-2

CISTER

Research Center in

Computing Systems

Technical Report

RoutesMobilityModel: easy realistic mobility
simulation using external Information
services

Tiago Cerqueira
Michele Albano

CISTER-TR-150302

2015/05/13

Technical Report CISTER-TR-150302 RoutesMobilityModel: easy realistic mobility simulation ...

RoutesMobilityModel: easy realistic mobility simulation using external information
services

Tiago Cerqueira, Michele Albano

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Ant6nio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail: 1090678@isep.ipp.pt, mialb@isep.ipp.pt
http://www.cister.isep.ipp.pt

Abstract

The current implementation of ns-3 provides only synthetic mobility models that disregard the map where the
nodes are moving, however, the study of vehicular ad-hoc networks requires the usage of more realistic mobility
models. The usage of mobility traces created by traffic simulators such as SUMO is feasible, however, these
simulators possess a steep learning curve, which impedes their fruition for most researchers whose research
focus and expertise are on the data communication layer.

This paper presents a mobility model that generates realistic mobility traces that take into account the underlying
maps, while maintaining the ease of usage that characterizes the synthetic mobility models. The module
described herein is compared against SUMO and against the ns3::RandomWaypointMobilityModel of network
simulator 3, to analyze the trade-off it implements in terms of realism and ease of usage.

© CISTER Research Center 1
www.cister.isep.ipp.pt

RoutesMobilityModel: Easy Realistic Mobility Simulation
using External Information Services

Tiago Cerqueira
CISTER, ISEP/INESC-TEC
Rua Dr. Anténio Bernardino de Almeida 431
4249-015, Porto, Portugal

1090678@isep.ipp.pt

ABSTRACT

The current implementation of ns-3 provides only synthetic
mobility models that disregard the map where the nodes are
moving, however, the study of vehicular ad-hoc networks
requires the usage of more realistic mobility models. The
usage of mobility traces created by traffic simulators such
as SUMO is feasible, however, these simulators possess a
steep learning curve, which prevents their fruition for most
researchers whose research focus and expertise are on the
data communication layer.

This paper presents a mobility model that generates re-
alistic mobility traces that take into account the underly-
ing maps, while maintaining the ease of usage that char-
acterizes the synthetic mobility models. The module de-
scribed herein is compared against SUMO and against the
ns3: :RandomWaypointMobilityModel of network simulator
3, to analyze the trade-off it implements in terms of realism
and ease of usage.

Categories and Subject Descriptors

C.2.2 [Network Protocols|; 1.6.5 [Model development];
1.6.7 [Simulation support system|]

General Terms

Algorithms, Design, Experimentation

Keywords

Mobility model, trade-off analysis, network simulator 3

1. INTRODUCTION

Research and development activities in the fields of com-
munication networks traditionally leverage simulations to
explore the most probable results of the deployment of a
given solution in a real scenario. Mobile communication
is not an exception, and a plethora of simulators [1] were

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

WNS3 2015, May 13 2015, Barcelona, Spain

(© 2015 ACM ISBN 978-1-4503-3375-7/15/05 ...$15.00

DOI: http://dx.doi.org/10.1145/2756509.2756515.

Michele Albano
CISTER, ISEP/INESC-TEC
Rua Dr. Anténio Bernardino de Almeida 431
4249-015, Porto, Portugal

mialo@isep.ipp.pt

developed to cope with the problem of performing realistic
simulations of mobile systems that communicate with each
other and with a fixed infrastructure.

The research area of Vehicular Ad-Hoc Networks (VANETS)
has seen accelerated development in recent years since the
academia and the industry have produced specialized pro-
tocols [2], which have the potential to empower vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) scenarios
with communication capabilities, including safety related
applications and traffic and fleet management. To satisfy
research and development needs, a number of simulators
have been either developed or adapted for vehicular com-
munication simulation [3]. In order to correctly model these
networks in a network simulator, a realistic mobility model
must be used, as the mobility patterns have a significant im-
pact on the vehicle’s ability to communicate [4]. Current re-
sults have shown that synthetic mobility models, computed
without taking into account the underlying road networks,
can hardly be tailored to real maps and scenarios [5].

A few proposals have created vehicular traffic simulators [6],
which are much more realistic and can be tailored to real-
world maps. However, these simulators are quite complex
to set up and need a solid experience in vehicular traffic
simulation. Moreover, these traffic simulators are unable to
simulate the effect of in-vehicle applications, which alter the
vehicle’s behaviour, unless Application Programming Inter-
faces (APIs) such as TraCl are used, adding yet another
layer of complexity [7, 8].

