

The Arrowhead Framework applied to Energy
Management

Conference Paper

*CISTER Research Centre

CISTER-TR-180403

2018/06/13

Rafael Rocha*

Michele Albano*

Luis Lino Ferreira*

Flávio Relvas*

Luisa Matos

Conference Paper CISTER-TR-180403 The Arrowhead Framework applied to Energy Management

© CISTER Research Center
www.cister.isep.ipp.pt

1

The Arrowhead Framework applied to Energy Management

Rafael Rocha*, Michele Albano*, Luis Lino Ferreira*, Flávio Relvas*, Luisa Matos

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: rtdrh@isep.ipp.pt, mialb@isep.ipp.pt, llf@isep.ipp.pt, flaviofrelvas@gmail.com

http://www.cister.isep.ipp.pt

Abstract

Energy management in buildings can provide massive benefits in financial and energy saving terms. It is possible
to optimize energy usage with smart grid techniques, where the benefits are enhanced when the energy consumer
can trade the energy on energy markets, since it forces energy providers to compete with each other on the energy
price. However, two hurdles oppose this approach: the devices providing control over appliances do not
interoperate with each other; and energy markets limit trading activities to large quantities of energy, thus
impeding access for small consumers. This work considers using the FlexOffer (FO) concept to allow the consumer
to express its energy needs, and FO-related mechanisms to aggregate energy requests into quantities relevant for
energy markets. Moreover, the presented system, named FlexHousing, is based on the Arrowhead Framework - a
framework that simplifies design and implementation of distributed applications by means of normalizing
communication via services - and exploits its Service Oriented mechanisms to provide device interoperability. The
implemented FlexHousing system uses multi-level FO aggregation to empower either the final user, for example
the owner of an apartment, to manage its own energy by defining their flexibilities, or to offload this responsibility
to an energy manager who takes care of all the apartments in a building or set of buildings.

The Arrowhead Framework applied to

Energy Management

Rafael Rocha, Michele Albano,

Luis Lino Ferreira, Flávio Relvas

CISTER Research Center, ISEP

Polytechnic Institute of Porto

Rua Dr. António Bernardino de Almeida

4200-072 Porto, Portugal

Email: {rtdrh, mialb, llf, 1140826}@isep.ipp.pt

Luisa Matos

Virtual Power Solutions

Instituto Pedro Nunes

Rua Pedro Nunes - Edifcio D

3030-199 Coimbra

Portugal

Email: lmatos@vps.energy

Abstract—Energy management in buildings can provide mas-
sive benefits in financial and energy saving terms. It is possible
to optimize energy usage with smart grid techniques, where the
benefits are enhanced when the energy consumer can trade the
energy on energy markets, since it forces energy providers to
compete with each other on the energy price. However, two
hurdles oppose this approach: the devices providing control over
appliances do not interoperate with each other; and energy
markets limit trading activities to large quantities of energy, thus
impeding access for small consumers. This work considers using
the FlexOffer (FO) concept to allow the consumer to express its
energy needs, and FO-related mechanisms to aggregate energy
requests into quantities relevant for energy markets. Moreover,
the presented system, named FlexHousing, is based on the
Arrowhead Framework – a framework that simplifies design
and implementation of distributed applications by means of
normalizing communication via services – and exploits its Service
Oriented mechanisms to provide device interoperability. The
implemented FlexHousing system uses multi-level FO aggregation
to empower either the final user, for example the owner of
an apartment, to manage its own energy by defining their
flexibilities, or to offload this responsibility to an energy manager
who takes care of all the apartments in a building or set of
buildings.

Index Terms—Arrowhead, Service Oriented, Prosumer, Smart
Grid, Interoperability

I. INTRODUCTION

Energy management in buildings can provide massive ben-

efits, with regards to financial gains, pollution reduction, and

total energy saving, since the energy consumed in buildings

is one of the major factors in global energy expenditures.

For example, it is estimated that energy consumption by the

residential and commercial sectors cover together 39% of the

total energy consumption in the US, and that most of that

energy is consumed in buildings [1], [2].

The application of smart grid techniques to buildings, such

as remote control of appliances and autonomous acquisition

of energy, can provide dramatic savings [3], especially when

energy is bought from energy markets, since this forces energy

providers to compete with each other on the energy price.

Current advances are contributing to the feasibility of this

vision, since communication protocols are converging to a

standardized vision of the last mile of the smart grid [4],

and there is increased competition between energy utilities,

leading to consumers’ savings. On the other hand, two hurdles

oppose the application of the smart grid concept to buildings:

the devices providing control over appliances do not interop-

erate with each other; and energy markets limit their trading

activities to large quantities of electricity, thus impeding access

for small consumers.

Currently, the field of energy management in buildings is

very active, and several competing solutions have already been

devised so far. In fact, it suffices to point out the many research

efforts that aim at innovating in this area, given the multiple

surveys published on the topic [2], [5]–[7]. Therefore, this

paper attempts at providing a novel solution for this active

problem, by using different tools and concepts.

