

The Carousel-EDF Scheduling Algorithm for
Multiprocessor Systems

Technical Report

CISTER-TR-130401

Version:

Date: 04-04-2013

Paulo Baltarejo Sousa

Pedro Souto

Eduardo Tovar

Konstantinos Bletsas

Technical Report CISTER-TR-130401 The Carousel-EDF Scheduling Algorithm for Multiprocessor Systems

© CISTER Research Unit
www.cister.isep.ipp.pt 1

The Carousel-EDF Scheduling Algorithm for Multiprocessor Systems
Paulo Baltarejo Sousa, Pedro Souto, Eduardo Tovar, Konstantinos Bletsas

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: pbsousa@dei.isep.ipp.pt, , emt@dei.isep.ipp.pt, ksbs@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
We present Carousel-EDF, a new hierarchical scheduling algorithm for a system of identical processors, and its
overhead-aware schedulability analysis based on demand bound functions. Carousel-EDF is an offshoot of NPS-F
and preserves its utilization bounds, which are the highest among algorithms not based on a single dispatching
queue and that have few preemptions. Furthermore, with respect to NPS-F, Carousel-EDF reduces by up to 50%
the number of contextswitches and of preemptions caused by the high-level scheduler itself. The schedulability
analysis we present in this paper is grounded on a prototype implementation of Carousel-EDF that uses a new
implementation technique for the release of periodic tasks. This technique reduces the pessimism of
theschedulability analysis presented and can be applied, with similar benefits, to other scheduling algorithms
such as NPS-F.

The Carousel-EDF Scheduling Algorithm for Multiprocessor Systems

Paulo Baltarejo Sousa⇤†, Pedro Souto⇤‡, Eduardo Tovar⇤†, and Konstantinos Bletsas⇤†
⇤CISTER/INESC-TEC Research Center

† ISEP-Polytechnic Institute of Porto, Portugal
‡ University of Porto, FEUP-Faculty of Engineering, Portugal

Email: †{pbs, emt, ksbs}@isep.ipp.pt, ‡pfs@fe.up.pt

Abstract—We present Carousel-EDF, a new hierarchical
scheduling algorithm for a system of identical processors, and
its overhead-aware schedulability analysis based on demand
bound functions. Carousel-EDF is an offshoot of NPS-F and
preserves its utilization bounds, which are the highest among
algorithms not based on a single dispatching queue and that
have few preemptions. Furthermore, with respect to NPS-F,
Carousel-EDF reduces by up to 50% the number of context
switches and of preemptions caused by the high-level scheduler
itself. The schedulability analysis we present in this paper
is grounded on a prototype implementation of Carousel-EDF
that uses a new implementation technique for the release of
periodic tasks. This technique reduces the pessimism of the
schedulability analysis presented and can be applied, with
similar benefits, to other scheduling algorithms such as NPS-F.

I. INTRODUCTION

Given the increasing use of multiple processing units in
computing systems, the problem of scheduling tasks with
real-time constraints on such systems is particularly relevant.
In this paper, we present Carousel-EDF, a novel algorithm
based on EDF that addresses this problem for systems
composed of identical processors.

Multiprocessor systems introduce a key issue that does
not arise in the context of uniprocessor scheduling: the
possibility of task migration. According to this ability, mul-
tiprocessor scheduling algorithms are categorized as: global,
partitioned, and semi-partitioned.

Partitioned scheduling algorithms [1] partition the set of
tasks in the system such that all tasks belonging to a set
of the partition are executed always on the same processor.
Thus, after partitioning, the scheduling on a multiprocessor
system reduces to the scheduling problem on a uniprocessor.
The main issue of this class of algorithms is its low utiliza-
tion. This is because an idle processor cannot be used to run
ready tasks that have been allocated a different processor. It
has been proven that for some “pathological cases” their
utilization bound is 50%.

Global scheduling algorithms try to overcome this limi-
tation by allowing tasks to migrate from one processor to
another. At any time instant, the m highest-priority runnable
tasks in the system can be selected for execution on the m
processors. Some scheduling algorithms [2], [3] of this class
present a utilization bound of 100%, but at a cost of many

preemptions and migrations. Although recent work has made
some progress towards reducing the number of preemptions
and migrations [4] as well as scheduling overheads [5], the
implementation of these algorithms requires the use of a
global shared queue, which raises scalability issues because
of the need to prevent race conditions in the access to
that queue, or as stated by Brandenburg [6] “it would be
unrealistic to expect global algorithms to scale to tens or
hundreds of processors”

Semi-partitioned, or task-splitting, scheduling algorithms
[7], [8], [9], [10], [11] try to address these issues by limiting
task migration. Typically, under task-splitting scheduling
algorithms, most tasks execute only on one processor as
in partitioned algorithms, whereas a few migratory tasks
may execute on several processors, as in global scheduling
algorithms. This approach produces a better balance of the
workload among processors than partitioning (and conse-
quently presents a higher utilization bound). Importantly,
the approach also reduces the contention on shared queues
and the number of migrations (by reducing the number
of migratory tasks). For a survey on real-time scheduling
algorithms and related issues, please check [12].

Carousel-EDF does not easily fit in this taxonomy. It
is a global algorithm in that it allows the migration of
any task, yet it can be implemented with contention-free
ready queues, like partitioned algorithms. Furthermore, it
partitions the task set into subsets such that tasks from one
subset do not directly contend for processing resources with
tasks from other subsets. In many respects, Carousel-EDF is
closer to Notional Processor Scheduling - Fractional capacity
(NPS-F) [10], a semi-partitioned algorithm from which it
evolved. The similarities between the two ensure that
Carousel-EDF preserves NPS-F utilization bounds, which
range from 75% to 100%, by trading off with preemptions.
Furthermore, Carousel-EDF reduces the maximum number
of preemptions, and therefore context switches, introduced
by the scheduler itself by up to half of those induced by
NPS-F.

The contribution of this paper is fivefold. First, we present
Carousel-EDF, a new scheduling algorithm that cuts by up
to half the number of preemptions due to NPS-F, while
preserving its utilization bounds. Second, we develop an
overhead-aware schedulability analysis that is grounded on

a prototype implementation of Carousel-EDF on Linux.
Third, we present the algorithms for setting up Carousel-
EDF on a real system that are based on the overhead-aware
schedulability analysis. Fourth, we show that Carousel-EDF
can be implemented efficiently. This implementation uses a
technique for the release of periodic tasks that eliminates
the interference on a server caused by the release of other
servers’ tasks. This implementation technique is essential to
reduce the pessimism of the schedulability analysis. Fifth,
we present some preliminary results of an experimental
evaluation using the overhead-aware schedulability analy-
sis. These results show that, for values of the overheads
estimated from a prototype implementation, Carousel-EDF
leads to lower overheads than NPS-F for some task sets.

The remainder of this paper is structured as follows.
In the next section, we present the system model. Sec-
tion III describes the Carousel-EDF scheduling algorithm.
After that, in Section IV, we present some implementation
details of Carousel-EDF and the overheads it may incur in
a real-system. Sections V and VI describe the overhead-
aware schedulability analysis. In Section VII, we present
the algorithms used to setup the system. Section VIII
presents preliminary results of an experimental evaluation
of Carousel-EDF. Finally, in Section IX, we conclude.

II. SYSTEM MODEL

We consider preemptive real-time systems composed by
m identical physical processors, each with a unique identifier
in the range P1 . . . Pm.

