
elatório
técnico

echnic
report

alt
r

IPP-HURRAY! Research Group

Polytechnic Institute of Porto
School of Engineering (ISEP-IPP)

To Ada or not To Ada: Adaing vs.
Javaing in Real-Time Systems

Luís Miguel PINHO
Francisco VASQUES (FEUP)

HURRAY-TR-9820

November 1998

THIS WORK IS PARTIALLY SUPPORTED BY FLAD UNDER PROJECT SISTER (Proj.471/97) AND BY DEMEGI/FEUP

To Ada or not To Ada: Adaing vs. Javaing in Real-
Time Systems

Luís Miguel PINHO

IPP-HURRAY! Research Group
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340502, Fax: +351.22.8340529
E-mail: lpinho@dei.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Francisco VASQUES

University of Porto (FEUP)
Rua Dr. Roberto Frias
4050-123 Porto
Portugal
Tel.: +351.22.5081702, Fax:
E-mail: vasques@fe.up.pt
http://www.fe.up.pt/~vasques

Abstract:
Ada is really an unfortunate Lady. After years fighting against C/C++ villains, her major lift-up
(Ada 95) had brought up a promise of fortune. However, a new strong villain (Java) has
appeared trying to end her struggle for approval. Ada has now to fight with its own weapons.
She will only succeed by her own merit. But the question is, do they exist? Are they fitted to
Real-Time Systems? We think that they do exist, and that they are more than suitable to
Real-Time Systems programming.

To Ada or not To Ada:
Adaing vs. Javaing in Real-Time Systems∗

Luís Miguel PINHO
Department of Computer Science

School of Engineering
Polytechnic Institute of Porto,

Rua de São Tomé, 4200 Porto, Portugal
e-mail: lpinho@dei.isep.ipp.pt

Francisco VASQUES
Department of Mechanical Engineering

School of Engineering
University of Porto,

Rua dos Bragas, 4099 Porto Codex, Portugal
e-mail: vasques@fe.up.pt

∗ This work was partially supported by FLAD (project SISTER 471/97) and by DEMEGI / FEUP

Abstract

Ada is really an unfortunate Lady. After years fighting
against C/C++ villains, her major lift-up (Ada 95) had
brought up a promise of fortune. However, a new strong
villain (Java) has appeared trying to end her struggle for
approval.
Ada has now to fight with its own weapons. She will only
succeed by her own merit. But the question is, do they
exist? Are they fitted to Real-Time Systems? We think that
they do exist, and that they are more than suitable to Real-
Time Systems programming.

Keywords: Ada 95; Real-Time Java.

1. Introduction

To meet the demands of Real-Time Systems
programming, a language must cope with specific
requirements, apart from the software-engineering general
requirements placed to any kind of programming language
[1].

As Real-Time Systems must interact with physical
devices, a specific requirement for a Real-Time
programming language is the ability to interface with
conventional and special-purpose hardware devices. Such
interface may be based on pooling or interrupting
mechanisms, which must be handled in a flexible and
secure way.

Considering also that Real-Time Systems are inherently
concurrent, the programming language must provide
support to multitasking activities, such as adequate
scheduling algorithms and synchronisation mechanisms.
The concurrency should not be supported only by the OS
services, since the compiler isn’t aware of the concurrent
nature of the software.

As timing predictability is the major issue in a Real-
Time Systems implementation, the program timing analysis

is a crucial step in the software development process.
Thus, a Real-Time programming language should be
schedulability analysable.

Concerning software engineering generic
requirements, as Real-Time Systems have a long life
expectation, it is important that the software is able to
maintain, evolve, and port across several platforms.
Also, software must be reliable, so the programming
language should be very secure, and with strong
compile-time type checking.

Ada 95 and Java are both contenders to the realm of
C/C++ applications: Real-Time Systems and Embedded
Systems. Using any of these programming languages to
support such kind of systems should be carefully
evaluated before any decision. However, it seems that
the only requirement that really matters is the following
one: XPTO is the programming language that I know, so
why not using it?!

