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Abstract 

Technology advances in microprocessor design have resulted in high device density and performance during the 
last decades. More components are fabricated on the chip die and millions, if not billions, of instructions can now 
be executed within microseconds. A consequence of this advancement is heat dissipation by the microprocessors. 
In this context, elevated on-chip temperature issues have become an important subject for the design of future 
generations of microprocessors, especially in avionics and automotive industries. In this paper, we address the 
scheduling problem of non-preemptive periodic tasks on a single processor platform under thermal-aware design. 
We assume that the tasks are scheduled by following any Fixed-Task-Priority (FTP) scheduler (e.g., Rate Monotonic 
(RM) or Deadline Monotonic (DM)) and we propose a unique framework wherein we capture both the temporal 
and thermal behavior of the system. Then, we present two new thermal-aware scheduling strategies, referred to as 
NP-HBC and NP-CBH, to keep the system temperature within specified parameters and we derive their respective 
schedulability analysis. Finally, we evaluate the performance of the proposed theoretical results through intensive 
simulations. 
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Abstract—Technology advances in microprocessor design have
resulted in high device density and performance during the last
decades. More components are fabricated on the chip die and
millions, if not billions, of instructions can now be executed
within microseconds. A consequence of this advancement is heat
dissipation by the microprocessors. In this context, elevated on-
chip temperature issues have become an important subject for
the design of future generations of microprocessors, especially in
avionics and automotive industries.

In this paper, we address the scheduling problem of non
preemptive periodic tasks on a single processor platform under
thermal-aware design. We assume that the tasks are scheduled
by following any Fixed-Task-Priority (FTP) scheduler (e.g., Rate
Monotonic (RM) or Deadline Monotonic (DM)) and we propose
a unique framework wherein we capture both the temporal and
thermal behavior of the system. Then, we present two new
thermal-aware scheduling strategies, referred to as NP-HBC

and NP-CBH, to keep the system temperature within specified
parameters and we derive their respective schedulability analysis.
Finally, we evaluate the performance of the proposed theoretical
results through intensive simulations.

I. INTRODUCTION

In recent years, techniques to manage heat in order to

control processor dissipation in critical real-time systems have

been gaining much attention by experts from academia and in-

dustry. As a matter of fact, high temperatures due to excessive

processor activity while executing heavy workloads expose the

platform to transient performance degradation or even a stall

of the entire system. Hence, meeting the timing requirements

is not the only constraint system designers have to be content

with; it is also important to ensure an efficient management

of the thermal behavior of the platform.

Over the years, the periodic constrained-deadline task model

has proven remarkably useful for the modeling of recurring

processes that occur in critical real-time systems, where the

failure to satisfy any constraint may entail disastrous con-

sequences. The problem of scheduling such tasks upon a

single processor platform so that all the deadlines are met

has been widely studied in the literature. An entire body of

knowledge, techniques and intuitions have been developed so

far. Typically, in order to provide timing guaranteed services

for critical real-time tasks, numerous schedulability analyses

have been proposed and roughly speaking these analyses

can be categorized in two classes, characterized as follows.

The first class consists of techniques focusing on deriving

a mathematical condition at design time such that, if the

condition is satisfied then the system is asserted schedulable,

i.e., all the task deadlines will always be met at run-time. The

second class consists in simulating the execution of the tasks

until a time-instant t such that, if no deadline is missed while

scheduling only the tasks released within the time interval

[0, t) then no deadline will ever be missed during run-time.

In the literature, such time intervals [0, t) are often referred to

as feasibility intervals.

Obviously, traditional schedulability analyses would need to

be revisited and revised before they can apply under thermal-

aware design. For example, when considering fixed priority

preemptive tasks, while it is possible to interrupt the running

task prior to completion to either (i) allocate the processor to

incomming tasks requiring urgent service; or (ii) cool-down

the processor because the temperature is critically high, the

picture darkens considerably when it comes to non-preemptive

tasks. Here, just because the running task cannot be interrupted

whatsoever at runtime, we would need to anticipate the cooling

periods at design time as a function of the processor activity.

Then, we would focus only on jobs released in a so-called

busy period (before and after that the processor is idle) as the

behaviors of jobs in different busy periods do not affect each

other [1]. However, under thermal-aware design, it becomes

difficult to separate the execution of jobs in a busy period from

the interference by the execution of jobs in an earlier busy

period because new jobs may be released in a time window

when the processor is cooling-down. In this contribution, we

address this issue and circumvent the hurdle in a rather elegant

manner.

⊲ On considering a non-preemptive scheme. A disadvan-

tage of a non-preemptive scheme is that it introduces additional

blocking time in the execution of higher priority tasks, so

reducing schedulability. However, such a scheme exhibits

several advantages in comparison to a preemptive model of

execution. In particular, it allows us (1) to avoid unpredictable

interference among tasks at runtime; (2) to achieve a higher

degree of predictability; and finally (3) the following (non-

exhaustive) issues are avoided.

• In many practical situations, either preemption is impos-

sible or prohibitively expensive.

• Preemption destroys program locality, increasing runtime

overhead due to cache misses and pre-fetch mechanisms.

Consequently, worst-case execution times (WCETs) are

more difficult to characterize and predict.

• Mutual exclusion is trivial in non-preemptive scheduling,



which naturally guarantees the exclusive access to shared

resources. On the contrary, to avoid unbounded priority

inversion, preemptive scheduling requires the implemen-

tation of specific concurrency control protocols, which

introduces additional overhead and complexity.

For these reasons, we opted for disabling preemption com-

pletely to nullify all the architectural related costs (e.g., cache,

pipeline) and execution overheads (e.g., load and restore

operations) associated to the occurrence of each preemption.

⊲ This research. This paper proposes two thermal-aware

schedulers: (1) a reactive scheduler (NP-HBC); and (2) a

proactive scheduler (NP-CBH) together with their associated

schedulability analysis. The basic idea is to introduce cooling

periods during run-time for keeping the processor temper-

ature within specified parameters. In a nutshell, NP-HBC
cools down the processor after executing some workload; and

NP-CBH cools down the processor prior to executing the

corresponding workload. To the best of our knowledge, this

paper is the first contribution to address the thermal-aware

schedulability analysis problem of non-preemptive real-time

tasks and to allow capturing in the same framework both the

thermal and temporal behavior of the system. Furthermore, it

provides significant insights, intuitions and techniques on the

problem and we strongly believe that it opens an avenue for

future research.

⊲ Paper organization. The remainder of the paper is orga-

nized as follow. We present the adopted model of execution

in Section II. Section III recapitulates the required state-of-the-

art basics for the preliminary results presented in Section IV.

Our main contribution is reported in Section V where we spec-

ify our thermal-aware schedulers (NP-HBC and NP-CBH).

Section VII reviews existing related works and we conclude

the paper in Section VIII.

