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Abstract—Software transactional memory (STM) is a syn-
chronisation paradigm which improves the parallelism and com-
posability of modern applications executing on a multi-core
architecture. However, to abort and retry a transaction multiple
times may have a negative impact on the temporal characteristics
of a real-time task set. This paper addresses this issue: It provides
a framework in which an upper-bound on the worst-case response
time of each task is derived, assuming that tasks are scheduled
by following either the Non-Preemptive During Attempt (NPDA),
Non-Preemptive Until Commit (NPUC) or Stack Resource Policy
for Transactional Memory (SRPTM) policy.

I. INTRODUCTION

Parallelism and composability are two keystone features
in the development of hard real-time applications on multi-
core architectures. Lock-based synchronisation policies with
bounded blocking times are well understood in the context of
single cores. However, they still represent a major hurdle for
multi-cores. Recent developed approaches use either coarse-
grained locking [1], [2] or fine-grained locking [3], [4]. Coarse-
grained locking has a negative impact on parallelism whereas
fine-grained locking has a negative impact on composability.
Furthermore, locks are generally detached from the resources
they control. This implies that tasks must explicitly cooperate
to acquire the proper lock before they can operate the shared
resource. These issues are exacerbated with an increase of
the number of cores and shared resources. STM provides
an alternative where critical sections (a.k.a. transactions) are
defined to operate on shared memory data without explicitly
requesting a lock. This improves composability. On the other
front, multiple transactions can execute speculatively in par-
allel and conflicts can be solved on the fly. This improves
parallelism. STM already offers three key benefits for non-
real-time systems: (1) it scales well with an increase of the
number of cores [5]; (2) it delivers a higher throughput than
coarse-grained locks [5] and (3) it does not increase the design
complexity as fine-grained locks [6].

Most STM implementations maintain the consistency of
shared data by allowing one transaction involved in a conflict
to commit while its contenders are aborted and, consequently,
they have to retry. This increases the execution time of the
jobs and represents a serious concern for real-time systems,
especially when all the task deadlines must be met. The
time overhead due to the abort-and-retry occurrences must be
managed such that the worst-case response time (WCRT) of
each task is bounded. To the best of our knowledge, very few
research works addressed this issue in the literature.

Contribution. This paper proposes a framework wherein
the WCRT analysis of a set of hard real-time tasks, shar-
ing data through STM, is devised. To do so, we assume
that conflicts are solved by committing the transactions in
a chronological order of their start times as defined by
the FIFO contention manager for real-time systems (FIFO-
CRT) [7]. Here, the unpredictability issues are solved by
following two non-preemptive scheduling strategies –namely,
Non-Preemptive During Attempt (NPDA) and Non-Preemptive
Until Commit (NPUC)–, and one fully-preemptive scheduling
strategy –namely, Stack Resource Policy for Transactional
Memory (SRPTM). The analysis for these three strategies were
missing in the literature and this paper fills the gap.

Paper organization. The rest of this paper is structured
as follows. Section II provides a selection of related work.
Section III sets the system model and the assumptions adopted
in this work. We summarize the specification of FIFO-CRT,
NPDA, NPUC and SRPTM in Section IV. Section V demon-
strates the intractability of an NPDA analysis. The WCRT
analyses for NPUC and SRPTM are discussed in Section VI
and Section VII, respectively. Section VIII reports on the
evaluation results. Finally, Section IX concludes the paper and
provides future directions.

II. RELATED WORK

Previous works on synchronisation for real-time systems
addressed the execution of non-blocking critical sections.
Anderson et al. [8] established scheduling conditions for
lock-free transactions under Earliest Deadline First (EDF)
and Deadline Monotonic (DM) for uniprocessor systems. For
multiprocessor systems, they devised a wait-free mechanism,
which guarantees an upper bound on the response time of each
transaction [9]. In this latter work, an arriving transaction must
help pending transactions to commit before it can proceed.

Manson et al. [10] proposed a data access mechanism
for uniprocessor platforms – the Preemptible Atomic Regions
(PAR) – together with its analysis to bound the response time
of each job. Here, every preempted atomic region (critical
section) is immediately aborted and retried later. This pol-
icy behaves as the Abort-and-Restart (AR) mechanism [11].
However, it is not adapted for multi-core platforms since its
correctness depends on the exclusive execution of the tasks.

Fahmy et al. [12] provided a WCRT analysis for real-
time tasks scheduled by following the Pfair algorithm [13] for
multiprocessors in which STM is used as the synchronisation



mechanism. However they assume that each critical section is
limited to at most two quanta, whereas it is not uncommon
that this value is exceeded for real-world applications.

Sarni et al. [14] proposed transaction deadlines and sug-
gested a contention manager that orders conflicting transac-
tions according to their deadlines. In this work, the exper-
imental results showed an improvement of the number of
jobs that meet their deadlines, which is beneficial in terms
of schedulability. Unfortunately, the results apply only to soft
real-time systems.

Barros et al. [7] proposed a FIFO-based approach to
serialise concurrent transactions as a way to predict the time
required for a transaction to commit. In this work, they
addressed the negative impact induced by preemptions on the
response time of each transaction and proposed two scheduling
algorithms based on EDF in which preemptions are disabled
during the execution of the transactions. Later, they also pro-
posed a fully preemptive approach for the same problem [15].

Cotard [16] developed a wait-free STM for hard real-
time systems on multi-cores, in which transactions help their
contenders to commit. However, this study is limited to ho-
mogeneous transactions1. The system model does not consider
any specific scheduling algorithm, but transactions must not be
preempted until they commit. Furthermore, update transactions
with intersecting write sets must be allocated to the same core,
thus making write-write conflicts impossible. This approach
ensures that (i) a write-set transaction never aborts and (ii) a
read-set transaction aborts at most once.

