
! 













!"#$%&'&()#*)#+#,-.&/01&()*+*2*3&+*&45-26+-&

+7-&8'+'9'"-&:;-)'+#*$&<*#$&#$&=-+>*)?-.&

4@9-..-.&1*@;6+-)&AB"+-@"&


&

&

&

"""#$%&&'(#)*+,#),,#,-!

.+/$0)/'1!2+,3&-!

4522678.289::;:<!

=+&*)30>!!

?'-+>!:;89@8A:9:

!"#)$&0$.-)""*$&

=6$*&(-)-#)'&

4.6').*&C*D')&

E#3#;-&('27-2*&



.+/$0)/'1!2+,3&-!4522678.289::;:<! 5*)0B!'!C&)3&)-)D+E!F6G!C&3-3/31!-3!HI+/%-+!-$+!?'-'J'*+!K,+&'-)30!L3)0!)0!

M!NCC!4%&&'(O!2+*+'&/$!P&3%,
"""#$%&&'(#)*+,#),,#,-! ! 

!&
























              

          






Using a Prioritized MAC Protocol to Execute the
Database Operation Join in Networked Embedded

Computer Systems
Björn Andersson, Nuno Pereira, Eduardo Tovar, and Filipe Pacheco

CISTER/IPP-Hurray Research Unit at the Polytechnic Institute of Porto
Email: bandersson@dei.isep.ipp.pt, nap@isep.ipp.pt, emt@dei.isep.ipp.pt, ffp@isep.ipp.pt

Abstract—Database query languages on relations (for example
SQL) make it possible to join two relations. This operation is very
common in desktop/server database systems but unfortunately
query processing systems in networked embedded computer
systems currently do not support this operation; specifically,
the query processing systems TAG, TinyDB, Cougar do not
support this. We show how a prioritized medium access control
(MAC) protocol can be used to efficiently execute the database
operation join for networked embedded computer systems where
all computer nodes are in a single broadcast domain.

I. INTRODUCTION

Embedded computers are increasingly networked (through
wired or wireless medium) in order to let the sensor reading
acquired by one computer node be known to other computer
nodes. This increases the number of sensor readings that a
computer node knows; hence it improves the perception a
computer node has of the physical world which consequently
improves the way a computer node can control the physical
world.

It is possible to share raw sensor readings between com-
puter nodes. Users (human users or application software)
are typically not interested in raw sensor readings however;
they are instead interested in aggregate quantities of sensor
readings, for example MIN or MAX or AVERAGE of sensor
readings or a selection of sensor readings. The research
community of wireless sensor networks (WSN) has embraced
the view of a networked embedded computer system as a
query processing system of sensor readings. The community
has developed a family of query processing systems (TAG
[1], TinyDB [2], Cougar [3] are the most well-known) which
allows users to pose queries in an SQL-like language. The
use of such a query system makes it possible to reduce the
number of transmitted messages thanks to the use of in-
network processing (a computer node does not simply forward
a received message; the node performs a computation based
on the data payload of many received messages and then
transmits the result of the computation in a single message).
This reduction in the number of transmitted messages leads to
lower energy consumption (and hence improved longevity for
battery-operated computer nodes).

We believe that a query processing system is
potentially of value, not only for WSNs but also for
networked embedded computer systems in general. For

example, an automotive embedded computer system
may be interested in the query select wheel_id,
rotation_speed, breaking_force from wheel
where wheel.skidding=true. It is currently not
obvious which query language a query processing system
for networked embedded computer systems should use. A
good starting point however is to give networked embedded
systems the capability to execute queries in the same query
language as most desktops/servers use, and this is SQL [4].
Unfortunately, SQL processing systems for WSN (TAG [1],
TinyDB [2], Cougar [3]) suffers from two drawbacks:

D1. They do not support join operations something that
normal SQL engines do. (A join query ”links” two
relations together and hence creates a single relation.)

D2. The execution of queries is slow in networks where
all sensor nodes are in a single broadcast domain, that
is where a single broadcast transmission reaches all
computer nodes but no two broadcast transmissions can
be made simultaneously (this is the case for a densely
deployed sensor network or a set of computer nodes
sharing a bus, for example a CAN bus [5]).