II. MODEL OF COMPUTATION

In this section, we define the task, platform, scheduler

and thermal models assumed throughout this paper. Also, we

introduce most of the notations and parameters necessary for

a good understanding of the proposed approach.

⊲ Task and platform specifications. We consider a set of

n recurring independent1 tasks τ
def
= {τ1, τ2, . . . , τn} to be

executed on a single processor platform. Every τi is modeled

by a constrained-deadline periodic task characterized by a

4-tuple (Oi, Ci, Di, Ti), where Oi is the offset, Ci is the

worst-case execution time (WCET), Di ≤ Ti is the relative

deadline and Ti is the exact inter-arrival time between two

consecutive releases of task τi. These parameters are given

with the interpretation that during the execution of the system,

task τi generates a (potentially infinite) number of successive

jobs τi,k (with k = 1, . . . ,∞) released at time ri,k such that

ri,k+1−ri,k = Ti, ∀k (with ri,1
def
= Oi, the release time of the

first job of τi). Without any loss of generality, we assume that

1That is, there is no communication, no precedence constraints and no
shared resource (except the processor) between tasks.

Oi ≥ 0, ∀i ∈ [1, n], and we denote by Omax the maximal value

among all task offsets, i.e., Omax
def
= maxi∈[1,n]{Oi}. Each job

has an execution requirement of at most Ci and must complete

within the time window [ri,k, di,k), where di,k
def
= ri,k +Di.

Job τi,k is said to be active at time t > 0 if and only if ri,k ≤ t
and it is not completed yet. More precisely, an active task is

said to be running at time t if it is being executed by the

processor. Otherwise the active task is in the ready queue of

the operating system and it is said to be ready. We denote by

active(τ ; t); run(τ ; t) and ready(τ ; t) the subsets of active,

running and ready tasks of τ at time t, respectively. It holds

that active(τ ; t)
def
= run(τ ; t) ∪ ready(τ ; t). We denote by

H
def
= lcm{T1, T2, . . . , Tn} the hyper-period of the task set,

defined as the least common multiple of all tasks periods. If τ
is synchronous (i.e., Oi = Oj , ∀i, j ∈ [1, n]), then it has been

proven in [2] that we can consider Oi = 0, ∀i and [0, H) is

a feasibility interval. Otherwise, if τ is not synchronous (i.e.,

it is asynchronous with the meaning that ∃i, j ∈ [1, n] with

i 6= j and Oi 6= Oj), then [0, Omax + 2H) is a feasibility

interval. Note that a tight feasibility interval can be derived

by using the techniques presented in [3].

⊲ Scheduler specifications. We consider that the tasks are

executed in a non-preemptive manner2, by following a Fixed-

Task-Priority (FTP) scheduler. That is, every task τi is assigned

a constant priority at system design-time and, at run-time,

every released job inherits the priority of the task it belongs

to. We denote by hp(τi) (resp., lp(τi)) the set of tasks with

a higher (resp., lower) priority than τi and by hep(τi) (resp.,

lep(τi)) the set hp(τi)∪{τi} (resp., lp(τi)∪{τi}). At any point

in time, if two jobs are ready and compete for execution, it is

the job coming from the task with the highest priority that will

be executed first (since the task priorities are passed on to the

jobs). This implicitly assumes that all the tasks have distinct

priorities and there is at most one job per task that is ready at

any point in time. The latter is guaranteed since Di ≤ Ti, ∀i.

⊲ Thermal model specifications. The thermal model of the

platform adopted in this paper is similar to the one described

in [4], where an RC circuit is used [5], [6]. Figure 1 illustrates

the typical circuit representation adopted. At any time instant,

we assume that the processor may be in only one of the follow-

ing two possible states: (i) active (i.e., heating) during which

tasks may execute or (ii) inactive (i.e., cooling) during which

tasks are not allowed to execute. We denote the temperature

of the processor at time t ≥ 0 as T (t). More precisely, we

denote the temperature during the heating phase (resp., the

cooling phase) as Th(t) (resp., Tc(t)). By using this model, the

derivative of the system temperature with respect to time can

be calculated using Fourier’s law [7] by solving the classical

linear differential in Equation 1, where parameters a and b
are processor specific constants. Note that typical settings for

these variables are b ≈ 0.228, and a > 1 (See [8] for further

2This means that once a job has started its execution, it cannot be interrupted
or paused prior to its completion time.



Fig. 1: Circuit representation of the thermal model.

details).

T ′(t) + b · T (t) = a (1)

⊲⊳ Heating Model: In this work, we assume that heating

comes mainly from the processor activity and that the heating

produced by the other components has a negligible impact

on the processor global thermal behavior. The heating is

modeled by the current P (t) passing through the thermal

resistance R and the thermal capacitance C. Also, we assume

for clarity sake that the processor speed is sπ = 1. When the

tasks are executing, the temperature must fluctuate between

two thresholds: the maximum tolerated temperature Tmax and

Tmin, such that Tmin > TA (the ambient temperature)3. Hence,

the solution to Equation 1, describing the heating function, is

given by Equation 2 (see the red curve in Figure 2).

Th(t) =
a

b
+
(
T (t0)−

a

b

)
· e−b·(t−t0) (2)

From Figure 2, note that t0 represents the time required by the

processor to cool-down from Tmax to Tmin and T (t0) = Tmin.

⊲⊳ Cooling Model: During this phase, the processor is inactive

and we assume that tasks execution is temporarily suspended.

For simplicity sake, it is commonly assumed in the literature

that this assumption results in a = 0 and thus Equation 3

holds to describe the cooling function4 (see the blue curve in

Figure 2).

Tc(t) = T (t0) · e
−b·(t−t0) (3)

III. PREREQUISITE

Our thermal-aware solution builds on top of the entire

body of knowledge, techniques and intuition developed for the

scheduling problem of non-preemptive real-time tasks upon a

single processor platform (see for example [9]–[11] among

many other publications on the topic). In this section, we

recall only the main results we need in the rest of the paper.

Specifically, we recall the concept of “level-i busy window”

for each task τi as well as some extra notations and basic

properties.

When considering the scheduling of n tasks τ1, . . . , τn
indexed by decreasing order of priority, the level-i busy

window for task τi is defined as the longest time window in

which: (1) only jobs from tasks τ1, . . . , τi are executed (except

the first job as we will discuss later); and (2) there is no time

3The ambient temperature is usually taken from 20◦C to 25◦C.
4Note that this function only depends on time and is not task specific.

Fig. 2: Cooling and Heating functions.

instant at which a pending ready task is not executed. By

using this definition, it has been proven in [9] (see Section

4.3, Lemma 6) that the job-release scenario that leads to the

longest level-i busy window is the one where all the tasks

τ1, τ2, . . . , τi release a job at a same time (say, t) and the task

τk ∈ lp(τi) with the longest Ck releases a job at time t − ǫ,
where ǫ is arbitrarily small. That is, we can define a blocking

term as follows.