In the following text, we’ll be using the term Ada to
refer to its 1995 standard. When necessary, Ada 83 will
be used to refer the predecessor.

2. Java as a Language for Real-Time
Systems

There is no doubt that Java has gained a lot of
attention from the software programming community.
Although initially target to the embedded systems
development, it was designed to meet the challenges of
applications development in the context of
heterogeneous, network-wide distributed environments
[2]. The Java Programming language platform provides
a portable, familiar and simple, object-oriented
language. Its syntax is derived from C++, with some
(major) modifications. It is a full object-oriented
programming language, where some of the C++ features
were removed to make a simpler and safer language.

Portability is one of the key features of the Java
platform. Java code is not compiled to the target machine,
but translated to a standard portable byte-code
representation, that can be executed on any Java Virtual
Machine (JVM). This means that code is completely
independent of any specific target. Its “write once, run
anywhere” philosophy is the key element to its widespread
use.

Java extensive (and always increasing) standard classes
hierarchies (Java API) allow the programming of platform
independent applications, from WWW animation to
financial applications.

Concurrency support, which is provided by the API,
makes possible the building of multithreaded applications.
This multithread model is relatively simple, but there are
still some undefined aspects: although providing thread
priorities, its use depends on the underlying platform,
defeating the portability issue. Besides that, the
java.lang.Thread class specification defines that: “Threads
with higher priority are executed in preference to threads
with lower priorities” [3], which is clearly insufficient for
real-time applications development.

Java threads synchronisation support is based in the use
of conditional variables (monitors). The program critical
sections (code segments that access the same data from
concurrent threads) must be synchronised using the
synchronised keyword. The synchronised methods can use
notify() and wait() to ensure that each value placed in the
CubbyHole by the Producer is retrieved once and only once
by the Consumer.

The notify() method chooses one thread waiting on the
monitor and wakes it up. If there are multiple waiting
threads, the Java runtime system makes no commitments
about which will be the chosen thread. Another method--
notifyAll()—can be used to wake up all the waiting threads.
In this situation, the awakened threads compete for the
monitor.

Although its embedded systems origins, the JAVA
virtual machine and the API specifications still do not
support real-time programming requirements [4]. The Sun
approach is to create language variants (e.g. Embedded
Java) to meet real-time requirements. However, this means
that portability, which is one of Java’s most important
features, is no longer supported.

Java is a heap-oriented language, with a garbage
collection mechanism, freeing the programmer from
explicit memory deallocation. The use of a Garbage
Collector (GC), although preventing one of the greatest
sources of errors in C/C++ code, results in the non-
deterministic timing behaviour of Java applications, which
is a major drawback for the Real-Time Systems
development.

There is a trend in the Java community to incorporate
features supporting Real-Time Systems programming
(Real-Time Java [5]). The introduction of deterministic GC,

the language extension to cope with hardware
interfacing and the introduction of more elaborated
concurrency mechanisms [4] are being considered in
order to make the language more appealing to the real-
time community.

However, modifying deeply the Java language
would prevent its strong arguments: portability and
simplicity. The solution to this problem seems to be the
specification of a core language, with one or more
annexes intended to support the development of Real-
Time Systems applications.

3. Ada as a Language for Real-Time
Systems

Ada was designed to develop embedded systems
applications, in order to replace multiple languages used
at the DoD. Ada 83 soon became know for its
reliability. The strong typing model of the language
allows the compile time detection of most errors, and
the detection of the remaining by runtime constraints.

Its syntax being derived from Pascal, the Ada vs.
Java discussion can be seen as a new battle of the C vs.
Pascal war.

However, it also became apparent that the Ada 83
standard lacked some features necessary to its main
target: Real-Time Systems development. The language
revision and its standardisation (Ada 95 [6]) brought a
more open and extensible language without losing the
inherent integrity of Ada 83. It kept the Software
Engineering issues, allowing for more flexibility in the
software development process.

