

smartPATH: An Efficient Hybrid ACO-GA
Algorithm for Solving the Global Path Planning
Problem of Mobile Robots

Technical Report

*CISTER Research Center
CISTER-TR-140413

2014/07/04

Imen Chaari
Anis Koubâa*
Hachemi Bennaceur
Adel Ammar
Khaled Al-Shalfan.

Technical Report CISTER-TR-140413 smartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving ...

smartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path
Planning Problem of Mobile Robots
Imen Chaari, Anis Koubâa*, Hachemi Bennaceur, Adel Ammar, Khaled Al-Shalfan.

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: aska@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Path planning is a fundamental optimization prob- lem that is crucial for the navigation of a mobile robot. Among
the vast array of optimization approaches, we focus in this paper on Ant Colony Optimization (ACO) and Genetic
Algorithms (GA) for solving the global path planning problem in a static environment, considering their
effectiveness in solving such a problem. Our objective is to design an efficient hybrid algorithm that takes profit of
the advantages of both ACO and GA approaches for the sake of maximizing the chance to find the optimal path
even under real-time constraints. In this paper, we present smartPATH, a new hybrid ACO-GA algorithm that relies
on the combination of an improved ACO algorithm (IACO) for efficient and fast path selection, and a modified
crossover operator to reduce the risk of falling into a local minimum. We demonstrate through extensive
simulations that smartPATH outperforms classical ACO (CACO), GA algorithms. It also outperforms the Dijkstra
exact method in solving the path planning problem for large graph environments. It improves the solution quality
up to 57% in comparison with CACO and reduces the execution time up to 83% as compared to Dijkstra for large
and dense graphs. In addition, the experimental results on a real robot shows that smartPATH finds the optimal
path with a probability up to 80% with a small gap not exceeding 1m in 98%.

© CISTER Research Center
www.cister.isep.ipp.pt

1

immediate
�

Abstract Path planning is a fundamental optimization
problem that is crucial for the navigation of a mobile robot.
Among the vast array of optimization approaches, we
focus in this paper on Ant Colony Optimization (ACO)
and Genetic Algorithms (GA) for solving the global path
planning problem in a static environment, considering
their effectiveness in solving such a problem. Our objective
is to design an efficient hybrid algorithm that takes profit
of the advantages of both ACO and GA approaches for
the sake of maximizing the chance to find the optimal
path even under real-time constraints. In this paper, we
present smartPATH, a new hybrid ACO-GA algorithm that
relies on the combination of an improved ACO algorithm
(IACO) for efficient and fast path selection, and a modified
crossover operator to reduce the risk of falling into a local
minimum. We demonstrate through extensive simulations
that smartPATH outperforms classical ACO (CACO), GA
algorithms. It also outperforms the Dijkstra exact method
in solving the path planning problem for large graph
environments. It improves the solution quality up to 57%

in comparison with CACO and reduces the execution time
up to 83% as compared to Dijkstra for large and dense
graphs. In addition, the experimental results on a real
robot shows that smartPATH finds the optimal path with
a probability up to 80% with a small gap not exceeding 1m
in 98%.

Keywords Mobile Robots, Path Planning, Ant Colony
Optimization, Genetic Algorithms

1. Introduction

1.1 Motivation

The field of mobile robots has been gaining a lot of
attention from both research and industrial communities
thanks to their great potential in enabling a vast array
of applications in different areas including industrial
applications, manufacturing and constructions [1], search

Imen Châari, Anis Koubâa, Sahar Trigui, Hachemi Bennaceur, Adel Ammar and Khaled Al-Shalfan:
SmartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path Planning Problem of Mobile Robots

1

ARTICLE

Int J Adv Robot Syst, 2014, 11:94 | doi: 10.5772/58543

1 PRINCE Research Unit, University of Manouba (ENSI), Tunisia
2 Prince Sultan University, Saudi Arabia
3 Cooperative Robots and Sensor Networks (COINS) Research Group, Saudi Arabia
4 CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal
5 Research Unit of Sciences and Technology, Al-Imam Mohamed bin Saud University, Saudi Arabia
* Corresponding author E-mail: imen_chaari07@yahoo.fr

Received 22 Sep 2013; Accepted 26 Mar 2014

DOI: 10.5772/58543

∂ 2014 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Imen Châari1,3,*, Anis Koubâa2,3,4, Sahar Trigui1,3,
Hachemi Bennaceur5, Adel Ammar5 and Khaled Al-Shalfan5

SmartPATH: An Efficient Hybrid
ACO-GA Algorithm for Solving
the Global Path Planning
Problem of Mobile Robots
Regular Paper

International Journal of Advanced Robotic Systems

and rescue [2], environment exploration [3], elderly
people care and others. Navigation is an essential task
for any mobile robots application as it defines how the
robot perceives its environment (mapping), how the robot
locates itself in its environment (localization) and how
the robot finds its path in the map (path planning). In
this paper, we concentrate on the path planning problem,
which has been considered as a fundamental optimization
problem in the field of mobile robots.

This paper investigates the path planning problem in
the context of the iroboapp research project [4], whose
purpose is to design efficient algorithms for robotic
applications, with a particular focus on path planning and
multi-robot task allocation (MRTA) problems. Indeed, the
project aims at studying the adequacy and effectiveness
of existing algorithms for solving the path planning
problem, compare between their performance, and design
hybrid approaches that improve on existing algorithms
performance. Roughly, the project aims at responding to
this general question: “among all existing optimization
approaches defined in the literature, what is the best
approach to solve the path planning problem?”. This
paper is one step towards responding to this question as
it puts the light on two important optimization methods
used for different problems, namely the Ant Colony
Optimization (ACO) and the Genetic Algorithms (GA).
This represents the main motivation of this paper. Other
optimization approaches are also being investigated, such
as Tabu Search and Particle Swarm Optimization.

1.2 The path planning problem

Basically, path planning [5] aims at the construction
of a collision-free path for the robot starting from its
initial (or current) location to the target location while
avoiding the obstacles scattered in a workspace, based
on some knowledge about the environment. The
planned path must satisfy a set of optimization criteria
including traveled distance, processing time and energy
consumption. The traveled distance represents a typical
metric of interest since it has a direct impact on time and
energy. Designing an efficient path planning algorithm is
an essential objective since the path quality influences the
efficiency of the whole application.

Path planning makes part of the more generic navigation
function of a mobile robot, that ensures how a robot moves
effectively in its surrounding environment. The path
planning particularly addresses the following question:
“What is the best way to go there?”. To answer this
question, the robot must have a priori knowledge of the
environment where he is moving. Basically, the robot must
incorporate fundamental navigation functions to be able to
plan its path: (i.) Localization: it helps the robot to know
where he is, i.e, specify its location. Several ways are used
for localization including GPS in outdoor environments,
laser rangefinder, cameras, ultrasound sensors, received
signal strength etc. (ii.) Mapping: the robot needs to have
a map of its environment to be able to recognize where
he has been moving around so far. The map allows the
robot to have a meaning of locations and directions. The
map can be set manually into the robot memory (i.e. graph

representation, matrix representation) or can be gradually
constructed as the robot explore new environments. (iii.)
Addressing: to plan a path, the target position must be
well-defined to the robot, which requires an appropriate
addressing scheme that the robot can understand. The
addressing scheme allows to specify where the robot will
go starting from its initial location. Localization and
mapping functions when coupled together form a more
complex function, that is the Simultaneous Localization
and Mapping (SLAM), where a robot builds the map
gradually while it localizes itself at the same time.

The path planning problem typically considers both
static and dynamic environments: a static environment is
unchanging, i.e. the start and goal positions are fixed, and
obstacles do not change locations over time. However, in
a dynamic environment, the mobile robot is exposed to
unexpected situations as the locations of obstacles and the
target may change over time. According to the knowledge
that the robot has about the environment, path planning
can be divided into two classes [5], [6]: In the first class,
the robot has a priori knowledge about the environment
modeled as a map. As such, the path can be planned
offline based on the available map. This category of path
planning is known as global path planning. The second class
of path planning assumes that the robot does not have a
priori information of its environment. Thus, it has to sense
the locations of the obstacles and construct an estimated
map of the environment in real-time during the search
process in order to avoid obstacles and to get a suitable
path toward the goal state. This type of path planning is
known as local path planning. In this paper, we address the
problem of global path planning in a static environment.

