
  

 

 

 

 

Turtlebot at Office: A Service-Oriented 
Software Architecture for Personal Assistant 
Robots Using ROS 

 

 
 

 

Poster 

CISTER-TR-180107 

 

 

Anis Koubâa 

Mohamed-Foued Sriti 

Yasir Javed 

Maram Alajlan 

Basit Qureshi 

Fatma Ellouze 

Abdelrahman Mahmoud  



Poster CISTER-TR-180107 Turtlebot at Office: A Service-Oriented Software  ... 

© CISTER Research Center 
www.cister.isep.ipp.pt   

1 
 

Turtlebot at Office: A Service-Oriented Software Architecture for Personal 
Assistant Robots Using ROS 

Anis Koubâa, Mohamed-Foued Sriti, Yasir Javed, Maram Alajlan, Basit Qureshi, Fatma Ellouze, 
Abdelrahman Mahmoud 

*CISTER Research Centre 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail:  

http://www.cister.isep.ipp.pt 

 

Abstract 

 14This paper presents the design of an assistive mobilerobot to support people in their everyday activities in 
office andhome environments. The contribution of this paper consists in thedesign of a modular component-based 
software architecture thatprovides different abstraction layers on top of Robot OperatingSystem (ROS) to make 
easier the design and development ofservice robots with ROS. The first abstraction layer is theCOROS framework 
composed of complementary software subsystemsproviding different interfaces between ROS and the 
clientapplications. The second abstraction layer is the integration ofWeb services into ROS to allow client 
applications to seamlesslyand transparently interact with the robot while hiding allimplementation details. The 
proposed software architecture wasvalidated through a experimental prototype of Turtlebot deployedin University 
campus. Furthermore, we outline the challengesincurred during experimentation and focus on lessons 
learnedthroughout the implementation and deployment. 

 



Turtlebot at Office: A Service-Oriented Software Architecture for

Personal Assistant Robots using ROS

Anis Koubâa ∗∗¶‡, Mohamed-Foued Sriti ‖, Yasir Javed ¶, Maram Alajlan ¶††, Basit Qureshi ∗∗,
Fatma Ellouze ∗¶, Abdelrahman Mahmoud §†

¶ Cooperative Networked Intelligent Systems (COINS) Research Group, Saudi Arabia.
∗∗Prince Sultan University, College of Computer and Information Sciences, Saudi Arabia.

†Gaitech International Ltd., Honk Kong
‖ Al-Imam Mohammad Ibn Saud Islamic University, Saudi Arabia.

†† College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia.
§ German University of Cairo, Egypt.

‡ CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal.
∗ National Engineering Institute ofSfax (ENIS), Tunisia.

akoubaa@coins-lab.org, mfsriti@ccis.imamu.edu.sa, yasir.javed@coins-lab.org, maram.ajlan@coins-lab.org,

qureshi@psu.edu.sa, fatma.ellouze@coins-lab.org, abdelrahman.mahmoud@coins-lab.org

Abstract—This paper presents the design of an assistive mobile
robot to support people in their everyday activities in office and
home environments. The contribution of this paper consists in the
design of a modular component-based software architecture that
provides different abstraction layers on top of Robot Operating
System (ROS) to make easier the design and development of
service robots with ROS. The first abstraction layer is the
COROS framework composed of complementary software sub-
systems providing different interfaces between ROS and the client
applications. The second abstraction layer is the integration of
Web services into ROS to allow client applications to seamlessly
and transparently interact with the robot while hiding all
implementation details. The proposed software architecture was
validated through a experimental prototype of Turtlebot deployed
in University campus. Furthermore, we outline the challenges
incurred during experimentation and focus on lessons learned
throughout the implementation and deployment.

I. INTRODUCTION

The tremendous growth in utilization of robots has brought

numerous benefits for humans with application to manufac-

turing, healthcare, mining, deep excavation, space exploration,

etc. Use of robots has been a significant factor in improvement

of human safety, reduction in maintenance / production costs

and improved productivity [1].
It is widely forecasted that service robots would inundate

the market reaching record sales in the next 20 years. In

its statistical report, The International Federation of Robotics

reported sale of 3 million service robots for personal and

domestic within 2012. This number represents 20% increase

in sales from the previous year accounting to US$ 1.2 billion

[2]. It is also forecasted that household robots, in particular,

will make a substantial increase of the number of sales from

1.96 million till 15.5 million robots for the period 2013-2016.