To cope with the interoperability issue, this work proposes

to use the Arrowhead Framework [8] to streamline commu-

nication between the devices. In the Arrowhead vision, all

interactions are mediated by means of services, which are

consumed and produced by software systems executed on

devices. The current project makes use of smart plugs that

follow custom protocols, however, these can be controlled with

a simple Service Oriented Architecture (SOA) interface, and

past work [9] has already studied how to extend the Arrowhead

Framework to custom protocols by means of adapters. In the

current work, we employ two different smart plug types, one

(Sonoff Pow) being controlled locally, the second (Virtual

Power Solution) accessed through an external service provider.

To solve the second hurdle, this work uses the FlexOffer

(FO) concept to allow the consumer to express its energy

needs [10]. FOs aim to balance energy demand and response

by synchronizing consumption with production. They permit

exposing demand and supply loads with associated flexibilities

in time and quantity for energy commerce, load leveling, and

different use-cases. In other words, a FO specifies an amount

of energy, a duration, an earliest begin time, a latest finish

time, and a price, e.g., ”I want 50 kWh over 3 hours between

5 PM and 12 PM, at a maximum price of 0.25e/ kWh”. In

order for the FO to be relevant for the Energy Market, the FO

concept considers that FOs can be combined or aggregated

together when they are on the same energy grid.

All FO-related systems are already Arrowhead-compliant.

A system called Aggregator receives FOs from all the house-

holds, combines them, and sends a unique aggregated FO

to the Market. Multiple Aggregators can be employed in

sequence, thus creating tree-shaped topologies, and producing

FOs that are large enough to be sent to the Market. When

the Market reply arrives, the responsibility of each Aggre-

gator is to redistribute the energy between the underlying

Aggregators, until it is delivered to the households supervised

by the bottom-layer Aggregators. Later on, the smart plugs

enforce the energy consumption schedule sent back from the

Aggregator, and collect data regarding energy consumption of

the appliances.

The implemented system, named FlexHousing (FH), allows

the application of the FO concept to buildings in real settings.

The multi-level approach enabled by the Aggregator empowers

either the final user, such as the owner of an apartment, to

manage their own energy by defining their flexibilities, or to

offload this responsibility to an energy manager who takes care

of a whole building or set of buildings. Other Aggregators will

take care of aggregating the FOs of multiple buildings until

they reach a magnitude of interest for the Energy Market.

The rest of the paper is structured as follows: Section II

provides background information, in particular regarding the

FlexOffer concept and the Arrowhead platform, which is used

to provide FlexOffer-related services; Section III describes the

architecture of the FlexHousing system of systems; Section IV

provides details about the implementation of the FlexHousing

system; Section V is devoted to the test results obtained while

experimenting with the implemented system; Section VI draws

some conclusions on the topic at hand.

II. BACKGROUND INFORMATION

A. FlexOffer Concept

A FlexOffer is a data structure for expressing flexibility

in energy consumption (or production). A FO contains a

number of slices, each representing a minimum and maximum

consumption for a given time period. A set of slices is called

a profile, and can be used to express the consumption profile

for an appliance. A FO allows the profile to be shifted in

time by specifying an earliest start time and a latest end time.

This provides two types of flexibility to a FlexOffer: energy

flexibility in the bounds of the slice, and time flexibility in the

start and end time.

A Schedule can be attached to a FlexOffer. The schedule

includes a start time and an assigned energy amount for each

slice. Fig. 1 shows an example of a FO. The green area shows

the flexible energy, the grey area is the minimum required

energy. The red lines show the final schedule, sent by the

Aggregator.

A FlexOffer is intended to be used on a Virtual Market

of Energy. The actors on the market are energy sellers and

buyers, and flexibility sellers and buyers.

The energy buyers are private homes or companies, which

have devices that can be controlled in order to utilize their

flexibility. This way, the energy buyers act as flexibility sellers,

Fig. 1. Example of a FlexOffer

which generate FlexOffers based on the profiles and possible

flexibility in their flexible resources. The FlexOffer is also

associated to a default schedule that will be followed in

case the FlexOffer is not sold. Along with the FlexOffer,

the flexibility seller sends pricing information for the cost

of deviating from its default schedule. This price can be

calculated from local energy prices or loss in efficiency.

The energy sellers are energy producers that act as buyers

with regards to flexibility, in order to shift energy consumption

away from a possible grid overload. The pricing information is

used to evaluate how much flexibility is worth buying. A new

schedule is assigned based on the sold flexibility and the buyer

compensates the seller based on the price. If a schedule is sold

but is not followed, then the flexibility seller is penalized.

Since a single home or small company does not consume

much energy compared to the capacity of the grid, the amount

of flexibility offered is relatively small and therefore not very

interesting to the buyers. For this reason, Aggregators are put

in between the sellers and the market. The Aggregator receives

several FlexOffers from different sellers and aggregates them

together into larger FlexOffers, which are of interest to the

buyers.

The FlexOffer concept was originally introduced in the

MIRABEL project [10]. It has been further developed in the

Arrowhead and TotalFlex projects [11]. Some research has

been done to quantify the benefits of flexible resources on the

energy grid [12].

B. The Arrowhead Framework Concepts

The FlexHousing system was developed on top of the

Arrowhead Framework [8], which facilitates the development

of service oriented distributed applications executed on top of

Cyber Physical Systems.