El-Shambakey et al. [17] proposed two contention man-
agers that solve conflicts based on the priorities of the as-
sociated schedulers (global-RM and global-EDF). In [18], he
extends these contention managers so that a transaction that
has executed for a pre-defined amount of time is not aborted.
However, the proposed analyses assume that each transaction
can operate only one object, unfortunately. In [19], he proposed
a contention management policy in which the subset of oldest
non-conflicting transactions in progress are executed non-
preemptively, while the recent conflicting transactions with this
subset are scheduled with the lowest system priority. However,
all information regarding the set of transactions in progress
as well as their data sets must be known beforehand. This
may not scale with an increase of the number of cores. In
an approach in which all these information are not required
(e.g., see [20]), each transaction must be assigned an arbitrary
maximum number of aborts. Here, each conflict is solved based
on the priorities of the jobs, but once a transaction exceeds its
number of aborts threshold it becomes non-preemptable2.

III. SYSTEM MODEL

Task specification. We assume that the workload is carried

by a set of n sporadic tasks τ
def
= {τ1, . . . , τn}. Each task τi

releases a potentially infinite number of jobs and is charac-
terised by a worst-case execution time Ci, a relative deadline
Di, and a minimum inter-arrival time Ti. These parameters

1In this case, the data set of a transaction consists exclusively of the read
set (read-set transaction) or the write set (write-set transaction).

2Conflicts between non-preemptable transactions are solved based on the
time stamps of the instants at which transactions exceeded their thresholds.

are given with the following interpretation: the jth job of
task τi executing on processor πk, referred to as τki,j , is
characterised by its release time ri,j such that ri,j+1 ≥ ri,j+Ti

(with i ∈ {1, . . . , n} and j ≥ 1); and an absolute deadline

di,j
def
= ri,j + Di. Furthermore, each task τi may perform a

finite, potentially empty set of ζi transactions {ω1
i , . . . , ω

ζi
i }

where ωx
i is characterised by:

• Cωx
i

: the maximum time required to execute the se-
quential code of ωx

i once in isolation, i.e., without any
external interference from other tasks or the system
itself, and try to commit.

• The data set (DSωx
i

): the collection of shared objects
that are accessed by ωx

i . This data set can be parti-
tioned into two subsets — the read set (RSωx

i
) and

the write set (WSωx
i

) — where:

⊲ RSωx
i

is the subset of objects that are accessed
by ωx

i solely for reading.
⊲ WSωx

i
is the subset of objects that are modified

by ωx
i during its execution.

For the sake of readability, we assume in the rest of this
section that each task τi carries a single transaction, say ωi.
This assumption is relaxed later in Section VI and Section VII.

Platform and Scheduler specifications. We assume that

all the jobs are executed on a multi-core platform π
def
=

{π1, . . . , πm} composed of m homogeneous cores, i.e., all
cores have the same computing capabilities and are inter-
changeable. We refer to function σ to express that a core is
allocated to a task: if τi is assigned to πk, then σ(τi) = πk.
The task set τ is scheduled by following a partitioned EDF
(P-EDF) scheduler, i.e., each task is assigned to a specific core
at design time and each core schedules its subset of tasks at
runtime by following the classical EDF scheduler3.

STM specification. We assume that a collection of p STM

objects O
def
= {o1, . . . , op} are located at the globally shared

memory and are accessible to all tasks carrying a transaction,
irrespective of the core on which they execute. We assume
that the STM allows multiple simultaneous transactions in
progress, and keeps record of the chronological order of their
start times. Conflicts are detected and solved at commit time by
a contention manager (CM) that selects the transaction with
earliest start time stamp in the conflict to commit first. We
assume that transactions cannot abort except when a conflict
is detected and the CM manager decides so. A conflict occurs
when two or more transactions, executing in parallel (i.e.
simultaneously, in different cores) have intersecting data sets
and at least one is trying to modify a commonly accessed
object. We represent contentions by using a graph G in which
vertices represent transactions and edges connect pairs of
transactions assigned to different cores such that the write set
of one transaction intersects the data set of the other. Before
going any further in this paper, we introduce few concepts that
are central for a good understanding of our proposed analyses.

Definition 1 (Contention group). Given a contention graph G,
a contention group, denoted as Ωg (with g ≥ 1), is defined as

3Here, at each time instant the job with the earliest absolute deadline is
selected for execution and ties are broken in an arbitrary manner.



a set of connected vertices of G in which any two transactions
are connected by a path.

Figure 1 illustrates a very simple example of contention
groups in which a set of five transactions {ω1, ω2, ω3, ω4, ω5}
are sharing a set of three STM objects {o1, o2, o3}. In this
example4, the data sets of the transactions form two distinct
contention groups: Ω1 = {ω1, ω5} and Ω2 = {ω2, ω3, ω4}.

!1

!2

!5

!4!3

o3

o1 o2

DS1 = DS5 = {o3}

DS2 = {o1}

DS3 = {o1, o2}

DS4 = {o2}

Ω1

Ω2

Fig. 1. Illustration of contention groups.

Definition 2 (Cores assigned to a contention group Πg). Given
a contention group Ωg , we define Πg as the set of mg ≤ m
cores assigned to the execution of transactions in Ωg . Formally,
Πg = {πk | σ(ωi) = πk, ωi ∈ Ωg}.

Definition 3 (Direct contender of a transaction). Given a
contention graph G, a direct contender of transaction ωi is
defined as a transaction ωj that shares at least one STM object
with ωi and this object is modified either by ωi or ωj or both.
Formally, that is (WSi ∩DSj) ∪ (DSi ∩WSj) 6= ∅.

Definition 4 (Indirect contender of a transaction). Given a
contention graph G, an indirect contender of transaction ωi is
defined as a transaction ωj that does not share any STM object
with ωi, but belongs to the same contention group.

