

Static-Priority Scheduling of Sporadic
Messages on a Wireless Channel

Björn Andersson
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

TR-051203

Version: 1.0

Date: December 2005

Static-Priority Scheduling of Sporadic Messages on a Wireless Channel
Björn ANDERSSON, Eduardo TOVAR

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {bandersson, emt}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of scheduling sporadic messages with deadlines on a wireless channel. We propose a
collision-free medium access control (MAC) protocol which implements static-priority scheduling and
present a schedulability analysis technique for the protocol. The MAC protocol allows multiple masters and
is fully distributed; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus.
But unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit
from the channel while transmitting to the channel.

Static-Priority Scheduling of Sporadic Messages
on a Wireless Channel

Björn Andersson and Eduardo Tovar

Department of Computer Engineering, School of Engineering,
Polytechnic Institute of Porto (ISEP-IPP),

Rua Dr. António Bernardino de Almeida 431,
4200-072 Porto, Portugal

{bandersson,emt}@dei.isep.ipp.pt

Abstract. Consider the problem of scheduling sporadic messages with
deadlines on a wireless channel. We propose a collision-free medium ac-
cess control (MAC) protocol which implements static-priority schedul-
ing and present a schedulability analysis technique for the protocol. The
MAC protocol allows multiple masters and is fully distributed; it is an
adaptation to a wireless channel of the dominance protocol used in the
CAN bus. But unlike that protocol, our protocol does not require a node
having the ability to receive an incoming bit from the channel while
transmitting to the channel.

1 Introduction

The sporadic model [11] has proven to be very useful in the design of real-time
systems. In this model, the exact time of a transmission request is unknown
but a lower bound on the time between two consecutive transmission requests
from the same message stream is known. This model is supported in processor
scheduling [4] (where a message stream is called a task) and in wired communica-
tion channels [17]. Wireless communication is of increasing interest in the design
of distributed real-time systems, and many scheduling algorithms and analysis
techniques for wireless communication are available for periodic messages. But
for sporadic messages such results are less well developed. Most of the current
wireless protocols cannot be analyzed to offer pre-run-time guarantees that spo-
radic messages meet deadlines, and the protocols that do offer such guarantees
rely on polling, which is inefficient when the deadline is short and the minimum
time between two consecutive requests is long.

In this paper we solve the problem of sporadic scheduling on a wireless chan-
nel. We adapt the dominance protocols [12] (used in the CAN bus [5]) to a
wireless channel and perform a schedulability analysis. The main idea of our
dominance protocol is that a message stream is assigned a static priority and
when message streams contend for the channel, they perform a tournament such
that the highest-priority message is granted access to the channel. This tour-
nament is performed bit-by-bit, starting with the most significant bit. A bit is
assigned a time interval. If a node contends with a dominant bit then a carrier

wave is transmitted in this time interval; if the node contends with a recessive
bit, it transmits nothing but listens. This makes it possible for a node with a
recessive bit to detect that another node has transmitted a dominant bit, and
hence the node with the recessive bit withdraws. In order for this scheme to
work, nodes must agree on which time interval to use. This requires a conven-
tion, something that is easy to state and which we do. It also requires that nodes
have a common reference point in time. We provide this as well.

The remainder of this paper is structured as follows. Section 2 discusses
related work and their ability to solve the problem of sporadic messages on a
wireless channel. Section 3 presents the system model with our assumptions and
terminology. Section 4 presents the protocol and discusses the rationale behind
its design. Section 5 presents the schedulability analysis. Finally, Section 6 offers
conclusions and future work.