The system also includes a task set ⌧ composed by n
tasks, each with a unique identifier in the range ⌧1 . . . ⌧n.
Each task ⌧i generates a potentially infinite number of jobs
and is characterized by three parameters: Ci, the worst case
execution time of any of its jobs, Ti, the minimum inter-
arrival time between consecutive jobs, and Di, the relative
deadline of all its jobs. We assume that 0  Ci  Di and
that 8i : Di = Ti, unless stated otherwise.

The utilization of task ⌧i, denoted ui, is defined as the
ratio of Ci to Ti (ui =

C
i

T
i

). The system utilization (Us),
normalized to m processors, is defined as Us =

1
m ·

Pn
i=1 ui.

The jth job of task ⌧i, denoted ⌧i,j , with j � 1, becomes
ready to be executed at arrival time ai,j and completes by
finishing (or completion) time fi,j . By definition of Ti, the
time difference between two consecutive job arrivals must
be at least equal to Ti, i.e. ai,j+1 � ai,j � Ti. The absolute
deadline, di,j , of job ⌧i,j is given by di,j = ai,j + Di. A
deadline miss occurs when fi,j > di,j .

III. THE CAROUSEL-EDF SCHEDULING ALGORITHM

Carousel-EDF partitions task set into subsets of tasks
we call servers. Furthermore, it associates each server with
a reserve, a time interval during which a processor is
exclusively allocated to a server. The duration of a reserve

may vary from server to server, but the duration of a server’s
reserve does not change over time.

Carousel-EDF uses a two-level hierarchical run-time al-
gorithm. The top-level scheduler allocates processors to
servers. This allocation is done in a round robin fashion; that
is, a processor is allocated to the first server for the duration
of its reserve, then to the second server and so on until the
last server. This sequence is then repeated indefinitely. Each
processor is allocated to all the servers in the same order,
but the schedule of each processor is staggered from that
of the previous one by a time slot, S, i.e. the schedules of
each processor have a different phase, so that at any time at
most one processor is allocated to each server. As a result,
each server is allocated a different processor every time slot
and its tasks can run during the corresponding reserve, i.e.
a server’s reserves are periodic with period S.

The low-level scheduler uses the EDF algorithm to sched-
ule tasks in a server during the respective reserves. Because
the top-level scheduler ensures that at any time at most one
processor is allocated to a server, the low-level scheduler op-
erates on a local basis, i.e. there is no need for coordination
among the low-level schedulers of the different processors.

A. Off-line Procedure

In order to ensure the schedulability of a task set Carousel-
EDF uses an off-line procedure that comprises three steps:
(i) the partitioning of the task set into servers, (ii) the sizing
of the periodic reserve of each server and (iii) the phasing
of each processor, i.e. determining the server and the size
of a processor’s first reserve.

Servers have unique identifiers in the range ˜P1 . . . ˜Pk. The
set of tasks in server ˜Pq is denoted ⌧ [˜Pq]. We define the
utilization of server ˜Pq , U [

˜Pq], the sum of the utilization
of its tasks, i.e. U [

˜Pq] =

P
⌧
i

2⌧ [P̃
q

] ui. Because at any
time a server can have at most one processor allocated to
it, a server’s utilization must not exceed 100%. Thus, the
assignment of tasks to servers can be done by applying any
bin-packing heuristic.

Fig. 1 illustrates this first step. Fig. 1(a) shows the task set
(⌧), which is composed by 7 tasks. Each task is represented
by a rectangle, whose height is proportional to its utilization.
Fig. 1(b) shows the assignment of these tasks to 5 servers,
by applying the first-fit bin-packing heuristic.

100%

50%

⌧
1

⌧
2

⌧
3

⌧
4

⌧
5

⌧
6

⌧
7 P̃

1

⌧
1

⌧
3

P̃
2

⌧
2

⌧
4

P̃
3

⌧
5

P̃
4

⌧
6

P̃
5

⌧
7

P̃
1

P̃
2

P̃
3

P̃
4

P̃
5

(a)

Tasks

(b)

Servers

(c)

Servers (inflated capacity)

Figure 1: Task to server assignment.

2

Once the servers have been defined, the procedure com-
putes the size of each server’s reserve. Given that the period
of all servers is the time slot, S, the size of each reserve
(Reslen[˜Pq]) is given by S · U infl

[

˜Pq], where U infl
[

˜Pq]

denotes the inflated utilization of the server. We use the
inflated server utilization rather than the server utilization
because the tasks of a server can run only when a processor
is allocated to that server. Thus, a server may have ready
tasks but cannot execute them. By inflating the utilization
of a server [10], we ensure that the tasks deadlines are met
in spite of the unavailability of processing resources caused
by the use of reserves. Fig. 1(c) shows the outcome of the
this step.

The last step in the off-line procedure is determining
the phase of each processor, i.e. the server and the size
of the first reserve of each processor. Because the (high-
level) schedule of each processor is staggered by S from
that of the previous processor, the phase of all processors
can be determined from the schedule of processor P1, whose
first reserve is that of server ˜P1. As shown in Fig. 2(a), the
schedule of processor Pi begins at time i·S of P1’s schedule.
Alg. 5 in Sec. VII presents the algorithm for computing the
first reserve.

Fig. 2(a) illustrates the schedule for the example shown in
Fig. 1. In this example, we have 4 processors and 5 servers.
At time 0, processor P1 is allocated to server ˜P1. When
that server’s reserve expires, processor P1 is allocated to
server ˜P2, and so on until it is allocated to the last server
˜P5. Processor P1 is allocated again to server ˜P1 at time 4S,
i.e. at the next time instant multiple of S. This ensures not
only that every reserve has period S, but also that at any
time there is at most one processor allocated to any server.
Therefore, when the sum of the duration of all reserves is
not a multiple of the time slot, there is a time gap between
the end of the last reserve and the beginning of the first that
we name empty reserve.

B. Preemptions and Utilization Bound

As already mentioned, NPS-F is at the genesis of
Carousel-EDF. In particular, the concepts of server, reserve
and time slot are also used in that algorithm with exactly the
same names, except for server, which is known as notional
processor, and gave the algorithm its name. Furthermore, all
the steps but the last step of the off-line procedure are those
used in NPS-F.

Thus, the main difference between the two algorithms is
at the high-level scheduler. In NPS-F, servers are statically
assigned to processors one after the other so as to ensure the
full-utilization of each used processor. In other words, the
last step of the off-line procedure described above is replaced
by a step that iterates over the set of servers and assigns
each server a reserve on the next processor that is not yet
fully utilized. If the server inflated utilization is higher than
the available capacity of the current processor, the processor

demand not satisfied by the current processor is assigned to
a reserve on the next processor. Thus such servers become
split servers, because their reserve is split into two.

Fig. 2(b) shows the schedule that is generated by NPS-F
for our running example. Initially all processors have uti-
lization 0, no server has been assigned, and the current
processor is P1. We iterate over the set of servers in the
order of their ids (although any order is possible). Thus,
server ˜P1 is assigned to processor P1. Next, we consider
server ˜P2. Its inflated utilization is larger than that available
on processor P1, therefore the reserve is split so that the first
reserve makes the utilization of processor P1 equal to 1. ˜P2’s
second reserve, for the remaining of ˜P2’s inflated utilization,
is assigned to the next processor, P2, which now becomes
the current processor. The procedure is repeated until all
servers are assigned reserves on the different processors.

