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Abstract

Nowadays, multi-core platforms are commonplace for efficiently achieving high computational
power, even in embedded systems, with the number of cores steadily increasing and expected to
reach hundreds of cores per chip in near future. Real-time computing is becoming increasingly
important and pervasive, as more and more industries, infrastructures, and people depend on it.
For real-time systems too, multi-cores offer an opportunity for a considerable boost in processing
capacity, at relatively low price and power. This could, in principle, help with meeting the timing
requirements of computationally intensive applications which could not be met on single-cores.
However, real-time system designers must adopt suitable approaches for their system to allow
them to fully exploit the capabilities of the multi-core platforms. In this line, scheduling algorithms
will, certainly, play an important role.

Real-time scheduling algorithms for multiprocessors are typically categorized as global, parti-
tioned, and semi-partitioned. Global scheduling algorithms store tasks in one global queue, shared
by all processors. Tasks can migrate from one processor to another; that is, a task can be preempted
during its execution and resume its execution on another processor. At any moment, the m highest-
priority tasks are selected for execution on the m processors. Some algorithms of this kind achieve
a utilization bound of 100% but generate too many preemptions and migrations. Partitioned sche-
duling algorithms partition the task set and assign all tasks in a partition to the same processor.
Hence, tasks cannot migrate between processors. Such algorithms involve few preemptions but
their utilization bound is at most 50%. In semi-partitioned (or task-splitting) scheduling algorithms
most tasks are fixed to specific processors (like partitioned), while a few tasks migrate across pro-
cessors (like global). This approach produces a better balance of the workload among processors
than partitioning and consequently presents higher utilization bounds, additionally, it also reduces
the contention on shared queues and the number of migrations (by reducing the number of migra-
tory tasks). However, it must ensure that migratory tasks never execute on two or more processors
simultaneously.

For all of the categories of scheduling algorithms mentioned, it generally holds that the real-
time scheduling theory is based on a set of concepts and assumptions that have little correspon-
dence with practice. The gap between theory and practice is wide, and this compromises both
the applicability but also the reliability. Therefore, we believe that efficient scheduling algorithm
implementations in real-operating systems can play an important role in reducing the gap between
theory and practice. We defined that (i) real-time theory cannot be detached from practical issues
and (ii) the schedulability analysis must incorporate practical issues, such as context switch (or
task switch) and task release overheads, just to mention a few. Therefore, the real-time theory
must be overhead-aware in order to be reliable and must also consider the practical (in most cases,
operating system-related) issues to increase its implementability in real operating systems.

In this dissertation, we deal with semi-partitioned scheduling algorithms that are categorized
as slot-based task-splitting to achieve the above mentioned claims. To this end, we define a set of
design principles to efficiently implement those scheduling algorithms in a real operating system

i



ii

(a PREEMPT-RT-patched Linux kernel version). Grounded on implementations of the slot-based
task-splitting scheduling algorithms in the Linux kernel, we identify and model all run-time over-
heads incurred by those scheduling algorithms. We, then, incorporate them into a new schedu-
lability analysis. This new theory is based on exact schedulability tests, thus also overcoming
many sources of pessimism in existing analysis. Additionally, since schedulability testing guides
the task assignment under the schemes in consideration, we also formulate an improved task as-
signment procedure. The outcome is a new demand-based overhead-aware schedulability analysis
that permits increased efficiency and reliability. We also devise a new scheduling algorithm for
multiprocessor systems, called Carousel-EDF. Although, it presents some similarities with slot-
based task-splitting scheduling algorithms, we classify the Carousel-EDF scheduling algorithm as
a reserve-based scheduling algorithm. The underlying theory is also overhead-aware and we also
implement it in the Linux kernel.



Resumo

Hoje em dia, a utilização de plataformas multi-processador de modo a obter maior poder de com-
putação é bastante comum e é expectável que o número de processadores atinja as centenas por
plataforma num futuro próximo. Por outro lado, tem-se verificado um aumento da importância
da computação de tempo real à medida que é mais usada na indústria, em diversas infraestruturas
e mesmo pelas pessoas. Dadas as especificidades dos sistemas de tempo real, estas plataformas
representam uma oportunidade para aumentar a capacidade de processamento a baixo custo e com
baixo consumo de energia. Todo este poder computacional pode, em princípio, ajudar a satisfazer
os requisitos temporais de aplicações com elevada exigência computacional que não consegue ser
satisfeita por plataformas equipadas com um só processador. No entanto, na engenharia destes de
sistemas de tempo real devem ser adoptadas abordagens adequadas por forma a tirar o máximo
proveito destas plataformas multi-processador. Nesse sentido, certamente que os algoritmos de
escalonamento de tarefas desempenham um papel importante.

Os algoritmos de escalonamento para sistemas de tempo real em plataformas multi-processa-
dor são, geralmente, categorizados como globais, particionados e semi-particionados. Os algorit-
mos de escalonamentos globais guardam todas as tarefas numa fila global, partilhada por todos os
processadores. As tarefas podem migrar entre os processadores; isto é, a execução de uma tarefa
pode ser interrompida (preemptada) num processador e recomeçar a execução noutro processador.
A qualquer instante, as m tarefas com mais prioridade estão em execução nos m processadores que
compõem a plataforma. Alguns algoritmos globais conseguem taxas de utilização de 100%, no en-
tanto à custa de muitas preempções e migrações. Os algoritmos de escalonamentos particionados,
dividem (criam partições) as tarefas que compõem o conjunto de tarefas pelos processadores. As
tarefas atribuídas a um processador só podem ser executadas por esse processador. Desta forma,
as migrações de tarefas não são permitidas e desta forma diminuem o número de preempções.
Porém, a taxa de utilização é de 50%. Os algoritmos semi-particionados criam partições com a
maior parte das tarefas (como os algoritmos particionados) e as restantes (poucas) podem migrar
entre os processadores (como os algoritmos globais). Se por um lado, esta abordagem permite
um melhor balanceamento das tarefas entre os processadores e consequentemente uma taxa de
utilização maior. Por outro lado, reduz a disputa pelo acesso às filas partilhadas que armazenam
as tarefas migratórias e o número de migrações (porque diminuem as tarefas que podem migrar).
Contudo, estes algoritmos têm que assegurar que uma tarefa migratória não executa em dois ou
mais processadores simultaneamente.