2 Related work

The introduction of the wireless LAN standard IEEE 802.11 [1] stimulated the
development of many prioritized Carrier Sense Multiple Access (CSMA) proto-
cols. Some of these protocols [2, 3, 7] changed parameters in the IEEE 802.11
standard to be a function of deadlines, either choosing (i) inter-frame spacing
(the amount of time that a station waits before transmitting) or (ii) the back-off
times after a collision has occurred. These techniques are useful to meet dead-
lines because they can implement algorithms such as deadline monotonic [9]. But
they have two drawbacks (i) they only approximate priority scheduling; it may
happen that a high-priority message has to wait for one or many lower-priority
messages and (ii) collisions can occur hence causing deadline misses. Other pri-
oritization protocols based on IEEE 802.11 use “black-bursts” [13, 15, 14]. They
do not only change some parameters in the IEEE 802.11 but they also require
other signals to be transmitted. If the channel is idle then a node transmits a
message immediately. Otherwise the node waits until the channel becomes idle
and transmits a “black-burst” (a jamming signal) for a time duration which is
proportional to the priority. When a node finished transmitting its jamming sig-
nal, the node listens to find out whether other nodes transmit a jamming signal.
If so, the node did not have the highest priority so it waits until the channel is
idle again. The protocols based on “black-burst” were originally used to ensure
that all real-time traffic is given a higher priority than non real-time traffic and
dynamically change priorities of real-time traffic to achieve round-robin schedul-
ing [15, 14]. These schemes treat all real-time messages in the same way and
hence they are inappropriate for our purpose. The black-burst scheme in [13]
implements static-priority scheduling though and is more interesting. However,
all these black-burst schemes [13, 15, 14] have the drawback that (i) collisions can
occur if the channel is idle and two nodes request to transmit simultaneously
and (ii) the maximum length of the black-burst is proportionate to the number
of priority levels, so only a small number of priority levels can be supported.
Another technique [19], not based on IEEE 802.11, is to implement prioritiza-

tion using two separate narrow band busy-tones to communicate that a node is
backlogged with a high-priority message. This technique has the drawback of re-
quiring specialized hardware (for listening to the narrow band signals), requires
extra bandwidth (for the narrow band signals) and it supports only two priority
levels.

The IEEE 802.11 standard also defined another MAC protocol where a base
station polls a node, and gives it the right to transmit in a time interval. Natu-
rally such an approach is inefficient to schedule sporadic messages. Recently, the
IEEE 802.11e profile was introduced with the intention of offering better support
for Quality-of-Service. The previous approach [2, 3, 7] of choosing back-off times
as a function of priorities was adopted, and the polling scheme in IEEE 802.11
was refined with traffic classes.

MAC protocols have also been proposed from the real-time community with
the goal of meeting deadlines. Some protocols use tables (sometimes called Time-
Division Multiple-Access (TDMA) templates) with explicit start times of mes-
sage transmission. These tables are created at run-time in a distributed fashion
[16] or by a leader [10]. It is also conceivable to use a TDMA template designed
before run-time [8] and use it to schedule wireless traffic. However, all these
time-table approaches have the drawback of requiring that sporadic message
streams are dealt with using polling, which, as previously stated, is inefficient.
Another approach, Implicit EDF [6], is based on the assumption that all nodes
know the traffic on the other nodes that compete for the medium, and all these
nodes execute the EDF scheduling algorithm. If the message selected by the
EDF scheduling algorithm is in the node’s queue of outgoing messages, then
the node transmits this message otherwise it does not transmit. Unfortunately,
this algorithm is based on the assumption that a node knows the arrival time
of messages on other nodes, and this implies that polling must be used to deal
with sporadic message streams. MAC protocols based on token bus can be used
in wireless channels and some of their analyses can be extended to sporadic
messages [18]. Unfortunately, they only prioritize messages on a node; global
prioritization is not achieved. As a result, deadlines can be missed although the
utilization of the messages is low, and there exists a schedule of the messages
that meets deadlines.

The dominance protocol [12] (used in for example the CAN bus [5]) uses
global priorities and it can schedule sporadic message streams. Unfortunately, it
requires that a node has the ability to receive an incoming bit from the channel
while transmitting to the channel. Such a behavior is impossible on a wireless
channel due to the large difference in transmitted energy and the received energy.
The conclusion of this section is that several prioritization protocols and real-
time scheduling algorithms exist, but they do not efficiently solve the problem
of sporadic scheduling in wireless networks.