A major evolution in the Ada language was the
introduction of a new task model based on protected
objects. This new task model allows for a more efficient
solution for the access to shared data. Moreover, the
clearly data-oriented view brought by the protected
objects fits in naturally with the general spirit of the
Object Oriented paradigm. Protected objects simplify
Real-Time applications development, outcoming the
disadvantages of the Ada 83 Rendezvous mechanism.
With protected objects it is also possible to build
asynchronous communication and mutual exclusion
mechanisms.

Asynchronous Transfer of Control is also a powerful
language construct, allowing a task to receive events,
without the need of polling or waiting cycles.

An important advantage of Ada is the required
compiler validation. The targeting of any system being
an Ada issue, induced the specification of a core
language with some extra Annexes targeting special
applications. For instance, a compiler targeting Real-
Time Systems must conform also to the Real-Time
Systems Annex and the Systems Programming Annex.
The later covers access to machine code, interrupt

handling and packages for general task identification and
attributes. The existence of Ada mechanisms to specify the
exact size and layout of objects for user data types and
absolute variable addresses and its easy interface with other
languages simplifies the job of hardware interfacing.

The Real-Time Systems Annex provides the language
with the necessary capabilities for schedulability analysis,
namely imposing the support of Priority Ceiling Protocol,
Priority Queuing and FIFO within priorities.

Furthermore, it specifies a monotonic and accurate
timing capability, mechanisms for synchronous and
asynchronous task control and also tasking restrictions that,
for instance, can impose a maximum number of tasks, no
asynchronous control or no dynamic priorities.

The strong software engineering approach of Ada,
together with its real-time systems capabilities, makes it a
suitable language to real-time systems programming.

4. Ada vs. Java

Although Java first target was embedded systems, its
main use is in Web programming, where it has great
advantages. As Internet and WWW are “hot topics”, Java is
also an “hot topic”. That is enough to make Java a
promising language. We can point the case of C and
TCP/IP, which became de facto standards because people
de facto used them. It will be no surprise if Java assumes
itself as the de facto language.

Having a great number of programmers, it is also
natural that there will be a shift to Java in every type of
applications, with Real-Time Systems among them. That is
not sufficient to make a language suitable to any kind of
application, but is sufficient to its utilisation.

The main problem with Ada remains in its complexity.
Being a Pascal-like language with a strong type model, it is
difficult to learn and not appealing to the majority of
programmers. C/C++ and Java are undoubtedly easier to
learn and use.

Another problem is the language first-impression.
Ada 83 had several drawbacks (compiler inefficiency,
complexity) that prevented it from being widely accepted in
the programming community. Java, on the opposite, is
closely connected to the Web programming, so it is
extremely appealing to programmers.

Ada offers a large number of features like OOP,
concurrency support, hardware interfacing, strong type
checking, generic units, etc., which can make the difference
on Real-Time applications development. Its complexity is
the reverse of the medal. However, it is our opinion that the
easier software development process compensates the time
needed to fully understand the language mechanisms.

Ada has a number of software-engineering related
advantages to Java, such as the separation of logical
interface from implementation, stronger compile-time type

checking, true generic templates, enumeration types and
higher-level synchronisation constructs. In fact, the Java
extension to support Real-Time Systems is somehow
similar to the Ada revision process.

Real-Time Java (maybe we should call it Java 9X, or
Java 200X) tends to incorporate into Java features that
are already present in Ada. If they are already present in
Ada there is no reason for not using them today, in
today systems.

Also, being Ada is a safer language, it has some
strong arguments for the Ada vs. Java fight, mainly in
systems where fault-tolerance and safety are important.

4.1 But Is Real-Time Java a Language of the
Future for Real-Time Systems?

Yes, but not the language of the future. The software
community has already seen some promises of an all-fit
language that would conquer everything. But different
systems have different set of requirements. If we are
doing an expert system, we’ll probably use Prolog, not
Ada, C++ or Java. There is not such thing such an all-fit
language. We have several programming languages
with their advantages, and disadvantages, that must be
weighted in each application domain.

