

Towards realistic core-failure-resilient
scheduling and analysis

Conference Paper

CISTER-TR-151203

Borislav Nikolic

Konstantinos Bletsas

Conference Paper CISTER-TR-151203 Towards realistic core-failure-resilient scheduling and ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Towards realistic core-failure-resilient scheduling and analysis

Borislav Nikolic, Konstantinos Bletsas

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

Towards realistic core-failure-resilient scheduling

and analysis.

Borislav Nikolić and Konstantinos Bletsas

CISTER/INESC-TEC Research Centre, ISEP/IPP, Porto, Portugal

I. INTRODUCTION AND EXISTING WORK

On uniprocessors, a failure of the single core means un-

avoidable system failure. However, on multicores, when a core

fails, it is conceivable that the computation could continue

on remaining cores in a degraded system mode indefinitely,

until orderly shutdown and servicing can take place. This

would be very desirable for critical applications but, apart

from hardware and software support, it would require (i) a

scheduling approach designed for providing such resilience

and (ii) accompanying schedulability analysis, that derives

offline the guarantees about the system meeting its deadlines

at run-time, even if one core fails.

We studied this problem in [5], for constrained deadlines1

and global fixed task prorities, and assuming independent

tasks sharing no resources. We focused on the provision of

scheduling guarantees for the case of at most one core failing.

Under our assumptions there, such a core failure is detected

immediately. Of all task instances present in the system at

the time, only the job currently executing on the failed core

is killed; all other jobs are unaffected, because they run

on intact processors or else because their state is assumed

to reside entirely in memory, which is trusted not to fail.

However, all job deadlines must be met, including the one

of the job killed by the core fault; this necessitates some form

of redundancy. Additionally, if the failure is permanent, this

leaves one core less in degraded mode, but the system need not

survive additional core failures because we assume that it will

be shut down for servicing at the first opportunity. Although

schedulability under multiple failed cores might appear as

a requirement for the certifiability of a critical system, in

practice the certification is done based on probabilities of

failure. Thus, if the worst-case delay until servicing is at most

∆h hours and the probability of a second core failing within

those ∆h hours is sufficiently small, then the system could

still be certifiable.

Faced with this scheduling problem, two simple ways of

dealing with it first came to mind, albeit both with obvious

shortcomings:

Simple approach 1: Run two copies of each job instead

of one, so that at least one can always complete even if one

core fails; and if no core fails, upon completion of one job

copy, the other one is terminated early. This is inefficient, as

it doubles the processing capacity requirements, so no task set

1Each task τi has a worst-case execution time (WCET) of Ci, a relative
deadline Di and an interarrival time Ti, with Di ≤ Ti.

with utilisation above 50% would be schedulable.

Simple approach 2: When a core fails, launch from scratch

the killed job. This only increases processing requirements

marginally and transitively, when the core fails, but it cannot

provide resilience in the general case, e.g., if the WCET of the

killed and restarted job exceeds the time left until the deadline.

Inspired by both of the above approaches and elaborating on

them, we therefore proposed [5] a mechanism that generalises

both of them, trading off their shortcomings in a tunable

manner.

In particular, our proposed solution involves launching a

copy of every job by a task τi, not immediately but instead

after a fixed, designer-set and task-specific offset Oi from its

arrival (see Figure 1). Both jobs have the priority of the parent

task, but, for tie-breaking purposes, the main job released

immediately has higher priority that its copy job released at an

offset. The selection of the offset for the copy job is a trade-

off. A small value for Oi increases the amount of redundant

execution for the task but decreases the amount by which

the effective relative deadline of the copy job (Di − Oi) is

shortened, giving it more time within which to complete, in

case of core failure. On the other hand, if too big a value for

Oi is chosen, it might be impossible to provide guarantees for

timely completion of the copy job in case the main job fails too

close to the deadlne. Therefore, the optimal value for Oi is the

biggest value in the range [0, R∅

i
] for which schedulability of

the copy job is ensured. The term R∅

i
denotes an upper bound

on the WCRT of the main job by τi, assuming that no core has

failed by the time that it completes. And, for any Oi ∈ [0, R∅

i
]

, the amount of additional task execution per job pair in

case of no failure (compared to the conventional single-job

scheduling), is upper-bounded by C ′

i

def
= min(Ci, R

∅

i
− Oi).

We term this quantity “overlap”.

In [5], we detailed how to perform schedulability testing

(and also compute the optimal Oi in the process) for each

task, in order of decreasing priority. The schedulability must

be proven for three cases: (i) no core failing, (ii) a core failing

and killing a higher-priority job and (iii) a core failing and

killing a job by the task in consideration. The schedulability

test that we use is the state-of-the-art one by Guan et al. [4], for

conventional global fixed-priority scheduling. We apply it to

a transformed task set instance, with each task τi modelled as

two separate tasks with execution times of Ci and C ′

i
; we also

discount the number of cores by one, for irrecoverable core

failures and add a term which bounds the additional transitive

workload upon the core failure. These are all pessimistic

Fig. 1: Illustration of our proposed approach for scheduling with resilience to core failures. For each job, a copy job is released

at an offset Oi from each arrival. R∅

i
is an upper bound on the WCRT of the main job under consideration under the assumption

that no core has failed by the time that it completes.

transformations.

