

Towards a Distributed Computation Offloading
Architecture for Cloud Robotics

Conference Paper

CISTER-TR-190409

Rihab Chaari

Omar Cheikhrouhou

Anis Koubâa

Habib Youssef

Habib Hmam

Conference Paper CISTER-TR-190409 Towards a Distributed Computation Offloading Architecture ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

Towards a Distributed Computation Offloading Architecture for Cloud Robotics

Rihab Chaari, Omar Cheikhrouhou, Anis Koubâa, Habib Youssef, Habib Hmam

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

Cloud robotics is incessantly gaining ground, especiallywith the rapid expansion of wireless networks and
Internetresources. In particular, computation offloading is emerging asa new trend, enabling robots with more
powerful computationresources. It helps them to overcome the hardware and softwarelimitations by leveraging
parallel computing capabilities andthe availability of large amounts of resources in the cloud.However, the
performance gain of computation offloading incloud robotics is still an ongoing research problem becauseof the
conflicting factors that affect the performance. In thispaper, we investigate this issue and we design a distributed
cloudrobotic architecture for computation offloading based on Kafkamiddleware as messaging broker. We
experimentally validatedour solution and tested its performance using image processingalgorithms. Experimental
results show a significant reductionin robot CPU load, as expected, with an increase in robotcommunication
delays.

Towards a Distributed Computation Offloading Architecture for

Cloud Robotics

Rihab Chaari

Prince Research Laboratory

University of Mannouba, Tunisia

rihab.chaari@coins-lab.org

Omar Cheikhrouhou

College of CIT, Taif University

Taif, Saudi Arabia

Computer and Embedded Systems Laboratory

University of Sfax, Sfax, Tunisia

o.cheikhrouhou@tu.edu.sa

Anis Koubâa

Prince Sultan University, Saudi Arabia

CISTER/INESC-TEC, ISEP, Portugal

Gaitech Robotics, China

akoubaa@psu.edu.sa

Habib Youssef

Prince Research Laboratory

University of Sousse, Tunisia

Habib.Youssef@fsm.rnu.tn

Habib Hmam

Faculty of Engineering

University of Moncton, NB, E1A 3E9, Canada

habib.hamam@umoncton.ca

Abstract—Cloud robotics is incessantly gaining ground, espe-
cially with the rapid expansion of wireless networks and Internet
resources. In particular, computation offloading is emerging as
a new trend, enabling robots with more powerful computation
resources. It helps them to overcome the hardware and software
limitations by leveraging parallel computing capabilities and
the availability of large amounts of resources in the cloud.
However, the performance gain of computation offloading in
cloud robotics is still an ongoing research problem because
of the conflicting factors that affect the performance. In this
paper, we investigate this issue and we design a distributed cloud
robotic architecture for computation offloading based on Kafka
middleware as messaging broker. We experimentally validated
our solution and tested its performance using image processing
algorithms. Experimental results show a significant reduction
in robot CPU load, as expected, with an increase in robot
communication delays.

Index Terms—cloud robotics, processing offloading, distributed
computing

I. INTRODUCTION

Mobile robots have enabled a large number of applications

in different domains, including manufacturing, inspection,

surveillance [1], disaster response [2], agriculture, healthcare

and medical, domestic services [3], to name a few. For several

years, robots were designed as standalone systems to perform

specific tasks. However, with the emergence of the Internet-of-

Things and cloud computing there is an increasing tendency

to leverage the Internet connectivity to facilitate the accessi-

bility to services everywhere and anytime, and on the other

hand, take benefit from the abundant computing and storage

resources on the cloud to boost the performance of applications

[4]. In this direction, the cloud robotics concept has emerged

since 2010, when it was coined by James Kuffner in [5] and the

idea is to connect robots to the cloud to take benefits from their

resources. In [6] have presented a survey on cyber-physical

cloud including cloud robotics. In [7], Koubaa has classified

cloud robotics into two categories: (1) virtualization: which

means providing seamless access to robots through service

interfaces (ii.) computation offloading also known as remote

brains, where computation is offloaded from the robots to the

cloud through service interfaces. Several works in the literature

have addressed the virtualization aspects of cloud robotics. For

example, in [8], the authors proposed Dronemap Planner, a

cloud-based management system of robots and drones over

the Internet. It allows to access robots and drones, operating

with the MAVLink [9] and ROSLink [10] protocols anytime

and anywhere through the cloud. In [2], the authors proposed

a search and rescue algorithm for disaster response using a

swarm of drones by leveraging computation offloading on the

cloud. In [11], the authors have proposed ROSBridge which

allows to access robots through web interfaces. However, the

Web server was located in the robot itself, thus making its

access outside a local area network challenging. This problem

was addressed by ROSLink [10], that adopted a three-tier

architecture where the server is located on the cloud and the

robot and user communicate through it.