3 System model

Consider n message streams τ1 ,τ2 ,τ3 ,. . . ,τn and m computer nodes N 1 ,. . . ,Nm .
A message stream is assigned to exactly one node.
Workload. Message stream τ i makes a sequence of requests to transmit a mes-
sage. The exact time of a transmission request is unknown but a lower bound
on the time between two consecutive transmission requests from the same mes-
sage stream is known. This lower bound is denoted T i . Every message from τ i

requires to transmit for C i contiguous time units. The maximum time from a
request of a message from τ i to the completion of the transmission of that mes-
sage is called the response time of τ i , and it is denoted Ri .
Success and failure. If there exists an overlap between a pair of transmission of
data bits then both transmissions have failed. If a message finishes transmission
later than D i time units after it requested to be transmitted then the transmis-
sion has failed as well. The goal of our protocol is to schedule all messages in all
message streams to finish their transmission before their deadlines. Then we say
that the protocol has succeeded and we will (in Section 5) derive equations to
compute whether a set of message streams succeeds using our protocol.
Priorities. Message streams are assigned unique priorities; these priorities are
non-negative integers. Messages with low numbers have high priority. As a re-
sult, we will say that if a bit is “0” then it is dominant and if a bit is “1” then
it is recessive. Let npriobits denote the number of bits required to represent the
priorities. We use lower order first; that is, bit “0” is considered to be the most-
significant bit in an integer. We do not assume any particular priority-assignment
scheme.
Propagation. The time-of-flight between two arbitrary nodes i and j is un-
known but it is non-negative and there is an upper bound α on the time-of-
flights. We assume that when a node transmits and there is no collision, then
all nodes receive exactly one copy of the message; that is, there is no noise, no
hidden terminals and the transmitted signal takes only one path to the receiving
node(s).
Nodes. We assume that nodes are equipped with real-time clocks. They are not
synchronized; that is, their values may be different. For every unit of real-time,
the clock increases by an amount. This amount is unknown but it is in the range
[1-ε,1+ε], 0<ε<1. We let CLK denote the granularity of the clock. We assume
that the clock does never “wrap-around”.
A message may have one intended node as a receiver (unicast) or all nodes
(broadcast); our protocol can deal with both types of traffic. We assume, how-
ever, that when a node receives a message it does not send an acknowledgement.
A node can sense other transmissions only if the node does not transmit. We do
not assume any particular modulation technique or coding scheme for the data
bits but we assume that when data bits are transmitted, there is no interval of
continuous idle time that exceeds F time units. (F is a design parameter that
will be discussed later). We assume that nodes can transmit a carrier wave and
all nodes are able to detect that carrier wave if they do not transmit themselves.
A node needs TFCS time units to detect that a carrier wave was transmitted.

stop Rx msg

queue is
non-empty/

there is a long duration
of idle time on
the channel/

start Tx msg

start Rx msg

stop Tx msg

/transmit a pulse of
the carrier wave and
let the channel be
idle

lost tournament/

won tournament?/

/dequeue highest
 prio msg

perform
tournament

Fig. 1. Overview of the protocol.

The transceiver of a node needs at most turnaroundRxTx time units to switch
from reception to transmission or vice-versa.

We will describe the protocol using a timed-automata like notation. States
are represented as vertices and transitions are represented as edges. An edge is
described by its guard (a condition which has to be true in order for the protocol
to make the transition) and an update (an action that occurs when the transition
is made). In figures, we let “/” separate the guards and the updates; the guards
are before “/” and the update is after. We let “=” denote test for equality and
let “:=” denote assignment to a variable.
We assume that when a time-out transition is enabled, it occurs immediately.
The corresponding update of that transition and a continuing path of enabled
transitions occur at most L time units later. Intuitively, L represents the delay
due to executing on a finite-speed processor.

4 The protocol

Figure 1 gives an informal overview of the protocol. Between the protocol and
applications on the node, there is a queue storing messages that requested to
be transmitted. In the starting state (marked as a circle with a circle inside),

the protocol waits until the queue is non-empty. Then the protocol waits for a
long idle time and then it transmits a pulse of the carrier wave. The beginning
of the pulse represents a common reference point in time for all nodes. A node
dequeues the highest priority message and then the nodes perform a tournament.
If a node wins the tournament then it transmits the message. If a node loses the
tournament then it continues to listen on the channel to figure out which priority
was the winner and then it receives the message. If the node which lost had an
application that requested this message then it is delivered to that application,
if not then the message is discarded.