1.3 Contributions of the paper:

This paper has three major contributions:
• First, we propose smartPATH, a new hybrid ACO-GA

algorithm for robot global path planning. The
smartPATH algorithm incorporates the best features of
both ACO and GA and combines them to provide a
more effective search algorithm. It consists in using
several powerful mechanisms in the ACO phase in
order to prune the searching space, accelerate the
search time and improve the solution quality, including
(1) the definition of a heuristic distance information
probability that helps select more appropriate paths
at the initial phase of the algorithm, which leads to
faster convergence to the optimal solution, (2) the
proposal of a modified transition rule probability that
considers a lower-bound estimation of the remaining
distance to the destination, which discards future
expensive paths during the search process, (3) the
incorporation of an ant control mechanism and a GA
mutation operator in the ACO phase to early discard
non-relevant solutions and improve the solution
quality, respectively. Furthermore, a cross-over GA
operator complements the ACO phase to avoid falling
into a local optimum.

• Second, we present an extensive simulation study to
evaluate the performance of smartPATH and compare
it against the classical ACO, the classical GA and the
Dijkstra [50] algorithms. We show that smartPATH

Int J Adv Robot Syst, 2014, 11:94 | doi: 10.5772/58543 2

clearly outperforms the classical search approaches
and improves on the solution quality up to 57% in
comparison with the classical ACO. It also outperforms
the Dijkstra exact method for solving the path planning
problem in dense and large-scale graph environments.

• Third, we implemented smartPATH on a real world
robot and we conducted extensive experimental
evaluation to demonstrate the feasability of the
algorithm, and its effectiveness when operating in
real-world.

2. Related Works

2.1 Background

The research on the path planning problem started in
late 60’s. Nevertheless, most of the effort is more recent
and has been conducted during the 80’s [7]. Afterwards,
several research initiatives, aiming at providing different
solutions in both static and dynamic environments, have
emerged. Numerous approaches to design these solutions
have been attempted which can be widely classified into
two main categories [5], [8]:
• Exact methods: They are complete methods, they aim

to find an optimal solution if one exists or prove that
there is no feasible solution such as A* [10], Dijkstra
[9], Bellman-Ford, D*, etc. These methods are usually
time consuming to reach the optimal solution for hard
instances. The classical Dijkstra, for example, may be
time inefficient with respect to high connectivity degree
graph environments [11] since it has a quadratic time
complexity O(n2) and processes the whole graph to
find the optimal path.

• Heuristic methods: These methods were designed
to overcome the aforementioned limit of the exact
methods. They aim to find a good quality solution
in a short time. Several techniques to solve the path
planning problem have emerged including Genetic
Algorithms [15], Neural Networks [16], Tabu Search
[17],[18], Ant Colony Optimization [19], Particle Swarm
Optimization (PSO) [20], in addition to several other
techniques.

Among all these techniques, ACO and GA are widely used
in solving the path planning problem [21], [22],[23], [24],
[25] and [26]. In what follows, we present a literature
review on different approaches that used ACO, GA, and
their combinations for solving the path planning problem.

2.2 ACO Approaches

In paper [27], the authors proposed a hybrid algorithm
that combines global and local path planning in dynamic
environment that contains U and V-shaped obstacles. In
a first step, the algorithm generates an optimal path
(off-line) towards the goal based on a modified ACO
algorithm considering only the static obstacles. In the
second step, the rolling windows technique is applied
to avoid dynamic obstacles that appear while the robot
navigates, following the path found in the first step,
toward the goal position. The authors evaluated the
performance of the modified ACO in terms of path length
and convergence speed and they compared them against
the conventional ACO. They proved that the convergence

speed of MACO is faster and the path length generated
by MACO is shorter than CACO. Moreover, the different
techniques of the rolling window enable the robot to avoid
safely dynamic obstacles and also to re-plan its trajectory
and choose the shortest one toward the goal position.

In [28], Zhang et al. proposed an improved ACO
algorithm. The key differences with the traditional ACO
algorithm are (1) the definition of an objective attraction
function in the transition rule probability which is based
on the attraction of the goal position. (2) The use of
a modified pheromone update rule. The interesting
point of this paper is the use of the RoboCupRescue
simulation system to evaluate the efficiency of the
algorithm. The authors compared the new algorithm with
the conventional one in terms of path length and number
of cycles and they proved that their algorithm provides
more accurate results.

In [29], the authors presented a modified ACO algorithm
to solve the global path planning problem in an indoor
environment for a UAV. The workspace of the UAV
is modeled as 3-dimenstional grid map. To overcome
the shortcomings of the conventional ACO, the authors
proposed a modified pheromone update rule: they
proposed to update the quantity of pheromone only on
the best path generated after an iteration of the algorithm.
They also limited the quantity of pheromone to solve the
problem of premature convergence of ACO. To evaluate
the robot path, they added a climbing parameter in
addition to the path cost, they claimed that this parameter
will help the robot to choose the best direction and bypass
obstacles. It was demonstrated throw simulation that
the algorithm could produce good quality of solution in
10*10 grid map. In [30], Ganganath et al. proposed an
off-line path planner for a mobile robot based on Ant
Colony Optimization algorithm with Gaussian functions
(ACO-2-Gauss). The workspace of the mobile robot is
a 3D hilly landscape. Unlike ordinary ACO algorithms,
the proposed path planner provides the ants an extra
ïňĆexibility in making routing decisions: an ant is allowed
to select any point on the circumference of a circle with a
radius of R as its next position. Each ant will select a set of
circles to move toward the goal position. The pheromone
is distributed on the center of the different circles as a 2D
Gaussian function. In their simulation study, the authors
compared the proposed algorithm against a preceding
version: ACO-Gauss, it was demonstrated that the quality
of solution of ACO-2-Gauss was improved as compared to
ACO-Gauss path planner.

2.3 GA Approaches

GA has also been extensively used for path planning in
robotic applications. For instance, in [31] the authors
present a path planning algorithm based on pure genetic
algorithm. The authors used the grid model to model
their environment. In their simulation work, they tested
their proposal in several environments that differ by their
complexities. The environments are classified in two
categories: with and without obstacles. The authors
evaluated the path cost while varying the population
size and the number of iterations; they proved that their
algorithm was effective as it is able to find the optimal

Imen Châari, Anis Koubâa, Sahar Trigui, Hachemi Bennaceur, Adel Ammar and Khaled Al-Shalfan:
SmartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path Planning Problem of Mobile Robots

3

solution for all the different environments. In [26], the
authors investigated the capabilities of genetic algorithms
(GA) for solving the global path planning problem in
large-scale grid maps. They proposed a GA approach for
efficiently finding an (or near) optimal path in the grid
map. They considered three differents crossover operators,
namely one-point crossover, two-point crossover and
an improved crossover. A statistical evaluation of the
proposed GA approach in terms of solution quality was
conducated, and compared against the well-known A*
algorithm as a reference. Simulation results showed that
GA is able to find the optimal paths in large environments
equally to A* in almost all the simulated cases. The
execution time was not evaluated in this work. In [32],
the authors proposed a new path planning algorithm for
a mobile robot based on the genetic algorithms approach.
The authors considered both static and dynamic obstacles
in an unknown environment. The interesting point of
this paper is that the novel algorithm was tested on
a real-world application using Pioneer III mobile robot.
The authors were positive toward the effectiveness of
GA for solving path planning, however we believe that
the experimental results was not extensive and still
need further investigation as the paper didn’t provide
a comparison between simulation and experimental
studies. In [33], the authors proposed a genetic algorithm
with only the crossover operator to improve execution
time and computational cost. They used adaptive
population size and fixed length chromosomes, each path
is represented by two chromosomes, one for x-coordinate
and one for y-coordinate. A comparative study
between different metaheuristic approaches classified as
trajectory-based and population-based approaches for
solving the global path planning problem of mobile robots
was conducted in [34] . Three methods were evaluated
namely tabu search, simulated annealing and GA. It
was demonstrated through simulations that simulated
annealing outperforms the other planners in terms of
execution time, while tabu search was proved to provide
the best solution in terms of path length.

2.4 Hybrid ACO/GA Approaches

In the literature, some other research efforts have proposed
two different solutions for path planning based on ACO
and GA and compared between their performance. For
instance, in [35] two solutions were proposed for path
planning where the first is based on GA and the second
is based on ACO. A comparison study was performed
between both techniques on a real-world deployment
of multiple robotic manipulators with specific spraying
tools in an industrial environment. In this study, it has
been argued that both solutions provide very comparable
results for small problem sizes, but with increasing the
size and the complexity of the problem, the ACO-based
algorithm achieves better quality of solution at the cost
of a higher execution time, as compared to the GA-based
algorithm. In [36], the authors presented an intensified
ACO algorithm for the global path planning problem
and compared the performance of their proposal with
GA. It was proven that both solutions are able to find
the optimal path. Nonetheless, the ACO algorithm was
shown to be more robust and effective in finding the

optimal path. In [37], a comparative performance study of
the two aforementioned approaches has been conducted.
The algorithms have been tested in three workspaces with
different complexities and it was demonstrated that the
ACO method was more effective and outperformed the
GA method in terms of time complexity and number of
iterations.