On the other hand, several cloud robotics research works

focused on computation offloading [12]. The idea behind

computation offloading is that robots usually are battery

powered and have limited computing and storage resources.

Thus, running computation extensive applications on-board

will deplete their energy faster. In addition, robots might be

even incapable of handling complex computation intensive

tasks due to the limitation of their resources (e.g. computer

vision applications that require GPU). Furthermore, the use of

the cloud enables robots to communicate with each other, share

knowledge and collaborate to perform complex tasks. In this

respect, the RoboEarth European project [13] has developed

a cloud robotics system that promotes knowledge sharing and

collaboration among robots. Later, in later recent works [14],

researchers have investigated the effectiveness of computation

offloading in cloud robotics, because the gain of performance

is not always guaranteed. In fact, computation offloading also

requires communication with the cloud server, which also

consumes energy and can be expensive due to retransmission

and bad communication quality. In [15], the authors addressed

the problem of how effectively assign/offload computational

tasks. They proposed a genetic algorithm to optimize the task

offloading process. In [16], the authors applied cloud robotics

to improve the performance of the FastSLAM 2.0 algorithm

and compared the performance and speed between the cloud-

based and the traditional approach. In [17], the authors have

proposed an architecture for cooperative robots using cloud

robotics.

In this paper, we investigate the performance of computation

offloading in cloud robotics. To this end, we design a fully

distributed cloud robotics architecture for seamless computa-

tion offloading. The architecture is based on Kafka, which is a

scalable distributed publish-subscribe messaging system with a

robust queue that can handle a large amount of data, as used in

the cloud robotics. Then, we conduct an extensive performance

evaluation study to assess the effectiveness of the architecture.

The proposed architecture significantly outperforms robots as

demonstrated in our performance evaluation.

The paper is organized as follows: In section 2, we discuss

the related work and the motivation behind this work. Then,

in Section 3, we describe the design of our architecture and

provide a detailed description of its actors and the relation

among them. In Section 4, we implement a first prototype

of the architecture and evaluate its performance. Finally, we

conclude in Section 5.

II. RELATED WORK

The idea of offering computation offloading through archi-

tecture was firstly presented through Davinci project [18]. The

researchers provide the DavinCi server that acts like a proxy

server coupling the two ecosystems, Hadoop Distributed File

System (HDFS) [19] and Robot Operating Systems (ROS)

[20]. The service provides a publish-subscribe model for

robots to send/update their information as well as requests,

which are logged and maintained on the server. The server

pushes this data and/or requests to the backend HDFS. The

server triggers MapReduce tasks to execute data and collects

results produced by the Hadoop ecosystem. Finally, these

results are transmitted to the ROS subscribers. They validated

this work by implementing the FastSLAM algorithm and

reported significant performance gains in execution times

provided by the framework. Although the focus of the paper is

the evaluation of FastSLAM algorithms under large distributed

environments, the communication issues between internal pro-

cesses as well as the cloud are not detailed.

Authors in [21] designed a cloud robotic architecture to

handle the processing demands of a set of heterogeneous large-

scale robot agents. It consists of reliably link robots abstracted

by ROS with cloud resources, namely cloud storage and

cloud computation. The architecture includes also networking

platforms used to manage communication between robots and

cloud infrastructure. The architecture was implemented using

the Hadoop Distributed File System (HDFS) as a cloud storage

engine, and MapReduce as a processing engine. The cloud

resources are managed by OpenStack [22] platforms. But,

neither a quantitative performance analysis was presented, nor

a prototype was implemented.

While the aforementioned works proposed general purpose

architectures, authors in [23] proposed a collaborative Visual

simultaneous localization and mapping (SLAM) framework.

The framework is a cloud-based solution for sharing and

processing data of a large team of robots. The proposed

framework is composed of four main components: 1.) storage

layer, contains the data collected and shared among robots,

2.) shepherd Layer, responsible for the cloud coordination,

3.) computation layer, consists of processing the SLAM al-

gorithm, and 4.) communication layer, maintains connections

between robots and computation hosts. Besides, they have de-

signed an algorithm to divide the sets of robots demands on the

computation resources. Through simulation, they demonstrated

the scalability of the proposed framework, and its efficiency

compared to other SLAM solutions.