The remainder of this section is structured as follows. Section 4.1 gives a
detailed view of the protocol. Section 4.2 explains the rationale for the design of
the protocol and why it is robust against imperfections in clocks.

4.1 Details of the protocol

Figure 2 shows details of the protocol. The figure illustrates how the protocol
is designed; the actual behavior is slightly different due to clock imperfection,
time-of-flight of the carrier-signal and delays in the transitions.

States are numbered from 0 to 18. State 0 is the initial state. Each node has
the following variables: a clock X, an integer i within the range 0..npriobits-1, an
integer prio occupying npriobits bits, an integer winner prio occupying npriobits
bits and a boolean variable winner. We let winner prio[i] denote the bit i in the
variable winner prio. Analogously for prio[i]. We assume that when the protocol
dequeues the highest-priority message then the variable prio is assigned the
priority of that message. There are two functions carrierOn and carrierOff that
can be called by a node. The function carrierOn requests to start the transmission
of a carrier wave. It may take up to turnaroundRxTx until the carrier actually
starts to be transmitted but then it continues doing so. If carrierOff is called
then it is requested that the carrier stops being transmitted but it may take
up to turnaroundRxTx until it stops. The symbol “carrier?” means: sense for a
carrier and if there is a carrier then “carrier?” is true. E,F,G,H and SWX are
constants used for time-outs, whose value we will choose later.

The states 1-5 in Figure 2 establish a common reference point in time between
all nodes that requests to transmit. The transition 3→4 is designed to make the
protocol robust to clock inaccuracies. The states 6-11 perform the tournament.
During the tournament, nodes contend bit-by-bit, starting with the most signif-
icant bit.
If a node loses the contention of a bit then it loses the entire tournament but
it continues to listen to find out which priority wins the tournament. If a node
does not lose the contention during this bit, it continues with the contention for
the next bit. Finally there is only one winner of the tournament because prior-
ities are unique. This winning node makes the transition to state 14 and then
transmits the message and then makes the transition to the initial state 0.
If the protocol contends with a dominant bit (“0”) then it transmits a pulse of
the carrier wave by taking the path 7 → 8 → 9 → 11. If the protocol contends
with a recessive bit (“1”) then it may take either the path 7 → 10 → 11 or

1

2

6

1116

0

5

3 7

14 13

15

12

10

9

17 18

4

8

stop Rx msg

queue is
non-empty/

carrier?
x:=0

start Tx msg

start Rx msg

x>=2H+2G+
 (G+H)*(npriobits-1)/

stop Tx msg

x>=F/
x:=0

i<npriobits-1/
i:=i+1

i=npriobits-1 AND
winner=TRUE/

i:=0
winner:=TRUE
dequeue highest
 prio msg
carrierOff

x>=H/

x>=H+G+
 (G+H)*i/

prio[i]=1 AND
carrier?/
winner_prio[i]:=0
winner:=FALSE

x>=2H+G+
 (G+H)*i/

winner_prio[i]:=0
carrierOff

x>=2H+G+
 (G+H)*i/

prio[i]=1 AND
x>=2H+G+
 (G+H)*i/

winner_prio[i]:=1

prio[i]=0 AND
winner=FALSE AND
x>=2H+G+
 (G+H)*i/
winner_prio[i]:=0

i=npriobits-1 AND
winner=FALSE/
enqueue msg

requests
to receive
only/

carrier?/
x:=0
prio[0]=1
prio[1]=1
...
prio[npriobits-1]=1

x>=H/
i:=0
winner:=FALSE

no carrier?/
x:=0

carrier?/

x>=E
carrierOn

x>=E+SWX
x:=0

prio[i]=0 AND
winner=TRUE/
carrierOn

x>=H+G+SWX
 (G+H)*i/

Fig. 2. Details about the protocol. This figure illustrates the design; the behavior is
slightly different due to clock imperfection, time-of-flight of the carrier-signal and delays
in the transitions.