Although, ACO and GA have shown their effectiveness
in the resolution of path planning problem, these two
techniques suffer from some limits. In fact, ACO has a
stronger local search capability and faster convergence
speed but the algorithm can easily sink into a local
optimum if the size of the problem is large. On the other
side, GA belongs to random optimize processes, so the
local convergence problem does not appear; however, this
makes its convergence speed slower. Thus, we believe that
a hybrid ACO and GA approach could be a promising
alternative, which represents the focus of our proposal.
In the literature, some works proposed solutions based
on the combination between ACO and GA. For instance,
in [38] the authors presented a path planning method
based on a hierarchical hybrid algorithm that aims at
finding a path in a road traffic network. The network is
divided into several sub-networks; ACO is applied on
each sub-network, the best paths generated by ant colony
optimization algorithms will be the initial population
of genetic algorithms. In their simulation work, the
authors proved that the novel algorithm can quickly
and accurately find the optimal path in less number of
iterations as compared to [39], [40]and [41]. Moreover, a
combination between GA and ACO algorithms to solve
the robot navigation problem was presented [42]. A
special function was proposed to improve the quality of
the paths generated by the ants at the beginning of the
algorithm. Crossover and mutation operators are applied
to improve the quality of solution generated by the ACO
algorithm and avoid falling into a local optimum. It was
proved that the improved algorithm generates a better
solution in terms of length, direction and execution time
or number of iterations as compared to the pure ACO
algorithm . Geetha et al. in [43] proposed a hybrid
algorithm (ACOG) based on ACO and GA techniques.
Darwinian Reproduction, Structure-Preserving Crossover
and Structure-Preserving Mutation are the three genetic
operation adopted to improve the efficiency of the ACO
algorithm and to avoid falling into a local optimum. The
authors claimed that their method is a Multi-objective
algorithm as it takes into consideration three different
parameters: length, smoothness and security of the path.
In the simulation work, they compared the algorithm to
literature [44], and they argued that the algorithm is able
to generate near optimal path.

In [45] the authors presented an ACO-GA based algorithm.
The novel algorithm introduces a modified transition rule
probability function in the ACO algorithm that eliminate
the parameter âĂIJdistance between two positionsâĂİ
and also uses an additional parameters γ to control
the behavior of the ants. The values of (α, β, γ) in the
new transition rule probability are not constant as in
the conventional one and they evolve using the GA
approach in order to obtain the best values to improve

Int J Adv Robot Syst, 2014, 11:94 | doi: 10.5772/58543 4

the accuracy of the algorithm to get the shortest path.
The authors tested the new algorithm in a three real
Environments, with different complexity, using the mobile
robot (Khepera II). They compared their results with
respect to the shortest path length obtained with Dijkstra
algorithm and they succeed to obtain the shortest paths.

In this paper, we propose a new solution based on a
combination of ACO and GA. The optimal paths made
by ACO at every generation are taken as an initial
population of a crossover operator. The crossover is a kind
of post-optimization or local search that avoids getting
trapped in a local optimum. Our solution is presented in
the next section.

3. Ant Colony Optimization and Genetic Algorithms:
Background

3.1 Ant Colony Optimization

3.1.1. General Description

Biologists have demonstrated that several ant species are
able to select cooperatively the shortest route among a
set of alternative routes from their nest to a food source.
In fact, each ant leaves information on the path that it
has traversed by depositing a chemical substance called
pheromone. The ants have tendency to follow a path rich
on pheromone rather than a poorer one. Within a fixed
period, shorter paths between the nest and the source of
food are traversed more often than longer one. So, the
quantity of pheromone is accentuated on shorter paths,
which in turn augment the number of ants. This is called
the reinforcement process.

Inspired from this behavior of real ants, Marco Dorigo
proposed the ACO metaheuristic [19] in the early 1990s
to find approximate solutions to difficult optimization
problems. ACO was initially applied to the travelling
salesman problem (TSP), and then it has been used to
solve several research problems such as the path planning
problem for a mobile robot.

3.1.2. ACO Pseudo-code

In general, all ACO algorithms follow a specific
algorithmic scheme presented in Pseudo-Code 1.

At first, an initialization takes place during which the
initial pheromone value and many other parameters
are set. After that a main loop is repeated until a
termination condition is reached. At each iteration,
the ants are charged to build feasible solutions to the
optimization problem then, the generated solutions are
possibly improved by applying a local search procedure,
and finally the quantity of pheromone is updated: the
pheromone value can either increase, as ants deposit
pheromone on the components used during search, or
decrease, due to pheromone evaporation.

3.1.3. Classical ACO for Robot Path Planning

In this section we describe the classical ACO algorithm
applied to the path planning problem. We assume that the
working space is modeled as a graph. At each iteration

Pseudo-Code 1. Ant Colony Optimization
1: Set parameters, initialize pheromone trails
2: while termination condition not met do
3: ConstructAntSolutions
4: ApplyLocalSearch(optional)
5: UpdatePheromones
6: endWhile

of the ACO algorithm, an artificial ant is charged to build
a path for the mobile robot from the start position to the
goal position by walking on the edges of the graph and
visiting each vertex only once. The next vertex is selected
stochastically according to the Transition Rule probability
expressed by the following formula:

pk
i,j =

τα
i,j ∗ η

β
i,j

∑j∈allowed(i)(τ
α
i,j ∗ η

β
i,j)

(1)

Where pk
i,j is the probability of transition of the kth ant from

vertex i to vertex j, τi,j denotes the quantity of pheromone
in the edge joining vertex i and vertex j,ηi,j = 1

di,j
where

di,j is the Euclidian distance between the current node i
and the next node j , allowed(i) is the set of neighboring
nodes of node i which the kth ant has not visited yet, α
and β are two parameters to weight the significance of
pheromone and distance in the selection of next vertex. At
the beginning of the algorithm, an initial pheromone value
is affected to the edges of the graph. After each iteration
of the algorithm, the quantity of pheromone is updated
by all the ants that have built solutions. The quantity
of pheromone τi,j, associated with each edge joining two
vertex i and j is updated as follows:

τi,j(t + 1) = (1 − ρ) ∗ τi,j(t) +
m

∑
k=1

∆τk
i,j(t) (2)

where 0 ≤ ρ ≤ 1 is the evaporation rate, m is the number
of ants and ∆τk

i,j is the quantity of pheromone laid on edge
(i, j) joining two positions i and j by an ant k.

∆τk
i,j(t) =

{ Q
Lk

if ant k used edge(i,j) in its tour
0 otherwise

}
(3)

where Q is a constant and Lk is the length of the tour
constructed by ant k.

3.2 Genetic Algorithms

3.2.1. General Description

Genetic algorithms (GA) [15] is a heuristic method
invented in 1975 by John Holland. It is based on the
idea of natural selection and genetics to solve optimization
and search problems. The notions of chromosome,
gene and population constitute the base of GA. In
fact, it maintains a population of candidate solutions
called chromosomes, the chromosomes evolve from one
population to another population using four mechanisms:
(1). Fitness evaluation, (2). Selection, (3). Crossover and
(4). Mutation.

Imen Châari, Anis Koubâa, Sahar Trigui, Hachemi Bennaceur, Adel Ammar and Khaled Al-Shalfan:
SmartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path Planning Problem of Mobile Robots

5

3.2.2. GA Pseudo-code

In general, all GA follow a specific algorithmic scheme
presented in Pseudo-Code 2.

At the beginning of the algorithm, a set of initial
population or chromosomes is generated. In Genetic
Algorithm, only the fittest solutions should survive, so
that the algorithm converges towards the optimal solution.
Each chromosome undergoes an evaluation to assess its
fitness; this is achieved by means of fitness function.
Then, genetic transformations like crossover and mutation
are applied to the fittest solutions yielding new optimal
solutions. This process is repeated until a termination
condition is verified.

Pseudo-Code 2. Genetic Algorithms
1: Generate randomly the initial population
2: while termination condition not met do
3: Evaluate the different chromosomes of the current

population using the fitness function
4: Apply Genetic Operators
5: Selection
6: Crossover
7: Mutation
8: endWhile

3.2.3. Classical GA for Robot Path Planning

In this section we describe the classical GA algorithm
applied to the path planning problem for a mobile robot.
We assume that the environment is modeled as a graph.
The first step of GA is the generation of an initial
population of chromosomes. Each chromosome represents
a path for the mobile robot. Each gene of a chromosome
represents a vertex of the graph.

