

Schedulability analysis for CAN bus messages

of periodically-varying size

Conference Paper

*CISTER Research Centre

CISTER-TR-220501

2022/04/27

Ishfaq Hussain*

Pedro Souto*

Konstantinos Bletsas*

Muhammad Ali Awan

Eduardo Tovar*

Conference Paper CISTER-TR-220501 Schedulability analysis for CAN bus messages of ...

© 2022 CISTER Research Center
www.cister-labs.pt

1

Schedulability analysis for CAN bus messages of periodically-varying size

Ishfaq Hussain*, Pedro Souto*, Konstantinos Bletsas*, Muhammad Ali Awan, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: hussa@isep.ipp.pt, pfs@fe.up.pt, ksbs@isep.ipp.pt, awa@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Abstract 14Conventional CAN bus schedulability analysis assumes that all messages with a given identifier have

the same worst-case length. In this paper we extend that analysis to amore general model in which messages with

a given identifier may have different lengths, that vary according to a known periodic pattern. That is, for some

positive integer S, we assume that the length of message instances n and n + S with the same id is the same. By

leveraging such patterns, where present, our new analysis allows for a more efficient use of CAN bus bandwidth

than the application of conventional analysis, which can be pessimistic. This may be interesting when a given

node sends the values of multiple signals with different periods. In such a scenario, the conventional CAN

schedulability analysiswould require either the use of different ids for different signals (assuming there are

enough of them), which leads to a higher bandwidth overhead because of the reduplication of message headers,
or using only one id, but pessimistically always assuming the maximum possible length of the message, for safety

reasons.

Schedulability analysis for CAN bus messages
of periodically-varying size

Ishfaq Hussain∗, Pedro F. Souto†, Konstantinos Bletsas∗, Muhammad Ali Awan∗, Eduardo Tovar∗
∗CISTER Research Centre and ISEP/IPP, Porto, Portugal

†University of Porto, FEUP-Faculty of Engineering and CISTER Research Centre, Porto, Portugal

Abstract—Conventional CAN bus schedulability analysis as-
sumes that all messages with a given identifier have the same
worst-case length. In this paper we extend that analysis to a
more general model in which messages with a given identifier
may have different lengths, that vary according to a known
periodic pattern. That is, for some positive integer S, we assume
that the length of message instances n and n + S with the
same id is the same. By leveraging such patterns, where present,
our new analysis allows for a more efficient use of CAN bus
bandwidth than the application of conventional analysis, which
can be pessimistic. This may be interesting when a given node
sends the values of multiple signals with different periods. In
such a scenario, the conventional CAN schedulability analysis
would require either the use of different ids for different signals
(assuming there are enough of them), which leads to a higher
bandwidth overhead because of the reduplication of message
headers, or using only one id, but pessimistically always assuming
the maximum possible length of the message, for safety reasons.

I. INTRODUCTION

The CAN bus (“Controller Area Network”) is a commu-
nication bus architecture, standardized as ISO 11898, that
is ubiquitous in automotive systems. The original motivation
behind CAN was to replace many kilometers of physical
wire connecting the ever-more-numerous sensors and elec-
tronic control units with a lightweight and robust logical
interconnect. There currently exist more than a billion (109)
automotive systems with CAN buses in them [1], so the real-
world importance of this technology is very high.

One of the main characteristics of CAN bus is that, by
design, it supports at the physical layer the prioritized trans-
mission of different messages according to their distinguishing
message identifier (which doubles as a priority level). Without
getting into too much detail, there exist a contention round
and a transmission round. During the contention round, all
nodes currently contending for the bus transmit their corre-
sponding message identifiers in binary representation while
also monitoring the bus to see what bit is transmitted. Any
node that reads from the bus a binary value not matching
what it is currently transmitting, “knows” that it does not
have the highest-priority among the contenders, and should
give up and retry at the next contention round. This scheme
is properly called Carrier Sense Multiple Access/Collision
Resolution (CSMA/CR) [2]. At the end of the contention
round (typically 11 bits long), the highest-priority current
contender “knows” that it can transmit its message (typically,

0 to 8 bytes, before any bit-stuffing) during the subsequent
transmission round, without any contention on the bus. All
other nodes can then receive that message (although, typically,
they will only care for specific message ids).

This property of CAN proved very valuable because it
can be leveraged to achieve very high (typically 80% or
more [1]) bandwidth utilization with offline-derivable guar-
antees of timely message delivery. Indeed, Tindell et al. noted
the analogies with uniprocessor fixed-priority scheduling and
came up with schedulability analysis for the CAN bus [3]–[5].
The state-of-the-art form of that analysis by Davis et al. [2]
further influenced other works on that topic [6]–[10]. Before
this theoretical toolkit was available, researchers had to resort
to lengthy simulations or test runs to have some confidence
of timeliness (but no hard guarantees!), and the typical bus
utilization was only up to 30% [1].