However, overall, the system model is characterised by

several unrealistic assumptions which limit its potential prac-

ticality. This work focuses on remedying this situation. Next,

we will identify and separately discuss each of those aspects

and how they can be potentially dealt with.

II. UNREALISTIC ASSUMPTIONS TO BE ADDRESSED

In this section we list the most important practical limita-

tions of our approach, and how we intend to address them.

A. Resource sharing by different tasks

Every non-trivial real-world system with more than one

computing task has shared resources, which need to be man-

aged with care, in order to avoid synchronisation hazards.

Therefore, developers place such resources inside critical

sections, guarded by semaphores or locks and implement one

of the many existing (uniprocessor or multiprocessor) resource

management protocols, to be found in the literature.

In the absence of core failures, even with the job-pair

arrangement proposed earlier in place, it would not be difficult,

for any of the established resource management protocols, to

introduce worst-case blocking terms to our WCRT equations.

After all, our equations are largely derived from those by Guan

et al. [4]) for standard global scheduling. However, special

considerations need to be made for the case of a core failure.

First of all, multiprocessor resource management schemes

that treat the available cores asymetrically, by designating one

core as responsible for executing all the critical sections or

which, more generally, assign the execution of one critical

section to a particular core, would have to be excluded from

consideration. This is because any core is equally likely to

fail and such an arrangement would introduce single points

of failure, which the system could not survive. Since it is a

requirement to survive a single failure by any one core, our

approach would therefore need to be coupled with a resource

management scheme that uses processors interchangeably.

Various protocols applicable to globally-scheduled systems

have been formulated (e.g., [1], [2]). However, we are looking

into adapting MrsP [3] (originally formulated for partitioned

systems) to work with global scheduling and eliminating the

distinction between local and global shared resources. The

reason is that MrsP has the advantage of relatively simple

blocking terms, that evoke those of uniprocessor scheduling.

This would hopefully prevent our analysis from becoming

too complex. Under MrsP, at run-time, tasks which would

otherwise have been blocked may instead act as “servers”

for other tasks, and this may lead to complex chains of task

interactions. However, we are confident that this would not

break the fundamental properties of our job-pair arrangement

(nor vice versa), as long as cores were, somehow, guaranteed

to never fail during the execution of a critical section.

However, in the general case, cores may fail (and jobs

may die) even during the execution of a critical section.

How the protocol can cope with this (and what this does to

the corresponding worst-case blocking terms) is still an open

question, which can only be answered if the semantics of

failing while executing a critical section are defined.

In particular, to avoid ill-defined and inconsistent states,

we believe that resilience to core failures under our approach

effectively necessitates transaction semantics for shared re-

source accesses, with all changes in state being finalised with

a commit, at the very end of each critical section. This would

allow partial state updates to be rolled back, in case of core

failure. We intend to look at current engineering practice in

order to (i) propose appropriate implementation mechanisms

for the provision of such semantics and (ii) include the over-

heads of these mechanisms into our schedulability analysis.

Additionally, the developer would most likely need to be aware

of those mechanisms and explicitly use the respective APIs.

Even so, this does not solve all challenges related to the

sharing of resources by different tasks because the question

arises: what are the implications of both the main job and

the corresponding copy job of a given task both accessing

(at different points in time) a given resource, shared with

another task? Depending on the actual application, this might

be benign (e.g., updating the stored value of a sensor reading)

or problematic (e.g., triggering twice a system event meant

to be triggered only once per task arrival). Ultimately, such

issues are best dealt on the application level, but once again

the developer needs to be aware of our scheduling arrangement

with job copies, at development time.

B. Race conditions and synchronisation hazards arising from

the coexistence of jobs by the same task

In addition to explicitly shared resources, by different tasks,

our proposed scheduling approach must handle another chal-

lenge: When two job copies by the same task coexist in

the system, they may both access resources for which the

programmer never expected any concurrent access by different

processes, if the coding was oblivious to our scheduling

arrangement that uses job copies for resilience. We propose

various alternative approaches for dealing with this scenario,

each suited to different circumstances:

First, an obvious approach would be to enforce, as a

programming convention, to the extent possible, that each

job should read all of its input upon release. Thenceforth, it

should operate exclusively on its dedicated process variables

and only write its output prior to completion. Depending on

the semantics of the application, and whether or not the main

job and the corresponding copy job of a given task would

need to operate on the same input as each other or not, some

buffering mechanism might be required so that the copy job

reads the same input values as the main job did, even if

their sources have changed in the meantime (e.g., as in the

case of sensor readings). This approach is simple but it might

be too restrictive to accommodate all applications; it would

also require the developer to be aware of this convention and

program the applications accordingly.