Geralmente, a teoria subjacente a todas as categorias de algoritmos de escalonamento para sis-
temas de tempo real descritas anteriormente é baseada num conjunto de conceitos e suposições que
têm pouca correspondência com a prática; isto é, não têm em conta as especificidades das platafor-
mas e dos sistemas operativos. A diferença entre a teoria e a prática é enorme e consequentemente
compromete quer a sua aplicabilidade quer a sua confiabilidade. Portanto, nós acreditamos que
implementações eficientes dos algoritmos de escalonamento num sistema operativo podem ajudar
a diminuir a diferença entre a teoria e a prática. Assim sendo, nós definimos que (i) a teoria de
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sistemas de tempo real não pode estar dissociada dos detalhes de implementação e (ii) a análise
de escalonabilidade deve incorporar os detalhes da prática, tais como, o custo associado à troca de
tarefas no processador, ao aparecimento das tarefas no sistema, entre outras. Portanto, a teoria de
sistemas de tempo real deve ter em conta os custos por forma a ser mais confiável e também mais
implementável nos sistemas operativos.

Nesta dissertação, nós focamo-nos nos algoritmos semi-particionados, mais especificamente,
num conjunto de algoritmos de escalonamento para sistemas de tempo real (para plataformas
multi-processador) cuja principal característica é a divisão do tempo em reservas temporais. Com
o propósito de alcançar os requisitos enumerados anteriormente, nós definimos um conjunto de
princípios para uma implementação eficiente num sistema operativo (neste caso, numa versão do
sistema operativo Linux melhorada com funcionalidades apropriadas para sistemas de tempo real).
Fundamentado em implementações dos algoritmos em causa no sistema operativo Linux, nós iden-
tificamos e modelamos todos os custos operacionais associados à execução desses algoritmos no
referido sistema operativo. Então, nós incorporamos todos esses custos operacionais numa nova
análise de escalonamento. Esta nova teoria é baseada em testes de escalonabilidade exactos elim-
inando, desta forma, muitas fontes de pessimismo da análise existente. Esta nova análise permite
uma melhoria no processo de criação de partições, isto é, mais tarefas por partição, logo menos
partições. O resultado desta nova análise é um aumento da eficiência e da confiabilidade dos algo-
ritmos. Também criamos um novo algoritmo de escalonamento para sistemas multi-processador,
designado de “Carousel-EDF”. Este algoritmo apresenta algumas semelhanças com os algoritmos
em consideração nesta dissertação. A teoria desenvolvida para este novo algoritmo também é
baseada em testes de escalonabilidade exactos que também incorpora os inerentes custos opera-
cionais.
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Chapter 1

Introduction

1.1 Motivation

The computer era has been characterised by a continuous (and probably unfinished) race be-

tween processor manufacturers against processor consumers. Every new performance advance

(permitting computational tasks to be executed faster by the processor) leads to another level of

greater performance demands from consumers. Traditionally, performance advances were mainly

achieved by increasing the clock speed. However, such increases have become limited by power

consumption and heat dissipation [Low06].

In this context, multi-core architectures (consisting of multiple processing units or cores inte-

grated in a single chip) offer an ideal platform to accommodate the recurrent increase of perfor-

mance demands from consumers and solve the performance limitation of single-core architectures.

The increase in processing capacity can be achieved by incorporating multiple cores in one single

chip, with each core being able to run at a lower frequency, reducing heat and power consumption.

Nowadays, multi-core platforms are commonplace for efficiently achieving high computational

power [SMD+10], even in embedded systems, with the number of cores steadily increasing, ex-

pected to reach hundreds of cores per-chip in the future [TIL12].

Nevertheless, what is the actual impact of multi-core platforms in current computing technol-

ogy? In [Bak10], the author makes the following question: “What will we make of these new

processors?”. He then continues with: “This question should be on the minds of the developers

of every kind of software.” This lead us to another question: do multi-core platforms represent an

evolution or a revolution? We believe that multi-core platforms are more than an evolution, since

system designers must adopt suitable approaches for their system that allow them to exploit the full

capabilities of multi-core platforms. Therefore, this can imply giving up or, at least, reassessing

the approaches followed in the context of single-cores during the last decades.

Real-time computing is becoming increasingly important and pervasive, as more and more

industries, infrastructures, and people depend on it. For real-time systems too, multi-cores offer

an opportunity for a considerable boost in processing capacity, at relatively low price and power.

1
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This could, in principle, help with meeting the timing requirements of computationally intensive

applications that could not be met on single-cores.

Real-time systems are defined as those systems in which the correctness of the system depends

not only on the logical result of computation, but also on the time at which the results are produced

[Sta88]; that is, the computation results must be delivered within a time bound, called deadline.

Therefore, one of the most characteristic features of real-time systems is the notion of time. The

time granularity is not necessarily the same across all real-time systems. In other words, microsec-

onds could be suitable for some real-time systems, while for other, the timing requirement could

be in the scale of milliseconds, seconds, minutes, or even hours. Therefore, the time granularity

depends on the environment where the system operates.

Typically, real-time applications are composed by a set of tasks. Among other characteristics,

each real-time task has an associated relative deadline. The results produced by each task must

be delivered to the application during the execution time window defined by the arrival time (the

time instant when a task becomes ready to be executed) of each task plus the respective relative

deadline (which is typically different for each task). Naturally, each task requires some amount of

time for computing its results (which is also typically different for each task). This imposes the use

of some mechanism to schedule those tasks in the available processing units. In other words, real-

time applications require a scheduling mechanism, usually denoted as scheduling algorithm, to

create a task execution order such that their temporal constraints are satisfied. One frequent metric

used to evaluate scheduling algorithms is the utilization bound, which is defined as a threshold for

the task set workload such that all tasks meet their deadlines when the task set workload does not

exceed such threshold.

Real-time applications are employed in a wide variety of fields. Given the particularities of

some fields it must be assured, prior run-time, that the applications will not fail, especially, in

application domains where a failure can have catastrophic consequences. This is assured by the

schedulability test. The schedulability test establishes, at design time, whether the timing con-

straints are going to be met at run-time or not.

The real-time systems research community has developed a comprehensive toolkit comprised

of scheduling algorithms, schedulability tests, and implementation techniques, which have been

very successful: they are currently taught at major universities world-wide; they are incorporated

in design tools and they are widely used in industry. Unfortunately, the big bulk of those results

were limited to systems equipped with a single-core processor (or uniprocessor) only. Today,

the increasing number of real-time systems running on multi-core (or multiprocessor) platforms

impose the need for developing an analogous toolkit for those platforms.