Recent research has shown that dominance protocols, a class
of prioritized medium access control (MAC) protocol with
a very large number of priorities, can be used to efficiently
execute some queries. MIN [6] of sensor readings can be com-
puted because each sensor node can request to transmit with
the priority of the request being the value of the sensor reading
and since the MAC protocol elects the computer node with
the smallest priority number and makes this number available
to all computer nodes, it is possible for all computer nodes
to know the minimum sensor reading. Other quantities can
be computed as well; MAX [6] of sensor readings, COUNT
[7] and also obtaining an interpolation of sensor readings [6].
Common for these algorithms is that the time-complexity of
these algorithms does not depend on the number of sensor
nodes yet every sensor node impacts the result. Unfortunately,
this type of operation for query processing using a prioritized
MAC protocol is currently not yet able to execute join queries.

Therefore, in this paper, we present a simple algorithm
for executing join queries in networked embedded computer
systems. The algorithm uses a prioritized MAC protocol in
order to execute efficiently. Our algorithm for joining has the

(a) Obtaining Aggregate Quantities in a SBD (no Parallel Transmissions). (b) Obtaining Aggregate Quantities in SBD by Exploiting a Prioritized MAC

Fig. 1. Motivating Example: How to obtain aggregate quantities when all nodes are in a single broadcast domain (SBD). (a) Possible solution for the example
application using a TDMA-like MAC; (b) Possible solution for the example application exploiting a prioritized MAC protocol.

prominent features that (i) it allows tuples of a relation to be
stored on different computer nodes and (ii) it does not require
that tuples are pre-sorted and it does not require any indices.

The remainder of this paper is organized as follows. Sec-
tion II gives preliminaries, that is, the main idea of how a
prioritized MAC protocol can be used for computations and
also the system model we will use. Section III gives a back-
ground on relational databases and join operations. Section IV
presents our new algorithm. Section V gives conclusions and
future work.

II. PRELIMINARIES

The basic premise for this work is the use of a prioritized
MAC protocol. This implies that the MAC protocol assures
that out of all nodes contending for the medium at a given mo-
ment, the one(s) with the highest priority gain access to it. This
is inspired by Dominance/Binary-Countdown protocols [8]. In
such protocols, messages are assigned unique priorities, and
before nodes try to transmit they perform a contention reso-
lution phase named arbitration such that the node requesting
to transmit the highest-priority message succeeds. As a result
of the contention for the medium, all participating nodes will
have knowledge of the winner’s priority.

The CAN bus [5] is an example of a technology that
offers such a MAC behavior. It is used in a wide range of
applications, ranging from vehicles to factory automation (the
reader is referred to [9] for more examples of application fields
and figures about the use of CAN technologies). In [6], the
authors illustrate that CAN-enabled platforms can be used to
compute various aggregate quantities.

The WiDom protocol extends the Dominance protocols to
wireless networks consisting of single broadcast domain [10].
Given the growing importance of wireless sensor networks,
this extension is significant. Later, that work was general-
ized to multiple broadcast domains [11]. It is important to
note, however, that the implementations of WiDom presented
in [10], [11] introduce a significant overhead. To a large extent,
this overhead is due to large switching time of transceiver’s
transmission and reception modes and to the time needed to
perform carrier sensing. This problem was addressed suc-
cessfully in [12] by designing an hardware platform that
implements WiDom with a low overhead.

WiDom has also been applied to compute aggregate values
of sensor data in multi-hop wireless sensor networks [13].
In this case, the algorithm exhibits a time complexity that
depends on the network diameter and on the range of sensor
reading values.

The focus of this paper is on exploiting a prioritized MAC
protocol for efficiently computing join of two relations. A
key idea in the design of such an algorithm is the use of
a prioritized MAC protocol for performing computations; this
is explained next.

A. The Main Idea

The problem of performing computations in a single broad-
cast domain can be solved with a naı̈ve algorithm: every
node broadcasts its sensor reading sequentially. Hence, all
nodes know all sensor readings and then they can obtain the
aggregated quantity. This has the drawback that in a broadcast
domain with m nodes, at least m broadcasts are required to

be performed. Considering a network designed for m ≥ 100,
the naı̈ve approach can be inefficient; it causes a large delay.

Let us consider the simple application scenario as depicted
in Figure 1a, where a node (node N1) needs to know the
minimum (MIN) temperature reading among its neighbors. Let
us assume that no other node attempts to access the medium
before this node. A naı̈ve approach would imply that N1

broadcasts a request to all its neighbors and then N1 would
wait for the corresponding replies from all of them. As a
simplification, assume that nodes orderly access the medium
in a time division multiple access (TDMA) fashion, and that
the initiator node knows the number of neighbor nodes. Then,
N1 can derive a waiting timeout for replies based on this
knowledge. Clearly, with this approach, the execution time
depends on the number of neighbor nodes (m).