Bi
def
=





max
τk∈lp(τi)

{Ck}; if i ∈ [1, n− 1]

0; otherwise
(4)

Starting with an initial length Li = Bi, the length of the

level-i busy window is traditionally computed in an iterative

manner by adding to Li the contribution of τi and all the

higher priority tasks that release jobs during this time window.

Formally, Li is the first fixed-point solution of Equation 5 as

proven in [9] (Theorem 15).

Li
def
= Bi +

∑

j∈hep(τi)

(
1 +

⌊
Li

Tj

⌋)
· Cj (5)

It is also proven in [9] that the maximum response time5 (also

referred to as “WCRT”) of any job of τi is always observed in

the level-i busy window. Thus, it is sufficient to verify that all

the deadlines are met within this window to conclude on the

schedulability. Once Li is computed, the number ni of jobs of

τi released in the level-i busy window is given by Equation 6.

ni
def
= 1 +

⌊
Li

Ti

⌋
(6)

If we re-index these ni jobs from 0 to ni − 1, then the

latest time at which job τi,j starts its execution is given by

Equation 7.

si,j
def
= Bi + j · Ci +

∑

k∈hp(τi)

(
1 +

⌊
si,j
Tk

⌋)
· Ck (7)

5The response time of a job is the time elapsed between its release and
completion times.



Hence, the response time of job τi,j and the worst-case

response time of task τi are given by Equation 8.

Ri,j = si,j + Ci − j · Ti and Ri = max
j∈[0,ni−1]

{Ri,j} (8)

Although it is safe, note that the number of jobs (see Equa-

tion 6) considered in this busy period analysis can be

reduced by using the approach presented by Davis et

al. (see [12], Equation 10 with no jitters) in order to limit

the eventual computational overhead.

IV. OBSERVATIONS AND PRELIMINARY RESULTS

Before we discuss the details of our proposed solution, in

this section we present a set of important properties for any

set of n periodic tasks τ1, . . . , τn (indexed in decreasing order

of priority) and a platform π with thermal characteristics Tmax

and Tmin.

Property 1. We have Tmax = Tmin · e
bt0 (from Equation 3)

and t0 > 0 (from Figure 2). Consequently, the following

inequalities holds true: TA < Tmin < Tmax < a/b.

Property 2. From Property 1, we derive that

t0 =
1

b
· ln

(
Tmax

Tmin

)
=

1

b
· ln

(
1 +

(Tmax − Tmin)

Tmin

)

Note that variable t0 defines the longest cooling window that

can be performed at once on any processor with the same

characteristics as π (see Figure 2).

Definition 1 (∆C). Variable ∆C (see Figure 2) is defined

as the longest execution time of any task that can safely be

performed on π. Formally, ∆C is given by Equation 9.

∆C
def
= −

1

b
·ln

(
Tmax − a/b

Tmin − a/b

)
= −

1

b
·ln

(
1−

Tmax − Tmin

a/b− Tmin

)

(9)

Definition 2 (Admissible task τi). Task τi is said to be

admissible on π if and only if its WCET Ci can be executed

in isolation without violating any thermal constraint (Tmin

and/or Tmax).

Lemma 1 (Admissible task set). From Definition 2, task set

τ = {τ1, . . . , τn} is admissible if and only if all tasks in τ are

admissible, i.e., Equation 10 holds true.

Cmax
def
= max

τi∈τ
{Ci} ≤ ∆C (10)

Proof. (By contradiction) Let us assume that there exists

τi ∈ τ such that Ci
def
= ∆C + ǫ (for any ǫ > 0) and τi is

admissible. In the best case, τi would execute from instant t0,

when the processor temperature is minimum, and we would

have Th(t0 + Ci) ≤ Tmax. However, we have:

Fig. 3: Trend of admissible execution times.

Th(t0 + Ci) = Th(t0 +∆C + ǫ)

=
a

b
+

(

Tmin −
a

b

)

· e−b(t0+∆C+ǫ−t0)

=
a

b
+

(

Tmin −
a

b

)

· e−b·∆C · e−b·ǫ

=
a

b
+

(

Tmin −
a

b

)

· e
−b·

{
−

1

b
·ln

(
Tmax−a/b
Tmin−a/b

)}

· e−b·ǫ

=
a

b
+

(

Tmin −
a

b

)

·

(

Tmax − a/b

Tmin − a/b

)

· e−b·ǫ

=
a

b
+ (Tmax − a/b) · e−b·ǫ

=
a

b
+ (Tmax − a/b) · (e−b·ǫ − 1) + Tmax − a/b

= Tmax + (Tmax − a/b) · (e−b·ǫ − 1)

Now, as Tmax < a/b and e−b·ǫ < 1, then it holds that

(Tmax − a/b) · (e−b·ǫ − 1) > 0. Consequently we have

Th(t0 + Ci) > Tmax, which contradicts the claim that τi is

admissible, i.e., Th(t0+Ci) ≤ Tmax. The Lemma follows.

Figure 3 shows the curve of ∆C as a function of the proces-

sor temperature. The larger the length of interval [Tmin, Tmax],
the larger the value of admissible execution times. For exam-

ple, if we consider Tmin = 40◦C and Tmax = 60◦C, then

∆C = ∆C(Tmax)−∆C(Tmin) = 6.5381− 1.7698 = 4.7683
units of time.

Property 3 (Borrowed from [13]). In order not to violate any

thermal constraint at run-time, the processor activity follows a

Zig-Zag policy, i.e., the processor repeatedly swings between

heating and cooling phases (see Figure 5a).

Theorem 1. Cooling the processor for several short intervals,

say ζj time units each (with ζj > 0), decreases more

the processor temperature than only one cooling period of

length (
∑k

j=1 ζj) time units (see Figure 4 for an illustration).

Formally, for any sequence {ζj}1≤j≤k such that ζj ≥ 0,

Equation 11 holds true.

Tc




k∑

j=1

ζj


 ≤

k∑

j=1

Tc(ζj) (11)

Proof. The cooling function slows down rapidly. This is
because of the exponential function (see Equation 3). Con-
sequently, to be convinced of this claim, it is sufficient to



(a) Successive cooling phases of lengths ζj .
(b) Single cooling phase of length ζ1 + ζ2 + ζ3.

Fig. 4: Successive cooling phases vs. Single cooling phase.

observe that Tc

(∑k
j=1 ζj

)
= T (t0) · e

−b·{(
∑k

j=1
ζj)−t0} and

Tc(ζj) = T (t0) · e
−b·(ζj−t0). Thus, we have

Tc





k
∑

j=1

ζj



 ≤

k
∑

j=1

Tc(ζj)

⇐= T (t0) · e
−b·

{(∑k
j=1

ζj

)
−t0

}

≤

k
∑

j=1

{

T (t0) · e
−b·(ζj−t0)

}

⇐= e
−b·

{(∑k
j=1

ζj

)
−t0

}

≤

k
∑

j=1

e−b·(ζj−t0)

⇐= e
−b·

(∑k
j=1

ζj

)

≤

k
∑

j=1

e−b·ζj

However,
∑k

j=1 ζj ≥ ζj . Consequently, −b ·
(∑k

j=1 ζj

)
≤

−b · ζj since b > 0. This means:

e−b·(
∑k

j=1
ζj) ≤ e−b·ζj ≤

k∑

j=1

e−b·ζj

and thus the theorem follows.