1.2 Challenges

Multiprocessor scheduling algorithms have been categorized as global, partitioned, or semi-parti-

tioned. Global scheduling algorithms store all tasks in one global queue, shared by all processors

(or cores). At any time instant, the m highest-priority tasks among those are selected for execution
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on the m processors. Tasks can migrate from one processor to another during the execution; that

is, an execution of a task can be stopped (or preempted) in one processor and resumed on another

processor. Some scheduling algorithms [BGP95, BCPV96, AS00, AS04, CRJ06, RLM+11] of

this class present a utilization bound of 100%. However, the global shared queue imposes the

use of some locking mechanisms to serialize the access to that queue. This compromises the

scalability of global scheduling algorithms, as stated in [Bra11]: “it would be unrealistic to expect

global algorithms to scale to tens or hundreds of processors”. Another disadvantage of global

scheduling is related to the fact that the higher number of preemptions and migrations could cause

cache misses; that is, a failed attempt to read or write data from the processor cache, implying a

main memory access that has a much higher latency.

In contrast, partitioned scheduling algorithms partition the task set such that all tasks in a par-

tition are assigned to the same core (or processor) and tasks are not allowed to migrate from one

processor to another. This class of scheduling algorithms presents a utilization bound of at most

50%. However, it conceptually transforms a multiprocessor system composed by m processors

into m single-core (or uniprocessor) systems, thus simplifying the scheduling problem. Therefore,

partitioned scheduling schemes require two algorithms: the off-line task-to-processor assignment

algorithm and the run-time task-dispatching algorithm. The first one assigns tasks to processors

and the second one schedules tasks at run-time to execute on the processor(s). However, assign-

ing tasks to processors is a bin-packing problem, which is known to be NP-hard [CGJ97]. The

task-dispatching algorithm schedules the statically assigned tasks using a uniprocessor scheduling

algorithm, such as the Earliest Deadline First (EDF) [Liu69], which assigns the highest-priority

to the most urgent ready task; that is, it assigns the highest-priority to the task with less remain-

ing time until the end of its execution time window. One advantage of partitioned scheduling

algorithms when compared with global scheduling algorithms, is the absence of migrations and

respective overheads, namely those related to increased cache misses. However, the processor

manufacturers have largely addressed this issue using a hierarchical cache approach. Therefore,

this allows migrative scheduling approaches to be considered for real-time multiprocessor systems.

Hence, we share the same opinion as stated in [LFS+10]: “Newer multiprocessor architec-

tures, such as multi-core processors, have significantly reduced the migration overhead. The

preference for partitioned scheduling may no longer be necessary on these types of multiproces-

sors”. Semi-partitioned (or task-splitting) scheduling algorithms for multiprocessor systems try to

solve or reduce the drawbacks and limitations presented by global and partitioned scheduling al-

gorithms. Typically, under task-splitting scheduling algorithms, most tasks (called non-split tasks)

execute on only one processor (as in partitioning) while a few tasks (called split tasks) use mul-

tiple processors (as in global scheduling). Note that it is not the code of such tasks that is split,

but the execution requirement of such tasks. This approach produces a better balance of work-

load than partitioning. (Re-)using part of the processor capacity, which would otherwise be lost to

bin-packing-related fragmentation, permits the design of scheduling algorithms with a higher uti-

lization bound. Moreover, having just few migrating tasks limits the migration-related overheads

and reduces (or removes altogether) the need for locking mechanisms, by not requiring system-
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wide global shared queues. As with partitioned schemes, semi-partitioned scheduling schemes are

defined in terms of two algorithms: one for the task-to-processor assignment at design time and

another for task-dispatching at run-time.

However, for all the categories of scheduling algorithms described above, it generally holds

that the real-time scheduling theory is based on a set of concepts and assumptions that have little

correspondence with practice, as stated in [Bak10]: “Despite progress in theoretical understand-

ing of real-time scheduling on multiprocessors, there is cause for concern about the validity of the

theory for actual systems. The problem is that real multi-core processors do not fit the assumptions

of the models on which the theory is based”. Therefore, we believe that efficient scheduling al-

gorithm implementations in real operating systems can play an important role in reducing the gap

between theory and practice. In other words, (i) real-time theory cannot be detached from practical

issues and (ii) the schedulability analysis must incorporate practical issues, such as context switch

(or task switch) and task release overheads, just to mention a few. Therefore, the real-time theory

must be overhead-aware in order to be reliable. By incorporating those overheads in the schedu-

lability tests we will further be able to validate the above proclaimed advantages of task-splitting

algorithms in terms of efficiency.

1.3 Approach

In this dissertation, we deal with semi-partitioned scheduling algorithms that are categorized as

slot-based task-splitting. These algorithms subdivide the time into time slots. Each processor time

slot is composed by time reserves carefully positioned with a time offset from the beginning of a

time slot. Time reserves are periodic and are used to execute tasks. Non-split tasks are executed

within one periodic time reserve while split tasks are executed within two time reserves located

on different processors. The positioning of the processor reserve in time is statically assigned

(relative to the beginning of a time slot) so that no two reserves serving the same split task overlap

in time.

In the course of this work, we developed the ReTAS (that stands for Real-time TAsk-Splitting

scheduling algorithms) framework [ReT12]. The ReTAS framework implements, in a unified way,

slot-based task-splitting scheduling algorithms in the Linux kernel. These implementations allow

us, on one hand, to be aware of the specificities of operating systems in handling these types of

scheduling algorithms and, on the other hand, to study such scheduling algorithms running in

a real operating system. The conjugation of both allow us to make some improvements to the

scheduling algorithms under consideration in order to overcome the difficulties imposed by the

real operating system.

According to [SMD+10], Moore’s law (which projects that the density of circuits on chip

will double every 18 months) still applies for multi-core architectures. Therefore, the number

of processing units in multi-core architectures will increase exponentially with time. Hence, we

believe it is important that an implementation of a multiprocessor scheduling algorithm has a task-

dispatching overhead that is low as a function of the number of processors (ideally independent
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of the number of processors). To this end, the design principles for implementing slot-based

task splitting algorithms must follow one important rule: the interactions among processors must

be reduced. Let us provide an example scenario to help stressing this rule and also to provide

an intuitive overview of the slot-based task-splitting scheduling algorithms. Figure 1.1 shows a

typical time-line for a slot-based task-splitting scheduling algorithm. Time is divided into time

slots of length S and each processor time slot is in turn divided into time reserves (denoted x, N,

and y). Assume that task τ2 is a split-task and executes on two processor reserves y[P1] and x[P2].

Task τ1 is a non-split task that executes on only one processor reserve, N[P1], and tasks τ3 and τ4

are also non-split tasks that share the same processor reserve, N[P2]. Then, when both are ready

to be executed, the scheduler selects the highest-priority task according to the EDF scheduling

algorithm.