Consider now that instead of using their priorities to ac-
cess the medium, nodes use the value of its sensor reading
as priority. Assume that the range of the analog to digital
converters (ADC) on the nodes is known, and that the MAC
protocol can, at least, represent as many priority levels. This
assumption typically holds since ADC tend to have a data
width of 8, 10, 12 or 16-bit while the CAN bus offers up to
29 priority bits. This alternative would allow an approach as
depicted in Figure 1b. With such an approach, to obtain the
minimum temperature among its neighbors, node N1 needs to
perform a broadcast request that will trigger all its neighbors
to contend for the medium using the prioritized MAC protocol.
If neighbors access the medium using the value of their
temperature reading as the priority, the priority winning the
contention for the medium will be the minimum temperature
reading. With this scheme, more than one node can win the
contention for the medium. But, considering that at the end
of the arbitration the priority of the winner is known to all
nodes, no more information needs to be transmitted by the
winning node. In this scenario, the time to obtain the minimum
temperature reading only depends on the time to perform the
contention for the medium, not on m. If, for example, one
wishes that the winning node transmits information (such as
its location) in the data packet, then one can code the priority
of the nodes by adding a unique number (for example, the
node ID) in the least significant bits, such that priorities will
be unique.

A similar approach can be used to obtain the maximum
(MAX) temperature reading. In that case, instead of directly
coding the priority with the temperature reading, nodes will
use the bitwise negation of the temperature reading as the
priority. Upon completion of the medium access contention,
given the winning priority, nodes perform bitwise negation
again to know the maximum temperature value.

MIN and MAX are just two simple and rather obvious
examples of how aggregate quantities can be obtained with a
minimum message complexity (and therefore time complexity)
if message priorities are dynamically assigned at runtime upon
the values of the sensed quantity.

In Section III we will show how this technique of using a
prioritized MAC protocol for computations can be used for

performing a join of two relations.

B. System Model

The network consists of m nodes that take sensor readings
where a node is given a unique identifier in the range 1..m.
MAXNNODES denotes an upper bound on m and we assume
that MAXNNODES is known by the designer of the system
before run-time. Nodes do not have a shared memory and all
data variables are local to each node.

Each node has a transceiver and is able to transmit to or
receive from a single channel. Every node has an implemen-
tation of a prioritized MAC protocol with the characteristics
as described earlier. Nodes perform requests to transmit, and
each transmission request has an associated priority. Priorities
are integers in the range [0, MAXP], where lower numbers
correspond to higher priorities. Let NPRIOBITS denote the
number of priority bits. This parameter has the same value
for all nodes. Since NPRIOBITS is used to denote the number
of bits used to represent the priority, the priority is a number
in the range of 0 to 2NPRIOBITS − 1. Clearly, MAXP =
2NPRIOBITS − 1.

A node can request to transmit an empty packet; that is,
a node can request to the MAC protocol to perform the
contention for the medium, but not send any data. This is
clarified later in this section. All nodes share a single reliable
broadcast domain.

A program on a node can access the communication system
via the following interface. The send system call takes two
parameters, one describing the priority of the packet and
another one describing the data to be transmitted. If a node
calling send wins the contention, then it transmits its packet
and the program making the call unblocks. If a node calling
send loses the contention, then it waits until the contention
resolution phase has finished and the winner has transmitted
its packet (assuming that the winner did not send an empty
packet). Then, the node contends for the channel again. The
system call send blocks until it has won the contention and
transmitted a packet. The function send_empty takes only
one parameter, which is a priority and causes the node only
to perform the contention but not to send any data after the
contention. In addition, when the contention is over (regardless
of whether the node wins or loses), the function send_empty
gives the control back to the application and returns the
priority of the winner.

The system call send_and_rcv takes two parameters,
priority and data to be transmitted. The contention is per-
formed with the given priority and then the data is transmitted
if the node wins. Regardless of whether the node wins or loses,
the system call returns the priority and data transmitted by the
winner and then unblocks the application.

We consider a set of relations {R1,R2,. . .,Rn}. A relation
is comprised of a set of components (which describe the type
of data in the relation) and tuples which describe the actual
data. Figure 2a, Figure 2b and Figure 2c show an example; a
set of three relations. X1 is a component in the relation Areas
and <1,100,100,110,110> is a tuple in the relation Areas.