Nowadays, one of the major challenges in the development

of service robots is the lack of software engineering frame-

work to build complex service robots’ applications that are

modular, reusable, and easily extensible. Most of the available

software for service robots is tighly coupled with the robotic

platform and lack sufficient abstractions to remain generic for

different platforms. Robot Operating System (ROS) is one of

the widely used middleware to develop robotics applications

and represents an important milestone in the developement

of modular software for robots. In fact, it presents different

abstractions to hardware, network and operating system such

as navigation, motion planning, low-level device control, and

message passing. However, the levels of abstractions are still

not enough for developing complex and generic applications

for mobile robots, in particular if those applications are

distributed among several machines, requiring machine-to-

machine communication. This paper addresses this gap, and

proposes the design of a service-oriented software architecture

that contains two layers of software abstractions, including:

(i.) The COROS framework, which consists of several soft-

ware sub-systems at different levels, namely communication,

application logic, robot control, knowledge base, (ii.) ROS

Web services interface, which is designed to expose ROS

ecosystem as a Web service following a Service-oriented

approach using Representational State Transfer (REST) or

Simple Object Access Protocol (SOAP) Web Services. The

objective is to provide interfaces for Web developers with no

prior background on ROS allowing for a seamless interaction

with the service robot. We validate our layered architecture

through an implementation on a Turtlebot service robot that

we deployed at Prince Sultan University to assist faculty and

students.

The contributions of this paper can be summarized as

follows:

• Design of a low-cost service robot Based on the Turtlebot

platform and Commercial off the Shelf (COTS) hardware.

• Design of the COROS software architecture as an abstrac-

tion layer on top of robots allowing easier developement

2016 International Conference on Autonomous Robot Systems and Competitions

978-1-5090-2255-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ICARSC.2016.66

277

2016 International Conference on Autonomous Robot Systems and Competitions

978-1-5090-2255-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ICARSC.2016.66

276

2016 International Conference on Autonomous Robot Systems and Competitions

978-1-5090-2255-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ICARSC.2016.66

270



of distributed robots’ applications.

• Integration of SOAP and REST Web services into ROS,

that provides additional abstraction layers for developers

with no prior background on ROS or robotics. Fur-

thermore, we present a software meta-model for the

integration of Web services into ROS. To the best of our

knowledge, the work presented is ground breaking as far

as such integration is concerned.

• Experimentation and deployment of the service robot

for the validation of our architecture and discussion of

experimental challenges.

The rest of this paper is organized as follows. Section

II discusses the state-of-the-art with an emphasis on the

contribution of this paper compared to similar works. Section

III presents the mechanical design of the service robot. In

Section IV, we present the layered software architecture,

namely the COROS framework in addition to the Web services

integration with ROS. In Section V, we present experimental

setup and deployment of the service robot with a discussion

on challenges incurred. Section VI concludes the paper and

outlines future works.

II. RELATED WORKS

Recently, Human-Robot Interface design is gaining a lot of

attention in the context of service robots. Building software

architecture and frameworks for service robots has attracted a

lot of research work in the literature. Authors in [3] postulate

that a robot should be capable of generating meaningful

questions regarding the task procedures in real time and should

be able to apply the results to modify its task plans. Authors in

[4] proposed a development process that defines how reference

architectures can be exploited for building robotic applica-

tions. They developed the Hyper-Flex software tool-chain for

supporting the process of exploiting reference architectures

and demonstrated how reference architecture can be used for

building complex software systems. In a later work [5], authors

extended Hyper-Flex tool-chain focusing on ROS meta-models

and ROS-specific tools such as automatic generation of launch

files from the models of configured systems. The limita-

tion of these works is the lack of concrete implementations

demonstrating instantiation of these processes. In our paper,

we present both the architecture and its implementation and

deployment on a real service robot.

In [6], authors proposed an architecture for a Domestic

Robot targeting elderly users in assisting them to remain

autonomous in their homes. The proposed architecture is based

on the integration of three middleware frameworks PEIS,

MIRA, and ROS. Most of the computation is performed by

a large number of ROS nodes; the resulting robot services

are exported to the PEIS middleware for seamless integration

of the robot into the ambient assisted living system. In [7],

authors proposed ROBCO12 which is an Intelligent Modular

Service Mobile Robot targeting elderly and disabled person

care. It consists of Intelligent onboard multilevel control

system, ROS or/and Microsoft Robotics Studio based software

for the control. ROBCO12 can provide many services to the

users including personnel recognition, person following and el-

derly person fall detection. Unfortunately the proposed system

provides no interface for easy programming of autonomous

and semi-autonomous tasks.