0 tS 2S

S S

P2

P1 τ1

N

τ1

N

τ2

y

τ2

y

τ2

x

τ2

x

τ3 or τ4

N

τ3 or τ4

N

Figure 1.1: An example of the operation of a slot-based task-splitting multiprocessor scheduling.
Task τ2 is a split-task while tasks τ1, τ3, and τ4 are non-split tasks that execute only on one
processor.

In terms of implementation, a hierarchical approach can be used. Instead of assigning tasks

directly to processors, tasks are first assigned to servers, and then, servers are instantiated by the

means of processor reserves. Therefore, each server has a set of tasks (one or more) to schedule,

and one or two processor reserves to execute such tasks. Each server, P̃q, schedules its tasks

according to the EDF scheduling algorithm. Figure 1.2 shows a typical time-line for slot-based

task-splitting scheduling algorithm using the hierarchical approach based on servers.
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Figure 1.2: An example of the operation of the hierarchical approach for slot-based task-splitting
multiprocessor scheduling.

We assume that each processor is able to setup a timer to generate an interrupt signal at a cer-

tain time in the future. Then, the time slot is independently managed by each processor (usually,

all processor architectures provide such a timer mechanism). This timer is used to trigger schedu-

ling decisions at the beginning of each reserve. Furthermore, we assume that processor clocks are

synchronized (note that this is a hardware issue that is out of the scope of this work).
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From Figures 1.1 and 1.2, we can identify that the most problematic issue to satisfy the afore-

mentioned rule is the migration of the split-tasks. Whenever a split task consumes its reserve on

processor Pp it has to immediately resume its execution on another reserve on processor Pp+1, we

denote this issue as the instantaneous migration problem. From a practical point of view, that pre-

cision is not possible, due to many sources of unpredictability in a real operating system. Note that,

even with precise time clock synchronization the problem could persist; for instance, an interrupt

timer could be prevented to be fired on a specific time instant, and thus delayed, if the interrupt

system or the respective interrupt is disabled. Consequently, the dispatcher of processor Pp+1 can

be prevented from selecting the task in consideration for execution because processor Pp has not

yet relinquished that task. One solution could be for processor Pp+1 to send an Inter-Processor

Interrupt (IPI) to Pp to relinquish that split task. Another could be for Pp+1 to setup a timer x time

units in the future to force the invocation of its dispatcher (or scheduler).

We chose the latter option for two reasons: (i) we know that if a processor has not yet relin-

quished the split task it was because something is preventing it from doing so (e.g., the execution

of an Interrupt Service Routine (ISR)); (ii) using IPIs in the way mentioned above introduces a

dependency between processors that could compromise the scalability of the dispatcher. This ap-

proach allows us to define a new schedulability theory for slot-based task-splitting scheduling

algorithms, and this new theory employs exact, processor demand-based, schedulability tests.

Consequently, it makes it inherently more efficient than the original analysis for the respective

algorithms, which employs utilization-based tests. We identify and model into the new analysis

all types of scheduling overheads manifested under the considered scheduling algorithms. This

renders the new, unified, schedulability analysis overhead-aware. Since schedulability tests are

used to guide the off-line task-to-processor assignment in this class of algorithms, we also formu-

late a sophisticated overhead-aware accompanying task-to-processor assignment algorithm. This

brings increased efficiency and reliability to slot-based task-splitting scheduling algorithms.

1.4 Thesis statement

In this dissertation, we address slot-based task-splitting scheduling algorithms for multiprocessor

systems. We bridge the gap between theory and practice by adapting the schedulability theory so

that it accounts for the overheads that multiprocessor scheduling algorithms incur in a real system.

The central preposition of this dissertation is:

Slot-based task-splitting scheduling algorithms can be implemented in a real
operating system and work in such systems. However, the real-world con-
straints cannot be ignored by the underlying theory.

1.5 Contributions

In this section, we overview the main contributions presented in this dissertation:
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C1: The fundamental basis for implementing slot-based scheduling algorithms in a real operating

system and the implementation of slot-based scheduling algorithms in the Linux kernel;

C2: A new schedulability analysis that takes into account the real-world overheads, with the run-

time overheads included into it.

C3: The Carousel-EDF scheduling algorithm for multiprocessor systems as well as the related

overhead-aware schedulability analysis with its implementation in the Linux kernel.

Like any other variant of the task-splitting scheduling algorithms, slot-based scheduling algo-

rithms require an off-line task-to-processor assigning algorithm and a run-time task-dispatching

algorithm. Contribution C1 concerns the task-dispatching algorithms. In other words, it con-

cerns the implementation of the scheduling algorithm into the Linux operating system. We define

the challenges and the design principles for implementing a slot-based task-splitting algorithm

in the Linux kernel [SAT10a]. Additionally, we provide the first implementation of a slot-based

task-splitting algorithm [SAT10b, SAT11], an invaluable contribution in demonstrating the ca-

pabilities and limitations of new multiprocessor scheduling techniques on actual hardware. We

further evolve those implementation to support, in a unified way, slot-based task-splitting schedu-

ling algorithms [SBTA11] into mainline Linux and later in a PREEMPT-RT-patched [PR12] Linux

kernel [SPT12].

Contribution C2 concerns the off-line procedure. We define a new scheduling theory that

incorporates the scheduling overheads of a slot-based task-splitting algorithm [SBAT11]. We also

define a unified overhead-aware schedulability analysis based on processor demand [SBT+13].

Contribution C3 concerns the Carousel-EDF, a new hierarchical scheduling algorithm for a

multiprocessor systems, and its overhead-aware schedulability analysis based on demand-bound

functions [SSTB13].

As an overarching contribution, we show that considering real-world overheads is fundamental

for the efficiency and especially for the reliability of the schedulability tests.

1.6 Outline

The rest of this dissertation is organized as follows. Chapter 2 and Chapter 3 are devoted to further

providing the relevant context and motivation. The former deals with system platforms, namely

hardware and operating system issues. The latter focuses on real-time scheduling concepts and

methodologies. From Chapter 4 to Chapter 7, we present our innovative research work.

In Chapter 4, we describe in a unified way the slot-based task-splitting scheduling algorithms

under consideration in this work, creating a system model that is used throughout this dissertation.

We describe the implementation of those algorithms according to such model into the PREEMPT-

RT-patched Linux kernel. We also identify and model the scheduling overheads incurred by those

algorithms when running in a real system.
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Chapter 5 presents the new overhead-aware and demand-based schedulability analysis. These

two features of the new schedulability analysis increase the reliability and efficiency. Incorpo-

rating the scheduling overheads into the schedulability analysis allow us to reduce the unrealistic

assumptions of the original analysis. This new theory is based on exact schedulability tests thus

also overcoming many sources of pessimism in existing analysis.