This paper provides the description of a mobility model
called RoutesMobilityModel that performs a trade-off be-
tween the synthetic mobility models, and complex vehicular
traffic simulators. Our system accepts as inputs the details
of the trajectory at large, connects to a travel planning ser-
vice to download directions from the source to the destina-
tion of the planned trip, and converts it to a mobility trace
for the simulator at hand. In particular, we implemented
a prototype that makes use of Google Maps Service [9] in
order to create mobility traces for the network simulator 3
(ns-3) [10].

The rest of the paper is structured as follows. Section 2
provides insights into existing mobility models, and the tech-
nologies we built upon while developing RoutesMobility-
Model. Section 3 discusses the motivations that led us to de-
velop RoutesMobilityModel. Section 4 describes the design
and implementation of the module, Section 5 evaluates our
module and the trade-off it implements between synthetic
approaches and complex realistic approaches. Finally, Sec-
tion 6 discusses limitations of the module and future work,

and Section 7 wraps up the paper.

2. RELATED WORK

This sections starts with a brief description of existing mo-
bility models for vehicular networks, afterwards it describes
the existing technologies that we built upon and integrated
to design and implement the RoutesMobilityModel.

2.1 Existing Approaches

Currently, vehicular mobility is simulated either by using
complex traffic simulators, such as Simulation of Urban Mo-
bility (SUMO), or using synthetic mobility models, such as
the random waypoint model, the random walk model or the
Gauss-Markov model [3].

SUMO provides the most realistic mobility traces, how-
ever its higher complexity with respect to other mobility
models (see for example [5]) makes it a burden to configure
when the researcher’s area of interest and expertise is on
the data communication only. SUMO is capable of generat-
ing predefined abstract road networks or importing a digital
road from services such as OpenStreetMaps or other traffic
simulators such as VISUM, Vissim or MATSim. Creating a
real-world road topology, however, is still a time consuming
task, as configuration of complex scenarios, such as intersec-
tions, number of lanes, right of way, etc, still require a great
deal of work [11].

Random mobility models, such as the random waypoint
model and the Gauss-Markov mobility model are able to
provide easy and fast mobility for network simulators, but
their nature can often lead to unexpected results. In fact,
these systems do not take the underlying maps into account,
thus the realism of the mobility traces they generate is lim-
ited, and the importance of developing mobility models that
take into account the underlying maps are testified by the
multiple research activities in this area [3, 4, 5, 6].

The random waypoint model works by having every node
in the simulation pick a random destination and a random
velocity in certain parts of the trajectory. This, in turn,
means that the nodes will travel at a constant velocity be-
tween the two parts of the trajectory (waypoints) [12]. Upon
arrival at a waypoint, the node will pause for a determined
amount of time and restart the process.

The Gauss-Markov model assigns speed and direction to a
given node, and generates mobility by updating the node’s
speed and direction at a specified interval of time. This
module is an improvement over other synthetic modules as
it allows past velocities and directions to influence the future
velocities and directions [13].

2.2 The Google Maps API

Our mobility model is based on the information made
available by the Google Maps suite of services [9]. This
subsection provides a brief description of the API to inter-
act with the two services that are most interesting for our
work, the Google Maps Direction API and the Google Maps
Places API.

2.2.1 The Google Maps Directions API

The Google Maps Directions API offers a way for devel-
opers to interact with the Google Maps Directions Service,
providing travel planning information based on transporta-
tion method. Our module makes use of this API in order
to request from Google the path between two real world

locations. Encoded polyline strings are returned by the ser-
vice, representing movement between geographical coordi-
nates (latitude and longitude) [14]. The APT’s response is
articulated as follows:

e Leg — A travel is composed by Legs. Legs only occur if
the user specifies a Waypoint (A to B, passing through
C, for example), and each Leg is the trajectory to reach
one Waypoint

e Step — A Leg is composed by Steps. A Step contains a
polyline string, as well as the time estimation for the
user to go from the first point of the polyline string
to the last one, based on the transportation method
chosen.

2.2.2 The Google Maps Places API

The Google Maps Places API returns information regard-
ing particular establishments or point of interests, such as
hospitals, gas stations, shops, etc. This information is used
in tandem with the Google Maps Directions API, retriev-
ing locations from a specified area, which are then used as
start and endpoints in queries to the Directions API. This
enables the user to quickly and effortlessly generate mobil-
ity for a node container, without having to manually specify
start and end points.