To generate the initial population, vertex that form a
path are selected randomly, while adjacent vertex must be
connected in order to generate a feasible path. After the
generation of the initial population, each path is evaluated
and ranked using a fitness function expressed by the
following formula:

F =
1

∑n
i=1 di,i+1

(4)

Where di,i+1 is the Euclidean distance between vertex i
and vertex i + 1 in the path and n is the number of
vertex forming a path. The fittest paths are selected to
undergo the genetic operators; crossover and mutation.
The objective of these operators is to create new population
or solutions from the current solutions that have shown
to be good temporary solutions. These steps are repeated
until reaching the termination condition.

4. The smartPATH Algorithm

4.1 Environment Model

Many global path-planning methods use a grid-based
model to represent the workspace of a robot. In such a
model, the space is partitioned into grids. An obstacle may
occupy one or more grids, depending on the size of the
obstacle relative to the size of the vehicle. In this paper, we

have considered another environment model that reduces
the complexity of the problem, such as the model used
in [22], [38]. The mobile robot workspace is described
by a 2-D map. The map represents the start point,
the goal point, and differentiates the areas that contain
obstacles and free spaces. In the free space, a collection
of connected waypoints are arranged in random locations,
each waypoint represents a location in the environment,
and it is characterized by an identifier, a (X,Y) coordinates
and a set of adjacent waypoints as depicted in Fig.1 The
key idea of our model consists in using the waypoints as:
• Signposts to locate the mobile robot, using a certain

localization algorithm such as RSS-based localization
[46];

• Landmarks to guide the robot towards the desired
destination.

The robot must choose the best series of waypoints to
follow in order to find the best path, which will be
encoded as a sequence of waypoints IDs; for example
0-4-5-10-9-15 is a path with start position 0 and goal
position 15. The robot should move between adjacent
waypoints that are connected. if two positions are not
connected this means that there is an obstacle between
them. We note that the set of waypoints can be obtained
through Voronoi decomposition or using the Probabilistic
Roadmap Method (PRM) [47] where the waypoints are
randomly generated in the environment such that two
waypoints are connected if they have direct visibility.

Figure 1. Environment Model

4.2 Description of the smartPATH Algorithm

The key idea of smartPATH consists in combining the ACO
and GA approaches together. The smartPATH algorithm
comprises two phases: (i.) improved ACO algorithm
(IACO) that ensures a fast convergence towards optimal
path through intelligence probabilistic path selection
mechanisms (ii.) Genetic Algorithm phase acting as a post
optimization (or local search) that improves the quality of
solution found in the previous phase. The pseudo-code of
smartPATH is presented in Algorithm 1. In what follows,
we describe the two phases.

4.2.1. Improved ACO Phase (IACO)

The ACO phase consists in generating a set of optimal
paths by an improved ACO algorithm. The model of the
workspace is abstracted to a graph, and the ants must find
the shortest path in the graph from the start to the end
positions. Each ant has a current position in the graph
and it can move from the current waypoint to another
waypoint, and has to make a decision about its new
position. It is executed in three steps:

Int J Adv Robot Syst, 2014, 11:94 | doi: 10.5772/58543 6

Algorithm 1. The SmartPATH Algorithm
1: S = {Si}0<i<1: Set of waypoints
2: Sinitial : Initial position of the robot
3: Sgoal : Goal position of the robot
4: NCACO : Maximum number of iterations of IACO

algorithm
5: NCGA : Maximum number of iterations of GA

algorithm
6: place m ants in Sinitial
7: MaxLength: Length of the robot’s path
8: SACO: Set of the best paths found by ACO
9: SGA: Set of the best paths found by GA
10: repeat
11: for each ant k do
12: Add Sinitial to the ants paths
13: end do
14: while MaxLength is not reached do
15: for each ant k do
16: if (the ant k is not discarded) then
17: if (NCACO=1) then
18: getNextWaypoint() according to equation (1)
19: Else getNextWaypoint() according to

equation (2)
20: end if
21: Add nextWaypoint to the kth ant’s path
22: DTk=calculateTraveledDistance(ant k)
23: if (DTk ≥ currentShortesetPathCost) then
24: remove ant k
25: end if
26: end if
27: end do
28: end do
29: Generate BestPathi found in the current iteration
30: MBestPathi=mutation operator(BestPathi)
31: SACO=SACO ∪ MBestPathi
32: Update pheromone
33: Until{endACO}
34: Generate BestPathACO from SACO
35: repeat
36: Select randomly two paths P1 and P2
37: NewPath=crossover operator(P1, P2)
38: SGA=SGA ∪ NewPath
39: Until{endGA}
40: select BestPathGA from SGA
41: if (BestPathACO length ≺ BestPathGA length) then
42: RobotPath=BestPathACO
43: else RobotPath=BestPathGA

• Step 1: Paths’ Finding: The ants search for the shortest
path in the environment from the start to the goal
positions. In a current position, an ant has to smartly
decide the next waypoint on its path towards the
destination. We have devised two new functions to
optimize the decision of an ant in the path planning
process:
• The Heuristic distance information probability: it is

used in the first iteration of the algorithm: indeed,
in the classical ACO algorithm, the ant’s decision
is made based on the transition rule probability
function [19], which depends on the quantity
of pheromone. However, in the initial paths
construction, the quantity of pheromone is not

significant, and has not a great impact on the
construction of the solution. This renders the choice
of the ant not obvious and increases the time for
finding the optimal path. In order to avoid these
shortcomings, we devised the heuristic distance
information probability function, introduced in [21],
to calculate the probabilities of transition. This
function is expressed as:

pk
i,j =

((MaxDallowed(i),goal − dj,goal) ∗ ω + µ)λ

∑j∈allowed(i) ((MaxDallowed(i),goal − dj,goal) ∗ ω + µ)λ
(5)

Where pk
i,j is the probability of transition of the kth

ant from waypoint i to waypoint j, allowed(i) is the
set of waypoints in the neighborhood of waypoint
i which the kth ant has not visited yet, dj,goal is
the Euclidian distance from the waypoint j to the
destination, MaxDallowed(i),goal is the maximum of
all dj,goal and λ, µ and ω are constants.

• A modified transition rule probability: it is used for
the rest iterations of the algorithm; this function is
defined by the following formula:

pk
i,j =

τα
i,j ∗ Dβ

∑j∈allowed(i)(τ
α
i,j ∗ Dβ)

(6)

Where pk
i,j is the probability of transition of the

kth ant from waypoint i to waypoint j, τi,j denotes
the quantity of pheromone in the edge joining
waypoint i and waypoint j, allowed(i) is the set
of neighboring waypoint of waypoint i which
the kth ant has not visited yet, α and β are two
parameters to weight the significance of pheromone
and distance in the selection of next waypoint
and D = 1

di,j+dj,goal
where di,j is the Euclidian

distance between the current waypoint i and the
next waypoint j and dj,goal denotes the Euclidian
distance between the next waypoint j and the goal
waypoint.

The reason behind using the parameter D instead
of ηi,j = 1

di,j
used in the conventional transition

rule probability of CACO is that D has a greater
attraction to the goal position. As a consequence,
it reduces the number of bad solutions that might
be selected by the ants, and thus, accelerates the
convergence speed to find the optimal path.

Remark: Varying the value of α and β. It
has to be noted that α and β are two important
constants of the modified transition rule probability.
These parameters indicate the importance of the
remaining pheromone on each edge joining two
waypoints, and the importance of the heuristic
information, respectively. In CACO, α and β don’t
change during the execution of the algorithm, and
this induces a negative impact on the performance
of the algorithm. Thus, we propose varying the
values of α and β as follows. In the beginning of
the algorithm, the impact of the distance on the
transition probability is more significant than the
impact of pheromone, so we must consider values

Imen Châari, Anis Koubâa, Sahar Trigui, Hachemi Bennaceur, Adel Ammar and Khaled Al-Shalfan:
SmartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path Planning Problem of Mobile Robots

7

such that α ≺ β. After a period of time the influence
of pheromone becomes more important as several
valid paths would appear; thus we consider values
such that α � β. In our work, we choose to change
the values α and β when the algorithm reaches the
maximum number of iterations/2.

• Step 2: Path Optimization:
• Control of the ants: During the construction of the

paths, the ants are monitored, meaning that if an ant
walks more than a certain threshold distance ,which
is the cost of the current best solution found during
the searching process, it will be discarded (as it will
certainly not produce the optimal path). This helps
to reduce the search space and the execution time by
early elimination of bad solutions.

• Mutation operator: After an iteration of the IACO
algorithm, a near optimal path will be generated.
Then, a mutation operator is applied on this path
in the quest of getting a better solution. The main
idea of the mutation operator is to check all the
waypoints, except the start and the goal waypoints,
and try to change one or more waypoints in the path
if the length of the resulting new path is shorter than
the length of the generated path.