The Arrowhead approach simplifies design and implemen-

tation of distributed applications by means of normalizing

communication via services. All communications of a dis-

tributed application are mediated through services, exposed

and consumed by systems. The systems of an Arrowhead

distributed application are organized into a System of Systems

(SoS), which is deployed as a local cloud – a bounded set of

computational resources used by stakeholders to attain a goal.

A system can either provide and consume application ser-

vices, and thus implement the functional requirements of a

specific use case, or provide core services, which are diagonal

to the use cases and provide support to non-functional require-

ments such as service registry, service discovery, quality of

service, and security [13]. The set of systems that provide

core services are delivered in the form of the Arrowhead

Framework, and the core services deployed in the current SoS

are described in Section III-A.

The rationale is that the systems of the SoS register them-

selves together with the list of services they produce or want to

consume. The Orchestrator system collects all data regarding

the SoS and matches systems and services to satisfy both the

functional (which services are consumed) and non-functional

(QoS, security, geographical location of the system producing

the consumed service) requirements.

Supported by the Arrowhead Framework, the devices are

able to set up a protected communication channel, enabling the

execution of critical applications. Among them is the Virtual

Market of Energy [11], which implements a service-oriented

interface to trade energy and flexibility on one or multiple

energy markets. The extension of the Arrowhead Framework

to non-Arrowhead compliant components is done by means of

adapters, which can act at different levels:

• Communication protocol: since Arrowhead is service-

oriented, an adapter can be used to interact with com-

ponents that, for example, exchange messages through

publish/subscribe systems such as XMPP [14];

• Ontologies: Arrowhead considers devices, systems and

services as actors in communication scenarios. Adapters

and stubs should be used to hide a group of systems

behind a unique Arrowhead system;

• Semantics: some frameworks associate timing character-

istics to the communications, which assume semantics

relevance. Since Arrowhead does not use this technique,

an adapter may be necessary for mediating interactions;

• Syntax: the format of the messages can be different, thus

a translation operation may be needed.

As it will be described in Section IV, the SoS presented

in this paper interacts with custom smart plugs and sensors

through a service-oriented interface, thus using adapters to

perform a syntax translation between protocols.

III. SYSTEM ARCHITECTURE

The system’s architecture, devised to support the FlexHous-

ing concept, consists of a SoS (see Subsection II-B), and

therefore is divided into a number of systems, as depicted in

Fig. 2. In the Arrowhead sense, three of these, FlexHousing

Middleware (FH Middleware), FlexHousing Front-End (FH

Front-End) and FlexOffer Aggregator, are application systems,

since they implement functionalities related to the business

domain. All three systems interact at some point with the

Arrowhead Framework, e.g., to perform service discovery to

find the other systems. The FlexOffer Aggregator interacts

with other Aggregators, and with the Virtual Market of Energy.

Fig. 2. Simplified architecture of the FlexHousing System of Systems.

Furthermore, the FH Middleware interacts with the house’s

smart plugs to manage energy consumption.

A. Arrowhead Core Services / Systems

The Arrowhead Framework provides services to support

other systems regarding security, system and service registra-

tion, and service discovery and orchestration (see Subsection

II-B). The local cloud providing FlexHousing services requires

a number of basic core services that enable fundamental

SOA properties like service registration, service discovery,

authentication and authorization plus orchestration of SoS (see

Fig. 3).

1) ServiceRegistry: The ServiceRegistry system allows a

system to expose a service it is producing to the cloud, and

allows consumer systems to discover services they wish to

consume. It is used to ensure that all systems can find each

other even if endpoints are dynamically changed. It supports a

service registry functionality based on DNS and DNS Service

Discovery (DNS-SD); since the Arrowhead Framework is a

domain-based infrastructure. All Systems within the network

that have services producing information to the network shall

publish its producing service within the Service Registry by

using the Service Discovery service. Within a system of

systems, the Service Registry further supports system interop-

erability through its capability of searching for specific service

producer features, i.e. an application service producer with a

specific type of output. In short, it enables systems to publish

their own application services and lookup others’.

2) Authorization: The Authorization system is responsible

of controlling which service can be accessed by an authorized

consumer. It consists of two service producers and one service

consumer and it maintains a list of access rules to system

resources (i.e. services). The Authorization Management ser-

vice provides the possibility to manage the access rules for

specific resources. The Authorization Control service provides

the possibility of managing the access for an external service

to a specific resource. The system uses the Service Discovery

service to publish all its producing services within the Service

Registry system.

3) Orchestration: The Orchestration system allows co-

ordination (orchestration) of which producer will a certain

consumer be able to employ/use. It is a central component of

the Arrowhead Framework and in any SOA-based architecture.

Orchestration is used to control how systems are deployed

Fig. 3. Communication between the FH components, the third-party devices, the FlexOffer Aggregator, and the Energy Market, using Arrowhead Services.

and in what way should they be interconnected. Orchestra-

tion, in the context of SOA, can be viewed as the system

that supports the establishment of all other systems through

providing coordination, control and deployment services. It is

utilized to dynamically allow the re-use of existing services

and systems to create new services and functionalities. The

application systems’ services are initially seen as passive and

being on standby. They are not connected at deployment or

even during start-up of the system of systems. Their services

can be managed to connect or be connected to others - to fulfill

a specific need. The Arrowhead Framework currently supports

REST-based Orchestration of services using, for example,

REST or CoAP.