Chapter 6 presents Carousel-EDF, a new hierarchical scheduling algorithm for a system of

identical processors, and its overhead-aware schedulability analysis based on demand bound func-

tions. Carousel-EDF presents some similarities with slot-based scheduling algorithms under con-

sideration in this work. In a high-level view, it is a time-driven algorithm like slot-based scheduling

algorithms, but contrarily to them, Carousel-EDF creates only one time reserve for each server.

As a result, it reduces by up to 50% the number of preemptions incurred by the time manag-

ing mechanism. This is achieved through a time reserve rotation scheme. In a low-level view,

it is event-driven, since it schedules tasks according to the EDF scheduling algorithm like slot-

based scheduling algorithms. We denote Carousel-EDF as a reserve-based scheduling algorithm

as opposed to the slot-based scheduling algorithms. We also describe the implementation of the

Carousel-EDF into the PREEMPT-RT-patched Linux kernel.

Chapter 7 evaluates the effectiveness and the reliability of the new schedulability theory de-

veloped for slot-based task-splitting scheduling algorithms by comparing with the original theory.

This evaluation is based on an extensive set of experiments focused on the task-to-processor as-

signment algorithm and also on the run-time task-dispatching algorithms. In this chapter, we also

compare slot-based with reserve-based scheduling algorithms, and also highlight in detail the real-

ities behind what amounts to lack of support for any real-time scheduling algorithm, by the present

Linux kernel.

Finally, in Chapter 8, we provide a summary of the research results developed in the context

of this work and outline future research lines.



Chapter 2

Background on multiprocessor
platforms

2.1 Introduction

A processor is one of the computer components, arguably the fundamental one. A processor has

the ability to execute instructions; an instruction is a single operation that given an input produces

an output, and the output of an instruction can be the input of another. Then, it is possible to create

a sequence (or list) of instructions logically ordered that performs some kind of computation;

this is usually denoted by a computer program. In the computer’s jargon, the set of all physical

devices such as processor, memory, and graphic card, for example, is denoted by hardware and

the collection of programs is denoted by software.

In this chapter, we will review platform-related aspects that are relevant to the research de-

scribed in this dissertation. We start by devoting some attention to hardware architecture topics,

focusing on the hardware characteristics that contribute to the unpredictability of the system. Then,

we pursue with software. Important operating system details are reviewed, and Linux and Linux-

based real-time operating systems will be described. An initial big picture of the Linux kernel will

be provided, with special attention given to the features that are relevant to satisfying the require-

ments of real-time systems. We will also review different approaches employed by Linux-based

real-time operating systems. Because the Linux PREEMPT-RT patch is used as base for our im-

plementation work, a detailed description of the features that it introduces to the mainline Linux

kernel is presented.

2.2 Hardware in multiprocessor systems

Some relevant computer architecture concepts will be exposed in this section. As a starting point,

we overview the organization of single-core processor systems. This provides us with some back-

ground to the evolution into multiprocessor architectures, which we briefly overview next.

9
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Several architectural advances introduced in modern single processor and multiprocessor sys-

tems such as memory caches, pipelines, and others were designed to increase the average per-

formance. While, in average, these advances can provide significant performance improvements,

they introduce significant unpredictability and make the task of providing timing guarantees much

harder. We will discuss two important hardware features that introduce unpredictability and are of

special relevance to the implementation of real-time scheduling algorithms: caches and interrupts.

2.2.1 Single-core processors

Briefly discussing single-core processor systems is useful to introduce some relevant hardware

aspects. Therefore, we start by describing a generic overview of a single-core processor platform

(see Figure 2.1). Many computational systems are based on von Neumann’s architecture [EL98].

According to this architecture, a computational system consists of a CPU (that stands for Central

Processing Unit), memory, and Input/Output (I/O) devices interconnected by a single bus. The

CPU is the component responsible for executing applications. Applications are composed by data

and instructions that are both stored in memory. Therefore, a CPU executing some application

needs to fetch that application’s information (data and instructions) from the main memory. As it

is intuitive, the application execution speed depends not only on the CPU processing capacity, but

also, on the memory access times.

From the birth of CPUs, back in the early 1970’s, until nowadays, the CPU evolution has

been tremendous; probably, there is no other comparable example in the engineering world. The

increase of performance (measured by the amount of time to execute a given task) has been

achieved via the CPU speed increases, Instruction-Level Parallelism (ILP) [RF93, Pai00] tech-

niques, pipelines and memory caches.

The increase of CPU speed decreases the duration of clock cycle (in one clock cycle, a CPU

can perform a basic operation such as, for instance, fetching an instruction). One of the ILP tech-

niques used to increase the overall efficiency of a CPU is Simultaneous MultiThreading (SMT).

SMT makes a single physical CPU system appear as multiple CPUs. For that purpose, in a physi-

cal CPU there are multiple logical CPUs. Each logical CPU is constituted by an almost complete

set of CPU hardware; including registers, pipelines, and other elements, but sharing the execution

unit. This provides a way for keeping, at the hardware level, multiple threads (or tasks) ready to

be executed, thus reducing the context switch (or task switch) cost; that is, the cost of switching

the execution unit from one task to another. From the operating system perspective, a SMT system

is composed by many CPUs. However, in practice only one task can be executed at a given time.

Hence, a SMT system is, actually, a single-CPU system. One common implementation of this is

the hyperthreading [MBH+02] by Intel.

The accesses to the main memory are too slow comparatively to the CPU speed, which causes

the CPU to stall while waiting for the information to be returned. The main purpose of caches is

to reduce the memory access latencies. A cache is a smaller and faster memory that stores copies

of the application’s data/instructions recently used by CPU. Caches are typically organized in a

hierarchy of increasingly larger and slower caches, as follows. Whenever the CPU needs to read
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from or write to a location in main memory, it first checks the level 1 (L1) cache; if it hits (if

the information is stored in L1 cache), the CPU proceeds. If the L1 cache (the fastest in terms of

access) misses (if the information is not stored in L1 cache), the next larger cache (L2) (slower than

L1) is checked, and so on, before main memory is checked. Whenever the required information is

not stored in any of the previously mentioned memory units (caches and main memory) the CPU

has to retrieve the information from an I/O device, for instance the hard disk that takes orders of

magnitude more time to access than even main memory.

Main memory I/O Devices
hard disk

Single bus

Chip

L2 cache

CPU

L1 cache

Figure 2.1: Illustration of a computer according to the von Neumann architecture.