• Step 3: Pheromone Update: After each iteration of the
smartPATH algorithm, the quantity of pheromone is
updated by all the ants that have built solutions. The
quantity of pheromone τi,j, associated with each edge
joining two positions i and j is updated according to
equations 2 and 3.

4.2.2. GA Phase

This phase is a kind of post optimization or local search
that improves the quality of solution found by IACO. It
consists in applying a modified crossover operator on the
set of optimal paths generated by the ACO algorithm after
N iterations. The key idea of the proposed crossover
operator consists in selecting two common waypoints N1
and N2 from two randomly selected parent paths P1 and
P2 and comparing the three sub-parts of P1 and P2 existing
(i.) before N1, (ii.) between the two selected waypoints N1
and N2 and (iii.) after the second waypoint N2. The best
parts are selected to form the new path. The new path has
the same length as P1 and P2. Consider the following two
paths as an example:

P1: S0 S4 S6 S7 S9 S10 S11 S12 S15

P2: S0 S3 S6 S4 S5 S10 S9 S15 S15

The two common waypoints selected are S4 and S10.
We compare the different sub-parts ("S0" and "S0-S3-S6"),
("S4-S5-S10" and "S4-S6-S7-S9-S10") and ("S11-S12-S15"
and "S9-S15-S15") by calculating the Euclidian distance
between the different waypoints. The new crossover
generates only one path formed by the shortest parts from
the two parents P1 and P2: The length of the generated
path is smaller than the length of P1 and P2, so the target
waypoint (S15) is added to the path in order to have
equality in terms of length between all paths.

New Path: S0 S4 S5 S10 S9 S15 S15 S15 S15

4.3 Discussion

The smartPATH algorithm has several advantages which
makes it believed to be better than the CACO algorithm.
In fact, it is reinforced by several mechanisms to quickly
converge to good solutions, dynamically prune the search
space and reduce the execution time. For instance,
the dynamic setting of α and β parameters during the
search operation leads to diversify the exploration of the
state space and thus to improve the quality of solutions.
Similarly, the mutation operator represents a greedy local
search technique applied on solutions produced after
each IACO iteration. This also improves the solution
quality. On the other hand, some other techniques
contribute to reduce the search space and time. As
a matter of fact, smart-PATH discards weak ants that
went astray in paths longer than currently best path.
Another possible extension of this technique would be to
discard paths that would be predicted to be longer than
the currently best path using for instance the residual
distance to the destination. This will be investigated
in the future. Moreover, the modified transition rule
probability function that incorporates an underestimation
of the remaining distance to the destination efficiently
predicts expensive paths and exclude them from the
solution set at an early stage. This idea is similar to
the heuristic used in the evaluation function of the A∗
technique.

In the next section, we will demonstrate through
simulations the validity of our intuition about the
effectiveness of the aforementioned techniques to
simultaneously improve the solution quality and reduce
the execution time.

5. Simulation Analysis

5.1 Simulation Model

In this section, we present an extensive simulation study to
evaluate the efficiency of the smartPATH algorithm. The
objective of the simulation is two-folded: First, we present
a comparison between smartPATH, smartPATH-WHF
(without considering the heuristic distance information
probability function in the beginning of the IACO
algorithm), the classical ACO, the classical GA approach
and Dijkstra exact algorithm.

This comparative study will help demonstrate the added
value of combining ACO and GA approaches, and the gain
resulting from the improved ACO algorithm. Second, we
examine the impact of varying a set of ACO parameters,
namely the number of ants and the evaporation rate, on the
quality of solution and on the execution time. Our goal is
to identify the most appropriate parameters’ settings that
produce the best results.

To evaluate the efficiency of the smartPATH algorithm,
three performance metrics were assessed: (1) the path
length: it represents the length (i.e. cost) of the shortest
path found by an algorithm, (2) the execution time: it
is the time spent by an algorithm to find its best (or
optimal) solution and (3) the number of explored waypoints:

Int J Adv Robot Syst, 2014, 11:94 | doi: 10.5772/58543 8

it represents the number of waypoints visited by the
algorithm during the search process. This metric is
typically used to assess the time complexity of algorithms
and is a good implementation-independent indicator of
the algorithm performance.

We considered five environments with different
complexities illustrated in Figure 2:
• Environment 1: (Figure 2.a) this environment is

the simplest one, it has the smallest number of
obstacles and the smallest number of waypoints (16
waypoints). The mobile robot has to find the shortest
and collision-free path from waypoint 0 to waypoint 15.

• Environment 2: (Figure 2.b) this environment is of
medium complexity, and comprises 27 waypoints. The
robot has to reach waypoint 25 from the starting
waypoint 1.

• Environment 3: (Figure 2.c) this environment is
a slightly complicated enviroment, it contains 50
waypoints. The start position of the mobile robot is
waypoint 1 and the goal position is waypoint 50.

• Environment 4: this environment is a randomly
generated graph, it is of high complexity, it contains
a large number of waypoints (300 waypoints). Each
waypoint in the graph is connected to more than 150
other waypoints (graph with high node connectivity).
The start point is 1 and the goal point is 300.

• Environment 5: this environment is a randomly
generated graph, it is of high complexity as it contains
the largest number of waypoints and obstacles (500
waypoints). Each waypoint in the graph is connected to
more than 350 other waypoints (graph with high node
connectivity). The start point is 1 and the goal point is
500.

For each environment, we performed 30 different runs
for each algorithm to ensure correct statistical analysis
of the results (for stochastic simulations, the minimum
sample size must be equal to 30 for calculating the
confidence interval of the sample output). For each run,
we recorded the length of the generated path and the
execution time. The execution time of an algorithm in a
given environment is the average of the 30 execution times
recorded. The simulation parameters of the smartPATH
algorithm are presented in Table 1. We mention that
the selection of the default paramaters values are guided
by the simulation results presented in Section V.B.2.
We implemented a simulation MATLAB model. All
simulations are implemented on a PC with an Intel Core
i7 CPU @ 2.4GHz and 8GB of RAM under Windows 8.

5.2 Simulation Results

5.2.1. Optimality and Convergence Time

In what follows, we present the main observations
pertaining to the solution quality, the convergence time
and the number of explored nodes of the smartPATH
algorithm and its variants.

Observation 1. For most scenarios, the smartPATH finds the
optimal paths as compared to other heuristics and reduces
the execution times as compared to Dijkstra exact method in

Parameters Value
m: number of ants 10
α: Pheromone trail coefficient 1 and 5
β: Heuristic coefficient 1 and 5
ρ: evaporation trail 0.99
Q: Constant 100
τ(0): The initial pheromone value 0.05
NCACO: Number of iterations of ACO algorithm 30
ω: calibration parameter 10
µ: calibration parameter 2
λ: calibration parameter 2
NCGA: Number of iterations of GA algorithm 20

Table 1. The smartPATH parameters

large scale and highly connected graph environments. In fact,
we observe in Figure 4 and Figure 3 that smartPATH
finds the optimal paths for all environments. We notice
from Figure 3 that Dijkstra exact method provides the
optimal solution faster than smartPATH for small and
medium scale environments (environments 1, 2 and 3).
The main reason is that these graphs have small number
of nodes with very small connectivity degree (2 to 4
neighbors). With low connectivity, Dijkstra explores a
very small number of nodes as can be observed in Table
3. However, for large-scale environments with high
nodes connectivity (environment 4 and environment
5), smartPATH clearly outperforms Dijkstra in terms of
number of explored waypoints, in addition to reduced
execution time. Indeed, smartPATH explores much
fewer waypoints (2333 waypoints for environment 4
and 4343 for environment 5) in dense graphs to reach
the optimal solution as compared to Dijkstra (32739
waypoints for environment 4 and 108723 for environment
5). The number of expanded nodes demonstrates the
efficiency of the smartPATH algorithm in terms of time
complexity independently from implementation details.
This demonstrates the importance of using heuristic
methods for difficult problems, such as in our case
large-scale and highly connected graph [11].

As it is observed in Table 4 and Table 3, the gain in
execution time is increased with the difficulty of the
environment. Indeed, the results demonstrate that
the gap, in terms of explored nodes and execution
time, between environment 4 and environment 5 is
important: smartPATH is 6.15 times faster than Dijkstra
in environment 5, but it is 1.26 faster in environment 4.
On the other hand, Dijkstra explores 25 times nodes more
than smartPATH in environment 5, but it explores 14 times
more nodes in environment 4. This confirms that the gap
will be too high for larger problems.

Observation 2. The heuritic distance information probability
function executed in the beginning of the smartPATH algorithm
helps improve the solution quality. We observe in Table 2 and
Table 4 that smartPATH generates better solutions than
those provided by smartPATH-WHF. For environment
1, 2 and 3 both algorithms find the optimal path but
smartPATH-WHF generates lower number of optimal
paths in the different runs than the smartPATH algorithm,
which demonstrates the efficiency of using the heuristic
distance information.