The API response consists of a location (latitude and lon-
gitude) and information about the Place (such as its rating,
its type, etc). The RoutesMobilityModel module uses the
location attribute only.

2.3 The ns3::WaypointMobilityModel

Our mobility model produces traces that are imported
into the ns-3 through its ns3: :WaypointMobilityModel mod-
ule. This subsection describes this module, to lay out the
basis for the interaction of RoutesMobilityModel with ns-3.

The ns3: :WaypointMobilityModel is capable of provid-
ing waypoint-based mobility to a node. Each object deter-
mines its velocity and position at a given time from a set of
ns3: :Waypoint objects. These objects are stored in a double
ended queue, and are discarded when the current simulation
time is greater than the time value of the object. When a
node is in between waypoint times, it moves at a constant
speed between the current and the previous waypoint [12].

The usage of this mobility module requires users to pro-
vide the Cartesian coordinates and the time of passage for
each ns3: :Waypoint, which is a cumbersome task to gener-
ate manually even for a simple mobility trace. On the other
hand, ns3: :RoutesMobilityModel generates these data pro-
grammatically, based on the XML traces returned by the
Google Maps API.

2.4 [External Libraries

A number of external libraries were integrated into the
design of RoutesMobilityModel, to enable a faster and more
robust fruition of the data returned by the Google Maps
APIL

24.1 Xerces-C++

Xerces-C++ [15] is a validating XML parser written in a
portable subset of C++. This library is used in conjunction
with the module described in order to parse the responses
from the Google Maps APIs. The module uses the SAX2
parser, which is an event-driven mechanism for accessing
XML documents.

2.4.2 GeographicLib

GeographicLib is a small set of C++ classes for perform-
ing conversions between geographic, UTM, UPS, MGRS,
geocentric and local Cartesian coordinates, for gravity, geoid
height and geomagnetic field calculations. It is also used for
solving geodesic problems [16]. The module makes use of
the algorithms contained in GeographicLib library in order
to, reliably, convert between World Geodetic System (WGS
84) coordinates and Cartesian coordinates.

2.4.3 libcurl

libcurl [17] is a free and easy-to-use client-side URL trans-
fer library. The library supports, among others, the HTTPS
protocol, which is required by the Google Maps APIs. This
library is used to query the Google Maps APIs, via a regular
HTTP request.

3. MOTIVATION

Simulations regarding Mobile Ad-hoc Networks (MANETS)

and Vehicular Ad-hoc networks (VANETS) raise the need
for proper mobility models. Many mobility models available
in network simulators provide synthetic traces that disre-
gard the maps the nodes are moving onto (see for example
Random Walk 2D model, the Random Waypoint Model and
the Gauss-Markov model). Research has shown that some
aspects of vehicular traffic, such as acceleration and deceler-
ation in the presence of obstacles, greatly affect the network
performance [18]. Using traffic simulators such as SUMO
within network simulators add realism, but a first time user
with no experience with traffic simulators will encounter a
steep learning curve. In order to generate a real-world road
network, a SUMO user is required to run a handful of com-
plex scripts, which require several configuration parameters
each. The tutorial section in [11] provides a good reference
to generate mobility traces ranging from the most basic to
the most complex, however, it is quite lengthy and a user
interested, mainly, in data communication is not likely to
require such a high level of configuration.

The main goal of this paper is to describe a mobility model
that is as easy to configure as the synthetic mobility models
included within ns-3, while maintaining a high degree of
realism, comparable to those offered by SUMO and similar
software suites. Our module implements a trade-off between
the two families of mobility models in terms of ease of usage
and realism.

4. DESIGN AND IMPLEMENTATION

The module described in this paper provides an inter-
face to convert information from a travel planning service
to ns3: :Waypoints, which are then used by ns-3 to manage
the mobility of the simulated nodes. Currently, the only ser-
vice accessible by ns3: :RoutesMobilityModel is the Google
Maps service [9]. The rationale behind this choice is that
Google Maps service provides a robust and feature-rich API,
which for example allows to select the mode of travel (walk,
car, public transport). However, the design of our module
allows easy addition of other services.