Property 4. It is beneficial for the system designer from a

thermal viewpoint to perform a cooling between every two

consecutive job executions to (i) keep the processor tempera-

ture within specified parameters (Tmin and Tmax); (ii) avoid

longer cooling periods at once; and (iii) keep the average

temperature as low as possible.

Proof. Points (i) and (ii) follow directly from Property 3 and

Theorem 1, respectively. Regarding (iii), we refer the reader

to the Appendix at the end of the paper for the insights.

The strategy defined in Property 4 provides the maximum

number of cooling phases by construction. Indeed, for any

fixed time window W and σ ≥ 2 jobs, at most σ− 1 coolings

can be interleaved between the execution of these jobs as the

tasks are non-preemptive.

Lemma 2 (Shifted heating function – Ths(t) – and Shifted

cooling function – Tcs(t)). Let Th(t) be the heating function

and Tc(t) the cooling function as defined in Equations 2 and 3.

Assuming that τi (with i ∈ [1, n]) is the task to be executed

from time t0, but the execution of the blocking term Bi requires

the processor to cool-down for, say x > 0 units of time, before

Ci can be executed and the processor reaches its maximum

temperature Tmax upon the execution of τi (see Figure 5b).

Then, the shifted cooling function Tcs(t) at distance dc from

Tc(t) and the shifted heating function Ths(t) at distance dh
from Th(t) are derived as follows.

Tcs(t)
def
= Tmin · e

−b·(t−t0+dc)

=
(
Tmin +

a

b
· eb·Bi −

a

b

)
· e−b·(t−t0)

(12)

and

Ths(t)
def
=

a

b
+
(
Tmin −

a

b

)
· e−b·(t−t0+dh)

=
a

b
+
{
Tmin −

a

b
·
(
eb·(Bi+x) − eb·Bi + 1

)}
· e−b·(t−t0)

(13)

Proof. From Equation 3 and Property 1, we have:

Tcs(t) = Tmin · e
−b·(t−t0+dc)

= Tmin · e
−b·(t−t0) · e−b·dc

(14)

From Figure 5a and Property 4, since the processor is required

to cool-down for x > 0 units of time before Ci can be

executed, then at time instant t0 +Bi we have:

Th(t0 +Bi) = Tcs(t0 +Bi)

i.e.,
a

b
+

(
Tmin −

a

b

)
· e−b·Bi = Tmin · e

−b·(Bi+dc)

i.e.,
a
b
+
(
Tmin −

a
b

)
· e−b·Bi

Tmin · e−b·Bi
= e−b·dc

By substituting this value in Equation 14, we obtain:

Tcs(t) =
(
Tmin +

a

b
· eb·Bi −

a

b

)
· e−b·(t−t0)

Similarly, given function Th(t), by definition we have:

Ths(t) =
a

b
+
(
Tmin −

a

b

)
· e−b·(t−t0+dh) (15)

Again, from Property 4 (every cooling phase implies a coming

heating phase), at time instant t0 +Bi + x we have:

Tcs(t0 +Bi + x) = Ths(t0 +Bi + x)

i.e.,
(

Tmin +
a

b
· eb·Bi −

a

b

)

· e−b·(Bi+x) =

a

b
+

(

Tmin −
a

b

)

· e−b·(Bi+x+dh)



(a) Zig-Zag behavior. (b) Zoom of the initial execution phases.

Fig. 5: Zig-Zag behavior and Zoom

By isolating e−b·dh from this last equation, we obtain:

Tmin −
a
b
·
(
eb·(Bi+x) − eb·Bi + 1

)

Tmin −
a
b

= e−b·dh

Finally, by substituting this value in Equation 15, we obtain:

Ths(t) =
a

b
+
{
Tmin −

a

b
·
(
eb·(Bi+x) − eb·Bi + 1

)}
·e−b·(t−t0)

The Lemma follows.

Property 5. From Property 4, the length of each cooling phase

can be associated to the execution of a task, i.e., each Ci can

be augmented by Ccool
i to have:

B∗
i

def
= Bi +Bcool

i and C∗
i

def
= Ci + Ccool

i (16)

Lemma 3 (Level-i busy window). By using the previous ob-

servations, the length L∗
i of the level-i busy window (i ∈ [1, n])

considering thermal constraints is the first fixed-point solution

of Equation 17.

L∗
i =



B∗

i +
∑

j∈hep(τi)

(
1 +

⌊
L∗
i

Tj

⌋)
· C∗

j



− Ccool

i (17)

where B∗
i and C∗

i are defined by Equation 16.

Proof. The proof of this Lemma is similar to that of the

traditional level-i busy window found in the literature. Here,

the reader should consider the WCET of each task τi as defined

by Equation 16. As such, we will not repeat the proof in this

paper due to space limitation. Factor Ccool
i is subtracted from

the RHS of Equation 17 because the execution of the last job

of τi in L∗
i does not need cooling upon completion (see for

example Figure 6a to get convinced).

Lemma 4 (Number n∗
i of jobs of τi). Once the value of L∗

i is

computed, the number n∗
i of jobs of τi released in the level-i

busy window is given by Equation 18.

n∗
i = 1 +

⌊
L∗
i

Ti

⌋
(18)

Lemma 5 (Latest start time of job τi,j). If we re-index the

n∗
i jobs of τi that are released in the level-i busy window

from 0 to n∗
i − 1, then the latest time at which job τi,j (with

j ∈ [0, n∗
i − 1]) starts its execution is given by Equation 19.

s∗i,j = B∗
i + j · C∗

i +
∑

k∈hp(τi)

(
1 +

⌊
s∗i,j
Tk

⌋)
· C∗

k (19)

Lemma 6 (Worst-case response time of task τi). The response

time of τi,j and the worst-case response time of τi under

thermal-aware design are given by Equation 20.

R∗
i,j = s∗i,j + Ci − j · Ti and R∗

i = max
j∈[0,n∗

i −1]
{R∗

i,j} (20)

Lemma 7 (Worst-Case Scenario). The job-release scenario

that leads to the longest level-i busy window is the one where:

1) the platform temperature is initially at the maximum

level Tmax (say, at time 0) and it has to cool down

to the minimum level Tmin (say, at time t0), before any

possible task execution;

2) tasks τ1, τ2, . . . , τi release a job at the same time (say,

at t0);

3) task τk ∈ lp(τi) with the longest Ck releases a job at

t0 − ǫ.