Compared to the aforementioned works, we propose a dis-

tributed cloud robotic architecture. The communication engine

in the architecture utilizes Apache Kafka [24] to seamlessly

handle data transmission. In fact, Kafka is designed with a

good message delivery concepts that 1.) persists message data

of different formats on the cluster to support a variety of

message consumption and failure handling, and 2.) loose cou-

pling between messages consumers and producers. Besides,

we can linearly scale servers without affecting the existing

cluster setup or the data in.

III. SYSTEM ARCHITECTURE

In this section, we specify the functional requirements of the

proposed architecture in addition to the non-functional require-

ments. Then, we focus on architecture design for achieving our

objectives.

A. Requirements

Our main objective is to assess the resource efficiency and

utilization of robots by offloading computationally intensive

tasks to remote cloud servers. For that, we propose to design

a cloud-based architecture where streams of intensive data are

transmitted to the cloud infrastructure. The basic idea of the

offloading system consists of 1) the design of a distributed

architecture to dynamically handle the robots computation

demands, and 2) the implementation of an offloading mid-

dleware enabling bidirectional communication between robots

and cloud resources. As multiple cloud resources are available,

the middleware aims at ensuring a seamless and a transparent

way to exchange data, therefore reducing the difficulties raised

by the heterogeneity of robots and cloud.

Designing such a system is challenging since we need to

consider many factors including:

• Transparency: Transparency is crucial for robots to trans-

mit their data without having the internal cloud in-

formation. In a transparent cloud environment, robots

access remote resources while ignoring their location.

The address of the remote cloud servers and/or the access

mechanisms are totally hidden. Such characteristics will

facilitate the efficient delivery of the robots data to remote

cloud servers.

• Scalability: The system must be scalable in many aspects.

The architecture should handle all requests of all robots

even if their number increases. The system is recom-

mended to provide a sufficient number of computing

machines to store and analyze huge amounts of data. The

system should also provide scalable distributed storage

systems for big size files.

• Reliability: Since robots are transmitting their data to the

cloud, the architecture should guarantee that messages

reached their final destination in the cloud. The set of

computing resources should be available and functional

to receive and service all the robot requests. The system

should build a continuous and stable connection between

the robot team and the cloud resources.

B. Design

In this section, we present the design of the software

architecture, including the actors and the relation among them.

Figure 1 gives a first insight into the different components of

the architecture.

RobotsWireless

Communication

Communication

Layer
R2R communication

R2C communication

B
ro

ke
r

1

B
ro

ke
r

2

B
ro

ke
r

3

Cloud

ApplicationsObject

recognition

Path

planning
SLAM

Face

recognition

Services
Computation as a

service

Storage as a

service

Cloud

InfrastructureWired

Communication

Offloading middleware

Fig. 1: A High Level View of the Architecture

The offloading computation architecture relies on three main

layers: robots, communication, and cloud. As depicted in

Figure 1, robots represent the tangible part of the architecture,

which is responsible for monitoring its surrounding envi-

ronment and collecting information using its sensors and/or

multimedia features. Then, the collected information is sent to

the cloud for i.) stored as data archives, and ii.) computation

of a set of software programs. We assume that each robot is

equipped with a wireless communication module to transmit

data through WiFi, 3G or 4G connection. We assume also that

the robots are abstracted by ROS (Robot Operating System)

packages. In fact, ROS is the most ubiquitous platform de-

signed for robots as it is an open source project widely known

by a large community of users [20]. It is a software robotic

platform designed to facilitate resources handling and inter

platform interoperability. It provides all the software required

to deal with different categories of sensors and actuators.

The middle layer is called communication layer which

includes: Robot to Robot (R2R) communication and Robot to

Cloud (R2C) communication. Messaging and communication

across the robots (R2R communication) are managed by

named buses called topics. Topics are an asynchronous publish

and subscribe semantics where nodes do not have any idea

about data origin. Within topics, data is transported using

TCP or UDP protocols. R2C communication is responsible for

exchanging robots collected information with cloud computing

and storage infrastructure over the Internet. It is used to

distribute the robots message streams over several brokers to

be consumed by cloud applications and vice versa. It offers

a seamless transmission of i.) information flows generated

by robots to cloud instances, and ii.) results produced by

the execution of cloud applications back to the robots. R2C

communication is responsible for exchanging robots collected

information with cloud computing and storage infrastructure

over the Internet. It is used to distribute the robots’ message

streams over several brokers to be consumed by cloud appli-

cations and vice versa. It offers a seamless transmission of i.)

information flows generated by robots to cloud instances, and

ii.) results produced by the execution of cloud applications

back to the robots.