In this paper, we aim to remove the pessimism that occurs
when the (worst-case) length of a given CAN message is not
fixed (as the state-of-the-art analysis assumes), but instead
varies for successive instances of the message, according to
a known periodically-repeating pattern. More formally, this is
the case where for some integer S(> 1), the worst-case length
of message n and n+ S with the same identifier is the same.
This generalization of the CAN message model is analogous to
the generalization of the worst-case execution times (WCETs)
of real-time computing tasks1, devised by Mok and Chen [11].
Note that our contributions are purely at the analytical level,
and do not involve any changes at all to CAN itself or its
implementations. After all, CAN does not restrict messages
of a given id to always have the same length.

Our work is motivated by practical considerations. For
example, consider a CAN node which sends the values of
multiple signals with different periods that are multiple of
each other (Figure 1). The conventional CAN schedulability
analysis can deal with this if different message ids are used
for different signals, but this has the disadvantage of higher
bandwidth overhead, because of the reduplication of message
headers and the elevated message contention. Additionally,
there might not always exist enough available message ids, so
they would need to be used sparingly. Alternatively, the same

1This generalization is known as the “multiframe task model”. The term
“frame” therein carries specific meaning, not to be confused with the concept
of transmission frames in communication protocols, such as CAN itself.

20
22

 IE
EE

 1
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 F
ac

to
ry

 C
om

m
un

ic
at

io
n

Sy
st

em
s (

W
FC

S)
 |

 9
78

-1
-6

65
4-

10
86

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
W

FC
S5

38
37

.2
02

2.
97

79
18

7

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on December 15,2022 at 18:01:44 UTC from IEEE Xplore. Restrictions apply.

message (and a single id) can be used to piggy-back multiple
sensor values, with the message length varying accordingly.
However, the current analysis will then have to conservatively
always assume the maximum possible message length, leading
to pessimism.

Our approach, by comparison, allows for using a single
message id, in such cases, without any of the analytical
pessimism that the state-of-the-art analysis incurs.

The rest of this paper is composed of the following sections.
In Section II, background about CAN schedulability analysis
and multiframe task model is presented. The system model is
discussed in Section III. Section IV presents a relatively quick
but pessimistic analysis for multisized CAN messages. Tighter
analysis is developed in Section V. Section VI illustrates, via
examples, the application of the two new analyses and the
kind of improvement they can achieve over the state-of-the
art. Finally, conclusions are drawn in Section VII.

II. BACKGROUND

Our analysis builds on the worst-case response time analysis
of the CAN protocol by Davis et al. [2] and on the response
time analysis for the multiframe task model by Baruah et
al. [12]. In this section, we summarize those existing results.

A. CAN Schedulability Analyis

The state-of-the-art in CAN schedulability analysis is found
in [2], superseding all earlier seminal works [3]–[5] and fixing
certain issues. In [2], Davis et al. apply uniprocessor fixed-
priority based response time analysis to the schedulability
of the CAN network. Indeed, we can map the problem of
scheduling messages on a bus to the problem of scheduling
task on a single core processor. The main difference between
these two problems arises from the fact that conventional
fixed-priority-based response time analysis assumes preemp-
tive tasks, whereas, in CAN, a message whose transmission
has already began cannot be preempted by a higher-priority
message that arrived meanwhile.

More specifically, the analysis by Davis et al. [2] bounds
the time since the arrival of a message, m, until the end of its
transmission. Each message is assumed to have a worst-case
transmission time, C, a minimal inter-arrival time, T , and a
deadline for its transmission, D, relative to its arrival. The
worst-case response time (WCRT) of message m is given by:

Rm = Jm + wm + Cm (1)

where

Jm is the queuing jitter, the longest time between the
arrival of a message and adding it to the transmission
queue;

wm is the queuing delay, the longest time the message
remains in the transmission queue, until its successful
transmission on the bus begins;

Cm is the longest message transmission time.

The queuing delay has two components:

Bm is the longest time m may have to wait for a lower-
priority message to complete its transmission. This
models the case when such a message is being
transmitted when m is queued.

Im is the worst-case interference caused by higher pri-
ority messages that arrive before m starts being
transmitted and therefore win access to the bus.

The blocking time is given by:

Bm = max
i∈lp(m)

(Ci) (2)

where lp(m) is the set of messages of lower priority than m.

The computation of Im relies on the concept of busy period,
introduced by Lehoczky [13].

Davis et al. define a priority level-m busy period as a time
interval [ts, te), i.e. a right-open interval, where:

ts is the time when a message of priority m or higher is
queued for transmission, and there are no messages
of priority m or higher waiting to be transmitted that
were queued strictly before ts;

te is the earliest time when the bus becomes idle, i.e.
ready for transmission, and there are no messages of
priority m or higher waiting to be transmitted that
were queued strictly before time te.

Note that, during a level-m busy period, messages with
priority lower than m do not start transmission. Furthermore,
all messages with priority higher than or equal to m that are
queued during a busy period are transmitted during that busy
period.