Similar to the proof of Lemma 3, the proofs for Lemmas 4

to 7 also follow the same intuitions as the corresponding ones

in the literature. Due to space limitation, we will not report

them in this paper. In our case, it is sufficient to mention that

the processor is inactive during the cooling phases and these

phases behave in a non-preemptive fashion.

V. OUR PROPOSED SOLUTION

With all the insights we presented in Section IV, we now

have everything we need to design our reactive thermal-aware

scheduler (NP-HBC) and proactive thermal-aware scheduler

(NP-CBH) together with their associated schedulability anal-

ysis. We recall that the basic idea of these two schemes

is to introduce cooling periods during run-time for keeping

the processor temperature within specified parameters. The

NP-HBC scheduler was designed with the main objective of

avoiding high temperatures; whereas NP-CBH was designed

with the aim of reducing the worst-case response time for each



(a) Thermal and timing behaviors under NP-HBC. (b) Thermal and timing behaviors under NP-CBH.

Fig. 6: NP-HBC vs. NP-CBH

task as much as it is legally possible to do so, i.e., without

violating any temporal and/or thermal requirement.

A. NP-HBC scheduler

From Property 4, the main intuition behind the design of

the NP-HBC scheduler is cool-down the processor as much as

possible in order to avoid high temperatures, i.e., the scheduler

should cool-down the processor to its minimum temperature

(Tmin), upon the execution of each job (see for example

Figure 6a). To this end, Theorem 2 and Corollary 1 allow

us to compute an upper-bound on the factors Bcool
i and Ccool

i ,

respectively.

Theorem 2 (Upper-bound on Bcool
i ). For any task τi ∈ τ , an

upper-bound B̂cool
i on Bcool

i is given by Equation 21.

B̂cool
i = −

{
1

b
· ln

[
Tmin(

Tmin + a
b
· (eb·Bi − 1)

)
]
+Bi

}
(21)

Proof. Let us assume that the processor has executed for

Bi units of time during the first heating phase, say from

time instant t0. Then, by following the NP-HBC scheduling

scheme, B̂cool
i is defined by the earliest time instant at which

the cooling function reaches Tmin. As such, B̂cool
i is obtained

by solving:

Tcs(t0 +Bi + B̂cool
i ) = Tmin

i.e.,
(
Tmin +

a

b
· eb·Bi −

a

b

)
· e−b·(t0+Bi+B̂cool

i −t0) = Tmin

i.e., e−b·(Bi+B̂cool

i ) =
Tmin(

Tmin + a
b
· eb·Bi − a

b

)

i.e., −b · (Bi + B̂cool
i ) = ln

[
Tmin(

Tmin + a
b
· (eb·Bi − 1)

)
]

From this last equation, it follows that

B̂cool
i = −

{
1

b
· ln

[
Tmin(

Tmin + a
b
· (eb·Bi − 1)

)
]
+Bi

}

and the Theorem follows.

Corollary 1 (Upper-bound on Ccool
i ). From Equation 21,

it follows that an upper-bound Ĉcool
i on Ccool

i is given by

Equation 22.

Ĉcool
i = −

{
1

b
· ln

[
Tmin(

Tmin + a
b
· (eb·Ci − 1)

)
]
+ Ci

}
(22)

Proof. Note that B̂cool
i depends only on Bi and the processor

characteristics, thus by following a similar reasoning as in the

proof of Theorem 2, the corollary follows.

Theorem 3 (Schedulability test under NP-HBC). A sufficient

schedulability test for task τi ∈ τ is given by Equation 23.

R∗
i ≤ Di (23)

where B∗
i = Bi + B̂cool

i ; C∗
i = Ci + Ĉcool

i ; and R∗
i is given

by Equation 20.

Proof. This theorem follows directly from the properties and

preliminary results in Section IV, Theorem 2 and Corollary 1.

Pessimism of the NP-HBC analysis. At the end of each

heating phase, the NP-HBC scheduler commands to cool-

down the processor to its minimum temperature level (Tmin)

during each cooling phase. This scheduling strategy, while

it limits the processor from continuously executing at high

temperatures, it obviously introduces some pessimism in the

computation of the worst-case response time of each task. The

NP-CBH scheduling strategy offers an alternative solution by

addressing this concern, while still meeting both the thermal

and temporal constraints for each task.



B. NP-CBH scheduler

In contrast to the NP-HBC scheduler, the NP-CBH sched-

uler is proactive in the sense that it promotes the cooling

of the processor prior to the execution of the corresponding

task during the next heating phase. In this process, once the

maximum temperature level (Tmax) is reached, the processor

is cooled down for just the amount of time that is required to

reach the maximum temperature level again at the end of the

next heating phase. As such, the cooling phases are reduced

as much as it is legally possible to do so, thus benefiting

the worst-case response time for each task (see for example

Figure 6b). Consequently, tighter response times are obtained

under the NP-CBH scheduler, but this is achieved at the

expense of requiring the processor to execute most of the tasks

at high temperatures at run-time.

Theorem 4 allows us to compute the length of the first

cooling phase assuming a scenario as the one considered in

Lemma 2, i.e., τi is the task to be executed from time t0, but

the execution of the blocking term Bi requires the processor

to cool-down for, say x > 0 units of time, before Ci can be

executed and the processor reaches its maximum temperature

Tmax upon the execution of τi.

Theorem 4 (Computation of x). Assuming the previously

mentioned scenario, the length of the first cooling phase x
is obtained by Equation 24.

x =
1

b
· ln

[
Tmin + a

b
· (eb·Bi − 1)

Tmax +
a
b
· (e−b·Ci − 1)

]
− (Bi + Ci) (24)

Proof. At the completion time t of task τi in the considered

scenario; and from Equations 2, 3, 13, and 14, we have t−t0 =
Bi + x+ Ci and

a

b
+

{

Tmin −
a

b

(

eb·(Bi+x) − eb·Bi + 1
)}

e−b·(t−t0) =

Tmin · e−b·(t−t0−(t0+Bi+x+Ci))

i.e.,
a

b
+

{

Tmin −
a

b

(

eb·(Bi+x) − eb·Bi + 1
)}

e−b·(t−t0) =

Tmax · e−b·(t−t0) · eb·(Bi+x+Ci)

because Tmin · e
b·t0 = Tmax (see Property 1). Thus,

a

b
+

{

Tmin −
a

b

(

eb·(Bi+x) − eb·Bi + 1
)}

· e−b(t−t0) =

Tmax · e−b(t−t0) · eb·(Bi+x+Ci)

i.e.,
a

b
· eb(t−t0) +

{

Tmin −
a

b

(

eb·(Bi+x) − eb·Bi + 1
)}

=

Tmax · eb·(Bi+x+Ci)

i.e.,
a

b
· eb·(Bi+x+Ci) + Tmin −

a

b

(

eb·(Bi+x) − eb·Bi + 1
)

=

Tmax · eb·(Bi+x+Ci)

Since eb·(Bi+x) = eb·(Bi+x+Ci) · e−b·Ci , we can isolate

eb·(Bi+x+Ci) to get:

eb·(Bi+x+Ci) =
Tmin + a

b
· (eb·Bi − 1)

Tmax +
a
b
· (e−b·Ci − 1)

i.e., x =
1

b
· ln

[
Tmin + a

b
· (eb·Bi − 1)

Tmax +
a
b
· (e−b·Ci − 1)

]
− (Bi + Ci)

and the theorem follows.