In [10] it is proven that, for periodic reserves with period
S  min

⌧

i

2⌧

(T
i

)

� , where � is a positive integer, the mapping
of tasks to servers is done using the first-fit bin-packing
heuristic, and the utilization U [

˜Pq] of each server ˜Pq is
inflated to U infl

[

˜Pq] =

(�+1)·U [P̃
q

]

U [P̃
q

]+�
, NPS-F’s normalized

utilization bound is given by U [

˜Pq] =
2·�+1
2·�+2 .

Although NPS-F has proven better upper bounds on the
number of preemptions for the same guaranteed utilization
bound than any other algorithm, the splitting of servers is
responsible for up to half of these preemptions: every server
may lead to a preemption, and so does every splitting, and
all but one server may be split. The key observation that led
to Carousel-EDF was that, if a server is not split at time slot
boundaries, we can eliminate up to half of those preemptions
and still satisfy the server’s processing demand. It is clear
from Fig. 2, that in the first time slot, the two algorithms
lead to the same high-level schedules for all processors. The
schedules of each processor in the second time slot are not
the same, but, in that time slot, Pi’s schedule in Carousel-
EDF is equal to Pi+1’s schedule in NPS-F, and so on. Thus,
at any time instant t, the active servers, i.e. the servers that
have a processor allocated, are the same for both algorithms,
although the processor that is allocated to each server may
be different.

Based on these informal arguments, we claim that if tasks
are assigned to servers using first-fit bin packing, server
inflation and the time slot are determined as described above,
Carousel-EDF preserves NPS-F utilization bounds, while
reducing its upper bounds on the number of preemptions
by up to half. Formal proofs can be found in Appendices
A and B.

The improvement on the number of preemptions comes at
the potential cost of additional migrations, i.e. preemptions
where the preempted jobs are resumed at a different proces-
sor. In this respect, Carousel-EDF behaves essentially as a
global scheduler, therefore the penalty is hard to quantify.
Above all, it depends on the task set and on the processor

3

0

t

S 2S 3S 4S

P

4

P

3

P

2

P

1

˜

P

1

˜

P

1

˜

P

1

˜

P

1

˜

P

2

˜

P

3

˜

P

2

˜

P

3

˜

P

2

˜

P

3

˜

P

2

˜

P

3

˜

P

3

˜

P

4

˜

P

3

˜

P

4

˜

P

3

˜

P

4

˜

P

3

˜

P

4

˜

P

5

˜

P

5

˜

P

5

˜

P

5

(b) NPS-F

0

t

S 2S 3S 4S

P

4

P

3

P

2

P

1

˜

P

1

˜

P

2

˜

P

3

˜

P

4

˜

P

5

˜

P

2

˜

P

3

˜

P

4

˜

P

5

˜

P

1

˜

P

3

˜

P

4

˜

P

5

˜

P

1

˜

P

2

˜

P

3

˜

P

5

˜

P

1

˜

P

2

˜

P

3

˜

P

4

(a) Carousel-EDF

Figure 2: High level schedule.

characteristics. If these are such that the cache footprint of a
preempted task is wiped out from the processor caches, the
cost of a preemption will be as high as that of a migration
[13], and therefore there is no penalty. In hard real-time
applications, absent any guarantee that such worst case
scenarios do not occur, an overhead-aware schedulability
analysis has to assume that the cost of a preemption is as
high as that of a migration.

IV. SCHEDULER IMPLEMENTATION AND OVERHEADS

In this section, we provide a few details regarding the im-
plementation1 of Carousel-EDF’s top- and low-level sched-
ulers, and identify the overheads it induces. This is important
to better understand the overhead-aware schedulability anal-
ysis of Carousel-EDF developed in the following sections.

A. Scheduler Implementation

The basis of the top-level scheduler implementation is
a circular queue of servers. For each processor, we use i)
a pointer to the server it is currently allocated; and ii) a
timer that measures the time left until the end of the current
reserve. Whenever one of these timers expires, the top-level
scheduler updates the corresponding processor pointer to the
next server, starts a new timer for the new reserve, and
triggers the invocation of the low-level scheduler so that the
processor switches to a task belonging to the newly active
server.

As usual, tasks that are ready to run are kept in a ready
queue, ordered by their deadlines. However, rather than
using a system wide ready queue, our implementation uses
a per-server ready queue. Because Carousel-EDF guarantees
that at any time there is at most one processor allocated to
any server, this eliminates contention in the access to the
ready queue.

In addition to a ready queue, our implementation uses also
a release queue per server. This is similar to a ready queue,
but, rather than keeping the tasks that are ready to run, it
keeps the periodic tasks that are waiting to be released,
ordered by their release times. This queue plays a crucial
role in the feasibility of Carousel-EDF, as it allows us to
reduce the pessimism of the schedulability analysis. Indeed,

1Available for download at http://webpages.cister.isep.ipp.pt/⇠pbsousa/
retas/3 2 11-rt20-retas-rb.html

by using this queue and by the appropriate use of timers,
we prevent the release of jobs belonging to a server from
interfering with other servers.

The key observation is that it is of no use to release a
task outside the reserves of the server to which it belongs.
Therefore, our implementation uses timers for the release
of periodic tasks only when the release time falls in the
corresponding reserve. Otherwise, the release of the task is
postponed until the beginning of the corresponding reserve.
Thus, at the beginning of a reserve, and before invoking
the low-level scheduler, the top-level scheduler traverses the
release queue and moves all the tasks whose release time
has passed to the ready queue of the corresponding server.
Furthermore, it starts a timer for each task whose release
time will occur during the new reserve.

The low-level scheduler implements EDF and is not aware
that Carousel-EDF uses a per-server run queue. Furthermore,
sporadic tasks continue to be released by interrupts (see
Appendix C).

B. Overheads

In order to perform an overhead-aware schedulability
analysis, we need to take into account all the delays a task
may suffer from its arrival time until its completion. In
this subsection, we consider only the delays other than the
execution of tasks.

Grounded on our implementation of Carousel-EDF and
with an eye towards an experimental evaluation of the
algorithm, we have grouped these delays in five classes:
task-release overheads; reserve switching overheads; context
switching overheads; cache-related preemption and migra-
tion delays (CPMD); and interrupt overheads.

The task release mechanism introduces two overheads.
The first overhead, the Release Jitter, denotes the time differ-
ence between the time instant when a job should be released,
ai,j , and the time when the job release actually starts. This
overhead reflects the inability to precisely measure time
intervals by the operating system. The second overhead,
Release Overhead, is the time used by the processor to
release a job, including moving the job to the ready queue.

The switch from one reserve to the next incurs also two
overheads, the Reserve Jitter and the Reserve Overhead.
The reserve jitter is analogous to the release jitter: it is the

4

difference between the time instant when a reserve should
begin and the time when the reserve actually starts. Likewise
the reserve overhead is analogous to the release overhead:
it represents the time during which the processor performs
the actions required to switch from a reserve to another, e.g.
switching the ready queue of a processor from that of the
terminating reserve to that of the new reserve.

A context-switch occurs whenever the dispatcher allocates
a processor to a task different from the one that is currently
executing on that processor. Typically, a context-switch
comprises the following operations: (i) saving the context
of the current executing task; (ii) selecting the next task to
be executed; and (iii) (re)storing the context of the new task.
The Context-switch Overhead is the processor time required
to perform these operations.

The Cache-related Preemption/Migration Delay (CPMD)
overhead quantifies the cost of preemptions and migrations
in the worst-case execution time of a task. The worst-case
execution time of a task is typically derived assuming that
its jobs execute continuously in time, without preemptions.
With Carousel-EDF, a task may be preempted by another
that has a deadline earlier than its own. As a result the
cache lines of the preempted task may be evicted from the
cache. When the preempted task later resumes execution,
these cache lines may have to be brought back, either from
higher-level caches or from memory, incurring additional
execution delays.