The topmost layer presents the cloud where the processing

of complex applications is performed and data are aggregated

in archival databases in the cloud. The cloud is internally made

of three sublayers: applications, services, and cloud infras-

tructure. The application layer exposes various applications

remotely accessed by robots such as object recognition, path

planning, face recognition, etc. In the services layer, we have

two main services: computation as a service and storage as

a service. Computation as a service is the provisioning of

shared computing resources on demand. While storage as a

service is offering a storage infrastructure to archive data.

These services allow the allocation of the computation and

storage resources required for the application being executed.

The cloud infrastructure is a set of nodes constructed from

commodity hardware connected to each other through a wired

Internet connection. They may be virtual machine instances

provided by an IaaS (Infrastructure as a Service) API.

The main contribution of this architecture is distributing

streams of data collected from a set of robots to be remotely

processed on processing units in the cloud. The achievement

of this idea expounds on the design of a middleware enabling

bidirectional and stable communication between robots and

cloud resources. The offloading solution is modeled by the

component diagram presented in Figure 2.

One of the most advantages of our architecture is distribut-

Fig. 2: Component diagram explaining the role of the of-

floading middleware in transmitting and distributing robots

collected data

ing data by using the offloading middleware, through which

the processing units in the cloud can process the massive and

complex data in a very short time. The middleware acts as an

intermediate layer that provides a seamless interaction between

the robot ecosystem and the cloud infrastructure. Accordingly,

it is responsible for: (i.) subscribing to ROS topics, and (ii.)

safely delivering ROS published messages to the cloud. It

collects data sent by robots and triggers the backend com-

putation cluster to process it. One of the advantages of the

middleware is enabling a transparent computation offloading

process for robots. Robots do not have any idea about the

cloud infrastructure behind. The middleware uses WebSocket

interfaces to expose ROS messages to a set of computing

machines in the cloud. In fact, WebSockets offer bidirectional

communication using a single socket connection. They make

real-time communication more efficient because they guar-

antee low latency in transmitting messages using long-held

connection [25]. WebSocket component interchanges ROS

messages to JSON (JavaScript Object Notation) serialized

messages to appropriately prepare the data for cloud process-

ing. We preferred to use JSON message format because it is

more lightweight compared to XML. Besides, it is language

independent and can represent any concrete data.

JSON messages are then partitioned over a pub/sub brokers.

The partitioning process ensures that messages are equally

distributed over all the cluster machines. If it receives two

messages, it stores the first message on the first available ma-

chine and the second message on the next machine. It receives

periodically the status of the cluster from the coordination

process, and then shares the received data on an alive machine.

It assigns to the message a key, store the message on the

cluster and update the coordination process with information

regarding the stored message.

Deploying a distributed system can be a precarious problem.

While the main goals of distributed systems are reliability,

transparency, scalability, and performance, they are prone to

many problems like node failure and inconsistency. Designing

and deploying a distributed architecture requires a coordina-

tion service, to maintain reliability. The coordination process

simplifies data partitioning in the cluster and periodically

maintains the status of the cluster. It keeps track of which

broker is alive and which has just logged in. It stores the

status of the cluster in a file and distributes this file to the

entire cluster. The input data to the processing units comprises

streams of data published on the brokers of the pub/sub

messaging cluster. Upon receiving a publication, the cloud

resources management process assigns the job of processing

to an available processing unit, then notifies the coordination

process. In our case, the maximum level of parallelism we

can reach is defined by the number of brokers reserved for

the application. In parallel, it stores a copy of this data in a

storage entity to be accessed and analyzed at any time.

The interactions between the components of the architecture

are best explained through the sequence diagram presented in

Figure 3.

For now, our architecture supports the static offloading

decision. All the tasks required in a scenario are deployed

in the cloud as an application as a service during the design

time.

IV. IMPLEMENTATION

A. General Background

1) Robot Operating System (ROS): Robot Operating Sys-

tem (ROS) [20] is a meta-operating system designed for

the construction of distributed systems. It provides a set of

extensible tools for managing distributed robotic applications.

The main goals of ROS are package management, hardware

abstraction, low-level device control, message exchange be-

tween processes, and implementation of several functionalities.

ROS consists of a set of executable called nodes, used to

perform the system computation. Nodes in ROS are organized

in Peer-to-Peer network forming the ROS computation graph.

Messages transmitted between ROS nodes are simple data

structure. They are of two types: topics and services. A topic

is a name of a stream of an object published by a node

called the publisher. Other nodes interested in this topic may

subscribe to it, and they are called listeners. The ROS master

node tracks the list of publishers and listeners to a topic. A

ROS master node is an XML-RPC server. Nodes connect to

other nodes directly. The Master node provides only lookup

information, much like a DNS server. ROS uses the transport

layer TCPROS for reliably transporting message data. It uses

standard TCP/IP sockets.