In order for the module to be useful for as many re-
searchers as possible, the following use cases where taken
into consideration while developing the module:

e Generation of mobility traces for a node, using either
addresses or coordinates as start and end points

Calls the The request is
ChooseRoute The Google processed and
function, Maps AP| a XML
providing a receives the response is
sent back to
the simulator

start and an request
endpoint

The simulator processes the
response and uses the
information required to
instantiate ns3::Waypoint objects

The ns3::WaypointMobilityModel
generates the mobility trace based on
the ns3::Waypoints created

Figure 1: Module interaction when generating mo-
bility traces

e Generation of mobility traces for all nodes contained
into a ns3: :NodeContainer

e Generation of mobility traces from previously down-
loaded responses

e Generation of mobility traces with dynamic node redi-
rection

Our module uses the Google Maps Directions API that,
given a start and an end point, computes the best path
between them. The response of the API is then parsed
by our module, in order to translate the response and cre-
ate ns3: :Waypoints. These waypoints are then imported in
ns-3 through the ns3: :WaypointMobilityModel, which pro-
cesses the ns3: :Waypoints and generates the corresponding
mobility trace.

The usual interaction between the module, the simulator
and the external information service is represented in Fig-
ure 1. The simulator invokes the ns3: : ChooseRoute method,
providing a start and an end point for the route. The
RoutesMobilityModule contacts the Google Maps service,
which answers with an XML file containing the route. The
RoutesMobilityModule parses received data to create the list
of waypoints corresponding to the route. Finally, the ns-3
simulator imports the waypoints to use them as the mobility
pattern through its ns3: :WaypointMobilityModel methods.

4.1 Module Architecture

The module described in this paper is articulated into sev-
eral classes, which are responsible for the features described
earlier in this section. The architecture is represented in
Figure 2. Some of the most relevant classes include:

e RoutesMobilityHelper — helper class through which all
of the features described in the paper are made avail-
able to the user. This class is responsible for creating
ns3: :Waypoints and adding them to the queue con-
tained into the ns3: :WaypointMobilityModel for fur-
ther processing.

e GoogleMapsDecoder — responsible for decoding the poly-
line strings obtained from the Google Maps Directions
API, into latitude and longitude pairs.

e GoogleMapsApiConnect and GoogleMapsPlacesApiCon-
nect - responsible for querying the respective Google
Maps APIs invoking the respective parsers for the re-
trieved XML files.

ns3::WaypointMobilityModel

ns3:GoogleMapsDecoder

ConvertToCartesian{std:list<Leg>)

Conve

ChooseRou

tToGeoCoordinates{std: string)

FilllmWaypointTimel }{

ns3::GoogleMapsApiConnect

SetT ransport at
Schedule Points{

ns3::RoutesMobilityHelper

te|std:string std:string,Node)

ns3::GoogleMapsPlacesApiConnect

Figure 2: Architecture of the RoutesMobilityModel module

e SaxPlacesHandler and SaxHandler — responsible for
parsing the Google Maps API’s response.

The module was built in order to accommodate differ-
ent travel planning services, such as OpenStreetMaps, and
locations databases. To this end, the Strategy software de-
sign pattern was used in the module design. The Strat-
egy pattern decouples the class’ code from the algorithms
it uses. This allows for the ns3: :RoutesMobilityHelper to
choose, at runtime, which travel planning service and loca-
tion database to use.

The Strategy design pattern is also instrumental for easing
up the implementation of new services that provide direction
information or locations. In fact, the only required effort
on part of the developer is the implementation of the pro-
vided interfaces and the usage of the provided model classes
(ns3::Leg, ns3::Step, ns3: :Point and ns3: :Place) to rep-
resent the information retrieved by the implemented service.

4.2 Implementation

The RoutesMobilityModel module relies on the module
ns3: :WaypointMobilityModel in order to import the mobil-
ity routes retrieved from the external information services.
Our module creates ns3: :Waypoints that model the routes
used to travel between two (or more) real world locations,
and later on they are interpreted as the waypoints the vehi-
cles move through during the simulation.

The information retrieved from the Google Maps Direc-
tions API contains, among other information, a polyline for
each step of the route requested. It also contains the dura-
tion (the time it would take to go from the beginning to the
end) for the step. The module decodes the polyline, thus cre-
ating a list of geographical coordinates, which are, in turn,
converted to Cartesian coordinates. In order to model the
speed of a node, implemented by setting the times for the
ns3: :Waypoints, we distributed the duration of the step in
proportion to the distance traveled between two waypoints.