Definition 5 (Independent transactions). Given a contention
graph G, two transactions ωi and ωj are said to be independent
when they belong to two distinct contention groups.

Each instance of a transaction has a life cycle that follows
the states represented in Figure 2, in which the transaction is in
progress. When a transaction starts, it executes the transaction
code and commits if no conflicts are detected, otherwise it may
be aborted, retrying to commit immediately. Note: a transaction
may be aborted multiple times until it successfully commits.

Start

Validate:

OK to commitKilled by contender

Validate:

already dead

Validate:

loses conflict

Restart

ACTIVE

FAILED

ZOMBIE

Fig. 2. Illustration of the state diagram of a transaction.

Definition 6 (Transaction overhead of a job). Given a task τi
hosting a transaction ωi, the transaction overhead of job τi,j ,

4Figures 1 and 2 are borrowed from [15].

denoted as Wi,j , is defined as the time wasted in executing
aborted commit attempts of ωi. Formally, Wi,j is given by:

Wi,j
def
= Ai,j · Cωi

(1)

where Ai,j represents the number of failed attempts of ωi

before it commits.

Definition 7 (Execution time of a job executing a transaction).
The execution time of the jth job of task τi executing a
transaction ωi, denoted as Ci,j , is defined as the sum of four
terms: (1) the time Ca−ωi

required to execute the code of τi
before ωi starts, (2) the time Cp−ωi

required to execute the
code of τi after ωi has committed, (3) the time Cωi

required
for a successful attempt of ωi, and (4) the time Wi,j associated
to the transaction overhead. Formally:

Ci,j
def
= Ca−ωi

+ Cωi
+ Cp−ωi

+Wi,j (2)

IV. SCHEDULING APPROACHES

Traditional alternatives for the analysis of real-time tasks
are based on (1) the system utilisation, (2) the system load
or (3) the response time of each individual task. Out of these
techniques, we adopted the response time analysis as it collates
closely with the behaviour of the system, all the way down to
the task level. This property is useful, especially when tasks
may not be independent and/or may carry transactions. Before
we provide the technical details of our WCRT analyses, this
section recalls the main intuition and rules behind each adopted
scheduling approach.

FIFO-CRT. This CM solves conflicts by ensuring that for
transactions in the commit phase, each transaction update
does not invalidate concurrent transactions with an earlier
start time, otherwise the transaction is aborted. In order to
avoid deadlocks: any preempted transaction can be aborted,
irrespective of its start time stamp.

NPDA. This approach schedules jobs by following the classical
P-EDF scheduler, but the transactions are non preemptable
during their execution. When a transaction fails to commit,
preemptions are temporarily enabled and the ready jobs with
earlier deadlines are scheduled. As a consequence, NPDA al-
lows for multiple transactions to be simultaneously in progress
(although some may be preempted) on each core.

NPUC. This approach schedules jobs by following P-EDF, but
transactions are executed without any preemption points until
they commit. This scheduling technique ensures that at most
one transaction may be in progress on each core at runtime.

SRPTM. This approach schedules jobs by following P-EDF,
but a few extra rules are added when a transaction is in
progress. First, based on SRP [21], tasks τi and τj are assigned
preemption levels, say λi and λj , such that λi > λj iff
Di < Dj . Then, each transaction ωi is assigned a preemption
level λωi

that is the highest preemption level among all tasks
that belong to the same contention group Ωg (see Definition 1)
as ωi. Formally λωi

= max (λj | {ωi, ωj} ⊂ Ωg). On each
core πk, the local scheduler maintains a core ceiling parameter
Λk. This parameter represents a non-negative variable that
holds the highest preemption level of any task whose progress
depends on the transaction currently in progress on that core.
When no transaction is in progress, the core ceiling is null



and all jobs are scheduled by following the EDF scheduler.
Otherwise, SRPTM does not schedule the job with the earliest
deadline only in the following two situations:

1) The arriving job has a preemption level not greater
than the current core ceiling. This rule allows us
to avoid situations where jobs, which are waiting
on other cores for the transaction to commit, are
improperly delayed.

2) The arriving job has a preemption level greater than
the current core ceiling, but carries a transaction. In
this case, the core ceiling is raised to the preemp-
tion level of this arriving job, and the job with the
transaction already in progress is scheduled so that
the transaction commits as soon as possible. Upon
the commit, the core ceiling is reset to null and the
scheduler behaves according to the EDF scheduler.
This rule ensures that the system does not have more
than m transactions in progress.

At this point, we have everything we need to compute a sound
and convincing upper-bound on the WCRT of a set of hard
real-time tasks, sharing STM data. Before going any further,
we will discuss the intractability of a NPDA analysis.

V. ON THE INTRACTABILITY OF A NPDA ANALYSIS

NPDA does not restrict the number of transactions that
can simultaneously be in progress on each core, thus in-
creasing the complexity of determining a tight upper-bound
on the number of times each transaction may be aborted.
The worst-case scenario in this context occurs when each
transaction has to wait for all of its direct contenders before
it can commit. To support this claim, Figure 3 illustrates a
contention group that involves three cores {π0, π1, π2} and
six tasks {τ1, τ2, τ3, τ4, τ5, τ6}. Here, we assume that task
τi carries transaction ωi and that transactions ω2, ω3, ω4 are
direct contenders of ω1. Additionally, we assume that in the
illustrated time segment5, the chronological order in which
transactions start is ω2 ≺ ω4 ≺ ω6 ≺ ω3 ≺ ω1, and that τ2 and
τ4 are preempted when we start observing the system. In this
figure, thin vertical lines indicate the time instants at which
a transaction is fated to fail, either (1) by being invalidated
when a contender commits, or (2) by the CM decision at
the commit time. The transaction that aborts and the one that
causes the abort are displayed on the extremes of each thin
line. Transaction ω1 executes on core π0, and may abort in
favor of transactions that started earlier on different cores. The
sequence of events in this special case shows that ω1 commits
only when all its direct contenders (i.e. ω2, ω3 and ω4) have
committed. Note that this delay includes waiting for ω6 (an
indirect contender) to commit.