Interrupts are an event-notification mechanism and usually
trigger the execution of interrupt handlers (IH). We assume
that these handlers are implemented as operating system
tasks with higher priority than “normal” tasks. Interrupt
Overheads represent the processor time used by IHs.

V. TASK SET PARTITIONING

The first step in the off-line procedure is the partitioning
of the task set into servers. Because at any time a server is
allocated at most one processor, the processing demand of
all tasks in a server, including overheads, must be lower than
the processing that can be supplied by a processor. Thus,
before presenting the partitioning algorithm, we present an
overhead-aware schedulability analysis based on processor
demand.

A. Server Schedulability Analysis

Assuming that each server executes on its own processor,
the demand-based test for a server ˜Pq is given by:

dbf

part
(

˜Pq, t)  t, 8t > 0 (1)

where dbf

part
(

˜Pq, t) is the demand-bound function [14],
which provides a upper bound (over every possible time
interval [t0, t0 + t) of length t) on the aggregate execution
requirement of all jobs of ˜Pq (⌧ [˜Pq]) released at time t0
or later and whose absolute deadlines lie at or before time
t0 + t.

Assuming sporadic task sets with arbitrary deadlines and
ignoring overheads, dbfpart(˜Pq, t) can be computed as:

dbf

part
(

˜Pq, t) = dbf

part
(⌧ [˜Pq], t) =

X

⌧
i

2⌧ [P̃
q

]

max

✓
0,

�
t�Di

Ti

⌫
+ 1

◆
· Ci (2)

Next, we consider each overhead identified in the previous
section and incorporate it into the demand-based test.
Task Release. Fig. 3 illustrates graphically the overheads
related to the release of job ⌧i,j .

P
p P̃

q

P̃
q

a
i,j

RelJ
i,j

Timer interrupt for
waking up ⌧

i,j

⌧
i,j

is inserted into
the ready queue

RelO
i,j

d
i,j

t

Figure 3: Illustration of the release jitter and release over-
head of a job released by a timer.

Let RelJ be the upper bound on the release jitter. As
shown in Fig. 3, the release jitter decreases the amount of
time available to complete a task, i.e., in the worst case, ⌧i
has Di�RelJ time units to complete. Therefore, we modify
the dbf

part
(⌧ [˜Pq], t) to:

dbf

part
(⌧ [˜Pq], t) =
X

⌧
i

2⌧ [P̃
q

]

max

✓
0,

�
t� (Di �RelJ)

Ti

⌫
+ 1

◆
· Ci (3)

We model the release overhead as a higher-priority inter-
fering workload, rather than as an increase in the execution
demand of a task, because the release overhead contributes
“immediately” to the processor demand. Thus, the process-
ing demand for releasing all jobs of ⌧ [˜Pq] in a time interval
of length t: is:

dbf

part
RelO(⌧ [

˜Pq], t) =
X

⌧
i

2⌧ [P̃
q

]

⇠
t+RelJ

Ti

⇡
·RelO (4)

where RelO is a upper bound on release overhead.
Incorporating these overheads in dbf

part
(⌧ [˜Pq], t), we get:

dbf

part
(⌧ [˜Pq], t) =

dbf

part
RelO(⌧ [

˜Pq], t) +
X

⌧
i

2⌧ [P̃
q

]

max

✓
0,

�
t�Di +RelJ

Ti

⌫
+ 1

◆
· Ci (5)

Context Switching. The number of context switches over
a time interval of length t is upper bounded by twice
the number of job releases during that interval. This is
because the lower-level scheduler schedules the tasks in each

5

server according to the EDF policy and, under EDF, context
switches occur either when a job is released or when a job
completes, but not every job release will cause a context
switch. Let CtswO be an upper bound for the context-switch
overhead. We amend the derivation of the dbf

part
(⌧ [˜Pq], t)

to take into account context switching by increasing the
execution demand of each job by twice CtswO:

dbf

part
(⌧ [˜Pq], t) =

dbf

part
RelO(⌧ [

˜Pq], t) +
X

⌧
i

2⌧ [P̃
q

]

max

✓
0,

�
t�Di +RelJ

Ti

⌫
+ 1

◆
·

(Ci + 2 · CtswO) (6)

CPMD. Determining the CPMD is a challenging research
problem. For the state-of-the-art, see [15]. In our analysis,
we use a rather crude but safe model to account for CPMD:
we assume that every preemption leads to the worst case
delay for the preempted task. In the worst case, every task
release leads to a preemption. Therefore, the cumulative
cost of the CPMD over one interval of length t is computed
multiplying the number of task preemptions for server ˜Pq

by the upper bound of CPMD, denoted by CpmdO:

dbf

part
CpmdO(

˜Pq, t) =
X

⌧
i

2⌧ [P̃
q

]

⇠
t+RelJ

Ti

⇡
· CpmdO (7)

This cost represents an increase in the server’s processing
demand, therefore we amend dbf

part
(

˜Pq, t) to:

dbf

part
(

˜Pq, t) = dbf

part
(⌧ [˜Pq], t) + dbf

part
CpmdO(

˜Pq, t) (8)

Interrupts. We model each interrupt Inti as a sporadic task
with worst-case execution time equal to CInt

i , minimal inter-
arrival time equal to T Int

i and maximum jitter JInt
i , and also

with zero laxity (CInt
i = DInt

i). Furthermore, we assume
that each interrupt is bound to a specific processor so as
to balance the interrupt overhead on all processors. Thus
the interrupt processing demand for the nInt

p interrupts on
processor Pp is given by:

dbf

part
IntO(Pp, t) =

nInt

pX

i=1

max

✓
0,

�
t� (DInt

i � JInt
i)

T Int
i

⌫
+ 1

◆
· CInt

i (9)

Because on Carousel-EDF servers execute on all processors,
we safely consider the maximum demand on all processors:

dbf

part
IntO(

˜Pq, t) = max

�
dbf

part
IntO(P1, t) . . . dbf

part
IntO(Pm, t)

�

(10)
This interrupt accounting method is server-centric and lies
between the task-centric and the processor-centric methods
described in [16].

Finally, incorporating all overheads, we get:

dbf

part
(

˜Pq, t) =

dbf

part
(⌧ [˜Pq], t) + dbf

part
CpmdO(

˜Pq, t) + dbf

part
IntO(

˜Pq, t)

(11)

B. Task Set Partitioning Algorithm

The algorithm uses the schedulability test developed in
the previous subsection to ensure that the demand of all
tasks mapped to a server does not exceed the capacity of a
processor. It determines both the number of servers to use
and the tasks that are mapped to each server.

Alg. 1 shows the pseudo-code. It iterates over the task
set ⌧ and for each task ⌧i it checks whether it fits in one
of the opened servers. For each opened server ˜Pq , it adds
provisionally task ⌧i to it, and applies the schedulability test
(Ineq. 1), by invoking the dbf_part_check function. If
the test succeeds, then task ⌧i is permanently assigned to
server ˜Pq . If the test fails for all opened servers, it creates a
new server and adds task ⌧i to it. The task set is considered
unschedulable whenever the schedulability test fails for a
server with only one task. Although Alg. 1 uses a first-fit
heuristic, it could use a different bin packing heuristic.