B. FlexHousing Middleware (FH Middleware)

The FH Middleware is responsible for the integration of

the systems involved in the FlexHousing environment, and

to facilitate the creation of FlexOffers. The FH Middleware

focuses on automating the FO emission and appliance actua-

tions, depending on the schedule that was retrieved from the

Aggregator. Energy flow will be enabled depending on the

Schedule that is active on a plug.

In particular, where FOs are concerned, the FH Middleware

allows the FH Front-End to drive the creation of FOs, sends the

FOs to the Aggregator via XMPP, receives energy schedules

from the Aggregator, manages energy consumption based on

the schedules from the Aggregators, and collects energy data

which will then be used to verify the schedule’s execution and

improve the creation of future FOs.

In fact, the interactions between the FH Middleware and

the user’s appliances, portrayed as a Smart Plug in Fig. 3, can

be mediated through a service-oriented interface provided by

an external web service (e.g. VPS’s REST API) or from the

Smart Plug itself (e.g. a Sonoff’s REST API), as seen in Fig. 4.

Effectively, the FH Middleware is capable of retrieving data

relative to actuation times and energy consumption, directly

from non-Arrowhead compliant appliances (as long as these

are connected to a Smart Plug) or from a service provider’s

REST API. This process is done through a software module

developed for its respective smart plug brand and model. To

include a new type of smart plug in the SoS, it is only

necessary to develop an adapter to handle that smart plug’s

connection protocols and data format, while the rest of the

process is managed by the FH Middleware.

The timeline of the provisioning of FOs to the Aggregator is

studied to maximize the usage of energy markets. Effectively,

the FH Middleware uses an heuristics to evaluate how much

time it needs to send all configured FOs, and starts the process

a number of minutes before midnight to be sure to complete

it before the end of the day.

To simplify the deployment of the system, and the degree

of interoperability, the FH Middleware makes use of the

Arrowhead core systems. The FH Middleware registers itself

on the ServiceRegistry system, to allow other systems, and in

particular the FH Front-End (Subsection III-C), to discover it

and use the services produced by the Orchestrator system to

discover the Smart Plugs in the house of the user (Subsection

III-F).

C. FlexHousing Front-End (FH Front-End)

The web-based application FH Front-End provides a means

to engage with the FlexHousing environment, by displaying all

Fig. 4. Actuating a smart plug through the FlexHousing system

available features in the FH Middleware, which it discovers

using the service provided by the Orchestrator system. This

interface supports multiple users (and their respective roles,

i.e. home owner, energy manager), allowing them to register

a new smart plug, verify a room’s or an appliance’s current

energy consumption, turn a smrt plug on/off, and create and

send FOs for an appliance in the simplest way possible.

Regarding the registry of a new smart plug on the system,

the user has to specify the smart plug’s brand and model,

so that the FH Middleware is able to know which protocols,

targets, and APIs to use to ultimately connect to the smart

plug.

When it comes to creating a FO, this process is divided into

three steps: introducing basic details, choosing what kind of

pattern to use, and creating the energy pattern for the FO. The

first step requires the user to input the FlexOffer’s name and

the time period in which it must be applied. The second step

requests the user to define the energy consumption pattern,

which can be done either manually through the graphical

interface, or automatically, using a model energy consumption

pattern based on the user’s energy profile.

By choosing to create it manually, in the third step the user

can select the duration of the pattern and define the energy

consumption for each 15 minute interval, by dragging the bars

in the chart with the mouse.

If the user opts to create it automatically, the system itself

defines the appliance’s energy consumption pattern based

on its past consumption data. To do so, certain algorithms

from [15] were used to implement a way to identify energy

patterns. However, the algorithm for identifying an energy

pattern depends on what kind of appliance it is. If the smart

plug is applied to, for instance, a wet-device – an appliance

that has a certain daily routine (e.g. dishwashers, washing

machines) – the system requests the user to input the hour

when they typically turn it on. With that predicted activation

hour, the system goes through every consumption entry and

tries to perform a Pattern Sequence Matching (PSM). The

PSM is used to predict values for various attributes of FOs,

e.g., the number of time slices, energy profile, etc. On the

other hand, if the appliance in question was a refrigerator,

the wet-device process wouldn’t work, since the refrigerator

is constantly activating and deactivating throughout the day.

Thus, for this case, the PSM algorithm was modified and

new algorithms were developed to accommodate the situation.

More specifically, the FH Middleware calculates the average

value of these time segments of inactivity, determines the

refrigerator’s model energy profile with the PSM algorithm,

and uses the two results so that it can ultimately create an

energy pattern for a full day [16].

Regarding user roles, the FH Front-End allows for three

types: the normal user who can visualize his energy con-

sumption, the power user who can configure his own energy

usage by setting up FlexOffers, and the energy manager who is

entitled with the management of multiple houses in a complex.

Using the same options and features the energy manager sets

up and customizes the FOs in the same way as the power user,

after deciding which of the FH Middleware, such as apartment

complexes, industrial facilities, or condominium, he is actually

configuring by means of the same FH Front-End.

The authentication and authorization module for the man-

ager is handled by the Arrowhead Framework, which also

provides the addresses of the FH Middlewares that a specific

FH Front-End can handle and control.