2.2.2 Multiprocessor systems

During the last decades, each generation of CPUs grew smaller, faster, and computationally more

powerful. However, each generation also dissipated more heat and consumed more power, which

ultimately forced the CPU manufacturers to shift from single-core to multi-core processor archi-

tectures [GK06, Low06].

Before the multi-core processor architecture, which integrates several CPUs on a single chip

(see Figure 2.2), there was no terminological distinction between CPU and processor. Generally,

in the literature, the term processor was used to refer to a single-core system as opposed to the term

multiprocessor that was used to refer to systems with two or more CPUs. In this dissertation, we

use the term multiprocessor whenever we refer to more than one CPU (whether or not these CPUs

are on the same chip) and processor whenever we refer to only one CPU. The term uniprocessor

is used whenever we refer a system composed by only one CPU.

Note that, multiprocessor architectures are not a new concept and there is no single common

architecture for multiprocessor systems. A multiprocessor can be classified according to the types

of processors that compose it. A multiprocessor is said to be: identical, heterogeneous, or uniform.

Identical, if all processors have the same features: clock speed, architecture, cache size and so

on; Heterogeneous, if they have different capabilities and different speeds. Finally, in uniform



12 Background on multiprocessor platforms

multiprocessors, one processor may be x times faster than another one, with the meaning that it

executes all possible tasks x times faster.

According to the memory model, multiprocessor systems are classified as: shared or dis-

tributed memory. In a shared memory model (see Figure 2.2) all processors share the main mem-

ory. One common implementation of the shared memory model is the multi-core architecture,

which is now the new direction that manufacturers are focusing on [SMD+10]. One important

performance concern in a multi-core architecture is the communication among different compo-

nents: CPUs, caches, memories, and I/O devices. Initially, such communication was done through

a shared bus (see Figure 2.2). However, due to high latency and contention in the shared bus,

processor manufacturers are instead developing advanced communication mechanisms. Examples

of those mechanisms are: AMD HyperTransport, Intel Quickpath and Tilera iMesh, just to men-

tion a few. Independently of the mechanism used to connect the main memory to processors, in

the shared memory model, access times to that memory are uniform from any processor. This is

known as Uniform Memory Access (UMA).

Main memory I/O Devices
hard disk

Shared bus

Chip

L3 cache

L2 cache

CPU1

L1 cache

L2 cache

CPU2

L1 cache

Chip

L3 cache

L2 cache

CPU3

L1 cache

L2 cache

CPU4

L1 cache

Figure 2.2: Illustration of a multiprocessor architecture according to the shared memory model.

In the distributed memory model (see Figure 2.3) each processor has its private memory and

when remote data is required the processor has to communicate with respective remote processors,

through an interconnection network. This architecture benefits from its modular organization with

multiple independent processors; that is, only the interconnection network is shared among pro-

cessors. Because this makes adding new processors very easy, this architecture is straightforward

to scale. The major drawback of the distributed model is that inter-processor communication is

more difficult. Whenever a processor requires data from another processor’s memory, it must ex-

change messages with that processor. This introduces two sources of overhead: (i) it takes time to

construct and send a message from one processor to another; and (ii) the receiving processor must

be interrupted in order to deal with messages from other processors.
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There is other variant of the distributed memory model called distributed shared memory.

In this architecture, data sharing is implicit; that is, from the programmer’s perspective, the dis-

tributed memory appears like a real shared memory model, because there is no need to invoke send

and receive primitives. This architecture logically implements a shared memory model although

the memory is physically distributed. The memory access times in these systems depend on the

physical location of the processors and are not uniform. Due to this characteristic, these systems

based on distributed memory model are termed Non-Uniform Memory Access (NUMA) systems.

Interconnection Network

Main memory I/O Devices

Single bus

Chip

L2 cache

CPU1

L1 cache

Main memory I/O Devices

Single bus

Chip

L2 cache

CPU2

L1 cache

Main memory I/O Devices

Single bus

Chip

L2 cache

CPU3

L1 cache

Figure 2.3: Illustration of a multiprocessor architecture according to the distributed memory
model.

Note that, from the scheduling point of view, the main difference between the shared and dis-

tributed memory models concerns the costs associated with task migration, the process of trans-

ferring a ready (or runnable) task from one processor to another. In a distributed memory model,

task migration requires the transfer of the task context and the memory contents that describe the

state of the transferring task. Thus, task migration could come at the cost of a performance penalty

and frequent task migration could contribute to the increase of intercommunication network traf-

fic. However, if a task is accessing a huge amount of data stored in a remote processor memory,

it could be more efficient, in terms of performance, to move such a task to the remote processor

instead of transferring data to the task’s processor. In a shared memory model, task migration

instead requires only the transfer of the task context.

2.2.3 Sources of unpredictability

Designing and implementing a system to provide real-time timing requirements requires appropri-

ate management of all sources of unpredictability in the system. At the hardware level, there are

a few sources of unpredictability such as ILP (e.g. speculative execution and branch prediction),
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pipelines, bus access contention and caches. All these hardware features make the execution path

of tasks non-deterministic, thus determining the execution time of a task becomes very difficult,

and actually, this is a whole area of research [WEE+08].

Caches are a very useful hardware feature that is used to increase the performance of the

processor by reducing the amount of time the processor needs to wait for data. From a real-time

perspective though, caches are sources of unpredictability, in the sense that, the execution time of a

task varies, depending on the data that is currently stored in the cache. The existence of distributed

caches (such as when some cache levels are private to each processor and others to the chip) cause

what is known as the cache coherence problem; that is, stored data in one processor cache might

not be the most up-to-date version. Figure 2.4 illustrates, in a simplistic way, the cache coherence

problem (this example was taken from [HP06]). Let us assume that at time t0, caches of CPU A

and B are empty and the content of memory location X is 1. At time t1 CPU A reads the content

of memory location X , and then its cache stores its value. Next, at time t2, CPU B also reads

the content of memory location X and its cache also stores its value. At time t2, according to

the informal definition presented by [HP06] (“Informally, we could say that a memory system is

coherent if any read of a data item returns the most recently written value of that data item.”) the

memory system is coherent. But, at time t3 CPU A stores 0 into memory location X . This operation

updates the value of X in the cache of CPU A and also in main memory, but not in the cache of

CPU B. If CPU B reads the value of X , it will receive 1. This problem can be addressed using

two approaches: snooping- and directory-based protocols [HP06]. Cache coherence protocols are

intended to manage these issues in order to maintain the memory system coherent.