Algorithm 1: Task set partitioning.
Input: set of n tasks ⌧

i

, with 1  i  n
Outupt: set of k servers, with k � 0 (k = 0 means failure)

k 0
for i 1 to n do

scheduled 0
for q 1 to k do

if is open(q) then
add task to server(⌧

i

, P̃
q

)
t 2 · lcm T(P̃

q

)
if dbf part check(P̃

q

, t) then
scheduled 1
break

else
remove task from server(⌧

i

, P̃
q

)
end if

end if
end for
if scheduled = 0 then

k k + 1 {add a new server}
add task to server(⌧

i

, P̃
k

)
t 2 · lcm T(P̃

q

)
if not dbf part check(P̃

k

, t) then
k 0
break {failure}

end if
end if

end for

VI. SERVER INFLATION

The task set partitioning algorithm presented limits the
processing demand of a server to that of a processor. To
increase the system utilization, it is advantageous that, when
a server does not use the full capacity of a processor, the
remaining capacity is used by other servers. However, in
that case, a server’s ready task may not be able to run,
even if it is the task with the earliest deadline. To ensure

6

that despite this processor unavailability a server tasks are
still schedulable, we may have to inflate the server demand.
This inflation reduces the processor unavailability to the
maximum tolerated so that the server tasks are schedulable.

Before presenting the algorithm used to inflate a server de-
mand, we develop a new schedulability analysis for servers
that takes into account the fraction of the time slot that
is not available for a server. This analysis is used by a
schedulability test invoked by the reserve inflation algorithm.

A. Schedulability Analysis

Carousel-EDF guarantees that each server is allocated a
processor for the duration of its reserve every time slot
(whose size is S time units). That is, the tasks of each server
can execute only within a periodic reserve of length:

Reslen[˜Pq] = U infl
[

˜Pq] · S (12)

where U infl
[

˜Pq] represents the inflated processing demand
of server ˜Pq . Hence, given a time interval of length t, only
a fraction of t is supplied for the execution of a server.

Rather than modelling the remaining interval in a time
slot as a reduction in the processing capacity available for
the server tasks, we model it as a fake task with attributes:

Cfake
= Dfake

= S �Reslen[˜Pq] (13)
T fake

= S (14)

This approach has the advantage that the right hand side of
the schedulability test (Ineq. 15) continues to be t:

dbf

res
(

˜Pq, t)  t, 8t > 0 (15)

where dbf

res
(

˜Pq, t) is given by:

dbf

res
(

˜Pq, t) =

dbf

part
(

˜Pq, t) + max

✓
0,

�
t�Dfake

T fake

⌫
+ 1

◆
· Cfake

(16)

where dbf

part
(

˜Pq, t) is given by Eq. 11.

B. Reserve Overhead

So far we have ignored the overheads associated with
the use of reserves. These overheads comprise not only the
costs related to the implementation of reserves, but also other
costs that would not occur if a server was allocated its own
processor. Fig. 4 illustrates the overheads associated with
the switching from one reserve to another.

The similarity with the task release jitter and overhead
shown in Fig. 3 is striking, and stems from the fact that
both task releases and reserve switching rely on the use of
timers. However, in contrast to the release jitter, we model
the reserve jitter like the reserve overhead because both
reduce the time supplied to the reserve.

Although our implementation handles the release of tasks
that occur outside of a reserve upon a reserve switch, the

P
p

⌧
x,y

⌧
i,j

A� 1 A

Reserve
A should

start

ResJ
i,j

ResO
i,j

CtswO
i,j

Timer interrupt
for beginning

reserve A

Invocation
of the

scheduler

⌧
i,j

(re)starts
executing

t

Figure 4: Illustration of the reserve jitter.

reserve overhead needs not include the time required for the
handling of these releases, because it is already accounted
for in dbf

part
CpmdO(

˜Pq, t) (see Eq. 7).
In addition to the direct costs of implementing reserves,

the use of reserves may add two overheads per reserve
switch that would not occur if a server was allocated its
own processor. Upon a reserve switch, if the processor is
executing a job of the old reserve, this job will be preempted
and will be resumed later in a subsequent reserve of its
server. This preemption leads to an additional context switch
and possibly to a CPMD. Again, we model these overheads
by increasing the processing demand by the corresponding
values:

ResL = ResJ +ResO + CtswO + CpmdO (17)

where ResJ and ResO are upper bounds for the reserve
jitter and the reserve overhead respectively.

This delay that occurs at the beginning of every reserve
can be viewed as extending the fake task, therefore we
amend the demand bound function of a reserve in Eq. 16 as
follows:

dbf

res
(

˜Pq, t) =

dbf

part
(

˜Pq, t)

+max

✓
0,

�
t� (Dfake �RelL)

T fake

⌫
+ 1

◆

·(Cfake
+RelL)

(18)

C. Server Inflation Algorithm

We use the schedulability test in Ineq. 15, with
dbf

res
(

˜Pq, t) as given by Eq. 18, to determine an interval
that is guaranteed to include the inflated utilization. This
interval can be arbitrarily small. We start with the interval
[U [

˜Pq], 1.0]. Then we successively halve this interval using
the bisection method. Alg. 2 shows the pseudo-code for the
res_inflate function, which is used for server inflation.
The algorithm converges rather rapidly, and in 10 iterations,
it generates an interval that is less than 0.001 wide, that con-
tains the minimum inflated capacity of the server required for
the server to be schedulable, according to the schedulability
test in Ineq. 15. In Subsection VI-D we provide some details
on the implementation of the dbf_res_check function.

7

Algorithm 2: Reserve inflation (res_inflate) function.
Inputs: P̃

q

{server to analyse}
✏ {accuracy of desired estimate}
t {time interval for computing the demand bound function}

Outupt: Uinfl[P̃
q

] {minimum inflated utilization, with an error smaller than ✏,
that ensures schedulability of P̃

q

}

U
min

 U [P̃
q

]
U

max

 1.0
while U

max

� U
min

> ✏ do
Uinfl[P̃

q

] (U
min

+ U
max

)/2
if dbf res check(P̃

q

, t) then
U

max

= (U
min

+ U
max

)/2
else

U
min

= (U
min

+ U
max

)/2
end if
Uinfl[P̃

q

] U
max

end while

Alg. 2 may lead to an inflated utilization of 100% or even
higher. This means that the overheads incurred by the use
of reserves are higher than the unused processor capacity,
and therefore the server is allocated a dedicated processor,
becoming a single server with an inflated utilization of 1.

We can now specify a simple schedulability test for
Carousel-EDF as:

kX

q=1

U infl
[

˜Pq]  m (19)

where m is the number of processors in the system.

D. Schedulability check functions

Both the task set partitioning algorithm and the reserve in-
flation algorithm check a server’s schedulability by invoking
two functions: dbf_part_check and dbf_res_check,
respectively. These tests succeed if for any time interval in
the range [0, t), the width of that interval is larger or equal
to the computing demand of the server in that interval. In the
case of Carousel-EDF we need to check the schedulability
for a value of t that is twice the least common multiple
(LCM) of the periods of the tasks in each server. For servers
with a large number of tasks whose periods are not multiples
of each other, the value of t may be very large. To speed up
the execution, these functions use Quick Processor-demand
Analysis (QPA) [17]. Alg. 3 shows the pseudo-code of these
functions. dbfxxx(˜Pq, t) stands for dbfpart(˜Pq, t) in the case
of the dbf_part_check function, and for dbf

res
(

˜Pq, t)
in the case of the dbf_res_check function.

VII. CAROUSEL GENERATION

The last step in the off-line procedure is the generation
of the carousel, i.e. the high-level schedule. It comprises
determining the size of the reserves and their sequence and
also the initial phasing of the different processors.