Real-Time Systems is a broad area, with different
sets of requirements. In Soft Real-Time systems with
large dynamical evolution, such as multimedia or
factory-level process control, Real-Time Java can, and
probably will, take a major role. However, in systems
with hard real-time requirements, where safety,
reliability or availability are important concepts, Ada
will continue to have a strong influence.

5. Using Ada for Real-Time Fault-
Tolerant Programming

In this section, we describe some examples of Ada
programming in Real-Time (and Fault-Tolerant)
Systems, using some code developed for the Multi-µ [7]
architecture.

The Multi-µ architecture is being implemented to
study and develop software based fault tolerance
mechanisms for Real-Time Systems, using the Ada
language. It is based on the active replication of
processing nodes, using Commercial Off-The-Shelf
(COTS) components.

Each node (figure 1) has a real-time kernel,
responsible for the multitasking environment and for the
communication with other nodes. The application is
built on top of the compiler library, to ensure abstraction
from kernel implementation, and also on top of the Fault
Tolerance Manager (FTManager), providing the fault
tolerance abstraction.

CPU board

RTEMS

Communication Manager

Replica Manager

GNAT library

Application

Fig. 1 – Multi-µ Node Architecture

Fault Tolerance
Manager

The selected kernel is the Real-Time Executive for
Multiprocessor Systems (RTEMS) [8] and the selected Ada
compiler is GNAT [9]. RTEMS is a real-time kernel
suitable for real-time applications as it implements the
needed features (multitasking, multiprocessing, preemptive
scheduling, intertask communication, priority inheritance,
etc.). It has a modular architecture, and so it is possible for
non-used features not to be integrated in the application
code. The RTEMS tasking system will be used to support
the GNAT run-time system, which is a work currently
being done by RTEMS and GNAT people.

The RTEMS kernel provides communication links
between nodes making use of queues. This mechanism can
be used without knowledge of the physical distribution of
the sender and receiver tasks, being a good framework for
building replicated systems.

The FTManager is responsible for the transparent
incorporation of the fault tolerance mechanisms into the
application. The FTManager has two layers:

� The Communication Manager, which is responsible
for the implementation of the communication
algorithms, in order to support the dissemination of
replica private values;

� The Replica Manager, which provides the
necessary mechanisms for replica management,
hiding its implementation from the application
programmer.

Information regarding replication (replica configuration)
is considered only at a final configuration phase. In such
way, real-time applications can be programmed
disregarding distribution and still use all the Ada powerful
constructs.

Ada provides all the necessary mechanisms that are
necessary to develop our architecture. Moreover, its strong
compile-time type checking allows the easy detection of
programming errors, extremely important in the fault-
tolerant systems development.

5.1 Group Communication Hierarchy
Example

Figure 2 presents the package hierarchy of the
Multi-µ Group Communication support. The
Group_Communication package provides the group
abstraction for the higher layer, with a generic child
implementing an agreement algorithm that can be
instantiated by the higher layer, only if it is necessary,
and only for the necessary data types.

The child package concept of Ada allows the
functionality extension without changes to the father’s
code. Package SM_Algorithm is a child package of
Group_Communication, providing extended capabilities
without disrupting its father implementation. Other
extensions can be provided, such as atomic broadcast or
clock synchronisation.

The modularity that can be achieved with Ada
hierarchical packages is presented by the use of a
private child package of SM_Algorithm, responsible for
the data handling, allowing its modification, without
disturbing its ancestors. Furthermore, as it is private it is
not known from other packages.

5.1.1 Generic Package Example

The generic package SM_Algorithm is independent
of the data type that must be agreed upon, being
instantiated for each necessary type. Furthermore, the
choice procedure is also dependent of the type of data.
In some situations data disagreement can be detected
through inequality; however, averaging data may be
necessary to make the data agreement.

generic

type Data_Type is private ;
type Data_Array is array (Node_Id range <>)

 of Data_Type;
with procedure Choose(Data: out Data_Type;

 Datas: Data_Array);

package Group_Communication.SM_Algorithm is

-- Package specification

end Group_Communication.SM_Algorithm;