Three examples were also implemented, to provide users
with additional information on the module and its usage:

e routes-mobility-example.cc — This example queries the
Google Maps Directions API to generate a mobility
trace based on a real-world route. The mobility traces
generated in this example are from the city of Porto,
Portugal

e routes-mobility-offline-example.cc — This example gen-
erates mobility traces based on Google Maps Direc-
tions API’s XML files located on the hard disk. Before
using the example, the user needs to download the file
manually, as the Google Maps APIs Terms of Service
forbid an application from caching the responses.

e routes-mobility-automatic-example.cc — This example
uses the Google Maps Places API to generate mobility
traces for node containers of up to 30 nodes. Mobility
generation is done by querying the Google Maps Places
API for places (restaurants, cinemas, etc), which will
be used as start and end points. In this example, the
area where the place are located is the city of Porto,
Portugal.

S. VALIDATION

In order to validate the proposed mobility model, three
scenarios were simulated, all of them featuring vehicles exe-
cuting the same communication protocol between each other
(the AODV routing protocol [18]), but with mobility gen-
erated using SUMO, the model ns3: :RoutesMobilityModel
and the model ns3: :RandomWaypointMobilityModel respec-
tively. This test leverages the test scripts that are part of
the standard ns-3 distribution. Common parameters to the
simulations were:

e 99 nodes
e 300 simulated seconds
e Vehicles randomly choose the route they take

e Nodes broadcast safety messages 10 times per second
at 6 Mbps

e The TwoRayGround propagation model was used

A few parameters had to be different in the simulations,
to take care of the structural diversity of the mobility mod-
els. To this end, the vanet-routing-compare.cc script was
modified to simulate the following scenarios:

e SUMO scenario:

«eeesUMO

e RoUES

MacPhy Overhead

NN B

Random

111 21 31 41 51 61 71 81 91 101111 121131141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301
simulated time (in seconds)

Figure 3: Overhead of the communication

— Mobility generated using SUMO for an area in
downtown Barcelona, with width 4.6 km and height
3.0 km.

e RoutesMobility scenario:

— Mobility in an area in downtown Barcelona, gen-
erated using the ns3: :RoutesMobilityModel. Start
and end points are obtained through a query to
the Google Maps Places API. The radius requested
was of 2.1 km, which leads to roughly the same
area as the other scenarios.

e RandomWaypoint scenario:

— Mobility generated in an area 4.6 km x 3.0 km us-
ing the ns3: :RandomWaypointMobilityModel. We
can consider the area to be located in downtown
Barcelona.

The configuration of the SUMO scenario took a few hours,
on the other hand both the ns3: :RoutesMobility scenario
and ns3::RandomWaypoint scenario were quite straightfor-
ward. In particular, RoutesMobilityModel required only the
specifying of the kind of places to be retrieved, the center of
the simulation area, and its radius.

The simulation results evaluated the communication over-
head in terms of the ratio between the total bits sent on the
wireless medium, and the payload net of MAC and PHY
overhead. We conjectured that our mobility model led to
AODV communication to presenting a performance similar
to the case of SUMO mobility, while both being quite differ-
ent from ns3::RandomWaypointMobilityModel. Simulation
results, reported in Figure 3, correspond to the mean behav-
ior of the AODV protocol over 10 simulations. The results
confirm the convergence over time in the behavior of SUMO
and ns3::RoutesMobilityModel and their difference from
ns3: :RandomWaypointMobilityModel, thus providing a hint
regarding the relative realism of our module with respect to
ns3: :RandomWaypointMobilityModel.

The mobility traces generated are also quite similar in the
SUMO scenario and in the RoutesMobility scenario. Fig-
ure 4 and Figure 5 show the mobility routes generated in
the SUMO scenario and in the RoutesMobility scenario re-
spectively, with the bullets represent initial location of vehi-
cles, and the lines represent the routes taken by the vehicles
according to the mobility model.

The mobility generated in the RandomWaypoint scenario,
shown in Figure 6, is drastically different from the two mo-
bility traces presented above.

Figure 6: Mobility of RandomWaypoint scenario

The results shown in this section hint at the usefulness
of the RoutesMobilityModel module to researchers studying
VANETs or MANETS, as the module implements a nice
trade-off between ease of usage and realism.