Relation name: Areas
AreaId X1 Y1 X2 Y2

1 100 100 110 110
2 100 110 110 120

(a) The relation: Areas

Relation name: TemperatureSensorReadings
AreaId Temperature Time

1 28 July 7, 2010, 14h21
1 30 July 7, 2010, 14h22
2 19 July 7, 2010, 14h20

(b) The relation: TemperatureSensorReadings

Relation name: HumiditySensorReadings
AreaId Humidity Time

1 55 July 7, 2010, 14h21
1 53 July 7, 2010, 14h22
2 40 July 7, 2010, 14h20
(c) The relation: HumiditySensorReadings

The relation generated by joining Areas and TemperatureSensorReadings on the component AreaId
X1 Y1 X2 Y2 Temperature Time

100 100 110 110 28 July 7, 2010, 14h21
100 100 110 110 30 July 7, 2010, 14h22
100 110 110 120 19 July 7, 2010, 14h20

(d) The relation generated by joining Areas and TemperatureSensorReadings on the component AreaId

Fig. 2. Figure (a)-(c) shows examples of relations. Figure (d) shows the result of joining Areas and TemperatureSensorReadings on the component AreaId.

1. Sort R with Y as the sort key.
2. Sort S similarly.
3. Merge the sorted R and S. We use only two buffers: one for the current block of R and the other for the current block of S.

The following steps are done repeatedly:
(a) Find the least value y of the join attributes Y that is currently at the front of the blocks for R and S.
(b) If y does not appear at the front of other relations, then remove the tuple(s) with sort key y.
(c) Otherwise, identify all the tuples from both relations having sort key y. If necessary, read blocks from the sorted R and/or S,

until we are sure there are no more ys in either relation. As many as M buffers are available for this purpose.
(d) Output all the tuples that can be formed by joining tuples from R and S that have a common Y -value y.
(e) If either relation has no more unconsidered tuples in main memory, reload the buffer for that relation.

Fig. 3. A simple sort-based join algorithm for joining R(X ,Y) and S(Y ,Z). This pseudo-code is taken from page 728 in [14]). M denotes the number of
tuples per (disk) block.

We use the notation R(X ,Y) to mean that the relation R is
comprised of the component X and the component Y . We
also use R(X ,Y) to mean that the relation R is comprised of
a set of components X and a set of components Y such that
X ∩ Y = ∅.

We are interested in obtaining the result of joining two
relations on a certain component. The joining of two relations
perform the Cartesian product of all tuples of one relation
with all tuples in another relation and then eliminates those
resulting tuples where the components on which the join was
made on does not match. Figure 2d shows an example of a join
operation based on the relations in Figure 2a and Figure 2b.

We assume that all computer nodes know the components of
the relations. We also assume that a tuple is stored in exactly
one computer node (that is no duplicates on different computer

nodes) and it is not the case that different pieces of a tuple are
stored on different computer nodes. We make no assumptions
on where the tuples are stored however. As an illustration, it
is possible that the two tuples in the relation Areas are stored
on different computer nodes.

III. EXECUTION OF JOINS IN TRADITIONAL DATABASE

SYSTEMS

Traditional database systems rely heavily on join operations.
A straightforward way to join relation R(X ,Y) with S(Y ,Z)
is as follows:

FOR each tuple s in S DO
FOR each tuple r in R DO

IF r and s join to make a tuple t THEN
output t

1. currenty := min(y: y ∈ R.Y)
2. if no value is obtained in step 1 then terminate the algorithm end if
3. currenty := min(y: y ∈ S.Y and y ≥ currenty)
4. if no value is obtained in step 3 then terminate the algorithm end if
5. Each node Ni creates the set of tuples in R that are stored on Ni and which have the value of Y being currenty.

Let currentTuplesofRi denote this set on node Ni.
6. Each node Ni creates the set of tuples in S that are stored on Ni and which have the value of Y being currenty.

Let currentTuplesofSi denote this set on node Ni.
7. for each node Ni: remainingcurrentTuplesofRi := current TuplesofRi

8. while there exists a node Ni such that remainingcurrentTuplesofRi #= ∅ do
9. select an arbitrary node Ni with remainingcurrentTuplesofRi #= ∅ and in this node Ni,

select an arbitrary tuple in remainingcurrentTuplesofRi. Let currenttupleR denote this tuple.
10. for each node Ni: remainingcurrentTuplesofSi := currentTuplesofSi

11. while there exists a node Ni such that remainingcurrentTuplesofSi #= ∅ do
12. select an arbitrary node Ni with remainingcurrentTuplesofSi #= ∅ and in this node Ni,

select an arbitrary tuple in remainingcurrentTuplesofSi. Let currenttupleS denote this tuple.
13. the node that stores currenttupleR should broadcast this tuple to all computer nodes receive it.
14. the node that stores currenttupleS should broadcast this tuple to all computer nodes receive it.