Alg. 4 shows the algorithm that generates the sequence
of servers. It has a single loop in which it iterates over
the set of servers created by the task set partitioning al-
gorithm (Alg. 1). For each server it inflates its utilization,

Algorithm 3: QPA-based schedulability test functions.
Input: P̃

q

{server to analyse}
Returns: true if P̃

q

is schedulable, false otherwise

t 2 · lcm T(P̃
q

)
d
min

 min
⌧

i

2⌧[

˜

P

q

]

(D
i

)

while dbfxxx(P̃
q

, t)  t and dbfxxx(P̃
q

, t) > d
min

do
if dbfxxx(P̃

q

, t) < t then
t dbfxxx(P̃

q

, t)
else

t t� 1
end if

end while
return dbfxxx(P̃

q

, t)  d
min

{true if P̃
q

is schedulable, false otherwise}

identifies single servers and assigns a sequence number to
each server that determines the order of the server in the
carousel. Sequence number 0 is assigned to single servers.
The algorithm returns true, if the set of servers is schedulable
over m processors, and false otherwise.

Algorithm 4: Reserve sequence generator.
Input: set of k servers P̃

q

, with 1  i  k
✏ {accuracy in server inflation}
m {number of processors}

Outupt: boolean {true if schedulable}
�[] {server sequence}

S 1

�

· min
⌧

i

2⌧

(T
i

, D
i

) {time slot}
s 1 {sequence order}
U 0 {system utilization}
for q 1 to k do

{inflate servers}
t 2 · lcm T(P̃

q

)
Uinfl[P̃

q

] res inflate(P̃
q

, ✏, t)
if Uinfl[P̃

q

] � 1.0 then
Uinfl[P̃

q

] 1.0
Tp[P̃

q

] SINGLE
�[q] 0 {0 means not in sequence}

else
�[q] s
s s + 1

end if
U U + Uinfl[P̃

q

]
end for
return U  m

To complete the generation of the high-level schedule,
we need to determine the first reserve for each processor.
Let r be the number of processors used in the carousel.
As illustrated in Fig. 2, the schedule of each processor
must be such that processor i is S time units ahead of that
of processor i � 1, modulo r. Therefore, for each of the
r processors, we need to determine the server of its first
reserve and its duration. Alg. 5 shows the pseudo-code of an
algorithm that computes these parameters. It takes as inputs
the servers sequence, including the server parameters. The
algorithm has one single loop in which it iterates over the
servers (and also the r processors used to run the carousel).
It then determines the servers that are active in the first
processor at each multiple of the time slot S, and the time
left at that point until the end of the reserve, and assigns
these values as the parameters of the first reserve of the

8

corresponding processor.

Algorithm 5: First reserve generator
Input: set of k servers P̃

q

, with 1  i  k
�[] {server sequence}

Outupt: ⇢[] {server of first reserve of each processor}
�[] {duration of first reserve of each processor}

p 1 {processor index}
S min

⌧

i

2⌧

(T
i

, D
i

) {time slot}
t 0 {accumulated schedule time}
for q 1 to k do

if �[q] <> 0 then
{only servers that belong to the carousel}
t t + Uinfl[P̃

q

] · S {expiration time of this reserve}
if t � (p� 1) · S then

{reserves crosses time slot boundary}
⇢[p] q {assign first server}
�[p] t� (p� 1) · S {duration of first reserve}
p p + 1

end if
end if

end for

VIII. EXPERIMENTAL RESULTS

In this section, we report on a preliminary experimental
evaluation of Carousel-EDF by comparing it with NPS-F.
The results presented are not meant as evidence that
Carousel-EDF has better schedulability than NPS-F, but
only to show that there are workloads that, for the bounds
considered and based on the overhead-aware schedulability
analysis of each algorithm, are schedulable under Carousel-
EDF but not under NPS-F.

A. Overhead parameters bounds
The values used for the different overhead parameters

bounds are shown in Table I. The values of all parameters in
this table, with exception of the CpmdO, were determined
by experimentally measuring the overheads on a 24-core
computer built from two 1.9 GHz AMD Opteron 6168
chips, each with with 12 cores, running a modified 2.6.31
Linux kernel with an NPS-F implementation, as described
in more detail in [18]. The maximum values thus obtained
were then rounded up. The value for ResD represents the
measured bound for the entire reserve delay, comprising the
reserve jitter, the reserve overhead and the context switch.
Although these values were not measured on our prototype
implementation of Carousel-EDF, we do not expect them to
be different. Furthermore, they are platform dependent and
therefore should be seen only as values that may occur on
a real system, as of the time of writing.

Table I: Experimentally-derived values for the various
scheduling overheads (in µs).

RelJ RelO CtswO ResD CpmdO
Measured 17.45 8.56 35.21 30.24

Used values 20.00 10.00 40.00 40.00 100.00

The CpmdO is highly dependent on the load and its esti-
mation is a research problem in itself. Given the preliminary

0.75 0.80 0.85 0.90 0.95 1.00
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Mixed tasks

U infl
s (a)

0.75 0.80 0.85 0.90 0.95 1.00
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Light tasks

U infl
s (b)

0.75 0.80 0.85 0.90 0.95 1.00
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Medium tasks

U infl
s (c)

0.75 0.80 0.85 0.90 0.95 1.00
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Heavy tasks

U infl
s (d)

NPS-F (� = 1); Carousel-EDF (� = 1);

Figure 5: Normalized inflation: NPS-F vs. Carousel-EDF.

nature of these experiments, we set it to 100µs, in order not
to penalize too heavily tasks whose C is small.

Although our analysis allows to factor in interrupt over-
heads, we only consider tick interrupts. We did not consider
other interrupts, as they are highly dependent on the load
and they should not affect significantly the overall picture.

B. Task set generation

The task sets used in the experiments were generated
randomly. The utilization of each task was uniformly dis-
tributed in a given range. We considered four ranges, to
model different types of tasks: light, medium, heavy, and
mixed with utilization in the ranges [0.05, 0.35), [0.35, 0.65),
[0.65, 0.95) and [0.05, 0.95), respectively. The period of all
tasks was uniformly distributed in the range [5, 50] ms,
with a resolution of 1 ms. All tasks generated were implicit
deadline (Di = Ti). The worst-case execution time of the
tasks was derived from the utilization and the period of the
task (Ci = ui · Ti).

C. Experiment

In order to compare the schedulability of Carousel-EDF
with that of NPS-F, for each of the 4 types of tasks,
we generated 100 task sets for each value of normalized
utilization ranging from 0.75 to 1.0, with a granularity
of 0.1. The number of processors in the system was 24.
For each algorithm, and each task set, we determined the
normalized inflated utilization using the respective overhead-
aware schedulability analysis. In the case of NPS-F, we used
the schedulability analysis presented in [18] modified to
eliminate the release interference among servers as described
in Section IV.

9

Fig. 5 shows, for each algorithm, the average normalized
inflated system utilization, U infl

s , as a function of the value
of the normalized utilization of the task set. The normalized
inflated system utilization under Carousel-EDF is smaller
than that under NPS-F, independently of the task set type
considered. This was expected, because NPS-F incurs more
overheads than Carousel-EDF. However, the pessimism of
the analysis may be larger for NPS-F than for Carousel-
EDF. Indeed, based on experimental evidence [13], the
analysis assumes that the worst case cache-related overheads
caused by preemptions are the same whether or not there
is a migration. On average, however, the costs incurred by
preemptions with migrations are likely to be higher than
without, and preemptions with migrations are more likely in
Carousel-EDF than in NPS-F.

