FCT and the EU ARTEMIS

JU funding, within project ARTEMIS/0001/2013, JU grant nr. 621429 (EMC2);

by FCT and by ESF (European Social Fund) through POPH (Portuguese Human

Potential Operational Program), under PhD grant SFRH/BD/82069/2011.

7. REFERENCES
[1] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and

T. M. Aamodt. Analyzing CUDA workloads using a
detailed GPU simulator. In Proc. IEEE ISPASS, 2009.

[2] M. Bautin, A. Dwarakinath, and T. Chiueh. Graphics
Engine Resource Management. In Proc. 15th
ACM/SPIE MMCN, 2008.

[3] K. Berezovskyi, K. Bletsas, and B. Andersson.
Makespan computation for GPU threads running on a
single streaming multiprocessor. In Proc. 24th
ECRTS, pages 277–286, 2012.

[4] K. Berezovskyi, K. Bletsas, and S. M. Petters. Faster
makespan estimation for GPU threads on a single
streaming multiprocessor. In Proc. ETFA, 2013.

[5] A. Betts and A. F. Donaldson. Estimating the WCET
of GPU-accelerated applications using hybrid analysis.
In Proc. 25th ECRTS, pages 193–202, 2013.

[6] V. Chavez-Demoulin and A. Davison. Modelling time
series extremes. REVSTAT, 10(1), 2012.

[7] M. R. Chernick. A limit theorem for the maximum of
autoregressive processes with uniform marginal
distributions. The Annals of Probability, 9(1):145–149,
02 1981.

[8] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo,
T. Vardanega, L. Kosmidis, J. Abella, E. Mezzeti,
E. Quinones, and F. J. Cazorla. Measurement-Based
Probabilistic Timing Analysis for Multi-path
Programs. In Proc. 23nd ECRTS, 2012.

[9] R. A. Davis and T. Mikosch. The extremogram: A
correlogram for extreme events. Bernoulli Society for
Mathematical Statistics and Probability, 2009.

[10] J. Dı́az, D. Garcia, K. Kim, C. Lee, L. Bello, L. J.M.,
and O. Mirabella. Stochastic analysis of periodic
real-time systems. In 23rd RTSS, pages 289–300, 2002.

[11] G. Elliott, B. Ward, and J. Anderson. GPUSync:
Architecture-aware management of GPUs for
predictable multi-GPU real-time systems. In Proc.
34th IEEE RTSS, pages 33–44, 2013.

[12] P. Embrechts, T. Mikosch, and C. Klüppelberg.
Modelling Extremal Events: For Insurance and
Finance. Springer-Verlag, London, UK, UK, 1997.

[13] E. Gumbel. Statistics of Extremes. Columbia
University Press, 1958.

[14] J. Hansen, S. Hissam, and G. A. Moreno.
Statistical-based wcet estimation and validation. In
the 9th International Workshop on Worst-Case
Execution Time (WCET) Analysis, 2009.

[15] T. Hsing. On tail index estimation using dependent
data. The Annals of Statistics, 1991.

[16] S. Kato. Implementing open-source CUDA runtime.
http://www.ertl.jp/˜shinpei/papers/pro13.pdf, 2013.

[17] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar,
Y. Ishikawa, and R. Rajkumar. RGEM: A responsive
GPGPU execution model for runtime engines. In Proc.
32nd IEEE RTSS, pages 57–66, 2011.

[18] S. Kato, K. Lakshmanan, R. Rajkumar, and
Y. Ishikawa. Timegraph: GPU scheduling for
real-time multi-tasking environments. In Proc.
USENIX ATC, page 17, 2011.

[19] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt.
Gdev: First-class GPU resource management in the
operating system. In Proc. USENIX ATC, 2012.

[20] M. Leadbetter. Extremes and local dependence in
stationary sequences. Zeitschrift für Wahrschein-
lichkeitstheorie und Verwandte Gebiete, 65(2), 1983.

[21] M. R. Leadbetter, G. Lindgren, and H. Rootzén.
Extremes and Related Properties of Random Sequences
and Processes. Springer-Verlag, 1983.

[22] R. M. Loynes. Extreme values in uniformly mixing
stationary stochastic processes. The Annals of
Mathematical Statistics, 36(3):993–999, 06 1965.

[23] I. Majdandzic, C. Trefftz, and G. Wolffe. Computation
of Voronoi diagrams using a graphics processing unit.
In Proc. IEEE Int. Conf. Electro/Information
Technology (EIT), pages 437–441, 2008.

[24] R. Mangharam and A. A. Saba. Anytime algorithms
for GPU architectures. In Proceedings of the 32nd
IEEE Real-Time Systems Symposium (RTSS), 2011.

[25] P. Northrop. Semiparametric estimation of the
extremal index using block maxima. Technical report,
Dept of Statistical Science, UCL, 2005.

[26] NVIDIA Corp. NVIDIA’s next generation CUDA
compute architecture: Kepler GK110.
http://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf,
2012.

[27] NVIDIA Corp. CUDA Toolkit Documentation.
http://docs.nvidia.com/cuda/index.html, 2014.

[28] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. Ptask: Operating system abstractions to
manage GPUs as compute devices. In Proc. 23rd ACM
Symp. on Operating Systems Principles, 2011.