D. FlexOffer Aggregator

The Aggregator receives FOs from FH Middlewares, com-

bines them with FOs from other sources into larger FOs, and

then finally sends them to other Aggregators, or directly to

the Virtual Market of Energy. Note that FOs need a specific

magnitude before being able to be bid on at the Energy Market.

Afterwards, the Aggregator receives a response from the

Virtual Market of Energy, which can be a refusal, or an energy

schedule. In the latter case, the Aggregator disaggregates the

response and sends the consumption schedule downwards to

its respective FH Middleware. Many types of Aggregators

may exist, some may be specific for a use case, such as the

management of electrical motors, whereas others may be more

generic. In addition, selecting the most adequate Aggregator

also depends on the geographic region.

E. Energy Market

The Aggregators are able to schedule energy consumption

by allocating it through a virtual market of energy, which com-

municates with appliances through FOs. The Energy Market

allows to trade both energy and flexibility. (see Subsection

II-A).

The Energy Market secures the balance in a logical sub-

domain within the grid, i.e. it ensures that consumption is

equal to production. It utilizes the aggregated FOs from

Aggregators for an internal energy balancing, and places FOs

on the flexibility market for trading with energy producers.

The Energy Market minimizes total costs by scheduling en-

ergy loads while respecting the constraints contained in the

FOs (minimum/maximum power, earliest/latest start of energy

Fig. 5. Implementation of the FlexHousing SoS

consumption, etc.). In the case of the energy consumer, the

net result of the interaction of the Aggregator with the Energy

Market is to buy energy while selling the consumer’s flexi-

bility, attaining the goal of saving the consumer’s money and

supporting the energy producer in flattening off consumption

peaks.

F. Smart Plugs in the User’s Home

Common household appliances cannot be controlled re-

motely, and thus are not fit to FO compliance. One of the

solutions to tackle this issue is to attach to the appliances a

smart plug, which is placed between the appliance and the

electrical outlet. The smart plug contains an energy switch

actuator and a power meter sensor. The energy switch actu-

ator allows to remotely switch on and off the appliance it

is installed onto. The power meter sensor can collect data

regarding energy consumption, to inform the user regarding the

correct execution of FlexOffers and to allow for the creation

of FlexOffers based on past consumption.

The FlexHousing SoS considers that devices are either smart

plugs driving an appliance, or more complex devices that

provide also smart plug functionalities, and in both cases they

are called smart plug in this work. The interaction with the

smart plug is through an API, capable of receiving requests

and forwarding them back to the plug. The API can be exposed

directly on the smart plug, or on an external service platform,

and it is accessed in a uniform manner.

In the first case, the FH Middleware has direct access to

the smart plug, for example through the local Wi-Fi network,

without depending on external servers. In the second case,

the topology usually features a gateway (in this case, the VPS

Cloogy) in each user’s home, which provides connectivity with

the external service provider. Each time the smart plug collects

data, it sends them to the external service provider through the

gateway, where the data is then stored. Each time a system

generates a request (see Fig. 4), be it to retrieve data or to

control energy consumption, a message is sent to the external

service provider. The provider then either answers directly, for

example with data, or forwards it to the gateway, which routes

it to each specific smart plug.

There are advantages and disadvantages for each approach.

In particular, using an external service provider adds a depen-

dency on a third-party when it comes to accessing the sensors’

data. This can be an issue, for example, when the service

provider’s servers are down. On the other hand, this also allows

data preprocessing and storage on the external service, thus

offloading complexity from the application developer to a third

party.

The FlexHousing platform enables both kinds of interaction,

and it virtualizes the smart plug type, to ensure a more flexible

and generic service access. In both cases, the appliance and

its smart plug can be configured using custom techniques, for

example statically on the FlexHousing application or through

a web interface, or the smart plug can register itself using the

Arrowhead ServiceRegistry core service, to make the smart

plug discoverable to the FlexHousing platform.

IV. SYSTEM DEPLOYMENT

The FlexHousing SoS applies FO concepts to the real-

life management of appliances based on FOs. The house is

modeled as a set of smart plugs, organized into rooms (kitchen,

living room, garage, etc) that pertain to buildings/houses. Each

smart plug can measure and control energy consumption of an

appliance, and it is either controlled using the VPS API and

reachable through a Cloogy gateway, or it is a Sonoff.

A context diagram of the SoS of the pilot is depicted in

Fig. 5. All the systems of the SoS are considered to interact

with the Arrowhead Framework, and thus these interactions

TABLE I
SOME FH MIDDLEWARE REST API ROUTES

Method URL Result

POST /FlexHousing/House/{HouseID}/Room/{RoomID}/Device Registers a new smart plug in a specific house and room.

POST /FlexHousing/House/{HouseID}/Device/{DeviceID}/Flexoffer Creates a flexoffer for a specific smart plug and its appliance.

GET /FlexHousing/House/{HouseID}/Device/{DeviceID}/Flexoffer Returns a appliance’s active flexoffer.

GET /FlexHousing/House/{HouseID}/Device/{DeviceID}/Flexoffer/Schedule Returns an appliance’s active flexoffer’s schedule.