With regards to integration of Web services in ROS, rosjs

and rosbridge rosjs have recently been proposed. Both these

frameworks essentially cater to (1) allowing common web

browsers to exploit users to interact with ROS enabled robots;

(2) to provide Web developers lacking expertise in robotics

with simple interfaces to develop client applications allowing

control and manipulation of ROS-enabled robots. In [8], the

authors proposed ROStful by extending rosbridge to

support REST Web services and developed a lighweight Web

server that exposes ROS topics, services and actions through

RESTful Web services. In [8], the authors did not provide an

architecture or meta-model for the integration of REST into

ROS.

To this end, we focus on this lack of attention and address

these issues in the proposed work. The architecture proposed in

this paper essentially decouples networking, from application

logic and robot control. Each component can be defined and

implemented independently of others and can be reused as

appropriate in different complex applications and scenarios.

III. ROBOT DESIGN

We focus on three main design requirements:

• Cost-effectiveness: Cost effectiveness would be a key

parameter for wider acceptance of the platform.

• ROS-enabled design: Nowadays ROS has become a de-

facto standard in the development of robotics applica-

tions. We opted for the use of a robot platform supporting

ROS to take dull benefit of the open source libraries in

developing mobile robots applications, such as navigation

services, image processing, drivers, etc.

• Commercial-off-the-shell hardware: We plan to use

commonly available and affordable off-the-shelf hard-

ware to enable affordable and extensibe design for end-

users.

We opted for the use of the Turtlebot 2 robot as a base

platform for the design of our service robot as it fulfills all the

above requirements. However, the software architecture that

we propose in this paper can be applied to any type of ROS-

enabled robot thanks to the abstraction layers we designed for

robot control and that will be presented in Section IV.A.

We extended the Turtlebot platform by adding a robotic arm

to perform grasping and manipulation tasks. We have used the

low-cost PhantomX Pincher Arm by Trossens Robotics, com-

monly used with the Turtlebot robot. The arm has five degrees

of freedom and an Arduino- based microcontroller and it is

fully supported by ROS. We wrote a tutorial in [9] on how to

get started with PhantomX Pincher Arm and also explains the

configuration needed to update the robot URDF description to

integrate the robotic arm. To control the gripper, we integrated

an Arduino ultrasonic sensor and Arduino RFID reader to the

robotic arm [9]. The interconnection of the Arduino sensor

with ROS was performed using the arduino-rosserial

278277271



package. The ultrasonic is used to automatically open the

gripper when the object to be grasped is put in proximity to

the range sensor situated close to the gripper. A push button

was programmed to close the gripper when pressed. In the

same way, the Arduino RFID was programmed to open the

gripper if the RFID tag is recognized. This allows to open

the gripper for authorized users, for example those who are

destintation of a courier, or the cafe waiter to take the money

from the gripper.

In addition, we added and configured the robot with the

Hokuyo laser scanner URG-LX4, which has a maximum range

of 4 meters and an beam opening of 240 degrees, better than

the 57 degrees of the Kinect laser scanner. A tutorial on how

to add the Hokuyo laser range finder to a Turtlebot robot can

ne found in [9].

For human-robot interaction, we integrated a 10-inch Sam-

sung tablet on the top of the robot through an Android

interface. A user can also interact with the robot using an

Android smartphone with the same interface of the Tablet. For

that purpose, we have developed a full suite of applications

that allow a user to communicate, control and interact with

the robot. We will present these interfaces in Section IV. For

computer vision applications, we have also added an Asus Live

Pro 3d sensor, similar to the Kinect, and it was placed on the

top plate of the robot to observe people and objects while

navigating. The Kinect 3d sensor was placed on the lowest

place at a height of 25 cm, which is basically used to avoid

short obstacles. The Asus 3D sensor has two main advantages

over the Kinect sensor (1) it has a much lighter weight, (2)

it is powered by only the 5V USB port with no need for

additional external power supply. One major challenge faced in

the design of the body is that the Kobuki base has a maximum

payload of 5 Kg on hard floor and 4 Kg on carpet including all

accessories added on its top. Indeed, the robot had difficulties

to move if a heavy payload is put on top of it. We have

considered this physical constraint when we configured the

additional hardware added to the robot.