2) Apache Kafka: Apache Kafka [24] is a publish-subscribe

message brokering system rethought as a commit log. It can be

used for both online and offline message consumption. It was

Fig. 3: Sequence diagram explaining the steps through which a message goes from being captured by the robot to the execution

in the cloud

originally developed at LinkedIn for managing the mountains

of data they are generating.

Kafka offers a high level of abstraction called topic. A topic

is a name to which messages are stored in an unchangeable se-

quence and identified by an offset. For each topic is attributed

at least one partition log. Partitions contain messages that are

replicated over multiple servers for reliability. Producers are

processes that publish data or messages to a specific topic by

choosing the appropriate partition. Consumers are applications

that subscribe to a topic and process the set of published

messages.

3) Apache Storm: Apache Storm [26] is a distributed, open-

source, real-time computation system. It is designed to ma-

nipulate large streams of data. Components in a Storm cluster

are organized in a master-slave architecture. A Storm cluster

contains a single master node called nimbus, and a set of

worker nodes called supervisors. Nimbus node is responsible

for (1) distributing application code across supervisors, (2)

assigning tasks to different workers, (3) monitoring tasks for

detecting any failures, and (4) restarting tasks when required.

Supervisor nodes are responsible for managing worker pro-

cesses that execute the tasks assigned to this node. Besides,

Storm offers a coordination interface between the master and

the worker nodes managed by a zookeeper cluster. Storm

cluster is fault tolerant since all its configuration information

is stored in Zookeeper. Any event of failure of the nimbus or

any supervisor node will not disturb the cluster performance.

Data flow in Storm goes continuously through several trans-

formation entities. The key abstraction of data flow in Storm

is called stream, which represents an unbounded sequence of

tuples. Tuples are a named list of key-value pairs.

Computation in Storm is abstracted as a graph called

topology. A topology is simply a network of spouts and a

chain of bolt components. Spouts are the source of the data

stream while bolts are data processing.

B. First Prototype

Designing the software architecture was challenging. In fact,

we faced the problem of choosing the appropriate technologies

to bind robots with the cloud infrastructure. In what follows,

we present in detail the frameworks used to build a first

prototype of the architecture.

All robots are abstracted by ROS packages. Messaging and

communication across the robots, and between the robots and

the middleware are managed by named buses called topics.

A topic is an asynchronous publish and subscribe semantics

where nodes do not have any idea about data origin. Within

topics, data is transported using TCP or UDP protocols.

ROS messages are collected using rosbridge server [11]

which is a JSON interface to non-ROS programs. It uses

WebSockets to enable any client to publish and subscribe to

ROS topics. The rosbridge connects to the topic of interest,

gathers published messages, and sends them immediately to

the publish-subscribe brokers. Data transferred between the

robots and the back-end computing cluster take place using

streams of bytes enveloped in JSON format.

The design of the architecture focuses on publish-subscribe

brokers. In fact, in a publish-subscribe messaging pattern

publishers and subscribers are loosely coupled; they do not

need to know the existence or the parameters (like IP address)

of each other. Besides, they may offer better scalability through

a parallel operation. We were actually interested in topic-based

models.

There are many open source topic-based message brokers,

available that fulfill the messaging needs in our architecture

like RabbitMQ [27], Apache Kafka [24], Apache ActiveMQ

[28], etc. In fact, Apache Kafka has good clustering capabil-

ities which fit the requirements of our architecture. It offers

a high throughput level for both publishing and subscribing;

thus the architecture won’t block under any circumstances.

Kafka persists published messages on disk to be used for both

batch and stream processing. Besides, the way Kafka stores

the messages is simple and efficient. First, messages are stored

in partitions of a topic physically implemented as a set of

segment files of equal sizes. Each partition corresponds to a

logical log used to expose messages to consumers. Second,

message overhead in Kafka is small compared to the other

solutions [29].

In our architecture, we are actually interested in stream

processing platforms. For that reason, we choose to work

with the Apache storm as a fundamental cloud processing

framework.

The input data to the storm cluster comprises streams of data

published by Kafka brokers presented as ”Kafka Spout”. Kafka

Spout is an adapter designed specifically for storm topologies

to read Kafka’s published messages. Actually, it is similar to

a built-in Kafka consumer used to retrieve data from brokers.