DELETE /FlexHousing/House/{HouseID}/Device/{DeviceID}/Flexoffer Deletes an appliance’s active flexoffer.

GET /FlexHousing/House/{HouseID}/Flexoffer/GetAllActiveFlexoffers Returns all active flexoffers.

are not represented. The users access the FH Front-End, which

interacts with the FH Middleware only, since the latter contains

all information for the management of the FOs and smart

plugs. The FH Middleware interacts with the Aggregator’s

services.

To reach the smart plugs, the FH Middleware can either

communicate with an external service provider (the VPS

API, which is not Arrowhead-compliant) or contact directly

the smart plug (Sonoff smart plug, not Arrowhead-compliant

either). Thus, the FH Middleware must have adapters, to

extend the reach of the Arrowhead local cloud to custom

protocols. [9].

The VPS API is exposed by an external service provider

and communicates with the Cloogy (in Fig. 5) to interact

with the smart plugs attached to the appliance. The Sonoff

smart plug exposes a REST interface. Both the VPS API and

the Sonoff smart plug were integrated into the Arrowhead

SoS by means of adapters, which leveraged on their service-

oriented interfaces to provision a one-to-one mapping with the

Arrowhead SoS.

In the following, the Arrowhead Framework is not de-

scribed, but details can be found for example in [8].

A. Implementation of the FH Middleware

The FH Middleware is built around the components required

for communication. As such, it employs three different solu-

tions, one for each communication path available.

For the interaction with the Aggregator, a Distributed En-

ergy Resource (DER) agent was implemented [11], which is

responsible for the emission of FOs using the XMPP protocols

[14] used by the Aggregator, and the retrieval of Schedules

through the same mechanism. The application was developed

in Java, using Maven as a dependency manager to handle

external modules and components. Apache Derby was selected

for the system’s database due to its easy integration with Java-

based applications. For the services, a mix of Grizzly - for the

HttpClient - and Jersey - for the service resources - was used.

There is no direct contact between the FH Middleware

and the user, instead the FH Middleware exposes its services

through a REST API (see Table I) which is then used by

the FH Front-End. Those services are mostly CRUD actions

around the rooms, smart plugs, FlexOffers and schedules.

For Aggregator purposes, the FH Middleware implements

all the methods that allow the registration of the middleware

Fig. 6. Smart plugs section of the FH Front-End.

on the Aggregator, the emissions of the FOs and the retrieval

of the Schedules.

For the interaction with the VPS or Sonoff services, a HTTP

client was implemented, which executes requests to query or

interact with the smart plugs. As mentioned in Section III-B,

the FH Middleware handles the data and communication with

smart plugs from different manufacturers through an interface,

independent of the underlying communication driver. This was

done to separate the FH Middleware system from individual

implementations for each smart plug, since each plug could

differ greatly from others in how they handle data and other

commands (e.g., while one service returns data in JSON,

another one might return it in XML).

Even though most of the data is stored in the database,

the FH Middleware keeps the most used/requested objects in

cache to avoid excessive database queries. Any modification

on the objects is reflected on the copy in cache but also in

the database. This allows for the persistence of the data in the

case of a power outage.

Fig. 7. Creation of a FlexOffer in FH Front-End: manually creating a
consumption pattern.

B. Implementation of the FH Front-End

The web-based application FH Front-End provides a respon-

sive, cross-browser compatible, graphical user interface. The

FH Front-End is an MVC application, where its back-end is

built in PHP, using Laravel 5.4 as its framework, while its

front-end is built with HTML5, CSS3, and JavaScript.

The FH Front-End supports multiple users (and their respec-

tive roles, i.e. home owner, energy manager), allowing them

to check a rooms or smart plugs current energy consumption,

turn an appliance on/off through its smart plug, and create and

send FlexOffers of an appliance in the simplest way possible.

Therefore, the FH Front-End is composed of several sections:

the overview page, the rooms section, and the smart plugs

section.

The overview page provides insights on the total used

energy, the number of FOs set up for each appliance, and

other global statistics.

The rooms section allows to decide on which room, and

later on on which smart plug, to work on to define involved

FOs.

The smart plugs section has the same functionality as the

rooms section, however it instead displays all available smart

plugs from each house (see Fig. 6).

Fig. 7 shows the process of creating a FO manually, (see

Subsection III-C). In the third step, the user can select the du-

ration of the pattern (whilst respecting the time period defined

in the previous step) and define the energy consumption for

each 15-minute interval, by dragging the bars in the chart with

the mouse. A similar interface is used to tune up a FO created

using a pattern based on the appliance’s past consumption data.

In the case of the Energy Manager role, the FH Front-End

allows the same simplicity for the setup as the homeowner but

without the constraints of having to constantly having to swap

credentials.

TABLE II
SOME VPS REST API ROUTES

Method URL Result

POST /api/actuations Actuates Smart Plug.

GET /api/consumptions/

from={Timestamp}&

to={Timestamp} Returns energy consumption values.

GET /api/state/{SensorID} Specifies if the appliance is on or off.

C. Aggregators and Virtual Market of Energy deployment

The setup at Aalborg University (AAU) in Aalborg, Den-

mark contains the communication infrastructure, the Aggrega-

tor, and the Energy Market implementation. All services are

exposed through the Arrowhead framework.