Although it is straightforward to identify the direct con-
tenders of a transaction, the exercise becomes very challenging
when it comes to compute the delay they impose on the
commit of that transaction. As a matter of fact, when (1) the
number of transactions (i.e., the vertices), (2) the number of
dependencies (i.e., edges) and (3) the number of assigned cores
in a contention group grow, the search-space where to find the
sequence of transactions that leads to the longest commit delay

5Note that τ5 is not released in the illustrated time segment.
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Fig. 3. Preempted jobs executing ω2 and ω4 are rescheduled in times to
abort transaction ω1.

also grows exponentially. Specifically, the computational com-
plexity of completing this operation is in order of O (nn ×m),
where n is the total number of tasks and m is the total number
of cores. Therefore, a tight feasibility analysis for NPDA is
computationally intractable.

VI. WCRT ANALYSIS FOR NPUC

We recall that NPUC schedules transactions in a non-
preemptive manner until they commit (see Section IV). This
property ensures two essential predicates: (i) at most one
transaction can be in progress on each core at any time instant,
and (ii) the delay experienced by a transaction prior to its
commit depends exclusively on its set of direct contenders,
which in turn, depend on their own set of direct contenders.
We can compute an upper-bound on the WCRT of a transaction
by determining the sequence of transactions that will produce
the longest delay, which occurs when the transaction under
analysis arrives at a time instant when the pending workload
associated to its contenders is maximum. For the sake of
clarity, we assume that the transaction under analysis arrives
upon the start time of all its contenders.

Main idea. We consider that task τi carries a transaction ωi

and is the task under analysis. To compute a sound and tight
upper-bound on the WCRT of τi, we should compute: (1) the
WCRT of the transaction ωi; (2) the WCRT of the section a-ωi

before the transaction; (3) the WCRT of the section p-ωi after
the transaction; and finally (4) we sum up all these values6.

A. WCRT of transaction ωi

This section presents two methods for the computation of
an upper bound on the commit delay of ωi. The first method
provides a tight bound, but requires that all possible sequences
of transactions that produce a delay on ωi are known, whereas

6As the WCRT of τi is upper-bounded by the sum of the response times
of the non-transactional sections and the transactional sections, we consider
only one transaction per task.
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the second method provides a pessimistic upper bound, but
with a linear-time complexity. The selection of one method
over the other will depend on the user needs and the available
computational resource and time.

⊲ Method 1: Tight WCRT of transaction ωi. This method is
based on the contention graph (see Definition 1) to determine
all the possible transaction sequences that may delay ωi. From
this process, the sequence that produces the longest delay on
ωi is found by considering the simple paths7 converging to
the vertex ωi with no repetition of cores. This is possible as
the contention graph is finite. For each transaction sequence,
an upper-bound on the WCRT of ωi is computed by upper-
bounding the times to commit of all the transactions prior to ωi.
Figure 4 depicts an example in which three transactions — ω6,
ω3 and ω1 — start almost simultaneously on cores π2, π1 and
π0, respectively. Assuming that the transactions arrive in this
order, the WCRT of ω1 depends on that of ω3, which in turn
depends on the WCRT of ω6. Note that for each sequence
of transactions: (1) each transaction performs at most two
attempts before success once it becomes eligible to commit;
(2) the very first transaction may abort after the start of ωi.
Figure 5 illustrates a case in which such a phenomenon occurs.
Upon the commit of the transaction out of the sequence, ω1 is
fated to abort; however ω3 has started prior to this attempt of
ω1 to commit. Point (1) and Point (2) allow us to formulate
an upper bound on the WCRT of the transaction in a given
sequence. To this end, we consider a sequence of k > 0
transactions and υ as the function that returns the transaction
at each position in this sequence. We have υ(k) = ωi.

Lemma 1. The WCRT of ωi in a given sequence, denoted as
R(k), is computed recursively by Equation 3.

{

R(1) = 2 · Cυ(1)

R(q) =
(⌈

R(q−1)

Cυ(q)

⌉

+ 1
)

· Cυ(q) if 1 < q ≤ k.
(3)

Proof: The proof follows directly from Point (1) and
Point (2). In the worst-case scenario, the first transaction
in the sequence takes at most two attempts to commit (see
Point (2)). Then, transaction at position q ≥ 2 has to wait for

7A simple path is a sequence of connected vertices with no repetition.
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Fig. 5. ω1, the first transaction in the sequence aborts once before commits.

the transaction at position q − 1 to commit plus at most one
additional attempt to successfully commit (see Point (1)).

Now, let Si denote the set of all simple paths that converge
towards ωi and let Si,k denote the subset of Si which consists
only of simple paths of length k. We assume that ωi belongs
to contention group Ωg .

Lemma 2. The WCRT of ωi is given by:

Rωi
=

mg

max
k=1

{

max
Si,k

(

R(k)
)

}

(4)

Proof: The length of the simple path to transaction ωi is at
most mg as ωi belongs to Ωg . For any sequence of transactions
in Ωg , an upper-bound on the WCRT of the transaction at
position q is given by Equation 3. From these two predicates,
it follows that the WCRT of ωi cannot exceed the RHS of
Equation 4. Now, as Ωg is finite by assumption, this RHS is
also an upper-bound on the WCRT of ωi.

Although this method is tight, it suffers from the fact
that all the possible simple paths must be considered. This
might become impractical with an increase of the number of
transactions and cores in the system.