– note that the broadcasts on line 13 and line 14 form a single tuple; this single tuple is one of the tuples in the result of the join.
15. for the node that stores currenttupleS, remainingcurrentTuplesofSi := remainingcurrentTuplesofSi \ { currenttupleS }
16. end while
17. for the node that stores currenttupleR, remainingcurrentTuplesofRi := remainingcurrentTuplesofRi \ { currenttupleR }
18. end while
19. currenty := min(y: y ∈ R.Y and y > currenty)
20. if no value is obtained in step 19 then terminate the algorithm end if
21. currenty := min(y: y ∈ S.Y and y ≥ currenty)
22. if no value is obtained in step 21 then terminate the algorithm end if
23. go to step 5.

Fig. 4. The new algorithm for joining.

The research literature in traditional database systems have
focused on executing join operations faster however; in partic-
ular by reducing the number of disk operations. Approaches
that are typically used involve (i) clustering (storing those
tuples that will be accessed consecutively on the same disk
block), (ii) indexing data structures and (iii) sorting before
executing the join. The two former do not work in our setting
because we assume that only the computer node that stores a
tuple knows its location. The latter could be used in our setting
but sorting data that is spread out on different computer nodes
is costly. In order to design a good scheme for joining relations
however it is valuable to understand the simple sort-based join
algorithm. Figure 3 shows this.

IV. NEW ALGORITHM

The algorithm in Figure 3 assumes that the relations are
sorted and this makes it possible to quickly execute the step
3(a), finding the least value y of the join attributes Y that is
currently at the front of the blocks for R and S. But sorting
is not easy to achieve efficiently in networked embedded
computer systems where the tuples may be located on different
computer nodes. Note that the find operation can however be
performed by finding the minimum value of y which has not
yet been seen and for this purpose, our MIN calculation from
Section ?? comes in handy. We end up with the new algorithm
as shown in Figure 4.

Although this algorithm is much longer than the algorithm
in Figure 3, it has the benefit that it can be executed quickly
in networked embedded systems. In particular, we note the

following about the algorithm in Figure 4:
1) Step 1 can be executed with a prioritized MAC

protocol as we discussed in Section ??. Specifically, for
executing step 1, for each node Ni do the following:

a) find the minimum value of R.Y stored on node Ni.
This obtained value should be assigned to the variable
my prio.

b) currenty := send empty(my prio).

2) Step 3 can be executed with a prioritized MAC
protocol as we discussed in Section ??. Specifically, for
executing step 3, for each node Ni do the following:

a) Let currenty be the value of currenty when step 1 was
executed most recently.

b) Find the minimum value of S.Y stored on node Ni such
that this value is ≥ currenty.

c) if this obtained value exists then
d) this obtained value should be assigned to the
e) variable my prio.
f) else
g) my prio should be assigned the highest priority
h) number (which corresponds to the
i) lowest priority).
j) end if
k) currenty := send empty(my prio).

3) Step 5,6 and 7 are local operations which need no
communications at all.

4) Step 8 and 9 can be implemented with a prioritized
MAC protocol. For each node Ni do the following:

a) if remainingcurrentTuplesofRi = ∅ then
b) my packet := ”I have no data”
c) my prio :=
d) highest possible priority number allowed
e) else
f) my packet := pick an arbitrary tuple from
g) remainingcurrentTuplesofRi

h) my prio := |remainingcurrentTuplesofRi|
i) concatenated with the identifier of Ni.
j) end if
k) <rcv prio, rcv packet> :=
l) send and receive(my prio, my packet);

m) if rcv packet=”I have no data” then
n) the condition of the while loop of line 8 is false.
o) continue execution on step 19 in Figure 4.
p) else
q) currenttupleR := rcv packet
r) continue execution on step 10 in Figure 4.
s) end if

5) Step 10 is a local operation.

6) Step 11 and 12 can be implemented similarly to step 8
and 9.

7) Step 13 and step 14 are normal broadcasts; they do not
need the prioritized MAC protocol but the broadcasts
must be collision-free.

8) Step 15 is a local operation.

9) Step 17 is a local operation.

10) Step 19 and step 21 can be implemented similarly to
step 1 and step 3. Note that step 19 is different from
step 1 though.