Time Event Cache con-
tents for CPU A

Cache con-
tents for CPU B

Memory contents
for location X

t0 1

t1 CPU A reads X 1 1

t2 CPU B reads X 1 1 1

t3 CPU A stores 0 into X 0 1 0

Figure 2.4: The cache coherence problem for a single memory location (X), read and written by
two processors (A and B).

Usually, real-time system designers consider the worst-case execution time of a task by tak-

ing into account the delay incurred by fetching data from main memory; that is, assuming that

the respective information is not inside the caches. However, this is not enough to solve the

unpredictability caused by caches. For instance, cache misses due to task preemptions are not

considered.

Interrupts are another source of hardware-related unpredictability that is very relevant to the

context of this research. Naturally, processors have to interact with I/O devices (e.g. hard disk

drives, graphics or network cards), which are usually much slower than the processor. Then, if

a processor issues a request to one device, waiting for the device’s response would imply that
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the processor is idle while waiting for the response. The usual approach to deal with this is: the

processor issues the request, and continues to perform other work; when the device completes

the request, the processor handles the device’s response. However, given that it is typically not

trivial to know beforehand how much time the device takes to handle the processor’s request, it

is hard to know when the device will have completed the request. One approach to this problem

is polling. Periodically, the processor checks if the device has issued some response. This incurs

overhead, because the polling occurs repeatedly at regular intervals, which might be much smaller

than the response time of the device. Another, usually preferred, approach is based on interrupts.

The processor is linked to the devices by interrupt lines, and whenever a device needs to notify a

processor, it signals the respective interrupt line. Then, the processor acknowledges the interrupt

issuer (in order to free the interrupt line), saves the context of the current executing task, loads the

information about the Interrupt Service Routine (ISR) associated to that interrupt, and executes

such ISR. When the ISR completes, the previously saved context of the current task is restored,

and its execution is resumed from the point of the interruption. Note that, hardware devices are

not the only source of interrupts, because software modules are also able to issue interrupts that

are managed in a similar way.

Figure 2.5 shows a simplified illustration of Intel’s approach [Int13] to handling interrupts on

multi-core systems designated as Advanced Programmable Interrupt Controller (APIC). It is com-

posed by the Local-APIC (LAPIC) and I/O APIC interconnected by a bus (which, depending on

the processor’s model, could be shared or dedicated). Each processor is equipped with a LAPIC.

A LAPIC is able to generate and accept interrupts and is also a timer. A system has at least one

I/O APIC that manages the external interrupt requests. Whenever a device issues an interrupt re-

quest, the I/O APIC receives that request and delivers the signal to the selected LAPIC via the bus.

Then, LAPIC issues an interrupt to its processor. Another functionality is the possibility to send

Inter-Processor Interrupts (IPIs). When a processor needs to signal some processor or processors,

it has to issue a signal to the target LAPIC via the bus.

Interrupt requests I/O APIC

Bus

Chip

CPU1

LAPIC

CPU2

LAPIC

Chip

CPU3

LAPIC

CPU4

LAPIC

Figure 2.5: Illustration of the use of an Advanced Programmable Interrupt Controller (APIC) in
multiprocessor systems.

Typically, the system designer does not know which is the frequency of all interrupts. Some



16 Background on multiprocessor platforms

interrupts occurs at a regular rate, but others occur in a unpredictable fashion. As it is intuitive,

the interrupts contribute to the unpredictability of the system. Given the complexity of getting

information about interrupts, most of the schedulability tests, simply, do not consider the cost of

interrupts.

2.3 Software in multiprocessor systems

“Without its software, a computer is basically a useless lump of metal”. This is the first sentence of

the well known reference book “Operating Systems Design and Implementation” [TW08], which

effectively conveys that a computational system (a computer) is composed of both hardware and

software. It is common to classify the software of a computer into two broad categories: ap-

plication software and system software. The terms user-space and kernel-space are also used

to distinguish the running context of software in a computational system. Application software

concerns with user-space, while system software concerns with kernel-space. Here, we focus on

system software and the most important of such software is the so-called operating system. The

operating system is responsible for managing the hardware as well as all other software; it con-

trols and coordinates the use of the hardware among application and system software. For security

purposes, it can also provide some protection level for executing application software.

Given its role, the operating system significantly affects the overall performance of the system.

Hence, some operating systems were designed for specific domains, such as Real-Time Operating

Systems (RTOSs), while others are intended to be General Purpose Operating Systems (GPOSs).

One of the most known and successful GPOS is Linux [Fou13], whose system architecture is

illustrated in Figure 2.6. The term Linux typically refers to a system composed of the Linux kernel

and a set of user-space tools and libraries. Every single day, 850 thousands of mobile phones, 700

thousands of televisions, and nine out of ten of the world’s supercomputers run Linux [Fou13]. In

the following subsections, we review the main features of the Linux kernel considered fundamental

in the context of this work.

The main goal of this work is to provide better real-time support for multiprocessor systems,

and for that purpose, the underlying operating system must be predictable, which implies that its

latencies must be predictable or at least time bounded. Due to its success and open source nature,

several relevant efforts towards enabling real-time computing using the Linux kernel have been

undertaken [RTA12, Xen12, LR12, Kat12, SCH12, PR12, AQu13], and later in this section we

will describe these efforts.

One effort to introduce better real-time support in the Linux kernel – the PREEMPT-RT patch –

aims at increasing the preemptibility of the Linux kernel and is an important advance towards bet-

ter real-time support in the Linux kernel [PR12]. This effort is of special relevance for the research

described in this dissertation, as a significant effort will be put into modifying the PREEMPT-RT-

patched Linux kernel to support real-time slot-based task-splitting scheduling algorithms. Taking

the PREEMPT-RT patch as a starting base for our work allows to leverage the efforts of a large
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community of kernel developers and produce a system with better real-time properties than the

mainline Linux kernel.

Another type of efforts, also described in this section, have aimed to introduce to the Linux

kernel support for several real-time scheduling algorithms (especially for multiprocessor systems)

and some resource sharing protocols suited for real-time systems [LR12, Kat12, SCH12, AQu13].

There exist several of these efforts, most of them from academia and used as testbed frameworks

or proof-of-concepts for theoretical work.

We distinguish a third class of approaches to introduce real-time properties into the Linux

kernel [Yod99, RTA12, Xen12], which are also described in this section. These are the micro

kernel (or co-kernel) approaches, which make use of the Linux kernel for executing non-real-time

tasks and other management operations and use a co-real-time kernel for real-time purposes.

Hardware

Kernel-space

User-space

Linux kernel

Application/tasks

Figure 2.6: Linux-based computer system architecture.