G

carrier

yes

no

time

F H tournament

beginning of

message

transmission

a transmission

request occurs
G

Fig. 3. An example of the carrier wave transmitted assuming npriobits=2 and the
priority of the requested message is 1. (The priority is encoded in a binary way as
01 which is signaled as: first a dominant bit and then a recessive bit). A solid box
indicates that the node transmitted a carrier wave whereas a dotted box indicate that
the node heard a carrier wave. The node that requested to transmit this message heard
that another node transmitted a carrier wave so it did not need to transmit the carrier
wave.

the path 7 → 11; it depends on whether the node heard a carrier wave (which
signals that another node transmits a dominant bit). If a node contended with
a recessive bit (“1”) but heard a carrier wave then this node has lost.
Consider a node which has lost the tournament. It continues in the tournament
and if such a node has a recessive bit then it acts in the same way as if it had
not lost. The reason for this is that a recessive bit just listens; it does not trans-
mit a carrier wave. However, if a node has a dominant bit and it has lost, then
the protocol acts differently from the case when it had won; no carrier wave is
transmitted. A node which only requests to receive, acts like a node losing the
tournament from the start (see 0 → 17 → 18 → 6).

In order to understand the time-out parameters E,F,G,H and SWX, consider
Figure 3. F denotes the initial idle time period. H represents the duration of
a pulse of the carrier wave. G denotes a “guarding” time interval to separate
pulses of carrier waves. This “guarding” time interval makes the protocol robust
against clock inaccuracies, and takes into account that signals need a non-zero
time to propagate from one node to another. E makes the protocol robust to
inaccuracies of when the nodes measure F. SWX is used for the protocol to wait
to be sure that a request to transmit a carrier really has resulted in a carrier
being transmitted.

Consider the automata in Figure 2 again. Traverse the path of the transi-
tions of the winning node and observe the last time-out (the transition 12 → 13).
Based on this, we can compute the transmission time of a message taking the
overhead of the protocol into account as:

C ′
i = Ci + 2H + 2G + (G + H) × (npriobits − 1) + 2L (1)

By taking into account also the initial idle time (in state 2) we obtain:

C ′′
i = F + E + SWX + C ′

i (2)

4.2 Rationale of the design and correctness

We will now discuss the correctness of the protocol and discuss how assigning
values to the constants E,F,G,H and SWX affects the correctness. The protocol
must satisfy:

– Mutual Exclusion. At most one node is in state 14.

– Progress. There are two types of progress (i) state 0 is reached after at
most C′′

i time units from any state and (ii) if a message finishes transmission
and there exists a backlogged node then a message of the backlogged nodes
should be transmitted after the finished transmission.

– Prioritization. Of all nodes which were backlogged, the one that will trans-
mit a message is the one that dequeues (at the transition 5→6) the message
with the highest priority.

In order to assure that these properties hold we need to assure that certain
events do not occur at the wrong time. We need to assure that:

– When a node transmits a dominant bit, it is received by all other
nodes.
Consider an iteration of the tournament. It must have been sufficient overlap
between the time interval where one node transmits the carrier to inform that
it has a dominant bit and the time interval where a node with a recessive
bit listens for nodes with a dominant bit. Due to clock drift, this overlap
becomes smaller and smaller for each iteration of the tournament. Hence we
consider the last iteration of the tournament. We require:

[2H + G + (H + G) × (npriobits − 1)] × [1 − ε] −
[H + G + (H + G) × (npriobits − 1)] × [1 + ε]

−2CLK − L − 2α − (E + SWX) > TFCS + 2SWX (3)

The motivation of Equation 3 is that the inaccuracy of the synchronization
after the initial period of silence is (E + SWX). Consequently, two different
nodes can have different opinion on when a bit should be transmitted. If the
time windows of the two nodes overlap by TFCS + 2SWX then we can be
sure that the node that attempts to detect the dominant bit will hear at
least TFCS time units of the carrier. The reason for requiring 2SWX extra
time units is that it may take SWX for the sender to enter Tx mode and
when it has transmitted the carrier for TFCS time units, when it switches
the carrier off, this may take effect immediately.