The mobility generated using the module described in
this paper is accurate both in space and time, as it uses

the partial trip time, as calculated by the Google Maps Di-
rections API, to decide at which time it places a specific
ns3: :Waypoint. This, in practice, means that the nodes will
always travel the speed Google expects a real car to travel
through that particular road, taking into account kind of
road, presence of roundabouts, sharp turns, onramps, etc.
Moreover, if traffic information is available for the route cho-
sen, the car will travel the sections under traffic at a realistic
speed. This feature is only available using the “Google Maps
APIs for Work” service, which is a pay service, otherwise
traffic information is not included.

The RouteMobilityModel module is currently being used
in simulative analysis of data dissemination algorithms in
vehicular environments.

6. LIMITATIONS AND FUTURE WORK

Our current research work aims at developing further the
module, since it still possesses room for improvement.

Firstly, the module will only be useful if it is able to pro-
vide mobility for a node container of a sufficient size. Cur-
rently, the Google Maps Places API is only able to return up
to 60 locations, which greatly impairs this module. Because
of this, the current implementation only supports automatic
mobility generation for node containers of 30 nodes, how-
ever, several solutions for this problem have been proposed:

e Randomly choose a start and an end point from the
places returned by the query to the Google Maps Places
APIL

e Use a different service which is capable of returning
more than 60 locations.

e Generate routes by combining pairs of points taken
from the same set, producing a number of routes that
scale as the square of the number of points. A draw-
back of this approach is that the nodes would essen-
tially keep traveling using many times the same streets
/ freeways, etc.

e Generate routes by randomly select a start and end-
point from a user-specified pool of locations

e Generate routes by combining pairs of points, the first
one being chosen at random in a set of starts points,
the second one chosen at random in a set of destina-
tion points. Similar to the previous one, this solutions
scales quadratically as the number of points in the two
sets.

The first proposed solution was tested successfully. The
resulting mobility appears to be realistic with respect to
typical behaviors of car drivers.

In an experimental version of the RoutesMobilityModel
module, the fourth and fifth solutions were also tested. By
defining manually the sets of points, it is possible to provide
mobility for containers of any size. By using this technique
in conjunction with the Google Places API, using the latter
to create a pool of address to use as start and end points, it
is possible to automatize the selection of points and still gen-
erate a large number of routes. The approaches mentioned
in this paragraph were tested with positive results with 240
nodes (Figure 7 and Figure 8).

The computational time of the module is another draw-
back that must be addressed in the future. Currently, the

Figure 7: Mobility generated using user specified
locations

Figure 8: Mobility generated using the Google Maps
Places API

module takes a long time to generate mobility for large node
containers, since it is required to parse a large XML re-
sponse per node in the container. The switch from an XML
parser to a JSON parser can provide valuable performance
enhancement, and it is a planned future work.

Currently, the module is also lacking proper serialization
capabilities, which is the capability of the module of storing
on the filesystem the data returned by the external infor-
mation service, with the aim of parsing the data to a ns-
3 mobility model at a later time and potentially multiple
times to guarantee repeteability of the simulation. A few
efforts were made in the early stages of the development,
however, no serialization is implemented at this time. This
matter should be studied and implemented in the future, as
proper serialization is key, both to improve the usability of
the module by decreasing the computational time for creat-
ing the ns3::Waypoints, and to allow users to generate a
simulation scenario once and load it as needed.

The module also lacks proper bidirectional coupling be-
tween the network simulator’s network modules and the mo-
bility model created. That is, the module does not react to

the data a node receives. It should be possible for the users
to specify actions such as redirecting a node based on data
received, for example. We plan to develop an API to allow
for this bidirectional coupling, empowering users to enable
the nodes to make traffic routing decisions based on data
received.

A last improvement we propose for our module aims at ex-
ploiting the data from travel planning services and location
databases different from the Google Maps services.

Finally, regarding the investigation methodology, we have
planned to perform a more proper comparison with other
mobility models, both synthetic such as the Gauss-Markov
model and realistic such as the multi-agent microscopic traf-
fic simulator (MMTS) [19], and consider more metrics to
evaluate the realism and ease of usage of our mobility model.

7. CONCLUSION

The work presented in this paper details a mobility model
capable of generating mobility with an acceptable degree of
realism, while maintaining the same (or even greater) ease
of use that characterize the synthetic mobility models that
do not take into account real-world maps. The work de-
scribed was validated through simulation scenarios, with en-
couraging results. Results showed that, while RoutesMobil-
ityModel is not as realistic as traffic simulators, it still main-
tains an acceptable level of realism for VANETs. MANET
researchers will also be able to take advantage of this mod-
ule, since Google Maps API allows to model movement for
nodes traveling on foot or using public transportation.