Thus the largest length, tm, of a level-m busy period is
given by the recurrence:

tn+1
m = Bm +

∑
∀k∈hep(m)

⌈
tnm + Jk
Tk

⌉
Ck (3)

where hep(m) is the set of messages with priority higher than
or equal to m.

This recurrence is guaranteed to converge provided:∑
∀k∈hep(m)

Ck
Tk

< 1 (4)

i.e., the total bus utilization of messages with priority higher
than or equal to m is less than 1.

The number of instances Qm of message m that arrive
during a level-m busy period is given by:

Qm =

⌈
tm + Jm
Tm

⌉
(5)

Thus, the analysis computes worst-case response time of
each of these instances.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on December 15,2022 at 18:01:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The transmission of different sensor readings with periods that are multiple of each other can be combined on the same
message; the size of subsequent instances of that message will accordingly vary.

Let q denote the order of an instance of a message m in
a level-m busy period. Thus q = 0 for the first instance and
q = Qm − 1 for the last one.

The longest time from the start of the level-m busy period
until instance q begins successful transmission is given by:

wn+1
m (q) = Bm + q Cm +

∑
∀k∈hp(m)

⌈
wnm + Jk + τbit

Tk

⌉
Ck

(6)
where τbit is a CAN bit transmission time.

The response time of instance q is given by:

Rm(q) = Jm + wm(q)− q Tm + Cm (7)

Thus, the worst-case response time of message m is:

Rm = max
q=0..Qm−1

(Rm(q)) (8)

Note that if for some q, we have Rm(q) > Dm the message
is unschedulable, and the analysis should stop.

Finally, the worst-case transmission time Cm of a message
m (which includes the transmission of its identifier and bits
added for error-resilience and synchronization, including bit-
stuffing) as a function of its size sm in bytes is given by [2]:

Cm =(55 + 10 · sm) · τbit if ids are 11-bit (9)
Cm =(80 + 10 · sm) · τbit if ids are 29-bit (10)

B. Multiframe Task Model

The multiframe task model was proposed by Mok and
Chen [11], in order to reduce the pessimism in the schedulabil-
ity analysis of systems with computing tasks whose worst-case
execution times vary according to a known periodic pattern.
Specifically, the WCET of consecutive jobs of a multiframe
task τi follow a pattern that repeats every Fi jobs. That is,
in any schedule, the kth, (k + Fi)

th, (k + 2Fi)
th, . . . jobs

of τi all have the same WCET. Therefore, each multiframe
task τi = ((Ci,0, Ci,1, . . . , Ci,(Fi−1)), Ti) is characterized by
a vector of WCET (Ci,0, Ci,1, . . . , Ci,(Fi−1)) and minimum
inter-arrival time Ti. (In [11], the term “frame” refers to each
of the Fi elements of that vector.)

0 1

1 2

2 3

0

0

0

10

10

10

t

t

t

WCRT

Fig. 2: Interference of a multiframe task depends on the
phasing of its jobs w.r.t. the job under analysis, whose WCRT
is shown. (The rectangles represent the jobs of the interfering
task, and the number inside each of them is the job number.)

To determine the schedulability of a multiframe task, it
suffices to check if the WCRT of the frame with the largest
WCET is smaller than the task deadline (assumed to be
constrained, i.e., Di ≤ Ti). However, unlike the ”single-frame”
model, it is not enough to compute the number of job releases
of each interfering task in the WCRT of the task under analy-
sis. This is because each multiframe task τi is characterized by
a vector of WCET

(
Ci,0, Ci,1, . . . , Ci,(Fi−1)

)
, and the phasing

of the released jobs affects the amount of interference. This is
illustrated in Figure 2, which shows the 3 possible phasings of
jobs of an interfering task τi with period Ti = 10 and WCET
vector (2, 4, 1), w.r.t. to a job under analysis whose WCRT is
16 time units. During this interval there are at most 2 jobs of
the interfering task, but the amount of interference depends on
the first job in that sequence. As illustrated, this interference
is worst, 6, if the first job in the sequence is job 0, Fk,
On the other hand, if the first job in the sequence is job 2,
2 + Fk, . . . , the interference is the least, 3.

To efficiently compute the interference exerted by a multi-
frame task, Baruah et al. [12] define the g(τi, k) function:

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on December 15,2022 at 18:01:44 UTC from IEEE Xplore. Restrictions apply.

g(τi, k) =



0 if k = 0

max
0≤j<Fi

j+k−1∑
`=j

Ci,(` mod Fi)

 if 1≤k≤Fi

q · g(τi, Fi) + g(τi, r) otherwise
where q = k div Fi and

r = k mod Fi
(11)

which bounds the cumulative WCET of any sequence of k
jobs of task τi. This function is then used to define function
G(τi, t):

G(τi, t) = g

(
τi,

⌈
t

Tk

⌉)
(12)

which bounds the cumulative execution request of task τi over
any time interval of duration t. Finally, the worst-case response
time recurrence is:

Ri = g(τi, 1) +
∑

τj∈hp(i)

G (τj , Ri) (13)

III. SYSTEM MODEL

The assumed system model, other than capturing the pos-
sibility of a message’s length varying according to a known
cyclic pattern, does not deviate at all from the one assumed
in [2]. The assumptions regarding the underlying CAN proto-
col and implementation are exactly the same. Specifically:

What is common with the state-of-the-art: We assume a
number of nodes on the bus and a set of messages transmitted,
with a known respective inter-arrival time Tm and relative
deadline Dm for each message m. Message identifiers are
unique and also serve as their priorities. Their size is 11
or 29 bits (standard/extended format, respectively). At the
start of each CAN frame, nodes with messages ready for
transmission, first transmit their respective identifiers, in the
contention round. At the end of the contention round, only
the winner proceeds with the transmission of the payload of
its message, after subjecting to bit-stuffing. The payload of a
message is 0 to 8 bytes long2, before bit-stuffing – and bit-
stuffing means the insertion of a complementary bit, whenever
there is a sequence of 5 identical consecutive bits 3. The bit
length of a message after bit-stuffing therefore depends on the
actual bit values, which may only be known at run time, but
an upper bound is a function of the worst-case message length
prior to bit-stuffing, which is known offline. In this paper, as
in the literature, we therefore use the symbol C to denote the
worst-case transmission time (CAN bit time) of a message.

2A zero-byte payload message can be an alarm of sorts, conveyed solely
by the message identifier.

3This facilitates synchronization, since the nodes do not share a common
clock in reality, and provides some error resilience. A detailed discussion of
bit-stuffing would be out-of-scope for our paper, but there is some discussion
in [2] for the interested reader.

multiframe task multisized CAN message
job message instance
number of frames message cycle length
superframe message cycle
frame message subtype

TABLE I: Terminology for multiframe real-time tasks (left)
and analogous concepts for multisized CAN messages (right).

This contains the transmission of its identifier plus its payload
(assuming maximum bit-stuffing).

The end of the transmission of a message is identified
by all nodes upon detection of a bus idle period, which
involves specific bit patterns Then, the next CAN frame starts.
Any messages that became ready for transmission during the
previous frame, will now compete in the new contention round.

Depending on whether or not CAN nodes have buffers
capable of holding multiple ready untransmitted messages,
message deadlines can either be constrained (i.e., Dm ≤
Tm, ∀m) or arbitrary (i.e,, without such restriction). This is
because multiple untransmitted instances of a message with a
worst-case response time Rm > Tm may accumulate at the
transmitting node.

What is new in this work: The state-of-the-art character-
izes all message instances with a given id m, by the same
worst-case transmission length Cm. This is pessimistic if the
message length varies according to a known cyclic pattern.
We call those multisized messages. Consider the following
definitions pertaining to them, which mirror concepts from
multiframe tasks (Table I).

The message cycle length Sm, characterizing a message
m (and denoted as simply S, for ease of notation, whenever
possible), is the least integer such that the worst-case trans-
mission lengths of the kth instance and the (k+S)th instance
of message m are the same, for any k.

A message cycle consists of any consecutive S instances
of message m.

Additionally, we call each of the S messages in a cycle, a
message subtype.

IV. ANALYSIS

A. Multisized messages

In order to upper-bound the interference caused by higher
priority messages we adapt the g(.) and G(.) functions of
multiframe tasks to multisized messages as follows:

gm(k) =



0 if k = 0

max
0≤j<S

j+k−1∑
`=j

Cm,(` mod S)

 if 1≤k≤S

q · gm(S) + gm(r) otherwise
where q = k div S, and

r = k mod S

(14)

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on December 15,2022 at 18:01:44 UTC from IEEE Xplore. Restrictions apply.

where Cm,0 . . . Cm,(S−1) are the transmission times for each
message in a sequence of S messages, and S is the cycle length
for message m, i.e., the smallest integer such that Cm,k =
Cm,(k+S) for any integer k.

Similarly, we define the Gm(t) function:

Gm(t) = gm

(⌈
t

Tm

⌉)
(15)

which upper-bounds the cumulative transmission request of
message m within a time interval of duration t.

Consider a multisized message with a cycle length of 3 and a
period of 200 τbit , and let its message subtypes have payloads
of 2, 4 and 1 byte, respectively. Their corresponding worst-
case transmission lengths (assuming 11-bit ids and applying
Equation 9 would be 75, 95 and 65 τbit. Thus we have
gm(1) = max(75, 95, 65) = 95, gm(2) = max(75 + 95, 95 +
65, 65 + 75) = 170 and gm(3) = max(75 + 95 + 65, 95 +
65 + 75, 65 + 75 + 95) = 235 τbit. And, over a time interval
of length, e.g., 380 τbit, corresponding to the WCRT of some
lower-priority message, the maximum cumulative transmission
request (analogous to cumulative task execution request, in
real-time task scheduling analysis) of message m is given by:

Gm(380) = gm

(⌈
380

200

⌉)
= gm(2) = 170 τbit

In the rest of the paper, we will generally use τbit as the
time unit, for ease of notation, without loss of generality.