⊲ Method 2: Linear-time WCRT of transaction ωi. The main
idea behind this method is to avoid the usage of any specific se-
quence of transactions. To this end, we consider the transaction
with the longest execution time on each core, which belongs to
the same contention group as ωi. Formally, first we determine
the longest execution time CΩg,πℓ

of all the transactions in Ωg

that are assigned to each core πℓ ∈ Πg by using Equation 5.

CΩg,πℓ
= max

{

Cωj
| ωj ∈ Ωg ∧ σ(τj) = πℓ

}

(5)

Then, from Point (1) and Point (2) in Method 1, we compute
an upper-bound IΩg,πk

on the delay that any transaction in Ωg

assigned to core πk may suffer by using Equation 6.

IΩg,πk

def
=

∑

πℓ ∈ Πg\πk

2 · CΩg,πℓ
(6)

Note that IΩg,πk
is common to all transactions in Ωg assigned

to πk, so it is computed only once for each pair of core and
contention group.

Lemma 3. An upper-bound on the WCRT of transaction ωi is
given by Equation 7.

Rωi
= IΩg,πk

+ 2 · Cωi
(7)

Proof: The WCRT of ωi is upper-bounded by the delay
that ωi suffers from all concurrent transactions with an earlier



start time (see Equation 6), augmented by the time that ωi

takes to commit once it is possible to do so (see Point (1)).

This method is pessimistic as Equations 6 and 7 consider
a sequence of transactions that may never occur in practice.

B. WCRT of task τi

We recall that the non-transactional sections of task τi
(a−ωi and p−ωi) are scheduled by following the fully preemp-
tive P-EDF scheduler, whereas the transaction (ωi) is scheduled
with disabled preemption.

1) WCRT of a−ωi: We compute an upper-bound on
the WCRT of a−ωi by tuning the technique described by
Spuri [22] for the WCRT of a task. In [22], a single core
platform is assumed and tasks are scheduled by following
the fully-preemptive EDF scheduler. However, the model of
computation assumed in this work requires three adaptations.

1st adaptation: WCET of a task with transaction. The
Spuri et al. [22], [23] technique is based on the concept of
“deadline-d busy period length”, which requires the WCET of
all tasks executing during that period. As such, the deadline-d
busy period exploits an approximation on the WCET values of
the tasks carrying a transaction rather than their actual values.
Since the execution time of such a task must include the
overhead induced by the aborted attempts of the transaction,
the WCET of task τi is upper-bounded by Equation 8.

Ci
def
= Ca−ωi

+Rωi
+ Cp−ωi

(8)

2nd adaptation: Extension of the deadline-d busy period.
In order to determine an upper bound on the WCRT of a−ωi,
the deadline-d busy period is relevant until the completion time
of this section. To this end, the length of the deadline-d busy
period is adapted from [22] as in Equation 9.
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In Equation 9, a denotes the release time of the job under

analysis, Di
def
= {τj | Dj < a + Di; j 6= i;σ(τi) = σ(τj)}

and the deadline-d busy period, denoted as La−ωi
, is com-

puted by using a recursive algorithm, which stops as soon

as L
(q+1)
a−ωi

(a) = L
(q)
a−ωi

(a) for some integer q ≥ 0 or when

L
(q+1)
a−ωi

(a) exceeds a + Di. In this latter case, the system
is not schedulable. Note that the longest busy period occurs
when the last job of τi is released at instant am such that
am = argmax(La−ωi

(a)), see [22] for details.

3rd adaptation: lower priority blocking. If a job is released
when a lower priority job is executing a transaction, then
the newly released job will be blocked until the transaction
commits. Upon the commit, preemption is enabled again.
In this case, the WCRT of a−ωi must consider a possible
blocking occurring at the time instant at which the job is
released. In the worst-case, this blocking time corresponds to
the longest response time of a transaction carried by a job

with a lower priority and assigned to the same core as τi, as
formalised in Equation 10.

Bi
def
= max

{

Rωj
| Di < Dj ∧ σ(τi) = σ(τj)

}

(10)

It follows that an upper-bound on the WCRT of a−ωi, denoted
as Ra−ωi

, is given by Equation 11.

Ra−ωi

def
= Bi +max {Ca−ωi

, La−ωi
− am} (11)

Intuition behind Equation 11: An upper-bound on the WCRT
of a−ωi is defined by the longest delay on the last job that
completes in the busy-period.

2) WCRT of p−ωi: When a transaction is in progress,
concurrent jobs with smaller deadlines that arrive are pre-
vented from executing as preemption is disabled. Upon its
completion, preemption is enabled again. As such, p−ωi may
suffer interference from concurrent jobs with earlier deadlines:
(i) that were released while ωi was in progress; and (ii) that
are released prior to the job completion. Hence, a conservative
WCRT of p−ωi is obtained by maximizing the interference it
may suffer. To this end, we assume that ωi starts at the earliest
possible time instant of its carrying job. This scenario allows us
to accommodate the maximum number of concurrent jobs with
an earlier deadline between the time at which the transaction
starts and the deadline of the job. The deadline associated to
transaction ωi can thus be defined by Equation 12.

Dωi

def
= Di − Ca−ωi

(12)

An upper-bound on the WCRT of p−ωi can be computed
in an iterative manner by using a fixed-point algorithm as

presented in Equation 13 in which Dωi

def
= {τj | Dj <

Dωi
;σ(τi) = σ(τj)}.
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Intuition behind Equation 13: As preemption is disabled when
a transaction is in progress, all the released jobs with a higher
priority will delay p−ωi and all jobs with a higher priority
than τi will interfere with p−ωi upon the commit of ωi.

3) WCRT of task τi: At this stage, we can derive the upper-
bound Ri on the WCRT of task τi

8.