Actually, the maximum level of parallelism we can reach in

a Kafka cluster is defined by the number of partitions we can

create for a topic. Having so, we can share the message load

into many partitions that many Kafka spout consumers read

data from the same topic in parallel. We dynamically divide the

load on multiple Kafka partitions and instantiate for each one

a Kafka spout to handle it. In the middle, data is processed

using bolts. The parallelism at this level is not bounded. It

depends on the application.

As we have already mentioned it, the architecture can be

used in different scenarios and application. We were interested

in computer vision application using openCV [30] library. By

default, Storm does not support emitting complex data like

openCV object within bolds. To fix this, we have implemented

a custom serializer for openCV objects using kryo serializa-

tion.

Apache Zookeeper [31] is a coordination service. It is

designed for naming, maintaining configuration information,

providing group service, and providing distributed synchro-

nization. It runs in a cluster called an ensemble. One node

serves as a leader that receives all clients requests. The other

nodes are called followers. If the leader fails, one follower

will be elected as a new leader to ensure reliability and

availability of the service. With zookeeper, data is stored in

shared hierarchical namespaces just like a file system. Each

namespace is a set of data registers called znodes. Znodes can

be files or directories that hold data or child nodes.

In our case, zookeeper is used by both Apache Kafka

and Apache Storm. In Apache Kafka, zookeeper is used

for topic configuration, cluster membership, the amount of

data each client is allowed to write and read, and who is

allowed to read and write from which topic. Zookeeper is

also responsible for electing a new Kafka controller in case

of failure. A Kafka controller is broker responsible for admin-

istrative tasks like managing partition states. Apache storm

uses a zookeeper cluster to coordinate between nimbus and

supervisor nodes. These nodes communicate with each other

through the zookeeper ensemble. Besides, zookeeper stores

the various tasks submitted and the state of the cluster. Both

nimbus and supervisor nodes can be killed without affecting

the cluster because all data is stored in zookeeper.

V. PERFORMANCE EVALUATION

To evaluate the performance of the architecture, we propose

a set of experiments to determine 1) the usefulness of the

architecture in achieving high processing speed with low

communication delay, and 2) the benefit of offloading the

robots in terms of memory and processing.

A. Experimental Setup

We tested our architecture on a small OVH public cloud

cluster [32] formed by eight virtual machines provisioned

using OpenStack. Each virtual machine is equipped with 7 GB

of memory, 50 GB storage, and two core processors running

each with 2.3 GHz. The network bandwidth guarantees 250

Mbps for use and can reach until 300 Mbps. All machines run

Ubuntu 16.04 operating system.

We deployed a Kafka cluster with three brokers, therefore

allowing creating topics with three partitions. Accordingly, we

deployed a storm cluster with three supervisor nodes running

each on a single virtual machine, because the maximum

parallelism we can reach on a Kafka spout is limited by the

number of partitions a topic can have. The Nimbus and the

zookeeper run on the same machine (see Figure 4). In the

last virtual machine, we deployed the ROS node with the

offloading middleware on the top. The worker and perception

modules in ROS nodes were written in C, and the distributed

algorithm running on a storm cluster is written in java.

R
O

S

n
o

d
e

O
ff

lo
a

d
in

g

m
id

d
le

w
a

re

Broker 1

Broker 2

Broker 3

Kafka Cluster

Supervisor 1

Supervisor 2

Supervisor 3

Nimbus

Storm Cluster

Zookeeper

Service

Fig. 4: Deployment Scenario of the Architecture

Nowadays, robots are extensively used in several fields

including medicine and industry. As a result, the elements

of the construction of a robotic application involve complex

technologies. Object tracking is one of the challenging appli-

cations for robots since there are two types of information to

be extracted: visual features and motion information. We have

developed an object tracking algorithm for the evaluation of

the architecture. Each image, being captured by the robot, is

encoded in base 64 before transmission. Thus, the first bolt

in the storm topology is concerned with image decoding.

The next bolt is responsible for visual features extraction

including color, texture, and shape. The following bolt extracts

the motion information, especially the distance from the robot

to the object. The last bolt distributes the result on Kafka

partitions.

B. Experimental Results

Study 1: A useful computation offloading architecture

should offer a high computation speed without introducing

large delays. Robots require a quick answer since they may

be deployed in critical real-time applications. However, many

factors may degrade the performance of the architecture,

including the network bandwidth and the amounts of data

being exchanged.

In this experiment, we deployed a single ROS node that

produces messages at different rates. This data is transmitted

through the middleware and shared on the three Kafka brokers,

which relay it to the storm cluster. We measured end-to-end

delay for (1) robot to middleware, and (2) middleware to cloud

servers transmissions with a 95% confidence interval.