Observation 3. The smartPATH algorithm siginificantly
outperforms the classical ACO and GA algorithms in terms

Imen Châari, Anis Koubâa, Sahar Trigui, Hachemi Bennaceur, Adel Ammar and Khaled Al-Shalfan:
SmartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path Planning Problem of Mobile Robots

9

a. Low Complexity Environment

b. Medium Complexity Environment

c. Medium Complexity Environment

Figure 2. Simulation Environments. The Dashed Line Shows the Path Generated by the smartPATH Algorithm

of solution quality while maintaing reduced execution times.
Indeed, looking at Figure 4 and Table 2, we observe that
smartPATH provides the optimal paths for all the four
environments, in contrast to the Classical ACO and the
GA algorithms that both fail to find the optimal solution
in medium-scale and large-scale environments. However,
for the small-size problem (i.e. environment 1), the quality
of solution generated by the three algorithms after 30 runs
is the same and optimal, but CACO fails to find the optimal
solution in 13 runs, whereas smartPATH and GA find the
optimal path all the time. The advantage of smartPATH as
compared to GA is that smartPATH finds the optimal path
much faster than GA does in all environments, including
environment 1, as it is illustrated in Table 4 and Fig 3.

We stress that even though the CACO algorithm exhibits
smaller execution times than smartPATH, as depicted in
Table 4, does not mean that it outperforms smartPATH
because CACO fails to find the optimal solution after the
30 iterations of each of the 30 runs in large environments
(i.e. environments 2, 3, and 4). Indeed, as shown in Table
4, we clearly observe that IACO outperforms CACO in
terms of quality of solution for medium and large scale
environments, which demonstrates the improvement
carried out by modifying the classical ACO algorithm.

Observation 4. The GA algorithm provides slow convergence
speed and is not appropriate for solving the path planning
problem in large environments. However, it is very effective
when used for post optimization purposes to improve the
solution quality. The GA algorithm always exhibits the
lowest solution qualities and longest execution times,
which is expected as it is commonly known to have slower
convergence speed as compared to ACO [37]. For that
reason, we only used GA for post optimization purposes
to improve on the ACO solution quality. For environment
4, the GA algorithm fails to find a solution to the problem.
As the environment is large, the algorithm fails to generate
feasible intial population and then fails to find a solution.
Indeed, a path is constitued from a set of connected
waypoints. We assumed that each waypoint is visited
only one time. In case of a large environment, the paths of
the initial population generated are not feasible because

Environments smartPATH IACO smartPATH-WHF CACO GA Dijkstra
Environment 1 17.97 17.97 17.97 17.97 17.97 17.97
Environment 2 19.52 19.52 19.52 25.783 44.8521 19.52
Environment 3 35.2231 35.2231 35.2231 37.68 68.4546 35.2231
Environment 4 114.2484 114.2484 142.6610 263.2437 - 114.2484
Environment 5 349.8094 349.8094 349.8094 1255.4591 - 349.8094

Table 2. Length of the Generated Paths of smartPATH, IACO ,
smartPATH-WHF, CACO , GA and Dijkstra Algorithms in
Different Environments (m)

Figure 3. Execution times of smartPATH, IACO,
smartPATH-WHF CACO, GA and Dijkstra Algorithms in
Different Environments

they are blocked in a deadlock position (a waypoint that
hasn’t any adjacent waypoints not visited).

Discussion: The results clearly show the benefit from
using a hybrid ACO-GA approach in the path planning
problem and demonstrate that smartPATH reduces the
execution time for dense graphs in comparison with
Dijkstra exact method (in the case of environment 4
and environment 5), while it improves the solution
quality in comparison with CACO and GA. It is clear
that the hyrbidization between ACO and GA brings a
lot of benefits as it considers the best features of both
approaches, which contributes to improve the solution
quality and to reduce the search time for large scale graph
environments.

5.2.2. Impact of ACO parameters

The ACO algorithm is a very flexible and configurable
algorithm as there are a lot of parameters that need to be
well selected such as the number of ants, the pheromone

Int J Adv Robot Syst, 2014, 11:94 | doi: 10.5772/58543 10

factor α, the heuristic factor β, the evaporation factor ρ.
The behavior of the IACO algorithm depends strongly
on the values given to these parameters which affect the
performance of the algorithm. In this section, our aim is to
find the most appropriate values for the IACO algorithm
parameters, such that the algorithm converges faster to
a satisfying solution for the four tested environments.
Simulations were performed for different values of the
number of ants, evaporation trail rate ρ in order to assess
the behavior of the algorithm with different parameters’
settings. In each experiment one parameter is varied, and
the others are all kept fixed to their default values.
• Impact of variation of the number of ants: In this

paragraph, we examine the effect of varying the
number of ants on the execution time and the quality
of solution generated by the smartPATH algorithm.
In each iteration, we fix the number of ants and we
perform 30 runs of the algorithm and we record the
length of the generated path and the execution time.
Fig 5 shows the impact of varying the number of ants
on the path length and Figure 6 represents the impact
of varying the number of ants on the execution time.
These figures show that for a small value of the number
of ants (less than 10 ants), the smartPATH algorithm
generates non optimal solutions in faster times for all
the four environments. Using 11 ants in environment
1, smartPATH generates the optimal paths. Wheras, for
environment 2, 3 and 4 , a larger number of ants (20
ants) is needed to provide the optimal solution.

• Impact of variation of the evaporation factor: All
simulations are done for fixed number of ants: 11
ants for environment 1, 20 ants for environment 2,
environment 3 and environment 4. The results of
simulation are depicted in Figure 7. The simulation
results prove that the variation of the evaporation
factor ρ has an impact only on the execution times
for all the four environments. From Figure 7 it can
be noticed that large ρ produces better results in a
minimum amount of time for all the four environments.

Environments smartPATH Dijkstra
Environment 1 2135 48
Environment 2 6560 140
Environment 3 4228 257
Environment 4 2333 32739
Environment 5 4343 108723

Table 3. Number of explored nodes of smartPATH and Dijkstra
Algorithms in Different Environments (s)

Figure 4. Length of the Generated Paths of smartPATH,
IACO, smartPATH-WHF, CACO, GA and Dijkstra Algorithms in
Different Environments

Environments smartPATH IACO smartPATH-WHF CACO GA Dijkstra
Environment 1 0.048 0.048 0.00961 0.0083 0.1875 0.0076
Environment 2 0.3978 0.25764 0.471 0.4841 0.25 0.00854
Environment 3 0.1722 0.1722 0.0551 0.04738 0.6406 0.0238
Environment 4 0.1344 0.0992 0.6832 1.0223 - 0.16912
Environment 5 0.2574 0.2574 7.0855 2.38975 - 1.5816

Table 4. Execution times of smartPATH, IACO ,
smartPATH-WHF, CACO , GA and Dijkstra Algorithms in
Different Environments (s)

Figure 5. Impact of Variation of the Number of Ants on the Path
Length in Different Environments

Figure 6. Impact of Variation of the Number of Ants on the
Execution Time in Different Environments

Figure 7. Impact of Variation of the Evaporation Rate ρ on the
Execution Time in Different Environments

6. Experimental Study

6.1 Experiments Set-Up

In this section, we present an experimental study to
demonstrate the feasibility of the smartPATH algorithm

Imen Châari, Anis Koubâa, Sahar Trigui, Hachemi Bennaceur, Adel Ammar and Khaled Al-Shalfan:
SmartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path Planning Problem of Mobile Robots

11

through a real-world implementation on robots, and also
to evaluate its performace in realistic scenarios.

The implementation was developed in C++ using
Microsoft Visual Studio and tested on the Wifibot Lab
V3 robot [48], operating under a lightweight version of
Windows 7. The Wifibot Lab V3 robot is equipped with a
computer board encompassing an Intel Atom D 510 Duo
Core processor, with 1 GB of RAM and a compact flash of
4 GB as hard drive. The robot also has 4 infrared sensors
(2 in front and 2 in back), with a detection range between
20 cm and 190 cm. The navigation of the robot is ensured
using (i.) its wheel odometry that provides information
about the traveled distance and (ii.) the VectorNav VN-100
device that provides the orientation (i.e. yaw) of the robot
in the 2D plan.

A snapshot of the experimental environment is shown in
Figure 8.

We conducted experiments in an indoor environment of
14 ∗ 7m2. The obstacles in this environment are static.
In addition, the different waypoints are arranged such
that the robot navigates without hitting any obstacle. In
other words, connected waypoints define obstacle free
paths. The apriori known map is uploaded to the robot
as a square matrix that represents the input to the path
planning algorithms. We considered a home environment
to test the performance of the algorithms in realistic
conditions. This environment contains 30 waypoints as
depicted in Figure 11.