Theorem 1. The WCRT of task τi is obtained by combining
the WCRTs of the three sections that compose τi, as defined
in Equation 14

Ri = Ra−ωi
+Rωi

+Rp−ωi
(14)

Proof: This theorem follows directly from Equation 11
(which bounds the execution of a−ωi); Equation 4 or Equa-
tion 7 (which bounds the execution of ωi); and finally Equa-
tion 13 (which bounds the execution of p−ωi).

8An upper-bound on the WCRT of a task τi that does not carry a transaction
is a special case of Equation 14 where Rωi = Rp−ωi

= 0 and Ca−ωi
= Ci.



VII. WCRT ANALYSIS FOR SRPTM

In NPDA and NPUC, preemptions are disabled during the
execution of the transaction in order to avoid a situation where
a transaction can be aborted by a later released transaction. The
approach presented in this section (SRPTM) achieves the same
goal, but does not disable preemption. This feature allows us
to improve the schedulability and the flexibility of the system.
To this end, SRPTM applies the following rules:

1) Each transaction is assigned a preemption level that
indicates its urgency (e.g., computed from the relative
deadline of the carrying task).

2) Each transaction is protected from being preempted
by concurrent jobs that are less urgent.

3) Any job is allowed to preempt the running job during
the execution of its transaction only if (i) it does not
carry a transaction and (ii) it has a higher preemption
level than the transaction in progress.

These rules do not eliminate the interference but, they
reduce it during the execution of a transaction. In a similar
manner as for NPUC paradigm, deriving an upper-bound on
the WCRT of a task under SRPTM consists of computing the
WCRT of the individual parts of the task taken separately.

A. WCRT of transaction ωi

SRPTM shares two fundamental features with NPUC: (1) a
transaction suffers the delay associated to its direct contenders
with an earlier start time before it can commit; and (2) no
more than one transaction can be in progress on each core.
From these two features, it remains true that every transaction
requires at most two attempts to commit, once it is legally
possible to do so. We denote an upper-bound on the WCRT
of these last two attempts by R∗

ωi
for transaction ωi.

Since SRPTM is based on the P-EDF scheduler, the compu-
tation of R∗

ωi
depends on the so-called intra-core interference

only, i.e., the interference associated to the higher priority jobs
without transactions and assigned to the same core as τi. The
preemption level of such a task, say τj , is thus greater than
the core ceiling (i.e., λj > Λk ≥ λωi

).

Lemma 4. An upper-bound R∗
ωi

on the WCRT of the last two

attempts of ωi is given by Equation 15 in which D∗
ωi

def
= {τj |

Dj < Dωi
;σ(τi) = σ(τj);λj > λωi

;λωj
= 0}.
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(15)

The calculation of R∗
ωi

stops as soon as the result converges,

i.e., R
∗(q+1)
ωi = R

∗(q)
ωi for some positive integer q or when R∗

ωi

exceeds Dωi
.

Proof: R∗
ωi

is determined by maximising the possible
intra-core interference. As such, it is given by the execution
time taken by the two attempts of the transaction, augmented
by the execution time required by the concurrent jobs that are
able to preempt τi during the time window corresponding to
these two attempts.

Let us assume that τi is assigned to core πk and ωi belongs
to contention group Ωg . Then, we have everything necessary
to compute a tight upper bound on the WCRT of ωi. For each
core πℓ in Πg , but πk, the transaction that presents the longest
response time to execute two attempts is selected and sum-up
to produce the worst-case delay on ωi. As such, the inter-
core interference, denoted as IΩg,πk

, can be upper-bounded
and formalized as in Equation 16.

IΩg,πk
=

∑

πℓ∈Πg\πk

max
{

R∗
ωj

| ωj ∈ Ωg ∧ σ(τj) = πℓ

}

(16)

Once an upper-bound on the intra-core interference and
an upper-bound on the inter-core interference are computed,
an upper-bound on the WCRT of ωi can be determined by
combining these two expressions as follows.

Rωi

def
= IΩg,πk

+R∗
ωi

(17)

B. WCRT of task τi

SRPTM allows a newly released job to be blocked, irre-
spective of its priority, when a transaction is in progress. The
blocking and interference factors differ depending on whether
the tasks carry transactions or not. Thus, we compute an upper-
bound on WCRT of τi in two distinct approaches.

1) WCRT of τi with a transaction: We consider the three
sections of τi separately.

Blocking term. SRPTM does not allow more than one
transaction in progress per core. When a transaction is in
progress, the newly released job is directly blocked until the
transaction commits. Upon the commit, preemption is enabled
again and ready jobs are scheduled by following a classical
EDF scheduler. This implies that no job can incur an indirect
blocking. Any job with a transaction can be directly blocked
at most once. Hence, the maximum blocking time, denoted as
DBi, is defined by longest response time of a transaction from
all the transactions assigned to the same core. This is derived
from the subset of tasks with a lower preemption level, as
formalised in Equation 18.

DBi
def
= max

{

Rωj
| λj < λi ∧ σ(τi) = σ(τj)

}

(18)

WCRT of a−ωi. Under P-EDF, any job can suffer interference
from other jobs released on the same core. An upper-bound on
the WCRT of a−ωi can once again be determined by adapting
the technique presented by Spuri [22]. For the purpose of this
analysis, the WCET of τi is approximated by Equation 19.

Ci = Ca−ωi
+Rωi

+ Cp−ωi
(19)

In the same manner as for NPUC (see Section VI-B),
the extension of the deadline-d busy period is determined by
Equation 20.
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The computation of La−ωi
(a) is performed by using a fixed-

point algorithm that converges if L
(q+1)
a−ωi

(a) = L
(q)
a−ωi

(a) for

some non-negative integer q. Otherwise, if L
(q+1)
a−ωi

(a) > a+Di

for a given q, then the system is “not schedulable”. In the
former case, the longest deadline-d busy period La−ωi

occurs
when the last job of τi is released at the time instant am such
that am = argmax(La−ωi

(a)), see [22] for further details.