The communication infrastructure consists of an XMPP

server [14] to facilitate the HTTP-over-XMPP communication

between the actors in the system. Aggregated FOs are sent to

the Energy Market as selling bids, expressing flexibility being

sold on the market.

The Energy Market receives selling bids from Aggregators

or directly from energy consumers. It also receives buying bids

from buyers, which are energy producers. At set intervals, the

market will be cleared. The interval could be, for instance,

fifteen minutes or daily. The clearing algorithm will match

buyers and sellers such that highest buyers and lowest sellers

will be favored.

D. VPS Services

As previously mentioned, VPS provides an external API

(see Table II) for client systems to interact with their services,

i.e., manage their VPS Smart Plugs. The API is service-

oriented, and adheres to the RESTful principles of the HTTP

protocol, thus providing a machine friendly, robust and pre-

dictable interface to the system functionalities.

The FH Middleware has a module to account for the loca-

tion of each sensor and smart plug, and it uses the information

to send messages to the correct component. Communication

with the VPS Services is performed using a TCP/IP connection

that hosts a HTTPS session, which exchanges data encoded

using the JSON data format.

E. Sonoff Services

Sonoff smart plugs are cheap, generic, energy switches

that, aside from switching the power on and off, and reading

the current energy consumption, allow users to upload their

own custom firmware on the switch’s board. These boards

are composed of a ESP8266 module (a low-cost Wi-Fi chip

with full TCP/IP stack) to access the Wi-Fi network, and a

HLW8012 current sensor to monitor the energy consumption.

A custom firmware was developed for the Sonoffs, for its

inclusion into the FlexHousing SoS. The setup of a Sonoff

smart plug requires an easy procedure, which can be executed

by non-technical users. Once a Sonoff is connected to an

appliance, and is plugged into an outlet, it will act as a Wi-Fi

TABLE III
SONOFF REST API ROUTES

Method URL Result

POST /api/on Turns Sonoff on.

POST /api/off Turns Sonoff off.

GET /api/

consumptions Returns current energy consumption values.

GET /api/state Specifies if the appliance is on or off.

POST /api/config Configures the Sonoff’s settings.

access point, so that a computer or smartphone can connect to

it. The user can configure the Sonoff by sending their home

Wi-Fi’s credentials to the smart plug through a POST request

against a REST API exposed on the Sonoff. After that, the

Sonoff smart plug will then be able to connect to the user’s

home Wi-Fi, to be accessed by the FH Middleware.

The Sonoffs provide, through a REST API (see Table III),

their respective appliance’s consumption values (see Listing

1), which updates every two seconds. The FH Middleware

requests data periodically from the Sonoffs (in which, every

message has a length of around 128 bytes), every five seconds,

and store it into its database. Whenever the FH Front-End

requests Sonoff data from the Middleware, the Middleware

accesses its own database to deliver it.

1 {
2 "consumption": "Active Power (W)=0,Voltage

(V)=0,Current (A)=0.00,Apparent Power

(VA)=0,Power Factor (%)=0.00",

3 "name": "esp8266",

4 "hardware": "esp8266",

5 "connected": true

6 }

Listing 1. JSON snippet of the data returned from the Sonoff

V. TEST RESULTS

Some tests were executed on the implemented platform, to

verify its correctness, and to ensure its performance charac-

teristics.

A. Consumption patterns

The smart plugs allow to retrieve the consumption of any

particular plug, independently if a FO was applied to it or

not. In fact, as soon as a plug is registered in the SoS, it starts

collecting data. Data is kept on the cloud of VPS services,

accessible through GET requests.

Fig. 8 reports the result of a proof-of-concept data collec-

tion performed on a refrigerator. This test verified that the

FlexHousing SoS is able to collect data with a reasonable

granularity, to use them to build an energy consumption

profile. The values were collected during a business day and

during a weekend day, allowing to verify that human actions

affect the energy consumption pattern for the appliance. In

fact, during a business day the refrigerator is used on a regular

basis, while during the weekend, especially on Sunday, the

Fig. 8. Energy consumption pattern for a refrigerator

refrigerator is kept close, thus requiring less energy to maintain

its cold temperature.

The energy usage matches with the theoretical consumption

of the refrigerating cycle (Vapor-compression cycle) [17]. The

periodicity is the same: between each peak, theres a period

of no consumption, matching the idle state of the refrigerator.

Aside from small statistical fluctuation in the data, the only

difference between the days is the local maxima of each

individual peak. While the weekend day averaged around

14.5Wh, the business day averaged at 18.5Wh.

B. Communications tests

These tests targeted the latency between the systems dur-

ing communication. Since the latency inside the Arrowhead

Framework was already targeted by analysis [8], this work

focused on the latency for the orchestration process, and

on the actuation over a smart plug. The testbed comprised

systems deployed over 3 different devices. The first device

hosted the Arrowhead core services, the second one is the

FH Middleware which collects data periodically from Sonoffs

and smart plugs, and the third device hosts a FH Front-End.

The FH Middleware is previously registered on the Arrowhead

ServiceRegistry.