A second alternative, would be to enclose in critical sections

those resources that may entail a synchronisation hazard, upon

access by both the main job and the corresponding copy

job of the same task. This would allow them to be handled

analogously to explicitly shared resources (e.g., by different

tasks); and our analysis already models the main and copy jobs

of a given task as originating from different tasks anyway. This

approach would piggyback on our solution for regular resource

sharing (by different tasks) discussed in the earlier subsection.

But it would also require the cognisance of the programmer

at development time and might involve too many resources

being encapsulated in critical sections.

Finally, we propose a third alternative, which does not

rely on the awareness of the developer, but might not work

in all cases. It involves reasoning offline about the location

of resource accesses inside the code and the time intervals

during which these might take place at run-time, in order to

ensure that no synchronisation hazard may occur at run-time,

given the offset Oi for the release of the copy job. For the

general case, this approach would be computationally complex

and would require knowledge of task structure, new assorted

analysis and tool support. However in many cases, it could

be easy to bypass all those steps by ensuring that the overlap

C ′

i
of the task τi in consideration is zero, when possible to

do so. This would ensure that the main job and corresponding

copy job of a given task never co-exist in the system (i.e., the

copy job would effectively only be launched if the main job

is killed). The overlap is defined as C ′

i

def
= min(Ci, R

∅

i
−Oi).

This means that it depends on the R∅

i
and the corresponding

optimal Oi, both of which in turn depend on the priority of τi,

which is set by the designer. Hence setting the corresponding

task priority appropriately high may in many cases suffice to

ensure zero overlap. This is akin to falling back to the second

“simple approach” discussed earlier, but without any jitter in

the release of the copy task. The drawback is that this will

involve the priority demotion of some other task(s), all other

things remaining equal, which may be detrimental to their

schedulability.

C. Run-time support and incorporation of related overheads

into the schedulability analysis

Our assumptions included that of instantaneous detection

of core failures. In practice though, even with hardware

support, detecting core failures will still require some degree

of software support. Therefore, there will be some latency and

associated scheduling overheads. These must be incorporated

into the the schedulability analysis. In order to do so, one must

have knowledge of exactly how the failure detection facility

is implemented; and this would largely be platform-specific.

We are therefore looking into how this facility could, in

principle, be practically implemented upon popular multicore

and manycore platforms for embedded systems.

Additionally, a separate software facility is required for

(i) tracking the arrivals of the main jobs, (ii) launching the

copy jobs at the appropriate offsets and (iii) keeping track

of job completions in order to immediately also terminate

(short of completion) the corresponding job copies. (Note that,

e.g., in case of different control flows due to some source of

non-determinism at run-time, an overlapping copy job might

complete before its corresponding main job, and then it is

the main job that should be terminated.). The corresponding

system overheads of this mechanism must also be accounted

for in the analysis. We plan to do this in a similar detailed

manner as in our other recent work [6].

III. CONCLUDING REMARKS

It is an established pattern, in the real-time systems lit-

erature, that initial simple but abstracted analytical models

incrementally give way to more accurate, but also more

complicated models, intended to capture the real-world effects.

We are also going down that path with our line of work

on providing hard real-time scheduling resilience in the case

of failing processor cores. The list of simplified assumptions

and aspects to be addressed is currently significant, especially

with respect to resource sharing and the handling of potential

synchronisation hazards. However, as explained, we already

have specific approaches in mind, that we are working on. We

would like to thank the reviewers of ECRTS 2015 and RTCSA

2015, for encouraging us to work on these aspects of our work

and we hope to deliver useful results in the near future.

ACKNOWLEDGEMENTS

Work partially supported by National Funds through

FCT/MEC (Portuguese Foundation for Science and Tech-

nology) and co-financed by ERDF (European Regional De-

velopment Fund) under the PT2020 Partnership, within

project UID/CEC/04234/2013 (CISTER Research Centre);

also by FCT/MEC and the EU ARTEMIS JU within projects

ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2); by

FCT/MEC and the ESF (European Social Fund) through

POPH (Portuguese Human Potential Operational Program),

under PhD grant SFRH/BD/81087/2011.

REFERENCES

[1] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson. A flexible
real-time locking protocol for multiprocessors. In Proc. RTCSA, page
4756, 2007.

[2] B. Brandenburg and J. Anderson. Optimality results for multiprocessor
real-time locking. In Proc. RTSS, page 4960, 2010.

[3] A. Burns and A. J. Wellings. A schedulability compatible multiprocessor
resource sharing protocol - MrsP. In Proc. ECRTS, pages 282–291, 2013.

[4] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds for
fixed priority multiprocessor scheduling. In Proc. 30th RTSS, 2009.

[5] B. Nikolić, K. Bletsas, and S. M. Petters. Hard real-time multiprocessor
scheduling resilient to core failures. In Proc. RTCSA, 2015.

[6] P. F. Souto, P. B. Sousa, R. I. Davis, K. Bletsas, and E. Tovar. Overhead-
aware schedulability evaluation of semi-partitioned real-time schedulers.
In Proc. RTCSA, 2015.