IX. CONCLUSIONS

This paper presented Carousel-EDF a novel scheduling
algorithm that relies on most of the mechanisms of NPS-F,
from which it evolved. By preventing the split of reserves,
Carousel-EDF reduces by up to 50% the number of pre-
emptions caused by the reserve mechanism, while preserving
NPS-F utilization bounds, which were up to now the highest,
among algorithms that do not use a single dispatching queue,
for a given number of preemptions. The implementation of
Carousel-EDF relies on a hierarchical two-level scheduler
that runs in each processor. The top-level scheduler sched-
ules servers in a round-robin fashion, whereas the low-level
scheduler schedules the tasks in each server using the EDF
policy. The paper also presented a schedulability analysis
that is used both to partition the task set in servers and to
inflate the server reserves so as to ensure that all tasks in a
server meet their deadlines. This schedulability analysis was
then used in an experimental study that confirmed that for
overhead bounds based on values measured on a real-system,
Carousel-EDF is able to schedule, on average, more task sets
than NPS-F. Although the results are encouraging, there are
still many issues that deserve further study. A more complete
experimental evaluation considering a wider range of task
sets and comparing it with other scheduling algorithms will
be considered in future work.

ACKNOWLEDGEMENTS

This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Tech-
nology) and by ERDF (European Regional Development
Fund) through COMPETE (Operational Programme ’The-
matic Factors of Competitiveness’), within projects Ref.
FCOMP-01-0124-FEDER-022701 (CISTER) and FCOMP-
01-0124-FEDER-020447 (REGAIN); also by FCT and the
EU ARTEMIS JU, within JU grant nr.333053 (CON-
CERTO).

REFERENCES

[1] S. Dhall and C. Liu, “On a real-time scheduling problem,”
Operations Research, vol. 26, pp. 127–140, 1978.

[2] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel, “Propor-
tionate progress: A notion of fairness in resource allocation,”
Algorithmica, vol. 15, pp. 600–625, 1996.

[3] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “Run:
Optimal multiprocessor real-time scheduling via reduction
to uniprocessor,” in proc. of the 32nd Real-Time Systems
Symposium (RTSS’11), Vienna, Austria, 2011, pp. 104–115.

[4] K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving
optimal real-time scheduling on multiprocessors,” in proc. of
the 20th IEEE Euromicro Conference on Real-Time Systems
(ECRTS’08), Prague, Czech Republic, 2008, pp. 13–22.

[5] S. Kato and N. Yamasaki, “Global edf-based scheduling with
laxity-driven priority promotion,” J. Syst. Archit., vol. 57,
no. 5, pp. 498–517, May 2011.

[6] B. B. Brandenburg, “Scheduling and locking in multipro-
cessor real-time operating systems,” Ph.D. dissertation, The
University of North Carolina at Chapel Hill, 2011.

[7] J. Anderson, V. Bud, and U. Devi, “An edf-based scheduling
algorithm for multiprocessor soft real-time systems,” in proc.
of the 17th IEEE Euromicro Conference on Real-Time Systems
(ECRTS’05), Palma de Mallorca, Balearic Islands, Spain,
2005, pp. 199–208.

[8] B. Andersson and E. Tovar, “Multiprocessor scheduling with
few preemption,” in proc. of the 12th IEEE International
Conference on Embedded and Real-Time Computing Systems
and Application (RTCSA’06), Sydney, Australia, 2006, pp.
322–334.

[9] S. Kato and N. Yamasaki, “Semi-partitioned scheduling of
sporadic task systems on multiprocessors,” in proc. of the
21st Euromicro Conference on Real-Time Systems (ECRTS
09), Dublin, Ireland, 2009, pp. 239–248.

[10] K. Bletsas and B. Andersson, “Preemption-light multiproces-
sor scheduling of sporadic tasks with high utilisation bound,”
in proc. of the 30th IEEE Real-Time Systems Symposium
(RTSS’09), Washington, DC, USA, 2009, pp. 385–394.

[11] A. Burns, R. I. Davis, P. Wang, and F. Zhang, “Partitioned
edf scheduling for multiprocessors using a c=d task splitting
scheme,” Real-Time Syst., vol. 48, no. 1, pp. 3–33, Jan 2012.

[12] R. I. Davis and A. Burns, “A survey of hard real-time
scheduling for multiprocessor systems,” ACM Comput. Surv.,
vol. 43, no. 4, pp. 35:1–35:44, Oct. 2011.

[13] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “An
empirical comparison of global, partitioned, and clustered
multiprocessor edf schedulers,” in proc. of the 31st IEEE
Real-Time Systems Symposium (RTSS’10). San Diego, CA,
USA: IEEE Computer Society, 2010, pp. 14–24.

[14] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in proc. of the
11st IEEE Real-Time Systems Symposium (RTSS’90), Lake
Buena Vista, Florida, USA, 1990, pp. 182–190.

10

[15] A. Bastoni, “Towards the integration of theory and practice
in multiprocessor real-time scheduling,” Ph.D. dissertation,
University of Rome “Tor Vergata”, 2011.

[16] B. Brandenburg, H. Leontyev, and J. Anderson, “An overview
of interrupt accounting techniques for multiprocessor real-
time systems,” J. Syst. Archit., vol. 57, no. 6, pp. 638–654,
2011.

[17] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings, “Applying new scheduling theory to static prior-
ity pre-emptive scheduling,” Software Engineering Journal,
vol. 8, no. 5, pp. 284–292, 1993.

[18] P. B. Sousa, K. Bletsas, E. Tovar, P. Souto, and B. Akesson,
“Unified overhead-aware schedulability analysis for slot-
based task-splitting,” CISTER, Polytechnic Institute of Porto
(ISEP-IPP), Technical report CISTER-TR-130201, 2013.
[Online]. Available: https://www.cister.isep.ipp.pt/docs/

11

APPENDIX A.
UTILIZATION BOUND

By design, Carousel-EDF offers, for the same value of corresponding parameter �, the same utilization bound as the
original NPS-F algorithm. This bound is given by the following expression:

2 · � + 1

2 · � + 2

The following reasoning establishes this.

Lemma 1. A set of k servers is schedulable on m processors under Carousel-EDF if and only if
kX

q=1

U infl
[

˜Pq]  m

Proof: This follows from the fact that Carousel-EDF successfully schedules all servers if and only if it provides
U infl

[

˜Pq] · S time units to each server ˜Pq within every time window of length S (equal to the time slot). This processing
time is provided to the k servers from the m processors (by design, in such a manner that each server only receives processing
time from at most one processor at any time instant).

Lemma 2. After the bin-packing stage of Carousel-EDF, if there exist k � 2 utilised bins, it then holds that 1
k

Pk
q=1 U [

˜Pq] >
1
2 , for the k utilized bins (servers).

Proof: By contradiction, if the claim were false then there would exist (at least) one pair of servers ˜Pq and ˜Pr such
that U [

˜Pq] + U [

˜Pr]  1. But this is impossible under the bin-packing scheme employed.

Lemma 3. : For any server ˜Pq , it holds that U infl
[

˜Pq]  inflate(U [

˜Pq]).

Proof: This holds because Carousel-EDF inflates each server ˜Pq to the minimum U infl
[

˜Pq] sufficient for schedulability,
according to an exact schedulability test. In contrast, the inflate function used by NPS-F potentially over-provisions.