IV. SOFTWARE ARCHITECTURE

Building distributed applications for service robots systems

is a very challenging task from software engineering perspec-

tive. Indeed, apart from the complexity of designing software

components for the control of the service robot, additional care

is required in the design of reusable interfaces and components

to alleviate the complexity of development. To achieve this

objective, we designed a software architecture that provides

two abstraction layers on top of ROS to make easier the

development of distributed applications for service robots. It

includes two major layers, namely: (1) COROS [10], which

is a component-based software architecture that provides a

first abstraction layer on top of ROS composed of modular

components to develop cooperative and distributed applica-

tions, (2) ROS Web services is the second abstraction layer

that allow client applications to seamlessly and transparently

interact with the robot while hiding all implementation details.

Services are made public to client applications, which can

be invoked by a Web Service client. The advantage of our

architecture is that it decouples networking, from application

logic , and robot control. Each component can be defined and

implemented independently of others and can be reused as

appropriate in different complex applications. In what follows,

we present the main features.

A. COROS

We reused and extended our COROS achitecture defined in

[10], by developing new modules for the service robot appli-

cation logic, and also a new message serializer to effectively

handle communication between heterogeneous platforms. In

what follows, we describe the architecture and enhancements.

COROS consists of five layers illustrated in Figure 1 that

shows the component diagram of the software architecture.

The software system is decomposed into five subsystems (or

Fig. 1. COROS Software Architecture

layers), each of which plays the role of a container of a set of

components. These subsystems are:

• Communication: this subsystem was designed to ensure

the interaction between the robot and other machines,

which can be robots or user devices. It comprises ex-

tensible and modular client and server components that

enable agents to exchange serialized messages through

the network interface using sockets. In [10], COROS was

used for communication between homogenous robotic

machines, so we used the C++ Boost message serial-

ization to ensure communication between two robots.

However, in this paper, the service robot interacts with

different types of devices (e.g. Android device) making

C++ Boost no longer feasible due to incompatibility and

hetergoneity of communicating systems. For this pur-

pose, we developed a generic module that converts ROS

messages to JSON formatted messages and vice-versa,

based on the rospy_message_converter package

in ROS.

• ROS Interaction Layer: this subsystem adds a

lightweight layer on top of ROS allowing a seamless

inter-process interaction between ROS nodes (processes)

defined in the architecture. The main role of this layer

is to provide a simple and efficient way to manage the

subscribers and the publishers to ROS topics and services.

Any node can publish or subscribe to a new topic using

279278272



both components Publishing Manager and Subscription

Manager without having to directly interact with ROS.

• Robot Control: this subsystem adds another layer on

top of ROS providing a bridge between the local software

agents and the physical robots. The role of this layer is to

manage the robot configuration and its state. The Robot

Controller component provides an abstract model for

any ROS-enabled robot. Indeed, this component provides

several interfaces for controlling and monitoring robots’

states such as location, published and subscribed topics,

provided and used services, etc. This enables to make

easier the management of heterogeneous robots as they

adhere to a common component model. Any robot type

can be easily configured to interact with the interfaces

provided by the robot controller components. Currently,

we have configured this component for the Turtlebot

robot.

• Application Logic: this subsystem addresses the problem

solving requirements; it encapsulates all of the compo-

nents needed to implement a complete service robot ap-

plication. Any new application should reuse and configure

the software components to define its proper behaviour.

The Agent Operator is the main component of the

Application Logic subsystem as it implements the actual

behaviour of the applications. This means that every type

of received message (through Agent Server Compo-

nent) triggers the execution of an appropriate function

as specified by the application. The Agent Operator

uses the Communication subsystem to exchange informa-

tion with other robotic agents in the environment.

• Knowledge Base Manipulation Layer: This subsystem

aims at satisfying knowledge base requirements and

maintains up-to-date information about the robot status

and its environment. Currently, we did not use a specific

formal language either for knowledge representation or

reasoning in this subsystem. This in reality related to

the nature of the service Robots applications, when

each robot gathers the captured information from its

environment to accomplish a specific task. Usually, the

majority of gathered information becomes obsolete from

an execution to another. Based on its unique component

State Monitoring, this subsystem provides to others with

a useful information and services such as allowing the

agent to monitor and control its local state, other agents

states, the state of the different tasks, and the information

about the agent initial configuration.