B. Response time analysis

With these definitions, we are ready to generalize the
analysis in Davis et al. [2] to multisized messages.

The analysis of the response time of message m starts with
the computation of the length of the level-m busy period. For
this computation rather than using (3), we use the following
recurrence:

tn+1
m = Bm +

∑
∀k∈hep(m)

Gk(t
n
m + Jk) (16)

where:
Bm = max

i∈lp(m)
gi(1) (17)

A possible starting value is t0m = Bm + gm(1).

Indeed, when different subtypes of a message may have
different lengths, the blocking term can be as large as the
maximum transmission time of the largest message subtype of
each of the messages with lower priority than m. Furthermore,
it is not enough to count the number of releases in the
interval under consideration, rather we need also to consider
the phasing of these instances. Since the right-hand-side of
(16) is monotonically non-decreasing with respect to tm, the
convergence condition is similar to (4):∑

∀k∈hep(m)

Uk < 1 (18)

where Uk is defined as follows:

Uk =
1

S

S−1∑
j=0

Ck,j
Tk

(19)

where S is the message cycle length of message k.

The next steps are to compute the response time for each
of the:

Qm =

⌈
tm + Jm
Tm

⌉
(20)

instances of message m during the maximum length level-m
busy period.

The longest time from the start of the level-m busy period
until instance q, which ranges from 0 to Qm − 1, begins
successful transmission is given by:

wn+1
m (q) = Bm + gm(q) +

∑
∀k∈hp(m)

Gk(w
n
m(q) + Jk + τbit)

(21)
Possible starting values are w0

m(q) = Bm, for q = 0 and
w0
m(q) = wm(q − 1) + gm(q)− gm(q − 1), otherwise.

The response time of instance q is given by:

Rm(q) = Jm + wm(q)− q Tm + gm(1) (22)

Thus, the worst-case response time of message m is:

Rm = max
q=0..Qm−1

(Rm(q)) (23)

as in [2] (see (8)).

This analysis is safe but it may be pessimistic. Except for
q = 0, we may be accounting the longest frame twice: Once
explicitly in the last term of (22) and possibly a second time
implicitly in gm(q) in (21).

We can remove this pessimism by modifying (22) to:

Rm(q) = Jm + wm(q)− q Tm + gm(q + 1)− gm(q) (24)

That is, to compute the interference by higher-priority
messages we assume that the first q message instances take
the longest to transmit, and therefore the q + 1 instance will
suffer maximum interference. On the other hand, by using
gm(q+1)−gm(q) in (24), we prevent the analysis from being
pessimistic w.r.t. the cumulative transmission time of instances
of message m.

V. TIGHTER ANALYSIS

Note that the analysis in the previous section, even after the
last change, although safe, may still be pessimistic. This is
because we are considering the worst case for each instance
q, but some of these worst cases may not occur simultaneously.
For example, consider the multisized message example in
Sec. IV-A. The worst case for q = 0 corresponds to the case
where message subtype 1 is the first instance. However, for
q = 1, the worst case happens when message subtype 0 is the
first instance. It may be the case that when message subtype

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on December 15,2022 at 18:01:44 UTC from IEEE Xplore. Restrictions apply.

0 is the first, the level-m busy-period is shorter than Tm−Jm
and therefore in that case, the sequence of message subtypes
0, 1 will never occur in a level-m busy period.

We can avoid some of this pessimism, by computing the
length of the level-m busy period for each of the S subtypes
of message m as the first message instance in that busy period,
and, for each of these busy periods, by computing the response
time for each message instance in the busy period under
consideration. With this approach, rather than solving just one
recurrence per message m to compute the waiting time, we
have to solve S recurrences. Thus, we can trade-off pessimism
for analysis run time.

A. Analysis

In order to derive this tighter analysis we define gm(i, k),
the cumulative transmission time of k consecutive instances
of message m starting with subtype i, as:

gm(i, k) =
i+k−1∑
j=i

Cm(j mod S) (25)

where Cm(j mod S) is the transmission time of subtype
j mod S of message m.

Likewise, we define Gm(i, t), the cumulative worst-case
transmission request of consecutive instances of message m
starting with subtype i in a time interval with length t:

Gm(i, t) = gm

(
i,

⌈
t

Tm

⌉)
(26)

We can now compute the level-m busy period starting with
subtype i of message m using the following recurrence:

tn+1
m (i) = Bm+Gm(i, tnm(i)+Jm)+

∑
∀k∈hp(m)

Gk(t
n
m(i)+Jk)

(27)
A possible starting value is t0m(i) = Bm + gm(i, 1). The
number of instances of message m in tm(i) is given by:

Qm(i) =

⌈
tm(i) + Jm

Tm

⌉
(28)

Again, for each instance q, ranging from 0 to Qm(i) − 1,
of message m in the level-m busy period we can compute its
transmission start waiting time, using recurrence:

wn+1
m (i, q) = Bm+gm(i, q)+

∑
∀k∈hp(m)

Gk(w
n
m(i, q)+Jk+τbit)

(29)
Possible starting values are w0

m(i, 0) = Bm+
∑
k∈hp(m) gk(1),

and w0
m(i, q) = wm(i, q − 1) + gm(i, q) − gm(i, q − 1), for

q 6= 0.