6.2 Scenarios and Metrics

For ensuring a reliable statistical analysis, we considered
30 different scenarios, where each scenario is specified
by the coordinates of the start waypoint and the goal
waypoint. Each scenario, with specified start/goal
waypoints, is repeated 30 times (i.e. 30 runs for each
scenario) and average values of the metrics are then
calculated with 95% of confidence interval. In total, 900
runs are performed in the performance evaluation study.

We consider three metrics to evaluate the performance
of the smartPATH algorithm: (1) the probability to find
the optimal path without time bound, and is defined as
the ratio of the number of runs where the optimal path
is found to the total number of runs, (2) the probability
to find the optimal path with bounded time fixed to
100ms, meaning that the algorithm is stopped at 100ms of
execution time; this helps assess the effectiveness of the
algorithm under real-time constraints and (3) the average
gap between the optimal solution and the best solution
found by the algorithm, which is evaluated as:

GAP = Cost(solution f ound)− Cost(optimalsolution) (7)

6.2.1. Results Analysis

We observe in Figure 12 that the probability of finding
an optimal solution of the smartPATH algorithm is about
80% when the execution time is not limited. On the

 192.168.1.XXX

SSID :wifibotlabap

192.168.1.1

vectorNAV

Figure 8. Experiment Set-Up

Figure 9. Real Environment

Figure 10. Cumulative Distribution Function of the GAP

other hand, with bounded execution time (100 ms), the
probability of finding the optimal path is reduced down
to 60%. The results demonstrate the effectiveness of the
smartPATH in finding the optimal solution even when
real-time constraints are imposed. In fact, smartPATH
mostly likely finds the optimal path in less than 100 ms,
while still ensuring a small GAP as depicted in Figure 10.
Indeed, it is observed in Figure 10 that the GAP does not
exceed 1m in 98% of cases with no time bound, and in 90%
of cases with 100ms time bound. These results would be
even better with robots having more powerful computing
resources.

Figure 13 presents the scatterplot of the Relative Time
versus the Relative GAP and also confirms the good
performance of smartPATH. The relative time is defined
as the ratio of the time to find the best solution to the
maximum time among the 900 experiments. The relative
GAP is defined as the ratio of the gap between the optimal
solution and the best solution found to the maximum
gap. In fact, we observe that the scattered points are
concentrated around the point (0,0). This means that most
of the non optimal solutions have a small GAP and are
found in a short relative time. We note that the maximum
time (among the 900 experiments) for finding the best
solution was equal to 3.125 sec.

It becomes clear that the hybridization of the ACO
approach with the GA approach is quite effective in
optimizing the search process of optimal paths for mobile

Int J Adv Robot Syst, 2014, 11:94 | doi: 10.5772/58543 12

03456

7

9

10

21
15

11

14

13

19

20

16

18

81217222324

25

26

27

28

29

31

30

Figure 11. Experimental Environment

Figure 12. Global Probability to Find the Optimal Path

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Ti

m
e

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 10

0.2

Relative GAP

Figure 13. Scatter plot of the Relative Time versus the Relative
GAP

robots. However, there is a need to investigate other
optimization approaches such as Tabu Search or Particle
Swarm Optimization to devise other hybrid algorithms,
which is currently under consideration.

7. Conclusion

In this paper, we illustrated how hybridization of
optimization algorithms is effective in improving their
performance in the context of shortest path search
problem, which represents a fundamental problem in
robotics. The proposed smartPATH algorithm relies on
a new and efficient hybrid ACO-GA approach to solve
the problem of the global robot path planning in a static
environment. In a nutshell, the smartPATH algorithm
looks for optimal solution using an improved version of
Ant Colony Optimization approach, then, tries to enhance
the solution through a mutation and a modified crossover
operator using Genetic Algorithms. The GA phase has
the advantage of making diversification by exploring
different search spaces thus reducing the risk to fall into a
local minimum.

smartPATH was extensively evaluated through
simulation, and a real implementation on Wifibot
Lab robot, and its performance was compared against
the classical ACO, the classical GA algorithms and the
Dijkstra shortest path method. It has been shown that
the modifications applied into the IACO algorithm
contributed to improve the solution quality and reduce
the search space and time. Also, the crossover operator of
GA phase provided a fast post optimization that enables
to fine tune solutions of the previous IACO phase. The
experimental results showed that smartPATH can achieve
up to 80% of success in finding the optimal solution.

Future directions. It is clear that the results achieved
in this paper demonstrate the real potential of ACO and
GA algorithms in solving the path planning problem.
However, one open question is: "what about the
performance of other approaches in comparison to
ACO and GA?". Indeed, a vast array of works in the
literature has been performed to devise intelligent
heuristics for the robot path planning problem, and
different techniques have been used including, but are not
limited to, bio-inspired techniques (e.g. swarm particle
optimization (PSO), bees algorithms), and evolutionary
algorithms (e.g. genetic algorithms), and other local
search techniques (e.g. tabu search, simulated annealing).
In the literature, there is no comprehensive comparison
between existing methods that solve the path planning
problem. As such, we are currently investigating the other
approaches for solving the path planning problem. For
instance, we noticed that the Tabu Search approach was
not extensively used to solve this kind of problems in the
literature although this technique has been shown to be
efficient in solving some complex combinatorial problems
such as the multi-Knapsack problem. We are currently
working towards understanding the advantages and
limitations of this method, and investigate its potential
to effectively solve the path planning problem. Also,
several other techniques should be assessed including
Particle Swarm Optimization, Neural Networks, and a
comparison between all these approaches will bring an
added value.

8. Acknowledgment

This article is a revised and expanded version of a paper
entitled "smartPATH: A hybrid ACO-GA algorithm for
robot path planning" presented in the IEEE Congress on
Evolutionary Computation (IEEE CEC 2012) that was
organized in Brisbane (Australia) in June 2012.

This work is supported by the iroboapp project âĂIJDesign
and Analysis of Intelligent Algorithms for Robotic
Problems and ApplicationsâĂİ[49] under the grant of the
National Plan for Sciences, Technology and Innovation
(NPSTI), managed by the Science and Technology Unit
of Al-Imam Mohamed bin Saud University and by King
AbdulAziz Center for Science and Technology (KACST).

This work is partially supported by Prince Sultan
University.

Imen Châari, Anis Koubâa, Sahar Trigui, Hachemi Bennaceur, Adel Ammar and Khaled Al-Shalfan:
SmartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path Planning Problem of Mobile Robots

13

9. References

[1] Wu T, Duan Z.H, Wang J (2010) The design of
industry mobile robot based on LL WIN function
blocks language and embedded system. In: The 2nd
International Conference on Computer Engineering
and Technology. 2010 pp. 622–625.

[2] Stopforth R, Holtzhausen S, Bright G, Tlale N.S,
Kumile C.M (2008) Robots for Search and Rescue
Purposes in Urban and Underwater Environment- a
survey and comparison. In: 15th International
Conference on Mechatronics and Machine Vision in
Practice. 2008 pp. 476–480.

[3] Nagaoka K, Kubota T, Otsuki M, Tanaka S (2009)
Robotic Screw Explorer for Lunar Subsurface
Investigation: Dynamics Modelling and Experimental
Validation. In: International conference on Advanced
Robotics. 2009 pp. 1–6.

[4] Iroboapp Research Project. 2014. Available from:
http://www.iroboapp.org/ Accessed on 12 Mar 2014.

[5] Raja P, Pugazhenthi S (2012) Optimal path planning of
mobile robots: A review. International Journal of
Physical Sciences 7:1314–1320.

[6] Buniyamin N, Wan Ngah W, Sariff N, Mohamad Z
(2011) A Simple Local Path Planning Algorithm
for Autonomous Mobile Robots. International
Journal Of Systems Applications, Engineering and
Developement, 5:151–159.

[7] Latombe Jean Claude (1991) Robot motion planning,
The Springer International Series in Engineering and
Computer Science. 651.

[8] Ellips M, Sedighizadeh D (2007) Classic and heuristic
approaches in robot motion planning - a chronological
review. In: the proceedings of world academy of
science, engineering and technology. 23:101–106.

[9] Dijkstra E.W (1959) A Note on Two Problems in
Connexion with Graphs. Numerische Mathematik,
1:269-271.

[10] Hart P, Nilsson N.J, Bertram R (1968) A formal basis
for the heuristic determination of minimum cost paths.
In: the IEEE Transactions on Systems Science and
Cybernetics, 4:pp. 100-107.

[11] Peyer S, Rautenbach D, Vygen J (2009) A
generalization of dijkstra’s shortest path algorithm
with applications to vlsi routing. Journal of Discrete
Algorithms. 7:377–390.