In the context of MyBot project, we have implemented four

applications using COROS, including (1), Discovery appli-

cation, (2) Courier Delivery application, (3) Coffee delivery

application, and (4) people guidance application. For more

details about the COROS framework, the reader is referred to

our book chapter [10].

B. ROS Web Services

1) Objectives: The objective of desiging ROS Web services

is to expose ROS as a Service to the client applications,

providing an additional abstraction layer of ROS resources

including topics, services and actions for developers with no

prio knowledge on robots or on ROS. There are three main

benefits coming from exposing ROS as a service, namely:

• Fostering public usage of robots: By exposing the com-

plex ROS ecosystem through Web services interfaces to

client applications, Web and mobile developers with no

background on robotics can easily interact with the robots

through the Internet through Web service invocation. This

enables a wider usage of robots at public scale.

• Integration with the cloud: Web services and Service

Oriented Architecture (SOA) are major components of

today’s cloud as they allow virtualization of resources.

Therefore, embedding Web services into ROS allows for

the integration of ROS-enabled robots with the cloud

so that users can virtually access the robots’ resources

through the cloud to either control or monitor the robots

status.

• Standard interfaces: Web services allows for providing

standard interfaces to robotics resources so that it will

be possible for client application to interact with het-

erogenous robots if they are have the same Web services

abstractions, independently from implementation details.

To address these objectives, we propose to use Web services

as an additional abstraction layer on top of ROS. We develop

a SOAP Web Service implementation (ros-ws) and a REST

Web Service implementation (ros-rs), which represent the two

fundamental architectural models for SOA. ROS Web Services

allow any client application on any platform to interact with

ROS simply by invoking the ROS Web Services in exactly the

same way as invoking traditional Web Services.

2) System Architecture: Figure 2 depicts the deployment

diagram of ROS Web services and illutrates the integration of

the Web services’ layers into the ROS-enabled service robot

and the client device.

Client Device

Web Services Client Layer

Application Layer

Robot

ROS Layer

Application Layer

Web Services Layer

SOAP WS Interface REST WS Interface

SOAP WS Proxy

REST Client APISOAP Client API

Fig. 2. Deployment Diagram of ROS Web Services

The Web services can be seen as a middleware that allows

seamless interaction between client applications and ROS

ecosystem in the service robot. Our architecture encompasses

both SOAP and REST Web services to provode felxible alter-

280279273



native to client applications to interact with ROS ecosystem. In

particular, the Web service layer allows a user to subscribe to

or publish any ROS topic, action or service, and thus delivering

ROS messages to client subscribed to a particular topic.

To integrate Web services into ROS, we faced the challenge

of choosing the most appropriate technology to build the

software system and design its architecture. We have opted

for the use of Java as a Web service programming lan-

guage, as it provides a native and advanced support of SOAP

and REST Web services, although they are programming-

language-independent and platform-independent. However,

Java EE provides standard APIs for SOAP and REST Web

Services, known as JAX-WS and JAX-RS specifications, re-

spectively. Python also provides REST Web service support,

but much less than Java for SOAP Web services.

This choice wouldn’t have been possible without the use

of ROSJAVA, which is a Java API that defines a ROS client

library that allows ROS developers to write ROS programs

in the Java language and interact with the ROS Master. It

has to be noted that ROS mainly relies on its C++ (roscpp)

and Pyhton (rospy) client APIs for developing ROS programs.

ROSJAVA is relatively recent and its purpose was mainly to ex-

tend ROS capabilities to be integrated into mobile applications,

through the android_core API that extends ROSJAVA to

write ROS client programs for Android devices.

We took advantage of all these capabilities to develop Web

Services’ interfaces using the powerful features of Java EE in

combination with ROSJAVA that allows us to integrate Web

Services with ROS in an elegant fashion. The UML class

diagrams of SOAP Web Services (ros-ws) and REST Web

Services (ros-rs) for ROS are presented in Figures 3 and

4.