The worst-case response time of instance q of a message
sequence starting with subtype i of message m is given by:

Rm(i, q) = Jm + wm(i, q)− q Tm + gm(i, q + 1)− gm(i, q)
(30)

Thus, the worst-case response time, of an instance of m in
a level-m busy period starting with subtype i of message m
is given by:

Rm(i) = max
q=0..Qm(i)−1

(Rm(i, q)) (31)

Finally, the worst case response time of any instance of m
in a level-m busy period is given by:

Rm = max
i=0..S−1

(Rm(i)) (32)

VI. EXAMPLES

With the help of two example message sets, we demonstrate
the process of response time computation and the differences
between our proposed approach and the-state-of-the-art.

A. Example 1

This example illustrates our simpler analysis (Section IV)
and compares it with the state-of-the art analysis.

Table II presents the attributes of the different messages in
this example. The transmission times of the messages were
selected among the values possible from Equation 9; the latter
range from 55 (for a 0-byte message) to 135 (for an 8-byte
message), with a step of 10. All message jitters are zero.

message m priority Tm = Dm
−→
Cm Cm

message 1 high 200 τbit {75,95,65} 95
message 2 medium 350 τbit {55,75 } 75
message 3 low 400 τbit {105,55} 105

TABLE II: A set of multisized CAN messages, used in our first
example. Column ~Cm contains the vector of the transmission
times of the different message subtypes, for use by the
multisized CAN analysis. Column Cm contains the worst-
case transmission time of all message instances (a scalar),
for use by the classic CAN analysis. Message parameters are
measured in multiples of τbit.

The worst case response time of message 2 is computed as
follows. The blocking term for message 2 is B2 = 105, which
is the largest transmission time for all subtypes of message
3, the only message with lower priority. The busy period
window t2, computed with recurrence (3) (for the standard
analysis) and recurrence (16) (for the multisized message CAN
analysis), respectively converges to 540, (33) and 350, (34).

t52 = B2 +

⌈
540

T2

⌉
∗ C2 +

⌈
540

T1

⌉
∗ C1

= 105 +

⌈
540

350

⌉
∗ 75 +

⌈
540

200

⌉
∗ 95

= 105 + 2 ∗ 75 + 3 ∗ 95 = 540 (33)

t32 = B2 +G2(350) +G1(350)

= 105 + 75 + (75 + 95) = 350 (34)

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on December 15,2022 at 18:01:44 UTC from IEEE Xplore. Restrictions apply.

In this particular case, the number of instances of message 2
that need to be analyzed (i.e., that are contained in its busy
period) is 2 for the standard analysis, see (5), and 1 for the
multisized CAN message analysis, see (20).

The computation of the response time of the first instance of
message 2 requires its queueing delay w2(0) to be computed
first, using recurrences (6) for the standard analysis and (21)
for our simpler analysis, which converge to 295 (35) and 275
(36), respectively:

w3
2(0) = B2 + 0 ∗ C2 +

⌈
295 + 1

T1

⌉
C1

= 105 + 2 ∗ 95 = 295 (35)

w3
2(0) = B2 + g2(0) +G1(295)

= 105 + 0 + (75 + 95) = 275 (36)

Applying the response time equations, respectively (7) and
(24), we obtain 370 (> D2) and 350 (= D2). Thus, message
2 is not schedulable under the standard analysis, whereas
the single instance of message 2 is schedulable under the
multisized CAN message analysis of Section IV.

In summary, the worst-case response time of message 2
using the analysis of Section IV is 350 (≤ D2) whereas
using the classic analysis it is at least 370 (> D2). This
illustrates that, although the classic, state-of-the-art analysis
provides safe upper bounds for message transmission times
and response time, it can be pessimistic. As a result a system
that is actually schedulable might be declared unschedulable,
as demonstrated with this example.

B. Example 2

The differences between the simpler analysis of Section IV
and the tighter, but more complex analysis of Section V can
be more easily illustrated via a second example, with just
two messages, one of which is multisized. Table III presents
the attributes of those messages. All message jitters are zero.
Recall also that τbit = 1. Starting with our simpler analysis:

msg m priority Tm Dm
−→
Cm Cm

msg A higher 160 235 {95} 95
msg B lower 240 240 {65, 135,55} 135

TABLE III: The messages used in Example 2.