From Equation 24 and Property 4, it is important to remark

that the computation of x depends on the processor character-

istics and only two other factors: (1) the length of the previous

heating phase (on the left) before τi is executed; and (2) the

length of the next heating phase (on the right), during which τi
is executed. Corollary 2 provides us with a generic expression

for the computation of the length of successive cooling periods

xk (with k ≥ 1) when the tasks are scheduled by following

the NP-CBH scheduler.

Corollary 2 (Computation of xk with k ≥ 1). Assuming that

tasks are re-indexed in the ready queue w.r.t. their priority and

τ1 is the first task in the queue, then we have:

xk =





1
b
· ln

[
Tmin+

a
b ·(e

b·B1−1)

Tmax+
a
b ·(e

−b·C1−1)

]
− (B1 + C1), if k = 1

1
b
· ln

[
Tmin+

a
b ·(e

b·∆C−1)

Tmax+
a
b ·(e

−b·Ck−1)

]
− (∆C + Ck), if k > 1

(25)

Proof. The computation of x1 is provided by Theorem 4 and

the computation of xk (with k > 1) follows directly from the

NP-CBH scheduling strategy. It can be proven by induction

on k (Figure 7a provides the support for such a proof). Due

to space limitation, we will not formalize the proof in this

paper. However, the intuition is as follows. Under NP-CBH,

we start a heating phase at t0 (i.e., at the processor minimum

temperature level (Tmin)) and this phase completes at time

t0 + B1. Then, we start a cooling phase for x1 units of time

in order to make the execution of τ1 possible. Note that x1 is

a function of B1 (on the left) and C1 (on the right). Upon the

completion of τ1, we are exactly at the processor maximum

temperature level (Tmax), i.e., at time t0+B1+x1+C1. At this

time instant, we start another cooling phase, but just for the

amount of time required, say xj , to hit the processor maximum

temperature level (Tmax) upon the completion of the next task,

say τj , during the next heating phase. The key insight for the

computation of xj is to consider a blocking equal to ∆C (on

the left) since we are at the maximum temperature at time

t0 +B1 + x1 +C1; and Cj (on the right). We recall that ∆C
defines an upper-bound on the WCET of admissible tasks (see

Definition 1 and Lemma 1).

With everything we have presented so far about the design

of the NP-CBH scheduler, we would now be able to “easily”

derive a closed-form schedulability test for all tasks. Unfor-

tunately, a piece of the puzzle is still missing. The challenge

here stems from the fact NP-CBH, in contrast to NP-HBC, is

a proactive scheduler. It computes the length of each cooling

phase, say x⋆, prior to the execution of the corresponding

task, say τ⋆, during the next heating phase. In this cooling

phase window, the processor is inactive, but it could perfectly

be the case that a task, say τ⋆⋆ ∈ τ , with a higher priority

than τ⋆, releases a new job (see Figure 7b). In this situation,

task τ⋆⋆ is the one that should take over the processor next

and be executed during the next heating phase (instead of τ⋆).



(a) Support for the computation of xk. (b) HP task released during a cooling phase.

Fig. 7: Challenge for deriving a closed-form schedulability test under NP-CBH.

Consequently, the ready queue has to be updated after the

computation of the length of each cooling phase.

Because of the aforementioned hurdle, we derive the

schedulability analysis for each task under the NP-CBH
scheduler by using a pseudo-polynomial algorithm. We simu-

late the system in an interval [0, tη) such that if all the jobs

released in this interval meet their deadlines, then we have the

guarantee that this will always be the case. For asynchronous

periodic tasks, [0, Omax + 2H) is a well-known feasibility

interval for the adopted model of execution. However, we

recall that tighter feasibility intervals can be derived by using

techniques such as the ones presented in [3].

Again, we assume that tasks are re-indexed in the ready

queue w.r.t. their priority and τ1 is initially the first task in

that queue. At any time instant t, we refer to the pending

ready task with the highest priority as τfirst and refer to its

WCET as Cfirst. Algorithm 1 provides the pseudo-code of the

NP-CBH schedulability test for each task in the feasibility

interval [0, Omax+2H) for sake of simplicity and readability.

We recall that H
def
= lcmτi∈τ{Ti}.

In Algorithm 1, after the initializations (lines 1 to 5), we

sort the ready queue w.r.t. task priorities (line 6). For each

task in this sorted queue (from the first task), we check if

it is admissible (line 8). If this is not the case, we jump to

line 40 as the processor thermal constraint is violated (see

Lemma 1). Otherwise, if the task is admissible, then we

execute as many tasks as possible within the first heating

phase window (lines 9 to 20). At the end of the last possible

execution, we compute the length of the eventual cooling phase

(line 25). We check whether other tasks would release new

jobs within this window (line 26) and update the ready queue

(line 27). Once the ready queue is stable (unchanged)6, we

compute the length of the actual cooling phase (line 29); we

execute τfirst (line 30) and update the ready queue (line 31).

We repeat this procedure until the ready queue is empty (i.e.,

the first idle point is reached in the schedule – thus defining the

6This will be the case after a number of iterations as the number of tasks
is finite.

level-i busy window L∗∗
i ), or Omax+2H is exceeded (lines 22

to 32). In the latter case, the system will never stabilize and

we have the guarantee of a deadline miss [2] – the system is

stamped as not schedulable. Finally, we compute the worst-

case response time (WCRT) R∗∗
i for each task τi and assess

its schedulability (lines 33 to 38).

VI. EXPERIMENTAL RESULTS

This section reports on the experiments conducted to val-

idate the presented theoretical results. Our simulations are

carried out by generating 20, 000 synthetic periodic implicit-

deadline7 task-sets.

⊲ Task-set generation. The inputs to the task-set generator

are as follows. We consider variables a = 16, b = 0.228,

computed from Skadron et al. [14] for a silicon chip. Then, we

use the thermal characteristics of a typical ARM-Cortex-A9

core: Tmax = 65◦C and Tmin = 30◦C. From these parameters,

the maximum admissible execution time ∆C and the value

of t0 are computed by using Definition 1 and Property 2:

∆C = 8.9882 and t0 = 3.3911. Finally, a maximum system

utilization U
def
=

∑n
i=1

Ci

Ti
∈ [0.1, 1] is set. To capture the

actual system behavior at run-time, we process the data by

generating 1, 000 task-sets per system utilization, from 0.1 to

1, with a step of 0.05.