ROSJAVA

AbstractNodeMain

+public GraphName getDefaultNodeName()
+public void onStart(ConnectedNode connectedNode)

RobotPublishersNode

+topicPublisher: Publisher<TopicType>

+RobotPublishersNode()
+onStart(ConnectedNode cn): void

SOAP Web Services

RobotSubscribersWebService

+connectedNode: ConnectedNode
+robotSubscribersNode: RobotSubscribersNode

+RobotSubscribersWebService(ConnectedNode cn)

RobotPublishersWebService

+connectedNode: ConnectedNode
+robotPublishersNode: RobotPublishersNode

+RobotPublishersWebService(ConnectedNode cn)

RobotSubscribersWebServiceInterface RobotPublishersWebServiceInterface

RobotSubscribersNode

+topicSubscriber: Subscriber<TopicType>

+RobotSubscribersNode()
+onStart(ConnectedNode cn): void

Fig. 3. UML Class Diagram of SOAP Web Services for ROS

The UML class diagram for REST also follows a similar

software decomposition. Basically, we distinguish two main

packages in Figure 3:

rosjava package: The rosjava package contains classes

written in ROSJAVA with no Web services functionality. This

is an abstraction layer that will be used to link ROS ecosystem

ROSJAVA

AbstractNodeMain

+public GraphName getDefaultNodeName()
+public void onStart(ConnectedNode connectedNode)

RobotPublishersNode

+topicPublisher: Publisher<TopicType>

+RobotPublishersNode()
+onStart(ConnectedNode cn): void

RobotSubscribersNode

+topicSubscriber: Subscriber<TopicType>

+RobotSubscribersNode()
+onStart(ConnectedNode cn): void

REST Web Services

RobotResource_1

+robotSubscribersNode: RobotSubscribersNode
+robotPublishersNode: RobotPublishersNodes
+connectedNode: ConnectedNode

+getXML(): String
+getJSON(): String
+getPlain(): String
+postResource(): void

RobotResource_N

+robotSubscribersNode: RobotSubscribersNode
+robotPublishersNode: RobotPublishersNode
+connectedNode: ConnectedNode

+getXML(): String
+getJson(): String
+getPlain(): String
+postResource(): void

Fig. 4. UML Class Diagram of REST Web Services for ROS

to the Web services that are be defined in the SOAP and REST

Web services packages. The objective of the classes in this

package is to create publishers and subscribers of all ROS

topics and ROS services that will later be exposes as services.

SOAP Web services ros-ws package: This

package contains classes that wrap the exposed ROS

functionalities as SOAP Web services. The Web

services are defined through generic Java interfaces for

both subscribers and publishers Web services, namely

RobotSubscribersWebServiceInterface and

RobotPublishersWebServiceInterface. These

Java interfaces are used to define the contract of the

SOAP Web services and help in generating a WSDL

document independent of the implementation details.

These interfaces are implemented by the Web Services

concrete classes RobotSubscribersWebService and

RobotPublishersWebService. These classes provide

the implementation of the Web methods that are exposed to

and invoked by the Web services’ clients.

REST Web services ros-rs package: This package

defines a class for each particular resource. Any ROS resource

(topic, action or service) that must be exposed as a REST Web

service must be defined into a specific class that represents

this particular resource. For this reason, there will be as many

classes as the number of resources that must be exposed to

public. Typical HTTP operations namely GET, POST, PUT,

and DELETE are used to access the exposes resources. The

output can be in any user-defined format including plain text,

JSON or XML.

V. EXPERIMENTATION AND DEPLOYMENT

We implemented several services and functionalities in

our service robot using the COROS architecture and Web

services. We deployed this service robot at Prince Sultan

University to deliver courier between offices and also to bring

coffee from the central cafe of the University among other

applications implemented. In what follows, we present the

main implemented services, and the challenges and lessons

281280274



learnt from the deployment experience.

A. Murphy’s Law in Deployment

In this section, we present the challenges encountered in

setting up and configuring the service robot to operate in the

real environemnt.
Building a large map is not trivial : We have deployed the

robot in the corridors of the CCIS first floor in Prince Sultan

University. For the navigation of the robot, it is required to feed

the navigation stack in ROS with the map of the environment

where the robot has to navigate. Thus, we have built a map of

the CCIS first floor of a dimension 150*80 m
2. Building the

map of such a large environment was quite challenging and

tedious. The process completely fails with the Turtlebot robot

due to the high inaccuracy of its odometry and low resolution

of its Kinect-based laser scanner. Attempts with the Hokuyo

04LX laser scanner were not much better. The problem of

building the large map was overcome with the use of the

PeopleBot robot equiped with a SICK LMS 500 laser scanner

with 30 meters of maximum range and high resolution. The

resulting map of the whole floor has a resolution of 3200*1680

pixels.
Unraveling the depolyment challenges: This map is quite

huge and was unpractical to use with a Turtlebot. On a real

robot, we noticed that considering the large size of the map,

the navigation of the robot was oscillating and jerky. This

is because the update of the map consumes most of the robot

processing resources and thus the robot misses its control loops

very often. Although, we used a laptop with higher processing

capabilities (MAC Book Air with core i5, 4GB RAM), the

problem persisted. We tried different configurations of the

navigation stack by reducing the update rate of the map, and

tuning the navigation stack parameters, but the navigation was

always an issue using a large scale map.
Another problem with the large-scale deployment was the