Now we can prove the utilisation bound of Carousel-EDF. The following theorem and its proof are analogous to Theorem
3 from [10], which proved the utilisation bound of NPS-F.

Theorem 1. The utilization bound of Carousel-EDF is 2·�+1
2·�+2 .

Proof: An equivalent claim is that every task set with utilisation not greater than 2·�+1
2·�+2 · m is schedulable under

Carousel-EDF. We will prove this equivalent claim.
Let us distinguish two complementary cases, depending on the number k of bins (servers) with tasks assigned to them,

after the bin-packing stage: (i) k = 1; (ii) k � 2.
In the first case (k = 1), even if the system has just one processor (m = 1), the task set is always schedulable, because the

reserve needed to implement the server corresponding to that single bin can always be accommodated on a single processor.
Therefore, let us focus on the other case (k � 2):

From Lemma 1, Carousel-EDF successfully maps all k servers to a feasible online schedule if and only if

kX

q=1

U infl
[

˜Pq]  m

Applying Lemma 3 to the above, a sufficient condition for the schedulability of all k servers is

kX

q=1

inflate(U [

˜Pq])  m (20)

For the function inflate(U) =

(�+1)·U
U+� , it holds that d

dU inflate(U) > 0 and d2

dU2

inflate(U) < 0 over the interval [0,1].
Therefore, from Jensen’s Inequality [?] we have:

kX

q=1

inflate(U [

˜Pq])  k · inflate(¯U)

12

where

¯U =

1

k

kX

q=1

U [

˜Pq])

Hence, combining this with the sufficient condition of Inequality 20, a new sufficient condition for the successful mapping
of the k servers is

k · inflate(¯U)  m (21)

Now, let the function ↵(U) denote the expression inflate(U) � U . Then, ↵(U) =

U ·(1+U)
U+� and Inequality 21 can be

rewritten as

k ·
�
¯U + ↵(¯U)

�
 m (22)

Given that ↵(U) is a decreasing function of U over [12 , 1] it holds that

↵(U)

U
<

↵(12)
1
2

=

1

2� + 1

, 8U 2 (

1

2

, 1]) ↵(U) <
1

2� + 1

· U 8U 2 (

1

2

, 1]

Combining the above with the fact that (from Lemma 2) ¯U > 1
2 , we obtain from Inequality 21 the following new sufficient

condition:

k ·
✓
¯U +

1

2� + 1

· ¯U
◆

 m (23)

In turn, this can be equivalently rewritten as:

k ¯U  2� + 1

2� + 2

m (24)

But the left-hand side of the above inequality, corresponds to the cumulative utilisation of all tasks in the system. Therefore,
if
P

⌧
i

2⌧ ui  2�+1
2�+2m, this is a sufficient condition for schedulability under Carousel-EDF. This proves the theorem.

13

APPENDIX B.
UPPER BOUNDS ON PREEMPTIONS

Under either of the two approaches to server mapping formulated in [10], for NPS-F, an upper bound N

NPS�F
pre on the

preemptions (including migrations) related to the reserves within a time interval of length t is given by:

N

NPS�F
pre <

⇠
t

S

⇡
· 3 ·m (25)

This follows from the fact that, within each time slot of length S, other that preemptions due to EDF, there occur: (a) one
preemption per server (hence k in total), when its last (or only) reserve runs out; plus (b) m � 1 (at most) migrations,
corresponding to the case when some server migrates between a pair of successively indexed processors.

Therefore

N

NPS�F
pre =

⇠
t

S

⇡
· k +

⇠
t

S

⇡
· (m� 1) (26)

and the bound of Inequality 25 is derived from the fact that m�1 < m and also, as proven by Corollary 1 in [10], k < 2 ·m.
By comparison, Carousel-EDF generates within each timeslot, at most k preemptions/migrations (other than those due to

EDF). Each of those corresponds to the ending of the reserve of the corresponding server. Therefore

N

Carousel�EDF
pre =

⇠
t

S

⇡
· k <

⇠
t

S

⇡
· 2 ·m (27)

By comparing the respective bounds (Eqs. 25 and 27), we observe that the upper bound for preemptions due to the time
division under Carousel-EDF is 33.3% smaller than that under NPS-F.

However, the above upper bounds are pessimistic with respect to the value of k (i.e. assume that k is close to 2m, which
is the unfavorable scenario, in terms of preemptions/migrations generated). However the number of servers k may range
from m+1 to 2m�1; if it were less, we would use partitioning and it could not be 2m or higher from Lemma 2 in App. A.
In many cases therefore, k could in fact be close to m. And, by inspection (see Eq. 26, for k = m + 1 and m ! 1, the
reduction in the upper bound on reserve-related preemptions/migration when using Carousel-EDF, as compared to NPS-F,
would tend towards 50%. Therefore, Carousel-EDF involves 33.3% to 50% fewer reserve-related preemptions and migrations
than NPS-F.

14

P
p

⌧
x,y

⌧
x,y

⌧
i,j

a
i,j

RelJ
i,j

Timer
interrupt

for waking
up ⌧

i,j

⌧
i,j

is
inserted into

the ready
queue and
P
p

sends an
IPI to P

p�1

⌧
i,j

starts
executing

RelO
i,j

IpiL
i,j

t

d
i,j

P
p�1

Figure 6: Illustration of the IPI latency at the release of a split job. It does not include the time for context switching.

APPENDIX C.
SUPPORTING OTHER JOB RELEASE MECHANISM

The Carousel-EDF scheduler can also support the release of jobs by interrupts. Using the criterion that jobs of a task can
be released by any processor that execute such jobs. Then, the jobs can be released by any processor. In that case, we have
to compute the execution demand of a server taking into account the release interference of the other servers. The release
interference is computed as:

dbf

res
RelI(

˜Pq, t) =

kX

i=1^i 6=q

dbf

part
RelO(

˜Pi, t) (28)

Furthermore, in this case, it may require the use of Inter-Processor Interrupts (IPIs). The IPIs are used to notify the
dispatcher in another processor of the release of a task. As a result, the dispatching of a task may incur an IPI Latency.
(Note that this parameter does not include the time required for context switching, this is already accounted for, as it will
occur whether or not the release is via an IPI.) Figure 6 illustrates such a case. The arrival of a job of task ⌧i assigned to a
split server shared between processors Pp and Pp�1, for instance, occurs at a time instant t and is handled on processor Pp,
but this time instant t falls inside the reserve of that server on the other processor, Pp�1. If this job is the highest priority
job of its server, Pp notifies Pp�1 of the new arrival via an IPI. Clearly, the overhead caused by the IPI, IpiLi,j , only delays
the dispatch of job ⌧i,j (and only if job ⌧i,j is the highest priority job of its server). Thus, the IPI latency, has an effect
similar to the release jitter.
Let IpiL be an upper bound for the IPI latency. Then, for incorporating this release mechanism, the dbf

res
(

˜Pq, t) (see
Eq. 18) has to be amended to:

dbf

res
(

˜Pq, t) =

dbf

part
RelO(⌧ [

˜Pq], t) +
X

⌧
i

2⌧ [P̃
q

]

max

✓
0,

�
t�Di +RelJ + IpiL

Ti

⌫
+ 1

◆
· (Ci + 2 · CtswO) +

dbf

part
CpmdO(⌧ [

˜Pq], t) +

max

✓
0,

�
t�Dfake

+ResL

S

⌫
+ 1

◆
· (Cfake

+RelL) +

dbf

res
RelI(⌧ [˜Pq], t) (29)

15