– If one node i has perceived a time of silence long enough (F time
units) to make the transition from state 2 to state 3 but other
nodes perceive that the duration of silence to be less than F time
units so far due to different time-of-flight and clock-imperfections,
then node i needs to wait until all nodes have perceived this long
time of silence. The protocol should stay in state 3 for E time units to
ensure this. We require:

2CLK + L + 2α + F × 2ε < E (4)

– A node which has lost the tournament must be in receiving mode
in state 15 before it receives the data bits from the transmission
of the winning node (which is in state 13).
This is taken care of by the delay between state 12 to state 13. We know
that the node which lost was in receiving mode because in the last bit in
the tournament, it was in receiving mode (if the losing node would have
transmitted in the last bit in the tournament then it must have lost in the
last bit and transmitted a dominant bit, something which is impossible).
For this reason, it is only required that the delay between state 12 to state
13 is large enough to ensure that the losing node reaches state 15 before
the winning node reaches state 13. To do so we require that the following
inequality is satisfied:

[2H + 2G + (H + G) × (npriobits − 1)] × [1 − ε] −
[2H + G + (H + G) × (npriobits − 1)] × [1 + ε] −

−(E + SWX) > 0 (5)

– During the tournament, the maximum time interval of idle time
should be less than F, the initial idle period.
This assures that if one node makes the transition from state 2 to state 3
(the initial idle time period) then all nodes will do it at most E+SWX time
units later. We require:

[2H + 2G + (H + G) × (npriobits − 1)] × [1 + ε] −
H × [1 − ε] −

+2CLK + L + 2α + (E + SWX) < F (6)

– The time interval between two successive dominant bits must be
long enough to assure that no node interprets the first dominant
bits to be transmitted in the time interval for the second dominant
bit. The worst case occurs when these two bits are the last ones in the
tournament. We require:

[2H + 2G + (H + G) × (npriobits − 2)] × [1 − ε] −

[2H + G + (H + G) × (npriobits − 2)] × [1 + ε]
−2CLK − L − 2α − (E + SWX) > 0 (7)

– The time to wait from when a carrier is requested to be transmit-
ted until it is known that a carrier is transmitted must be greater
than the time required by the hardware. Naturally, this requires:

SWX > turnaroundRxTx (8)

The values of E,F,G,H and SWX must be selected to satisfy the inequalities
3-8. In order to get an idea of the magnitude of these values, we will work out
an example.

Consider a typical distributed real-time system (a car, a factory or a ship)
with a diameter of at most 300m. This gives:α=1μs. Typical computers have
CLK=1μs and ε=10−5 (assuming a low resolution timer and a poor quality
crystal). We assume that the protocol is implemented on dedicated hardware and
use L=2μs. We choose TFCS=5μs because busy tone detection of narrow-band
signals have been estimated to need this time [19] and our application of carrier
sensing is similar to busy tone detection. We choose turnaroundRxTx=19μs
based on the requirement in IEEE 802.11 standard (see page 180 in [1]). We
choose npriobits=20. One choice that satisfies the constraints for this example is:
E=8μs, F=2349μs, G =35μs, H=79μs and SWX=20μs. Hence the overhead
per message (calculated based on Equation 2) is 4775μs.

5 Schedulability analysis

Consider the mutual exclusion, the two progress properties and the prioritization
property in Section 4.2. By combining them and a previous result on schedu-
lability analysis of the CAN bus [17] we obtain that the response time can be
calculated as a sum of the waiting time w i and C ′′

i .

Ri = wi + C ′′
i (9)

where C ′′
i is defined as in Equation 2. The waiting time is obtained as:

wi = Bi +
∑

j∈hp(i)

⌈
wi

Tj

⌉
× C ′′

j (10)

where hp(i) is the set of all message streams with a higher priority than τ i .
B i can be computed as follows:

Bi = max
{
C ′

j : j ∈ lp(i)
}

(11)

where lp(i) is the set of all message streams with a lower priority than τ i . Note
that the schedulability analysis considers the initial idle time between states 1-4
to be a part of the “message” when we compute interference. This initial idle
period should not be included when computing the blocking in Equation 11.