Finally, an upper-bound on the WCRT of a−ωi is given
by an upper-bound on the WCRT of this non-transactional
section, augmented by the delay produced by the busy period.
The possible blocking time that a job can suffer when it is
released is formalized as in Equation 21.

Ra−ωi
= DBi +max {Ca−ωi

, La−ωi
− am} (21)

WCRT of p−ωi. This section can be preempted by: (1) the
jobs with transactions that were released since the transaction
is in progress, and (2) the jobs with a higher priority that are
released in its window of execution. In order to maximise the
interference, we consider the same time window as defined
in Equation 12 for the jobs with a transaction. The “critical
time instant” at which this section of the task can start
executing occurs when the blocking time and the interference
experienced are at their maximum. The length of the interval
which start at a critical instant, denoted as Dp−ωi

, is formally
given as in Equation 22.

Dp−ωi

def
= Di − (Ra−ωi

+Rωi
) (22)

This interval defines the longest possible response time of
p−ωi while assuming the lowest slack of τi upon the commit
of ωi. Thus, the WCRT of p−ωi can be defined by the
execution demand of this section augmented by the execution
demands of the concurrent jobs, with an earlier deadline, that
are released inside both mentioned time windows as formalized
in Equation 23, where:

D1
p−ωi

def
= {τj | Dj < Dωi

;σ(τi) = σ(τj);λωj
6= 0} and

D2
p−ωi

def
= {τj | Dj < Dp−ωi

;σ(τi) = σ(τj)}.
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The iterative computation stops when the result converges

to a value such that R
(q+1)
p−ωi

= R
(q)
p−ωi

, otherwise if for a given

q, we have R
(q+1)
p−ωi

> Di , then the system is “not schedulable”.

Theorem 2 (WCRT of a task τi with a transaction). An upper-
bound on the WCRT of task τi is obtained by combining
the direct blocking and the WCRTs of the three sections that
compose τi, as defined in Equation 24.

Ri = Ra−ωi
+Rωi

+Rp−ωi
(24)

Proof: This theorem follows directly from Equation 21,
Equation 17 and Equation 23.

2) WCRT of τi without a transaction: In addition to the
classical interference that every task can suffer from the jobs
executing on the same core, each task without transaction can
experience either direct or indirect blocking.

Direct blocking. It occurs when the job with the earliest
deadline is released, but has a preemption level which is
not greater than the current core ceiling. We recall that once
the transaction commits, preemption is enabled again and a
classical EDF scheduler applies. At this moment, the job with
the earliest absolute deadline is selected for execution.

Indirect blocking. It occurs when the job with the earliest
deadline is released while a transaction is in progress and
the job is able to execute because its preemption level is
greater than the core ceiling. In the meantime, if another job
carrying a transaction is released and fulfills the deadline and
preemption level requirements to be scheduled, the core ceiling
is raised to the transaction preemption level of this job and this
operation forces the transaction already in progress to complete
its execution. As such, this process helps the transaction in
progress to commit as soon as it is legally possible to do so.

Blocking term. The longest direct blocking term that task τi
can experience, denoted as DBi, is given by an upper-bound
on the WCRT of all the transactions which: (1) have a higher
preemption level than λi, (2) belong to the subset of tasks with
a lower preemption level than λi, and finally (3) are assigned to
the same core as τi. This is formally expressed in Equation 25.

DBi = max
{

Rωj
| λωj

> λi ∧ λj < λi ∧ σ(τj) = σ(τi)
}

(25)

In contrast, an upper-bound on the longest indirect blocking
term is given by an upper-bound on the WCRT of all the
transactions with a lower preemption level than τi. Note that
these transactions are assigned to the same core as τi. If a job
of a task, say τg , carrying a transaction is able to preempt τi,
then task τi will be indirectly blocked as formally expressed
in Equation 26.

IBi = max{Rωj
| λωj

< λi ∧ σ(τj) = σ(τi)

∧ ∃τg : λg > λi ∧ λωg
> 0}

(26)

Intuition behind Equation 26: When a job of τi preempts
the job with the current transaction in progress, τi may then be
preempted by another job τg also carrying a transaction, but
with an earlier deadline and a preemption level greater than
the core ceiling.

Under SRPTM, if a job of τi (not carrying a transaction)
is released while a transaction is in progress, then τi may
be blocked at most once. Consequently, direct and indirect
blocking terms are mutually exclusive for any job not carrying
a transaction. In this case, the longest blocking time is given
by the maximum value between direct and indirect blocking,
as formally expressed in Equation 27.

Bi = max {DBi, IBi} (27)

WCRT of task τi without a transaction. Assuming a task
that does not carry a transaction, its jobs are scheduled by



following the EDF scheduler. As such, until each released job
completes its execution, it may suffer interference from any
released job with an earlier absolute deadline. The computation
of an upper-bound on the WCRT of task τi in this case can
thus be achieved by the method described by Spuri [22], [23]
without any adaptations. The iterative equation is replicated in
Equation 28, where Di is defined as in Equation 9.
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The iterative computation stops when the result converges

to a value such that L
(q+1)
i (a) = L

(q)
i (a), otherwise if the

deadline is exceeded, the system is not schedulable. As-
suming that a job of τi is released at time instant am =
argmax(Li(a)), the length of the deadline-d busy period that
produces the longest delay is denoted as Li, and the upper-
bound on the WCRT of τi if no blocking could occur is given
by Li−am. This result can then be combined with the longest
blocking time Bi (see Equation 27) to determine an upper-
bound on the overall WCRT of a task without a transaction.

Theorem 3. An upper-bound on the overall WCRT of a task τi
without transaction is formalized as in Equation 29.

Ri = Bi +max {Ci, Li − am} (29)

Proof: This theorem follows directly from the combina-
tion of Equation 27 and Equation 28.