Fig. 5: Transmission Delay

Figure 5 shows the transmission delay of the messages from

the robot to the middleware and from the middleware to the

cloud. It is clear that the transmission delay in both cases

increases linearly with the number of messages transmitted

per second. In fact, images are encoded in base 64. The size

of data encoded in base 64 is expanded by 1/3 larger size

than their binary equivalent, which will raise the bandwidth

utilization.

Besides, the robot to middleware transmission delay is

larger compared to middleware to cloud transmission delay.

This is actually normal since we have one data producer for

Kafka cluster and three consumers. Among the top advantages

of the design of Apache Kafka is handling high volume

and high-velocity data without using large hardware. Apache

Kafka splits the data load on multiple brokers (in our case 3).

It receives stores and sends messages using different running

servers.

Study 2: we demonstrate what benefit the architecture could

offer for the robots in terms of memory usage, execution time,

and the number of messages being processed. To do so, we

deployed two ROS nodes: the first one runs the algorithm

of object tracking, while the second one uses the offloading

solution. They both run on machines with the characteristics

described below.

Fig. 6: Execution Time

The first observation, we noticed from this experiment,

is that robot with the offloading solution can exchange a

higher number of images. A robot running the object tracking

algorithm can execute up to 19 messages per second, while

a robot with the offloading solution can process up to 30

messages per second.

Figure 6 shows the execution time of the object tracking

for both cases on the robot and in the cloud. Cloud execution

was surprisingly higher than robot execution. The increase

in cloud execution time can be attributed to many factors.

First, servers are geographically located in different cloud

regions. Data movement in clouds is related to the underlying

network bandwidths. Besides, relay points binding to different

cloud regions will introduce more delay. Second, since images

are encoded in base64 for transmission, the object tracking

algorithm running in the cloud runs supplementary tasks

including decoding and restoring the initial image. Finally,

Apache Kafka runs on the top of the Java Virtual Machine

(JVM), which will even double the size of the stored data.

As a result, this will increasingly slow down the Java garbage

collection. As we can see in Figure 7, the CPU usage without

offloading is extremely high compared to the CPU usage

Fig. 7: Robot CPU Usage

with offloading. Offloading seeks to overcome performance

bottlenecks by executing some network functions enabling

data exchanges with cloud clusters. This has the advantages

of augmenting the availability of the robot’s CPU for other

important functions, therefore improving its efficiency.

VI. CONCLUSION

This paper presented a cloud robotic architecture to offload

the robots from their complex processing workload. The

architecture distributes the robots workloads over cloud servers

through the offloading middleware.

The architecture was implemented using Apache Kafka

and Apache Storm. The primary benefit is the reduced cost

of the offloading solution. When implemented using open

source solutions, the economic cost of the architecture is less

expensive.

Empowering robots with cloud computing comes with a

fundamental tradeoff. Offloading the execution of a computa-

tionally intensive algorithm to the cloud can reduce resource

utilization, including CPU, memory, and the battery. However,

this comes with a cost: communicating with cloud resources

over a congested network increases latency and can lead

to delay for real-time applications. In future work, we will

consider working on an offloading decision that reduces the

overall execution time of the application.

ACKNOWLEDGMENT

The authors would like to thank the Center of Excellence

and the Robotics and Internet-of-Things Unit at Prince Sultan

University, Saudi Arabia, for their support of this work.

REFERENCES

[1] B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni, “Car
detection using unmanned aerial vehicles: Comparison between faster
r-cnn and yolov3,” in 2019 1st International Conference on Unmanned

Vehicle Systems-Oman (UVS), Feb 2019, pp. 1–6.

[2] E. T. Alotaibi, S. S. AlQefari, and A. Koubaa, “Lsar: Multi-uav
collaboration for search and rescue missions,” IEEE Access, pp. 1–1,
2019.

[3] A. Koubaa, M. Sriti, Y. Javed, M. Alajlan, B. Qureshi, F. Ellouze, and
A. Mahmoud, “Turtlebot at office: A service-oriented software archi-
tecture for personal assistant robots using ros,” in 2016 International

Conference on Autonomous Robot Systems and Competitions (ICARSC),
May 2016, pp. 270–276.

[4] J. Dizdarevi, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of
communication protocols for internet of things and related challenges
of fog and cloud computing integration,” ACM Comput. Surv., vol. 51,
no. 6, pp. 116:1–116:29, Jan. 2019.