6 Conclusions and Future work

We have presented a MAC protocol for sporadic messages. The protocol is
collision-free, does not require synchronized clocks and supports a large num-
ber of priority levels. We consider for future work (i) implementation of the
protocol in Berkeley motes, (ii) automated formal verification of mutual exclu-
sion, progress and prioritization, (iii) extending the protocol to deal with hidden
nodes, (iv) analyzing the resilience of the protocol to noise in the carrier sensing
and (v) techniques for achieving a low overhead and a large number of priori-
ties on computer platforms with a large turnaround time from transmission to
reception.

Acknowledgements

We are grateful to the reviewers for suggested improvements of the paper. This
work was partially funded by Fundação para Ciência e Tecnologia (FCT).

References

1. IEEE 802.11, 1999 Edition (ISO/IEC 8802-11: 1999) IEEE Standards for Informa-
tion Technology – Telecommunications and Information Exchange between Sys-
tems – Local and Metropolitan Area Network – Specific Requirements – Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations.

2. Aad, I.,Castelluccia, C.: Differentiation mechanisms for IEEE 802.11. In Infocom,
pages 209–218, 2001.

3. Barry, M., Campbell, A.T., Andras, V.: Distributed control algorithms for service
differentiation in wireless packet networks. In Infocom, 2001.

4. Baruah, S. K. , Mok, A. K., Rosier, A. K.: Preemptively scheduling hard-real-time
sporadic tasks on one processor. In IEEE Real-Time Systems Symposium, pages
182–190, 1990.

5. Bosch. CAN specification, ver. 2.0, Robert Bosch GmbH, Stuttgart. Technical
report, 1991.

6. Caccamo, M.,Zhang, L. Y.: An implicit prioritized access protocol for wireless
sensor networks. In 23rd IEEE Real-Time Systems Symposium (RTSS’02), pages
39–48, Austin, Texas, 2002.

7. Deng, D.-J.,Ruay-Shiung, C.: A priority scheme for IEEE 802.11 DCF access
method. IEICE Transactions on Communication, E82-B:96–102, 1999.

8. Kopetz, H., Grunsteidl, G.: TTP - a protocol for fault-tolerant real-time systems.
IEEE Computer, 27(1):14–24, 1994.

9. Leung, J.,Whitehead, J.: On the complexity of fixed-priority scheduling of periodic
real-time tasks. Performance Evaluation, Elsevier Science, 22(4):237–250, 1982.

10. Li, H., Shenoy, P., Ramamrithan, K.: Scheduling communication in real-time sen-
sor applications. In IEEE Real-Time and Embedded Technology and Applications
Symposium, Toronto, Canada, 2004.

11. Mok, A.: Fundamental Design Problems of Distributed Systems for the Hard Real-
Time Environment. PhD thesis, Massachusetts Institute of Technology, 1983.

12. Mok, A.K., and Ward, S.: Distributed broadcast channel access. Computer Net-
works, 3:327–335, 1979.

13. Sheu, J.-P., Liu, C.-H., Wu, S.-L., Tseng, Y.-C.: A priority MAC protocol to
support real-time traffic in ad hoc networks. Wireless networks, 10(1):61–69, 2004.

14. Sobrinho, J. L., Krishnakumar, A. : Quality-of-service in ad hoc carrier sense
multiple access networks. IEEE J. Selec. Areas Commun., 17(8):1353–1368, 1999.

15. Sobrinho, J. L., Krishnakumar, A. S: Real-time traffic over the IEEE 802.11
medium access control layer. Bell Labs Technical Journal, 1(2):172–187, 1996.

16. Thomas, W. C., Moussa, A. B., Rajeev, B., David, B.S. Contention-free periodic
message scheduler medium access control in wireless sensor / actuator networks.
In IEEE Real-Time Systems Symposium, pages 298–307, Cancun, Mexico, 2003.

17. Tindell, K., Hansson, H., Wellings, A.: Analysing real-time communications: con-
troller area network (CAN). In 15th Real-Time Systems Symposium (RTSS’94),
pages 259–263, 1994.

18. Tovar, E., Vasques, V.: Non pre-emptive scheduling of messages on SMTV
token-passing ne tworks. In 12th Euromicro Conference on Real Time Systems
(ECRTS00), pages 209–218, 2000.

19. Yang, X., Vaidya, N.: Priority scheduling in wireless ad hoc networks. Wireless
networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