V. CONCLUSIONS

We have shown how a prioritized MAC protocol can be used
to efficiently join relations in networked embedded systems.
This is important because join is a fundamental building block
in database systems which can be used to form arbitrarily
complex structures, for example when joining the relations R
and S, the relation R may in turn be the result of a join of
the relations U and V . And the relation S might be the result
of a selection operation on a relation T .

It appears that the join algorithm presented here can be
extended for cases where the same data is duplicated on many
computer nodes and the case where a component of a single
tuple is stored on different computer nodes. But we did not
elaborate on these details.

We left open the question on how to create a fully working
query processing system (with query parsing, optimization,
etc) for networked embedded computer systems and do so
based on the prioritized MAC protocol. Also, we did not
explore whether a prioritized MAC protocol can be used to

reason about predicates in different contexts (so-called multi-
context systems [15]–[17]).

ACKNOWLEDGMENT

This work was partially funded by CONET, the Cooperating
Objects Network of Excellence, funded by the European Com-
mission under FP7 with contract number FP7-2007-2-224053,
the ARTISTDesign Network of Excellence on Embedded
Systems Design ICT-NoE- 214373 and by the Portuguese
Science and Technology Foundation (Fundao para Cincia e
Tecnologia - FCT).

REFERENCES

[1] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong, “TAG: a
tiny aggregation service for ad-hoc sensor networks,” in Proceedings
of the 5th symposium on Operating systems design and implementation
(OSDI’02), 2002.

[2] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
an acquisitional query processing system for sensor networks,” ACM
Transactions on Database Systems (TODS, vol. 30, pp. 122–173, 2005.

[3] Y. Yao and J. E. Gehrke, “TinyDB: an acquisitional query processing
system for sensor networks,” Sigmod Record, vol. 31, 2002.

[4] C. D. Donald and R. F. Boyce, “Sequel: A structured english query
language,” in 1974 ACM SIGFIDET Workshop on Data Description,
Access and Control, 1974.

[5] CAN Specification, ver. 2.0, Bosch GmbH, Stuttgart, Germany, 1991.
[6] B. Andersson, N. Pereira, W. Elmenreich, E. Tovar, F. Pacheco, and

N. Cruz, “A scalable and efficient approach to obtain measurements in
CAN-based control systems,” IEEE Transactions on Industrial Infor-
matics, vol. 4, no. 2, pp. 80–91, May 2008.

[7] B. Andersson, N. Pereira, and E. Tovar, “Estimating the number of
nodes in wireless sensor networks,” in IPP-HURRAY Technical Re-
port - TR-060702, 2006, http://www.hurray.isep.ipp.pt/widom/hurray-tr-
060702.pdf.

[8] A. K. Mok and S. Ward, “Distributed broadcast channel access,”
Computer Networks, vol. 3, pp. 327–335, 1979.

[9] (CiA), “CAN in Automation Website.” [Online]. Available: http:
//www.can-cia.org

[10] N. Pereira, B. Andersson, and E. Tovar, “Widom: A dominance protocol
for wireless medium access,” IEEE Transactions on Industrial Informat-
ics, vol. 3, no. 2, pp. 120–130, May 2007.

[11] N. Pereira, B. Andersson, E. Tovar, and A. Rowe, “Static-priority
scheduling over wireless networks with multiple broadcast domains,”
in Proceedings of the 28th Real Time Systems Symposium (RTSS’07),
Tucson, U.S.A., December 2007.

[12] N. Pereira, R. Gomes, B. Andersson, and E. Tovar, “Efficient aggregate
computations in large-scale dense WSN,” in 15th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’09), San
Francisco, California, USA, 2009, pp. 317–326.

[13] B. Andersson, N. Pereira, and E. Tovar, “Exploiting a prioritized MAC
protocol to efficiently compute min and max in multihop networks,” in
5th Workshop on Intelligent Solutions in Embedded Systems (WISES’07),
Madrid, Spain, 2007.

[14] H. Garcia-Molina, J. D. Ullman, and J. WiDom, Pearson International
Edition. Database Systems: The Complete Book, 2009.

[15] J. McCarthy, “Generality in artificial intelligence,” Communications of
the ACM, vol. 30, 1987.

[16] ——, “Notes on formalizing context,” IJCAI, pp. 555–562, 1993.
[17] F. Roelofsen and L. Serafini, “Minimal and absent information in

context,” Proceedings of the 19th international joint conference on
Artificial intelligence, pp. 558–563, 2005.