Given these inputs, the execution time values Ci are uni-

formly generated within [∆C/m,∆C], where m ∈ N
∗ is

used to dimension the length of the interval. Here, we choose

m = 2. The tasks’ periods are generated in such a way that the

hyper-period is kept “reasonably small”. Typically, period Ti

is computed as 2αi ·3βi ·5γi , where αi, βi, and γi are randomly

chosen in {0, 1, 2}. In order to accurately evaluate the effect

of temperature on the temporal behavior of the system, we

choose the periods such that Ti ≥ 3 ·∆C, ∀i. This is to allow

enough slack for the execution of each task. The utilization

ui of τi is computed as ui = Ci/Ti. New tasks are generated

until the sum of the tasks’ utilizations exceeds the threshold

7For each task τi, we consider Di = Ti.



Algorithm 1: NP-CBH schedulability test.

Data: Task-set τ = {τ1, . . . , τn}; a; b; Tmax; Tmin.

Result: NP-CBH Schedulability test.

1 ReadyQueue← ∅;
2 current← 0;

3 Compute t0 (see Property 2);

4 Compute ∆C (see Definition 1);

5 Record all the releases at current;
6 Update ReadyQueue w.r.t. tasks priorities;

7 foreach τi ∈ ReadyQueue do

8 if Ci ≤ ∆C then

9 Compute Bi (see Equation 4);

10 exec← Bi;

11 avail← ∆C − exec;

12 Check releases during heating phase;

13 Update ReadyQueue;

14 while Cj ≤ avail and (j < i) do

15 exec← exec+Cj ;

16 avail← avail−Cj ;

17 Remove τj from ReadyQueue;

18 Check releases during heating phase;

19 Update ReadyQueue;

20 end

21 current← exec;

22 while (current ≤ Omax + 2 · lcm) or

ReadyQueue == ∅ do

23 do

24 previousReadyQueue←
ReadyQueue;

25 Compute eventual x (see Equation 25);

26 Check releases during cooling phase;

27 Update ReadyQueue;

28 while

(ReadyQueue 6= previousReadyQueue);

29 Compute actual x (see Equation 25);

30 current← current+x+ Cfirst;

31 Remove τfirst from ReadyQueue;

32 end

33 Compute the WCRT R∗∗
i for τi;

34 if R∗∗
i ≤ Di then

35 τi is schedulable;

36 break;

37 end

38 τi is not schedulable;

39 else

40 τi is not schedulable;

41 end

42 end

U and the last generated task is discarded. Finally, for every

generated task-set we assume that priorities are assigned by

following the RM policy. That is, the shorter the period of a

task the higher its priority.

⊲ Considered metrics. We evaluated the fraction of schedu-

Fig. 8: Schedulability ratio.

lable task-sets by following RM8, NP-HBC and NP-CBH
(see Figure 8). On another front, we measured the minimum,

average and maximum worst-case response time of the lowest

priority task for each generated task-set by using the following

ratios, where R∗
n and R∗∗

n are defined by Equation 20 and

Algorithm 1 (see Figure 9).

dev∗τn =
|R∗

n −Rn|

R∗
n

and dev∗∗τn =
|R∗∗

n −Rn|

R∗∗
n

⊲ Interpretation of the results. From Figure 8, the effects

of temperature starts to be visible when U = 0.5. Before

this threshold, all the task-sets are schedulable. The picture

changes when U > 0.5. We notice significant discrepancies

among the three scheduling strategies and NP-CBH consis-

tently dominates NP-HBC in terms of schedulability ratio and

task responsiveness (see Figure 9). For example at U = 0.7,

only 0.8% of the task-sets are schedulable by NP-HBC,

whereas more than 85% are schedulable by NP-CBH. This

represents a gap of more than 80%. Above U = 0.75, both

NP-HBC and NP-CBH perform poorly. This can be explained

by the effect of temperature on the processor activity. For

example, at U = 0.8, no task-set is schedulable by NP-HBC,

whereas only 8% are by NP-CBH. At U = 1, 0.16% are

schedulable by RM, but none is by NP-HBC or NP-CBH.

Here, the number of schedulable task-sets by RM can be

explained by the manner in which tasks’ periods are generated.

The periods cannot exceed T = 22 · 32 · 52 = 900, which also

corresponds to the maximum possible least common multiple

(lcm). The domination of NP-CBH over NP-HBC stems from

the reduction of the length of the cooling phases as much as

possible.

From Figure 9, the deviation in terms of worst-case response

time of the lowest priority task increases as the system uti-

lization increases and NP-CBH clearly dominates NP-HBC.

From a system perspective, the greatest system utilization at

which NP-HBC could find a valid schedule is U = 0.7,

whereas some task-sets can still make it under NP-CBH,

up until U = 0.8. Above this value, neither NP-CBH nor

8Recall that the thermal constraints are not considered at all for RM.



(a) Minimum. (b) Average. (c) Maximum.

Fig. 9: [Minimum - Average - Maximum] Worst-case response time of the lowest priority task.

NP-HBC could find a valid schedule. This is clearly due to

the introduction of cooling phases. Note that any small change

in the trend of RM is replicated in that of NP-CBH and

NP-HBC. However, NP-CBH absorbs the deviations better.

This can be explained by the fact that NP-CBH allows the

execution of a new task as soon as possible, whereas NP-HBC
always requires the processor to cool-down to its minimum

temperature level.

VII. RELATED WORK

In this section we discuss the existing works dealing with

thermal-aware scheduling techniques upon single processor

platforms. The presented contributions are not exhaustive, but

representative.

Most of the contributions in this context consider pre-

emptive task sets and rely on scaling down the processor

speed (through a combination of voltage and frequency scaling

(DVFS)) to reduce power consumption and thereby tempera-

ture [13]–[17]. Here, actions are taken only when temperature

gets above a certain threshold and/or below through requests

issued by task/scheduler. By using such an approach, Quan

et al. [17] derived thermal feasibility checks and formulated

constructive speed scheduling algorithms for periodic tasks.

Chen et al. [16] explored thermal-constrained speed schedul-

ing, but for a set of frame-based real-time tasks with the

same period. They developed a proactive speed scheduling

by using dynamic voltage/speed scaling (DVS). In general,

these techniques are proposed to avoid hotspots and/or mini-

mize peak temperature and energy consumption [18]–[20]. On

another front, Zhang et al. [21] presented a fully polynomial

time approximation schemes (FPTAS) for the latency mini-

mization of a set of periodic tasks executing on a processor

subject to thermal constraints and proved the problem to

be NP-hard [22]. Unfortunately, all these approaches cannot

be applied to systems which are not capable of Dynamic

Frequency Scaling. Recently, Ahmed et al. [23] investigated

the schedulability analysis for thermal-aware real-time pe-

riodic tasks on single cores. They established a necessary

and sufficient condition and later extended it to multi-cores.