[5] J. Kuffner, “Cloud-enabled robots,” in IEEE-RAS International Confer-

ence on Humanoid Robots. IEEE, 2010.
[6] R. Chari, F. Ellouze, A. Kouba, B. Qureshi, N. Pereira, H. Youssef,

and E. Tovar, “Cyber-physical systems clouds: A survey,” Computer

Networks, vol. 108, pp. 260 – 278, 2016.
[7] A. Koubaa, “Service-oriented software architecture for cloud robotics,”

CoRR, vol. abs/1901.08173, 2019.
[8] A. Koubaa, B. Qureshi, M.-F. Sriti, A. Allouch, Y. Javed, M. Alajlan,

O. Cheikhrouhou, M. Khalgui, and E. Tovar, “Dronemap planner: A
service-oriented cloud-based management system for the internet-of-
drones,” Ad Hoc Networks, vol. 86, pp. 46 – 62, 2019.

[9] “Mavlink developer guide,” https://mavlink.io/.
[10] A. Koubaa, M. Alajlan, and B. Qureshi, ROSLink: Bridging ROS with

the Internet-of-Things for Cloud Robotics. Cham: Springer International
Publishing, 2017, pp. 265–283.

[11] C. Crick, Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins, Rosbridge:

ROS for Non-ROS Users. Cham: Springer International Publishing,
2017, pp. 493–504.

[12] I. Chaari, A. Kouba, B. Qureshi, H. Youssef, R. Severino, and E. Tovar,
“On the robot path planning using cloud computing for large grid maps,”
in 2018 IEEE International Conference on Autonomous Robot Systems

and Competitions (ICARSC), April 2018, pp. 225–230.
[13] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-

Lopez, K. Haussermann, R. Janssen, J. M. M. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft,
“Roboearth,” Robotics Automation Magazine, IEEE, vol. 18, no. 2, pp.
69–82, June 2011.

[14] A. Koubaa and B. Qureshi, “Dronetrack: Cloud-based real-time object
tracking using unmanned aerial vehicles over the internet,” IEEE Access,
vol. 6, pp. 13 810–13 824, 2018.

[15] Y. Guo, Z. Mi, Y. Yang, and M. S. Obaidat, “An energy sensitive
computation offloading strategy in cloud robotic network based on ga,”
IEEE Systems Journal, pp. 1–11, 2018.

[16] S. S. Ali, A. Hammad, and A. S. T. Eldien, “Fastslam 2.0 tracking
and mapping as a cloud robotics service,” Computers & Electrical

Engineering, vol. 69, pp. 412 – 421, 2018.
[17] W. Chen, Y. Yaguchi, K. Naruse, Y. Watanobe, K. Nakamura, and

J. Ogawa, “A study of robotic cooperation in cloud robotics: Architecture
and challenges,” IEEE Access, vol. 6, pp. 36 662–36 682, 2018.

[18] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F.
Kong, A. S. Kumar, K. D. Meng, and G. W. Kit, “Davinci: A cloud
computing framework for service robots,” in 2010 IEEE International

Conference on Robotics and Automation, May 2010, pp. 3084–3089.
[19] “Apache hadoop,” http://hadoop.apache.org/.
[20] “Robot operating system (ros),” www.ros.org/.
[21] S. A. Miratabzadeh, N. Gallardo, N. Gamez, K. Haradi, A. R.

Puthussery, P. Rad, and M. Jamshidi, “Cloud robotics: A software
architecture: For heterogeneous large-scale autonomous robots,” in 2016

World Automation Congress (WAC), July 2016, pp. 1–6.
[22] “Openstack cloud software,” https://www.openstack.org/.
[23] P. Zhang, H. Wang, B. Ding, and S. Shang, “Cloud-based framework

for scalable and real-time multi-robot slam,” in 2018 IEEE International

Conference on Web Services (ICWS), July 2018, pp. 147–154.
[24] “Apache kafka,” https://kafka.apache.org/.
[25] V. Wang, F. Salim, and P. Moskovits, The Definitive Guide to HTML5

WebSocket, 1st ed. Berkely, CA, USA: Apress, 2013.
[26] “Apache storm,” www.storm.apache.org/.
[27] “Rabbitmq,” www.rabbitmq.com/.
[28] “Apache activemq,” www.activemq.apache.org/.
[29] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging sys-

tem for log processing,” in Proceedings of 6th International Workshop

on Networking Meets Databases (NetDB), Athens, Greece, 2011.
[30] “Opencv library,” http://opencv.org/.
[31] “Apache zookeeper,” https://zookeeper.apache.org/.
[32] “Ovh cloud service provider,” www.ovh.com.