WiFi coverage problem. The robot must always be connected

to a WiFi spot to be connected to users end devices and the

Internet. In a first attempt, we wanted to use the wireless

local network at CCIS PSU that covers the whole area of

interest. However, this was not possible because the switches

were configured to block the broadcast traffic, and thus the

discovery messages (refer to next subsection) sent by the robot

to get discovered by the user devices were blocked. We have

thus used a battery-powered wireless router that is attached

to the robot, which solves partially our problem, as the robot

will always remain in the range of this WiFi spot plugged to

it.
So, to overcome all these problems, we opted for making

the deployment into a more restricted area of the CCIS first

floor using a partial map of environment, which is presented in

Figure 7. The smaller map has a resolution of 837*477 pixels

and provided a fuild navigation of the service robot, either in

simulations or real experiments.

B. Discovery Service

The discovery protocol is required to allow the client

applications to auto-detect the robot(s) in its neighborhood

Fig. 5. Discovery Android App

Fig. 6. Discovery Application Class Diagram

to connect to it. Each robot periodically broadcasts a HELLO

message carrying out information needed to identify a robot,

including its IP address. The user will automatically detect the

robots in proximity through an Android interface, as illustrated

in Figure 5, and thus can select the robot of interest to interact

with.

Figure 6 presents the classes and components reused to

implement the discovery application based on COROS ar-

chitecture. The COROS architectural components and classes

enabled us to easily implement the discovery application as

a new ROS component that can be reused by other ROS

applications that requires information about neighbor robots.

In fact, we use the same discovery component in a distributed

multi-robot applications, where robots had to discover each

other, in addition to using it in this service robot to be

discovered by the the android client device. In the former

application, we used the C++ boost message serialization as

the robots use the same boost library and thus are compatible

with each other. In the latter case of the service robot, we

used our developed JSON serialization modules, which is more

convenient for communication between heterogenous devices

namely the C++ based robot and Java-based android device.

C. Delivery Application

We developed a use case where the robot assists staff and

faculty members to exchange courier between offices or coffee

from central cafe to offices. A video demonstrator is presented

282281275



in [11]. In this case, we have used two approaches to send

the mission (1) using ROS to JSON serialization interface

defined in the COROS framework, (2) using the Web Services

interfaces (ros-ws and ros-rs). A video demonstration

illustration on how to program and use Web Services interfaces

with ROS is presented in [12]. As illustrated in Figure 7 that

presents the architecture of the delivery application, the user

selects the source and destination offices through the Android

client application, then, the coordinates of corresponding lo-

cations of the selected offices are fetched from a MySQL

database on the cloud based on their names, so that the end-

user does not have to write manually the real coordinates on

the map, but just selects logical locations. These coordinates

are sent through a serialized JSON message to robot, which

will be processed by the back-end ROS application, developed

using the COROS architecture.

In case of using the Web services interfaces, the ROS Web

Service layer will invoke the appropriate Web service method

corresponding to the selected mission of the robot, in our case

the delivery Web service; and once invoked, the Web method

submits the mission to the back-end ROS application that will

process the message accordingly.

The back-end ROS application remains listening on

the topic DeliveryRequestMsg/from_json, which re-

ceives ROS messages sent by the publisher of the dispatcher

component. The latter deserializes the JSON message incom-

ing from the mobile client application or from the Web service

method. Then, it converts the received JSON message to a

ROS message published to the MybotDeliveryOperator,

which is the software agent responsible for processing

and executing the query. With respect to Figure 1, the

MybotDeliveryOperator is an implementation of the

Agent Operator in the Application Logic Support Layer.

The delivery application was extensively tested in simula-

tion mode and experiments and demonstrated to be correctly

operational. In the experimental mode, we though observed

that the Turtlebot could not sometimes perform rotation cor-

rectly on the smooth ground of our University. This is serious

limitation of the Turtlebot platform wheels which slides on

ceramic ground.