5.1.2 Protected Types Example

The use of protected types gives rise to a much easier
concurrency control. Mutual exclusion is provided in the
access to the protected resource Group, preventing
interaction between sending and receiving tasks.

protected type Group(Ident: Group_Id) is

procedure Send(Msg: Message; Node:
 Node_Id);

procedure Broadcast(Msg: Message);
entry Received(Msg: Message);
entry Receive(Msg: out Message);

private

-- Group internal data

end Group;

Entries provide a mechanism that allows the use of a
“barrier” to queue a task depending on some condition,
shown in the Receive entry that a task only is allowed
inside the protected object, when there is a message.

entry Receive(Msg: out Message) when
 Message_Has_Arrived is

begin
-- Gives the available message

end Receive;

5.1.3 Timed Entry Call Example

Waiting for a message in an entry, a task can be
blocked. The possible occurrence of a fault can make the
loss of a message. The select statement provides, among
several others, the possibility of timeout implementation.
This feature is used to prevent a task eternal block waiting
for a message that will never appear.

while Finished = False loop
select

Grp.Receive(Msg);
-- Message Processing

or
delay until Timeout;
-- Error Processing

end select ;
end loop ;

These and other features of the language make real-
time programming easier, but at the some time
powerful. That’s why we believe that Ada is a suitable
language to real-time systems, allowing the full
potential of a concurrent language, but also with a
strong software engineering approach.

6. Conclusions

This paper addressed Ada and Java (Real-Time
Java) capabilities to support Real-Time systems
programming, presenting its advantages and
disadvantages, and making some remarks on the future
of these languages in Real-Time Systems.

We feel that, although Java has been receiving a lot
of attention, its specification does not present suitable
mechanisms to support Real-Time Systems. Real-Time
Java tries to address this problem, incorporating in the
Java language features that make it appealing to the
Real-Time Systems community. However, as it is a
C/C++ based language, it is our opinion that Real-Time
Java will always less predictable than Ada, which will
remain as a more interesting language for both hard
real-time and dependable applications.

7. References

[1] Stoyenko A. and Baker P., “Real-Time Schedulability
-Analyzable Mechanisms in Ada9X”, in Proceedings
of the IEEE, Vol. 82, No 1, January 1994, pp95-107

[2] Gosling J., McGilton H., “The Java Language
Environment: A White Paper”, Sun Microsystems,
May 1996

[3] Java Platform 1.1 Core API Specification, available at:
http://www.javasoft.com/products/jdk/1.1/docs/api/pac
kages.html

[4] Uckun S., Gasperoni F., “Real-Time Java
Requirements”, submitted to IEEE Spectrum,
available at:
http://www.sdct.itl.nist.gov/~carnahan/real-time

[5] Nilsen K., “Real-Time Java (v. 1.1)”, Iowa State
University, Ames, Iowa, 1996, available at:
http://www.newmonics.com

[6] ISO, Information technology - Programming
languages - Ada, “Ada Reference Manual”, ISO/IEC
8652, 1995.

[7] Pinho L. and Vasques F., “Multi-µ: An Ada 95 Based
Architecture for Fault Tolerance Support of Real-Time
Systems”, to appear at ACM SIGAda’98, Washington
D.C., USA, November 8-12, 1998

[8] RTEMS/C Applications User’s Guide. On-Line
Applications Research Corporation (Sep. 1997).
http://www.oarcorp.com.

[9] Schonberg, E. and Banner, B. The GNAT project: a
GNU-Ada 9X compiler. In Proceedings of Tri’Ada’94
(Baltimore, USA, Nov. 1994), ACM Press, pp. 48-57.

Fig. 2 - Group_Communication Hierarchy

Group_Communication package

Uses Rtems_Interface.Queues
to provide Group Support to the
Replica_Manager

generic package SM_Algorithm

 Child of

Provides the Signed Messages
algorithm, being instantiated to
each necessary data type

generic package Data_Handling

private child of

Encapsulates Data handling
procedures

Future algorithms

 child of

It will be easy to incorporate new
algorithm packages in the Group
Communication hierarchy