Message A has higher-priority, therefore it incurs no in-
terference from message B. However, it has a blocking term
BA=gB(1)=135 and it can suffer inteference from previously
released but yet undelivered instances of itself (given that
DA>TA). The busy period tA at this priority level is the
solution to the recurrence tn+1

A = BA + d t
n
A

TA
eCA, i.e., 420.

There exist QA = dta/TAe = d420/160e = 3 instances of
message A in this busy period of 420, and applying Equa-
tion 22, their response times are respectively 135+95 = 230,
135+2∗95−1∗160 = 165, and 135+3∗95−2∗160 = 100.
Therefore the message deadline DA = 235 is met. Onwards
with the analysis of the lower-priority message B:

This message has the lowest priority, so its blocking term
BB is zero. We will first analyse its schedulability using the
simpler analysis of Section IV. From (16), the busy period at
the priority level of message B is given by the solution to
the recurrence tn+1

B = GB(t
n
B) + GA(t

n
B), initiated by t0B =

gB(1) = 135:

t1B = GB(135) +GA(135) = 135 + 95 = 230

t2B = GB(230) +GA(230) = 135 + 2 · 95 = 325

t3B = GB(325) +GA(325) = (135 + 65) + 3 · 95 = 485

t4B = GB(485) +GA(485) = (135 + 65 + 55) + 4 · 95 = 635

t5B = GB(635) +GA(635) = (135 + 65 + 55) + 4 · 95 = 635

Therefore tB = 635 and, from (20), there exist QB =
d635/240e = 3 instances of message B in that busy period. Let
us now find the time instants (wB(0), wB(1) and wB(2)) when
those message instances begin their transmission by applying
and solving (21), and from those, their response times, via
(24):

w0
B(0) = 0

w1
B(0) = gB(0) +GA(0 + 0 + 1) = 0 + 95 = 95

w2
B(0) = gB(0) +GA(95 + 0 + 1) = 0 + 95 = 95

⇒ RB(0) = wB(0)− 0 ∗ TB + gB(1) = 95 + 135 = 230

w0
B(1) = w0

B(0) + gB(1)− gB(0) = 95 + 135− 0 = 230

w1
B(1) = gB(1) +GA(230 + 0 + 1) = 135 + 2 · 95 = 325

w2
B(1) = gB(1) +GA(325 + 0 + 1) = 135 + 3 · 95 = 420

w3
B(1) = gB(1) +GA(420 + 0 + 1) = 135 + 3 · 95 = 420

⇒ RB(1) = wB(1)− 1 ∗ TB + gB(2)− gB(1)

= 420− 240 + 200− 135 = 245

Since RB(1) > DB = 240, message B is deemed un-
schedulable by the simpler analysis from Section IV. Let us
now try the tighter analysis from Section V. Note that because
message A is not multisized, there is no difference between the
two analyses. So, we consider only message B. From (27), the
recurrence for the busy period at message B’s priority level,
for a message sequence starting with subtype i, is:

tn+1
B (i) = GB(i, t

n
B(i)) +GA(t

n
B(i))

When the subtype of the sequence-initial message is i = 0,
starting with t0B(0) = gB(0, 1) = 65:

t1B(0) = GB(0, 65) +GA(65) = 65 + 95 = 160

t2B(0) = GB(0, 160) +GA(160) = 65 + 95 = 160

Then QB(0) = dtB(0)/T0e = d160/240e = 1, so there is a
single instance of message B in this busy period – and since
tB(0) ≤ DB , it is schedulable.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on December 15,2022 at 18:01:44 UTC from IEEE Xplore. Restrictions apply.

When the subtype of the sequence-initial message is i = 1,
starting with t0B(1) = gB(1, 1) = 135:

t1B(1) = GB(1, 135) +GA(135) = 135 + 95 = 230

t2B(1) = GB(1, 230) +GA(230) = 135 + 2 · 95 = 325

t3B(1) = GB(1, 325) +GA(325) = (135 + 55) + 3 · 95 = 465

t4B(1) = GB(1, 465) +GA(465) = (135 + 55) + 3 · 95 = 465

Then, QB(1) = dtB(1)/T1e = d465/240e = 2 instances of
message B are in this busy period. From (29), they start their
transmissions at instants wB(1, 0) and wB(1, 1) computed
below, allowing their response times to be derived using (30):

w0
B(1, 0) = GA(0 + 0 + 1) = 95

w1
B(1, 0) = gB(1, 0) +GA(95 + 0 + 1) = 0 + 95 = 95

⇒ RB(1, 0) = wB(1, 0)− 0 · TB + gB(1, 1)− gB(1, 0)

= 95 + 135− 0 = 230

w0
B(1, 1) = w0

B(1, 0) + gB(1, 1)− gB(1, 0)

= 95 + 135− 0 = 230

w1
B(1, 1) = gB(1, 1) +GA(230 + 0 + 1) = 135 + 2 · 95 = 325

w2
B(1, 1) = gB(1, 1) +GA(325 + 1) = 135 + 3 · 95 = 420

w3
B(1, 1) = gB(1, 1) +GA(420 + 0 + 1) = 135 + 3 · 95 = 420

⇒ RB(1, 1) = wB(1, 1)− 1 ∗ T + gB(1, 2)− gB(1, 1) =

= 420− 240 + 190− 135 = 235

Therefore, both instances of message B in a busy period
initiated by subtype i = 1 are schedulable.