8. ACKNOWLEDGMENTS

This work was supported by the Portuguese Agency for In-
novation (ADI) under the ERDF (European Regional Devel-
opment Fund) through COMPETE (Operational Programme
‘Thematic Factors of Competitiveness’), within project CAR-
CODE, ITEA2 Nr. 11037, QREN - ST I&DT Nr. 30345.

9. REFERENCES

[1] E. Weingartner, H. Vom Lehn, and K. Wehrle. “A
performance comparison of recent network simulators.”
IEEE International Conference on Communications
(ICC’09), 2009.

[2] Y.-A. Daraghmi, C.-W. Yi, and I. Stojmenovic.
“Forwarding methods in data dissemination and routing
protocols for vehicular ad hoc networks.” Network,
IEEE 27.6, pp. 74-79, 2013.

[3] F. J. Ros, J. A. Martinez, and P. M. Ruiz. “A survey on
modeling and simulation of vehicular networks:
Communications, mobility, and tools.” Computer
Communications 43, pp. 1-15, 2014.

[4] F. K. Karnadi, Z. H. Mo, and K. Lan. “Rapid
generation of realistic mobility models for VANET.”
IEEE Wireless Communications and Networking
Conference (WCNC 2007), 2007.

[5] F. J. Martinez, C. K. Toh, J. C. Cano, C. T. Calafate,
and P. Manzoni. “A survey and comparative study of

simulators for vehicular ad hoc networks (VANETS).”
Wireless Communications and Mobile Computing 11.7,
pp. 813-828, 2011.

[6] V. D. Khairnar and S. N. Pradhan. “Comparative study
of simulation for vehicular ad-hoc network.” arXiv
preprint arXiv:1304.5181, 2013.

[7] D. Krajzewicz, J. Erdmann, M. Behrisch, and L.
Bieker. “Recent development and applications of SUMO
— simulation of urban mobility.” International Journal
on Advances in Systems and Measurements 5.3 and 4,
pp. 128-138, 2012.

[8] C. Sommer, Z. Yao, R. German, and F. Dressler. “On
the need for bidirectional coupling of road traffic
microsimulation and network simulation.” Proceedings
of the 1st ACM SIGMOBILE workshop on Mobility
models, 2008.

[9] C. C. Miller. “A beast in the field: The Google Maps
mashup as GIS/2.” Cartographica: The International
Journal for Geographic Information and
Geovisualization 41.3, pp. 187-199, 2006.

[10] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell,
and J. B. Kopena. “Network simulations with the ns-3
simulator.” SIGCOMM demonstration, 2008.

[11] “SUMO Wiki page”, available online at:
http://sumo.dlr.de/wiki/SUMO

[12] ns-3 Consortium.
“ns3::RandomWaypointMobilityModel Class Reference”
(2015), online at: http://www.nsnam.org/doxygen/
classns3_1_1_random waypoint_mobility_model.html

[13] T. Camp, J. Boleng, and V. Davies. “A survey of
mobility models for ad hoc network research.” Wireless
communications and mobile computing 2.5, pp.
483-502, 2002.

[14] Developers’ forum for Google Maps API, “Decoding
polylines in Google Maps Directions API”, available
online at
https://developers.google.com/maps/documentation
/utilities/polylinealgorithm

[15] T. W. Leung. “Professional XML Development with
Apache Tools: Xerces, Xalan, FOP, Cocoon, Axis,
Xindice”. John Wiley & Sons, 2004.

[16] C. Karney, “GeographicLib”, online at
http://geographiclib.sourceforge.net/

[17] D. Stenberg, “libcurl: The multiprotocol file transfer
library”, online at: http://curl.haxx.se/libcurl/

[18] J. Haerri, F. Filali, and C. Bonnet. “Performance
comparison of AODV and OLSR in VANETS urban
environments under realistic mobility patterns.”
Proceedings of the 5th IFIP mediterranean ad-hoc
networking workshop, 2006.

[19] B. Raney, A. Voellmy, N. Cetin, M. Vrtic, and K.
Nagel. “Towards a microscopic traffic simulation of all
of Switzerland.” The International Conference on
Computational Science (ICCS 2002), Springer Berlin

Heidelberg, pp. 371-380, 2002.