VI. CONCLUSIONS

In this paper, we propose a layered service-oriented software

architecture for service robots using ROS. The architecture

comprises (i.) the COROS framework that provide abstraction

layers to building complex distributed applications, and (ii.)

Web services layer that expose ROS ecosystem through SOAP

and REST Web services. We designed a meta-model for the

integration of Web services into ROS.

We are working towards extending our architecture to

virtualize the robot access through the cloud. In fact, we aim

integrating service robots to the cloud to promote sharing

of resources and allow for an easier access and interaction

between users and service robots through the cloud. The cloud

will present an infrastructure for storage and processing of the

service robots.

�
���
�
�
�
�
	
��

�

�
	��


�
�
��
��
�

�
	�

�
��
�
�
�
�
��
�

�
	�
�


�
�
��
��
�

�
	�

�
��
�
�
�
�
��
�

������������������

�����	
�
������

���

���������
�
��������

��
 ��

��!��
"��
�

�

�����#����

$�%��
��
��

��
��

&�'	�

Fig. 7. Courier Delivery Scenario

ACKNOWLEDGMENTS

This work is supported by the myBot project entitled

“MyBot: A Personal Assistant Robot Case Study for Elderly

People Care” under the grant from King AbdulAziz City for

Science and Technology (KACST). This work is partially

supported by Prince Sultan University.

REFERENCES

[1] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. M. M. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft,
“RoboEarth,” Robotics Automation Magazine, IEEE, vol. 18, pp. 69–
82, June 2011.

[2] “World Robotics 2013 Service Robots,” 2013.
[3] Y. Kim and W. Yoon, “Generating task-oriented interactions of service

robots,” Systems, Man, and Cybernetics: Systems, IEEE Transactions

on, vol. 44, pp. 981–994, Aug 2014.
[4] L. Gherardi and D. Brugali, “Modeling and Reusing Robotic Software

Architectures: The HyperFlex Toolchain,” in 2014 IEEE International

Conference on Robotics and Automation, ICRA 2014, Hong Kong,

China, May 31 - June 7, 2014, pp. 6414–6420, 2014.
[5] D. Brugali and L. Gherardi, “HyperFlex: a Model Driven Toolchain for

Designing and Configuring Software Control Systems for Autonomous
Robots,” in Robot Operating System (ROS) - The Complete Reference

(to appear) (A. Koubaa, ed.), vol. 604 of Studies in Systems, Decision

and Control, Springer International Publishing, 2015.
[6] N. Hendrich, H. Bistry, and J. Zhang, “PEIS, MIRA, and ROS: Three

frameworks, one service robot – A tale of Integration,” in Robotics

and Biomimetics (ROBIO), 2014 IEEE International Conference on,
pp. 1749–1756, Dec 2014.

[7] N. Chivarov, S. Shivarov, K. Yovchev, D. Chikurtev, and N. Shivarov,
“Intelligent Modular Service Mobile Robot ROBCO 12 for Elderly
and Disabled Persons Care,” in Robotics in Alpe Adria Danube Region

(RAAD), 2014 23rd International Conference on, pp. 1–6, Sept 2014.
[8] “Introducing ROStful: ROS over RESTful web services,

http://www.ros.org/news/2014/02/introducing-rostful-ros-over-restful-
web-services.html,” 2015.

[9] “ROS Tutorials at COINS Research Group, http://wiki.coins-
lab.org/index.php?title=ros tutorials,” 2015.

[10] A. Koubaa, M.-F. Sriti, H. Bennaceur, A. Ammar, Y. Javed, M. Ala-
jlan, N. Al-Elaiwi, M. Tounsi, and E. Shakshuki, “COROS: A Multi-
Agent Software Architecture for Cooperative and Autonomous Service
Robots,” in Cooperative Robots and Sensor Networks 2015 (A. Koubaa
and J. Martinez-de Dios, eds.), vol. 604 of Studies in Computational

Intelligence, pp. 3–30, Springer International Publishing, 2015.
[11] “MyBot Courier Delivery Demonstrator,

https://www.youtube.com/watch?v=oTLtmX2-ucA,” 2015.
[12] “MyBot Cafe Delivery using Web Services Interfaces,

https://www.youtube.com/watch?v=WvjY5XjAX7U,” 2015.

283282276