Then, by considering non-concrete sporadic tasks, Chandarli

et al. [4] proposed an alternative solution. Specifically, they

adapted energy harvesting techniques [24], [25] and proposed

a response-time based analysis. To date, we are not aware of

any work considering non-preemptive policies in the context

of thermal-aware scheduling. As discussed in the previous

sections, this problem may look simple at first glance, but it

is far from being the case. The only fact that the temperature

has to be kept permanently within specified boundaries adds

an orthogonal and tremendous level of difficulty, unfortunately.

This paper fills this gap and we strongly believe that it paves

the way towards deriving sound and efficient solutions for the

multi-core settings.

VIII. CONCLUSION AND FUTURE WORK

This paper considered the thermal-aware schedulability

analysis of non-preemptive real-time tasks on a single pro-

cessor platform. We captured both the thermal and timing

behaviors of the system in the same framework by proposing

two new schedulers (a reactive scheduler NP-HBC and a

proactive scheduler NP-CBH), together with their schedula-

bility analysis, to maintain the processor temperature within

predefined boundaries, while guaranteeing that all the timing

constraints are met. We validated the run-time behavior of our

solutions through intensive simulations by using the typical

thermal specifications of an ARM-Cortex-A9 processor. As

future work, we plan to (i) rigorously address the time

complexity of the proposed approach; (ii) explore various

priority assignment strategies when no restriction is imposed

on the priority of tasks, before we can address the multi-

core problem; and finally (iii) perform experiments on real

platforms to expose the differences due to model abstraction.

APPENDIX: INSIGHTS FOR THE PROOF OF

PROPERTY 4–POINT (iii)

The complete proof is performed by induction on the num-

ber of tasks. It cannot be faithfully reported in this paper due to

space limitation. However, the key steps are as follows. The

average temperature, denoted by Tavg, over a time window,

say [u, v], is defined by:

Tavg(u, v)
def
=

1

v − u

∫ v

u

T (t)dt



(a) Cooling between every two job executions. (b) Cooling at once.

Fig. 10: Cooling between every two job executions vs. Cooling at once.

To be convinced of the correctness of the claim, it is sufficient

to consider a set of two tasks {τ1, τ2} with WCETs C1 and

C2; which require cooling periods of lengths ζ1 ≥ 0 and

ζ2 ≥ 0, respectively. Because the tasks are executed in a

non-preemptive manner, we assume that Tmax is high enough

to accommodate the execution of τ1 and τ2 during a single

heating phase. Also, without any loss of generality, we assume

that τ1 starts executing at time instant t0 (i.e., when the

processor is at its minimum temperature (Tmin)), followed

by task τ2 (see Figure 10). In this figure, we distinguish

Scenario S1, where a cooling is performed between every

two job executions (see Figure 10a); and Scenario S2, where

a cooling is performed at once after the execution of the

tasks (see Figure 10b). In Scenario S1, let t1
def
= t0 + C1;

t2
def
= t1 + ζ1; t3

def
= t2 +C2; and finally t4

def
= t3 + ζ2. In the

same vein, in Scenario S2, let t′1
def
= t0 + C1; t′2

def
= t′1 + C2;

t′3
def
= t′2 + ζ1; and finally t′4

def
= t′3 + ζ2. Remark that t4 = t′4.

Furthermore, let I1(t0, t4) and I2(t0, t4) be the shaded regions

defined by the execution of the tasks and cooling periods in

Scenarios S1 and S2, respectively. We have to show that the

average temperature over [t0, t4] in Scenario S1 is less than or

equal to the average temperature over [t0, t4] in Scenario S2.

Formally, we have to show that Equation 26 holds true.

1

t4 − t0
· I1(t0, t4) ≤

1

t4 − t0
· I2(t0, t4) (26)

i.e., I2(t0, t4)− I1(t0, t4) ≥ 0.

By using the additive property of integrals and the same
reasoning as in Lemma 2, we have:

I1(t0, t4) =

∫ t1

t0

{a

b
+

(

Tmin −
a

b

)

· e−b(t−t0)
}

dt

+

∫ t2

t1

{

Tmin +
a

b
ebC1 −

a

b

}

· e−b(t−t0) dt

+

∫ t3

t2

{a

b
+

(

Tmin −
a

b

(

eb(C1+ζ1) − ebC1 + 1
))

· e−b(t−t0)
}

dt

+

∫ t4

t3

{

Tmin +
a

b
eb(C1+ζ1+C2) −

a

b

(

eb(C1+ζ1) − ebC1 + 1
)}

· e−b(t−t0) dt

By omitting all intermediate steps, a careful algebraic com-
putation of the right-hand-side of this expression leads us to:

I1(t0, t4) =
a

b
· (C1 + C2) +

1

b
· Tmin −

1

b
· Tmin · e−b(C1+C2+ζ1+ζ2)

−
a

b2
· e−bζ2 +

a

b2
· e−b(C2+ζ2) −

a

b2
· e−b(C2+ζ1+ζ2)

+
a

b2
· e−b(C1+C2+ζ1+ζ2)

Similarly, we have:

I2(t0, t4) =

∫ t′
1

t0

{a

b
+

(

Tmin −
a

b

)

· e−b(t−t0)
}

dt

+

∫ t′
2

t′
1

{a

b
+

(

Tmin −
a

b

)

· e−b(t−t0)
}

dt

+

∫ t′
3

t′
2

{

Tmin +
a

b
eb(C1+C2) −

a

b

}

· e−b(t−t0) dt

+

∫ t4

t′
3

{

Tmin +
a

b
eb(C1+C2) −

a

b

}

· e−b(t−t0) dt

Again, by omitting all the intermediate steps, a careful
algebraic computation of the right-hand-side leads us to:

I2(t0, t4) =
a

b
· (C1 + C2) +

1

b
· Tmin −

1

b
· Tmin · e−b(C1+C2+ζ1+ζ2)

−
a

b2
· e−b(ζ1+ζ2) +

a

b2
· e−b(C1+C2+ζ1+ζ2)

Consequently

I2(t0, t4)− I1(t0, t4) ≥ 0 ⇐=
a

b2
· e−bζ2 +

a

b2
· e−b(C2+ζ1+ζ2)

−
a

b2
· e−b(ζ1+ζ2) −

a

b2
· e−b(C2+ζ2) ≥ 0

⇐=
a

b2
e−bζ2

{

1 + e−b(C2+ζ1) − e−bζ1 − e−bC2

}

≥ 0

⇐= (1− e−bζ1 )− e−bC2 (1− e−bζ1 ) ≥ 0

⇐= (1− e−bζ1 )(1− e−bC2 ) ≥ 0

Since bζ1 ≥ 0 and bC2 ≥ 0, it follows that e−bζ1 ≤ 1 and

e−bC2 ≤ 1. This means that (1 − e−bζ1)(1 − e−bC2) ≥ 0.

Therefore, Equation 26 holds true and the property follows.
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