This test executed 1000 experiments. Each experiment

featured the FH Front-End using the Orchestration service

exposed by an Orchestrator system to discover a FH Mid-

dleware, followed by 1000 service requests to the selected

FH Middleware. Fig. 9 and Fig. 10 provide the Cumulative

Distribution Functions for the delays for service orchestration

and service consumption, and they provide a clear picture

regarding the delay for the two operation, whose averages

amount to 355.15ms and 7.30ms respectively.

Another test executed 30 request of actuation over a single

plug controlled via the the VPS API (see Fig. 11). Two batches

were performed, one by requesting the VPS API directly

for the operation, and the other executed through the FH

Middleware. The blue series represents the data collected when

the request is directed to the VPS Services platform, and the

orange series is related to mediating the interaction through

the FH Middleware. The delay is less than 210ms and 270ms

respectively, and it can be concluded that the FlexHousing

internals do not impair the performance of the SoS with respect

with the delay related to the access to the VPS API.

Fig. 9. Delay for orchestration process

Fig. 10. Delay for service consumption

Fig. 11. Difference between response times from direct requests to the VPS
API, as opposed to requests made through the FlexHousing Middleware.

VI. CONCLUSIONS

This paper presented the FlexHousing System of Systems,

which is a platform for energy management in buildings. It

is based on the Arrowhead Framework and on the FlexOffer

concept, and it allows both the fine-grained management of

energy by a power user that is knowledgeable regarding

Energy Markets, or by the professional services of an energy

manager.

The paper provided insights regarding how the systems are

implemented, and some results regarding experimental tests.

In the future, the FlexHousing System of Systems will

be extended to different smart plugs that obey to different

interaction patterns, and data regarding the energy saved in

real-world deployments will be collected.

ACKNOWLEDGMENTS

This work was partially supported by National Funds

through FCT/MEC (Portuguese Foundation for Science and

Technology) within the CISTER Research Unit (CEC/04234);

also by FCT/MEC and the EU ECSEL JU under the H2020

Framework Programme, within project ECSEL/0004/2014,

JU grant nr. 662189 (MANTIS), also by EU ECSEL JU

under the H2020 Framework Programme, JU grant nr. 737459

(Productive4.0 project).

REFERENCES

[1] EIA, Annual Energy Review 2015, http://www.eia.gov/totalenergy/data/
annual/

[2] Tuan Anh Nguyen, and Marco Aiello, Energy intelligent buildings based

on user activity: A survey. Energy and buildings 56 (2013): 244-257.
[3] Thibaut Le Guilly, et al. ENCOURAGEing results on ICT for energy

efficient buildings. IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA). 2016.

[4] Michele Albano, Luis Lino Ferreira, and Luı́s Miguel Pinho, Convergence

of Smart Grid ICT architectures for the last mile. IEEE Transactions on
Industrial Informatics 11.1: 187-197. 2015.

[5] Pervez Hameed Shaikh, et al. A review on optimized control systems for

building energy and comfort management of smart sustainable buildings.

Renewable and Sustainable Energy Reviews 34: 409-429. 2014
[6] Alessandra De Paola, et al. Intelligent management systems for energy

efficiency in buildings: A survey. ACM Computing Surveys (CSUR) 47.1:
13. 2014

[7] Douglas Harris. A guide to energy management in buildings. Routledge,
2016.

[8] Delsing, Jerker, et al., The Arrowhead Framework architecture., chaper 3
of IoT Automation: Arrowhead Framework. CRC Press, 2017.

[9] L. L. Ferreira, M. Albano, and J. Delsing, QoS-as-a-Service in the Local

Cloud., IEEE 21st International Conference on Emerging Technologies
and Factory Automation (ETFA), 2016.

[10] M. Boehm, et al. Data management in the MIRABEL smart grid system.
In: Proceedings of the 2012 Joint EDBT/ICDT Workshops. EDBT-
ICDT’12, ACM, 95-102. 2012.

[11] Luis Lino Ferreira, et al. Arrowhead compliant virtual market of energy,
Emerging Technology and Factory Automation (ETFA), IEEE, 2014.

[12] Bijay Neupane, Torben Bach Pedersen, and Bo Thiesson. Evaluating the

value of flexibility in energy regulation markets. Proceedings of the 2015
ACM Sixth International Conference on Future Energy Systems. ACM,
2015.

[13] M. Albano, P. M. Barbosa, J. Silva, R. Duarte, L. L. Ferreira, and
J. Delsing, Quality of service on the Arrowhead Framework. In 13th
International Workshop on Factory Communication Systems (WFCS),
IEEE , pp. 1-8, 2017.

[14] P. Saint-Andre, K. Smith, and R. Troncon, XMPP: The Definitive Guide,
O’Reilly, 2009

[15] B. Neupane, L. Siksnys, T. Pedersen. Generation and Evaluation of

Flex-Offers from Flexible Electrical Devices. Proceedings of the Eighth
International Conference on Future Energy Systems. ACM, 2017.

[16] R. Rocha. Reengineering and development of IoT Systems

for Home Automation. BEng Thesis. CISTER, 2017.
http://hdl.handle.net/10400.22/10966.

[17] Piotr Domanski, and David Didion. Computer modeling of the vapor

compression cycle with constant flow area expansion device. Final Report
National Bureau of Standards, Washington, DC. National Engineering
Lab. 1983.