[12] Bhattacharya P, Gavrilova M.L (2008)
Roadmap-Based Path Planning - Using the Voronoi
Diagram for a Clearance-Based Shortest Path. In: The
IEEE Robotics and Automation Magazine. pp. 58–66.

[13] Warren C.W (1989) Global path planning using
artificial potential fields. In: The IEEE International
Conference on Robotics and Automation: 2012 USA,
pp. 316–321.

[14] Lingelbach F (2004) Path planning for mobile
manipulation using probabilistic cell decomposition.
In: The IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2004 Stockholm, pp.
2807–2812.

[15] Tang K.S, Man K.F, Kwong S, He Q (1996)
Genetic algorithms and their applications. In IEEE Signal
Processing Magazine, pp. 22–37.

[16] Cao Y, Zhou X, Li S, Zhang F, Wu X, Li A, Sun L
(2010) Design of path planning based Cellular Neural
Network. In: the 8th World Congress on Intelligent
Control and Automation (WCICA), pp.6539-6544.

[17] Chaari I, Koubaa A, Bennaceur H, Ammar A, Trigui
S, Tounsi M, Shakshuki E and Youssef H (2014) On
the Adequacy of Tabu Search for Global Robot Path
Planning Problem in Grid Environments. In: The
5th International Conference on Ambient Systems,
Networks and Technologies ANT2014: 2014 Belgium.

[18] Masehian E, Amin-Naseri M.R (2006) A Tabu
Search-based Approach for Online Motion Planning.
In: IEEE International Conference on Industrial
Technology, pp. 2756–2761.

[19] Marco Dorigo, Thomas Stutzle (2004) Ant colony
optimization. Cambridge, Massachusetts London,
England,The MIT Press.

[20] Eberhart Y, Shi Y (2001) Particle swarm optimization:
developments, applications and resources. In:
the IEEE Proceedings of the 2001 Congress on
Evolutionary Computation, pp. 81–86.

[21] Fan X, Luo X, Yi S, Yang S, Zhang H (2003)
Optimal path planning for mobile robot based on
intensified ant colony optimization algorithm. In: the
IEEE international conference on Robotics, Intelligent
Systems and Signal Processing, pp. 131–136.

[22] Nagib G., Gharieb W (2004) Path planning for a
mobile robot using genetic algorithms. In : the IEEE
International Conference on Electrical, Electronic and
Computer Engineering. pp. 185–189.

[23] Zhao J, Zhu L, Liu G, Han Z (2009) A modified genetic
algorithm for global path planning of searching
robot in mine disasters. In: the IEEE International
Conference on Mechatronics and Automation , pp.
4936–4940.

[24] Porta Garcia M.A, Montiel O, Castillo O, Sepulveda
R, Melin P (2009) Path planning for autonomous
mobile robot navigation with ant colony optimization
and fuzzy cost function evaluation. Journal of Applied
soft computing, 1102-1110.

[25] Lee J.W, Lee J.J (2010) Novel ant colony optimization
algorithm with path crossover and heterogeneous
ants for path planning. In: the IEEE International
Conference on Industrial Technology, pp. 559–564.

[26] Alajlan M, Koubaa A, Chaari I, Bennaceur H, Ammar
A (2013) Global Path Planning for Mobile Robots
in Large-Scale Grid Environments using Genetic
Algorithms. In: the International Conference on
Individual and Collective Behaviors in Robotics ICBR
Sousse, Tunisia.

[27] Wang D.S, Yu H.F (2011) Path planning of mobile
robot in dynamic environments. In: the IEEE 2nd
international conference on intelligent control and
information processing, pp. 691–696.

[28] Zhang X, Wu M, Peng J, Jiang F (2009) A Rescue Robot
Path Planning Based on Ant Colony Optimization
Algorithm. In: the IEEE International Conference on
Information Technology and Computer Science, pp.
180–183.

[29] He Y, Zeng Q, Liu J, Xu G, Deng X (2013) Path
Planning for Indoor UAV Based on Ant Colony

Int J Adv Robot Syst, 2014, 11:94 | doi: 10.5772/58543 14

Optimization. In: the Chinese Control and Decision
Conference (CCDC), pp. 2919–2923.

[30] Ganganath N, Cheng C (2013) A 2–Dimensional
ACO-based Path Planner for Off-line Robot Path
Planning. 2013 In: the International Conference
on Cyber-Enabled Distributed Computing and
Knowledge Discovery. pp 302-307.

[31] AL-Taharwa I, Sheta A, Al-Weshah M (2008) A
Mobile Robot Path Planning Using Genetic Algorithm
in Static Environment. Journal of Computer Science.
341–344.

[32] Zhang Y, Zhang L, Zhang X (2008) Mobile Robot
Path Planning base on the Hybrid Genetic Algorithm
in Unknown Environment. In: the IEEE Eighth
International Conference on Intelligent Systems
Design and Applications, pp. 661-665.

[33] Shiltagh N.A, Jalal L.D (2013) Path planning of
intelligent mobile robot using modified genetic
algorithm. International Journal of Soft Computing
and Engineering (IJSCE) 3:31–36.

[34] Hussein A, Mostafa H, Badrel-din M, Sultan
O, Khamis A (2012) Metaheuristic optimization
approach to mobile robot path planning. 2012 In:
the International Conference on Engineering and
Technology (ICET), pp. 1 –6.

[35] Tewolde G.S, Weihua S (2008) Robot Path Integration
in Manufacturing Processes: Genetic Algorithm versus
Ant Colony Optimization. In: the IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and
Humans. pp. 278–287.

[36] Buniyamin N, Sariff N, Wan-Ngah W.A.J, Mohamad
Z (2011) Robot global path planning overview and a
variation of ant colony system algorithm. International
Journal of Mathematics and Computers In Simulation,
5:9-16.

[37] Sariff N.B, Buniyamin N (2009) Comparative
study of genetic algorithm and ant colony
optimization algorithm performances for robot path
planning in global static environments of different
complexities. In: the IEEE International Symposium
on Computational Intelligence in Robotics and
Automation (CIRA). pp.132–137.

[38] Ma Y.J, Hou W.J (2010) Path planning method based
on hierarchical hybrid algorithm. In: the International
Conference on Computer, Mechatronics, Control and
Electronic Engineering, pp. 74–77.

[39] Li Q, Zhang W, Yin Y.X, Wang Z.L (2006) An
improved genetic algorithm for optimal path
planning. Journal of Information and Control.
35:444-447.

[40] Xu R, Li Y, Liu H.L Liu P (2008) Hybrid genetic
ant colony algorithm for traveling salesman problem.
Journal of Computer Applications, 28:2084-2112.

[41] Wang F.Y, Pan F.Q, Zhang L.X, Zou X (2005) Optimal
path algorithm of road network with traffic restriction.
Journal of Traffic and Transportation Engineering.
5:92-95.

[42] Gao M, Xu J, Tian J (2008) Mobile robot path planning
based on improved augment ant colony algorithm.
In: the 2th International conference on Genetic and
Evolutionary Computing, pp. 273–276.

[43] Geetha S, Chitra G.M, Jayalakshmi V (2011) Multi
Objective Mobile Robot Path Planning Based on
Hybrid Algorithm. In: the IEEE 3rd International
Conference on Electronics Computer Technology
(ICECT), pp. 251–255.

[44] Zhou W, Yi Z, Ruimin Y (2008) Mobile Robot Path
Planning Based on Genetic Algorithm. Microcomputer
Information. 24:187-189.

[45] Garro B, Sossa H, Vzquezi R.A (2008) Evolving ant
colony system for optimizing path planning in mobile
robots. In: the IEEE Fourth Congress of Electronics,
Robotics and Automotive Mechanics, pp. 444–449.

[46] Zickler S, Veloso M (2010) RSS-based relative
localization and tethering for moving robots
in unknown environments. In the 2010 IEEE
International Conference on Robotics and Automation
(ICRA). pp.5466–5471.

[47] Corke P (2012) Robotics, Vision and Control. Springer
Tracts in advanced robotics, Second Edition, 596.

[48] WIFIBOT Lab. Available from:
http://www.wifibot.com/ Accessed on 29 Apr 2013.

[49] iroboapp: Design and analysis of intelligent
algorithms for robotic problems and applications.
Available from: http://www.iroboapp.org Accessed
on 12 Mar 2014.

[50] Dijkstra Algorithm. Available from:
http://www.mathworks.com/matlabcentral/
fileexchange/14661-dijkstra-very-simple Accessed on
29 Apr 2013.

Imen Châari, Anis Koubâa, Sahar Trigui, Hachemi Bennaceur, Adel Ammar and Khaled Al-Shalfan:
SmartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path Planning Problem of Mobile Robots

15