VIII. EVALUATION RESULTS

This section reports on the runtime performance of the
three presented scheduling strategies. We used the same plat-
form setup as the one described in [15] and run each simulation
for two hyperperiod9. In summary, we showed that: (1) the
number of task sets schedulable by SRPTM is higher than
those schedulable by NPDA and NPUC (see Figure 6a);
(2) SRPTM shows the lowest amount of transaction time
overhead (see Figure 6b). In this paper, we go one step further
in order to validate our proposed analyses. We determine the
ratio between the analytic upper bounds as computed in this
paper and the corresponding maximum observed transaction
response times. Then, we compared the results for systems
with 2, 4, 8 and 16 cores, respectively.

Task set generation. Groups of task sets in which 75%
of the tasks execute one transaction (with 50% probability
to be read-only) are generated. Each task set requires 75%
of the platform capacity without overhead and the task-to-
core mapping strategy is performed by following the worst-fit
heuristic10. For a given number of cores, all groups share the
same task generation parameters excepts for the Cωi

/Ci ratio,
which follows a normal distribution with a fixed (per group)
µ ∈ {20%, . . . , 80%} and σ = 10%. We generated 7 groups of
500 task sets assuming 2, 4, 8 and 16 cores, respectively. All
the parameters used for the task set generation are provided
for a proof of concept of the proposed approach.

9The hyperperiod is the least-common-multiple of all the task periods.
10This choice is made for benchmark reasons, see [15].

Results for NPUC. The “tight method” appears to compute the
maximum observed response times for a subset of transactions,
thus showing the best ratio (i.e., 1) for the task sets in all
platform settings. For the remaining transactions, we observed
that the average (resp. the “worst”) ratios range from 7.8 (resp.
245) up to 25.5 (resp. 879). In average, an increase of the
number of cores adds more pessimism to the analysis. This
can be explained by the long serialisation sequences that are
considered. Interestingly, when the ratio Cωi

/Ci increases, the
pessimism decreases. This is because the probability to observe
longer serialisation sequences grows as contention increases.
Similar trends are also followed by the “linear time method”
(see Figure 7a), although the derived upper bounds introduce
more pessimism as expected. The average ratios range from
11.1 to 35.5 and the “worst” ratios from 246 up to 1281.
Figure 7c compares the two methods and displays the extra
overhead of the linear method. In average, the linear method
adds about 100% more overheads (with σ ≃ 5%) and this
value tends to decrease as the number of cores grows.

Results for SRPTM. From an analysis viewpoint, we showed
that NPUC is less pessimistic than SRPTM. This is due to the
fact that the SRPTM involves extra preemption overhead as
some transactions may be delayed by higher priority tasks that
do not carry a transaction. However, the results for SRPTM
have a similar trend as those for NPUC (see Figure 7b). The
average (resp. maximum) ratios range from 11.1 (resp. 246) up
to 36.6 (resp. 1281). Although the range limits are the same as
those of the linear method for NPUC, the standard deviations
in this case are higher.

IX. CONCLUSIONS

This paper addresses the response time analysis of hard
real-time tasks, which share STM data under partitioned
scheduling strategies. A framework wherein an upper-bound
on the worst-case response time of each task has been dis-
cussed while assuming three scheduling approaches – namely
NPDA, NPUC and SRPTM. We assume that transactions are
serialised according to their arrival time and they are managed
by following FIFO-CRT. Although NPDA was a promising
approach for soft real-time tasks upon multi-core platforms,
we showed that its associated analysis is intractable in the
context of hard real-time tasks. Assuming NPUC, we provided
a tight analysis and a linear-time analysis, which reduces the
computational complexity of the proposed analysis of the for-
mer. Finally, we showed that SRPTM has good performances
both from an analytic and experimental viewpoints. Interesting
future directions would address the impact of the task-to-core
mapping on the analysis.
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Germany, 2014, pp. 25–36.

[8] J. H. Anderson, S. Ramamurthy, M. Moir, and K. Jeffay, “Lock-free
transactions for real-time systems,” in Real-Time Database Systems:

Issues and Applications, USA, 1997, pp. 215–234.

[9] J. H. Anderson, R. Jain, and S. Ramamurthy, “Implementing hard
real-time transactions on multiprocessors,” in Real-Time Database and

Information Systems: Research Advances, USA, 1997, pp. 247–260.

[10] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin,
and J. Vitek, “Preemptible Atomic Regions for Real-Time Java,” in 26th

IEEE RTSS, Miami, USA, Dec. 2005, pp. 62–71.

[11] J. Ras and A. M. K. Cheng, “Response time analysis for the Abort-
and-Restart event handlers of the Priority-Based Functional Reactive
Programming (P-FRP) paradigm,” in 15th IEEE Int. Conf. on Embedded

and RTCSA, 2009, pp. 305–314.

[12] S. F. Fahmy, B. Ravindran, and E. D. Jensen, “On bounding response
times under software transactional memory in distributed multiprocessor

real-time systems,” in DATE Conference & Exhibition, Nice, France,
2009, pp. 688–693.

[13] J. H. Anderson and A. Srinivasan, “Mixed Pfair/ERfair scheduling of
asynchronous periodic tasks,” in 13th ECRTS, Delft , Netherlands, jun
2001, pp. 76–85.

[14] T. Sarni, A. Queudet, and P. Valduriez, “Real-time support for software
transactional memory,” in 15th IEEE Int. Conf. on Embedded and

RTCSA, Beijing, China, 2009, pp. 477–485.

[15] A. Barros, L. M. Pinho, and P. M. Yomsi, “Non-preemptive and SRP-
based fully-preemptive scheduling of real-time software transactional
memory,” JSA, vol. 61, no. 10, pp. 553–566, 2015.
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