Similarly reasoning, the busy period for a sequence initiated
by a subtype-2 message is tB(2) = 150. It contains a single
instance of message B and its response time is equal to the
above busy period tB(2), so it is also schedulable. There-
fore, RB = max(RB(0, 0), RB(1, 0), RB(1, 1), RB(2, 0)) =
max(160, 230, 235, 150) = 235 < DB . Hence, the system is
schedulable, using the tighter analysis.

VII. CONCLUSIONS

In this work, we showed how (i) expressing in a more fine-
grained manner the transmission request requirements of CAN
messages, without any modification to the CAN protocol and
(ii) devising a schedulability analysis that is able to leverage
the additional information can provide less pessimistic, but
always safe, estimates on the worst-case response times of the
CAN messages. This can make the difference between a sys-
tem erroneously being deemed unschedulable or being proven

schedulable. Alternatively, it can help safely accommodate
additional functionality (and associated message traffic) in an
existing system, by improving the safely attainable utilization.
The multisized CAN message model and its analysis were
motivated by practical considerations, as there can be cases of
CAN messages whose size varies according to known cyclic
patterns (e.g., to piggyback multiple signals with different
periods). Our work drew from the multiframe task model by
Mok and Chen and its analysis and transplanted those elements
into the state-of-the-art schedulability analysis for the CAN
bus.

ACKNOWLEDGEMENTS

This work was partially supported by National Funds through
FCT/MCTES (Portuguese Foundation for Science and Technology),
within CISTER Research Unit (UIDP/UIDB/04234/2020); by FCT
and the Operational Competitiveness Programme and International-
ization (COMPETE 2020) under the PT2020 Partnership Agreement
through the European Regional Development Fund (ERDF), within
project PREFECT (POCI-01-0145-FEDER-029119); by FCT through
the European Social Fund (ESF) and the Regional Operational
Programme (ROP) Norte 2020, under grant 2020.08045.BD.

REFERENCES

[1] R. I. Davis, I. Bate, G. Bernat, I. Broster, A. Burns, A. Colin, S. Hutches-
son, and N. Tracey, “Transferring real-time systems research into indus-
trial practice: Four impact case studies,” in Proc. 30th Euromicro Conf.
on Real-Time Systems (ECRTS), 2018, pp. 7:1–7:24.

[2] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, pp. 239–272, 2007.

[3] K. W. Tindell and A. Burns, “Guaranteeing message latencies on
Controller Area Network (CAN),” in Proc. 1st int. CAN conference,
1994, pp. 1–11.

[4] K. Tindell, H. Hansson, and A. J. Wellings, “Analysing Real-Time
Communications: Controller Area Network (CAN),” in Proc. 15th IEEE
Real-Time Systems Symposium (RTSS), 1994, pp. 259–263.

[5] K. W. Tindell, A. Burns, and A. J. Wellings, “Calculating Controller area
network (CAN) message response times,” Control Engineering Practice,
vol. 3, no. 8, pp. 1163—-1169, 1995.

[6] P. M. Yomsi, D. Bertrand, N. Navet, and R. I. Davis, “Controller Area
Network (CAN): Response time analysis with offsets,” in Proc. 9th
WFCS, 2012, pp. 43–52.

[7] R. I. Davis and N. Navet, “Controller area network (CAN) schedulability
analysis for messages with arbitrary deadlines in FIFO and work-
conserving queues,” in Proc. 9th IEEE WFCS, 2012, pp. 33–42.

[8] R. Sato and S. Fukumoto, “Response-time analysis for controller area
networks with randomly occurring messages,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 4, pp. 3893–3902, 2020.

[9] D. A. Khan, R. I. Davis, and N. Navet, “Schedulability analysis of CAN
with non-abortable transmission requests,” in Proc. 16th IEEE ETFA,
2011, pp. 1–8.

[10] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Schedulability
analysis for Controller Area Network (CAN) with FIFO queues priority
queues and gateways,” Real-Time Systems, vol. 49, no. 1, pp. 73–116,
2013.

[11] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,”
IEEE Transactions on Software Engineering, vol. 23, no. 10, pp. 635–
645, 1997.

[12] S. K. Baruah, , and A. Mok, “Static-priority scheduling of multiframe
tasks,” in Proc. 11th ECRTS, 1999, pp. 38–45.

[13] J. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proc. 11th IEEE RTSS, 1990, pp. 201–209.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on December 15,2022 at 18:01:44 UTC from IEEE Xplore. Restrictions apply.