2.3.1 Linux kernel overview

Linux is an open-source project, for which the development process follows a collaborative ap-

proach, with thousands of developers worldwide constituting the largest collaborative develop-

ment project in history of computing. Due to its wide adoption, Linux is well positioned to take

an important role enabling real-time computing in modern multiprocessor systems.

Since we are interested in leveraging Linux to support real-time slot-based task-splitting sche-

duling algorithms, in this section, we will overview the relevant features of the Linux kernel,

needed to implement those scheduling algorithms. More specifically, we will see how timing is

kept by the Linux kernel, and how the Linux kernel allows the implementation of a new task

scheduler.

2.3.1.1 Clock and timers

Time management is an important issue in the Linux operating system [BC05, Mau08], as well as

in other operating systems. There are a lot of kernel activities that are time-driven, such as balanc-

ing the processor’s ready-queues (referred to as run-queues in the Linux documentation), process

resource usage accounting, profiling, and so on. In the context of this work, it is important to keep

accurate and precise timing to implement the slot-based task-splitting scheduling algorithms.

The Linux kernel time management system is based on some hardware devices that have os-

cillators of a known fixed frequency, counters, and comparators. Simpler devices increment their
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counters at fixed frequency, which is in some cases configurable. Other devices decrement their

counters (also at fixed frequency) and are able to issue an interrupt when the counter reaches

zero. More sophisticated devices are provided with some comparison logic to compare the device

counter against a specific value, and are also able to interrupt the processor when those values

match. Some examples of such devices are: (i) the Programmable Interval Timer (PIT), which

is a counter that is able to generate an interrupt when it reaches the programmed count; (ii) the

High Precision Event Timer (HPET), which consists of a counter and a set of comparators. Each

comparator has a match register and can generate an interrupt when the associated match register

value matches with the main counter value. The comparators can be put into one-shot mode or

periodic mode. In one-shot mode, the comparator generates an interrupt once, when the main

counter reaches the value stored in the comparator’s register, whereas in the periodic mode the

interrupts are generated at specified intervals; (iii) the Time Stamp Counter (TSC) is a processor

register that counts the number of cycles since reset; and, finally (iv) the LAPIC, which is part

of the processor chip. As mentioned before, the LAPIC manages all interrupts received by the

respective processor either from external devices or internally generated by software. For that pur-

pose, it is provided with mechanisms for queueing, nesting, and masking interrupts. Furthermore,

it is able to send interrupts for external devices as well as to generate interrupts for the respective

processor.

As would be expectable, the Linux kernel is able to interact with all of these devices. In

order to get better time accuracy, the Linux kernel gathers timing information from these devices,

associates a quality metric to each device and normalizes the values to the same time unit.

In multiprocessor systems time management could be even more complex. In a multiprocessor,

the different processors can have different notions of time and this is an important problem for the

scheduling algorithms under consideration in this work, as they assume a common notion of the

time slots across processors. The assumption of this work is that this is something managed at the

hardware level. This is a reasonable assumption as, for example, recent multiprocessor chips from

Intel implement what is known as invariant TSC, which guarantees that the TSC is synchronized

across all cores and runs at constant rate for all processors in a single package or mainboard [Int13].

Independently of the way that the time is managed, the Linux kernel employs a periodic timer

interrupt to get the control of the system, called tick, which can be viewed as the kernel’s heartbeat.

The frequency of the this periodic timer interrupt (the tick rate) is defined by a kernel compilation

option called CONFIG_HZ. In the kernel code, this macro is only referred to by HZ, an acronym

for hertz. Depending on the value of HZ, the resolution of the tick (the smallest time difference

between consecutive ticks) is more or less frequent. Unfortunately, these standard resolutions

supported by the periodic timer are too coarse-grained for the scheduling algorithms under con-

sideration in this work. From the panoply of options provided by Linux kernel the most suitable

option for the implementation of the desired scheduling algorithms is the High-Resolution Timer

(HRT) framework [GN06]. On one hand, HRT provides a nanosecond resolution and, on the other

hand, the timers are set per-processor.
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Next, we will describe how to implement a HRT. Conceptually, the use of a kernel timer en-

compasses three phases: (i) the initial phase is for setting up the timer, by specifying a function

(generally called timer callback) to execute at timer expiration; (ii) the second phase is the acti-

vation of the timer, when its expiration time is specified; and (iii) the third phase occurs at timer

expiration, when the specified function executes. Listing 2.1 shows a snippet of the required code

for implementing a HRT in the Linux kernel. First, we have to define per-processor a variable of

the type struct hrtimer and initialize that variable. For that purpose, we use the DEFINE_-

PER_CPU Linux kernel macro that defines, in this case, a variable of a type struct hrtimer

on every processor, called my_hrtimer; variables defined in this way are actually an array of

variables. Then, in order to initialize my_hrtimer, it is required to invoke, for each processor,

the my_hrtimer_init function. Note that, it is not possible to execute this function on one pro-

cessor to initialize a timer on another processor. The Linux kernel macro smp_processor_id

returns the current processor number, between 0 and NR_CPUS (Linux kernel macro that defines

the maximum number of processors). To get a particular processor’s variable, the per_cpu macro

may be used for. Then, the hrtimer_init function initializes a timer, my_hrtimer, to a given

clock (in this case, using the monotonic clock) and the last parameter specifies if absolute or

relative time values (relative to the current time) are used (in this case, absolute).

In the second phase, the timer is started in a per-processor basis; that is, the my_hrtimer_-

start function has to be executed on each processor. The timer expiration has to be specified.

Finally, when the timer fires, the my_hrtimer_callback function is invoked. Note that,

the argument of the my_hrtimer_callback function is the timer itself. Two values could

be returned by the my_hrtimer_callback function: HRTIMER_RESTART and HRTIMER_-

NORESTART. The timer is automatically restarted with the specified expiration at next_expire

if it returns HRTIMER_RESTART, while the timer is not automatically restarted if it returns HR-

TIMER_NORESTART.

Note that, if the purpose of the timer is to trigger the invocation of the scheduler, then, the timer

callback function must mark the currently executing task for preemption (invoking the Linux na-

tive resched_task function). Hence, after the execution of the timer callback the Linux sched-

uler is invoked to take scheduling decisions. Scheduling decisions are taken according to some

specific scheduling policy. Later in this section, the Linux scheduling framework will be described;

that is, how the scheduler is implemented in the Linux and consequently how the scheduling deci-

sions are taken.

2.3.1.2 Tasks and run-queues in the Linux kernel

Before describing the Linux scheduling framework, let us devote some attention to the two fun-

damental, in the context of the scheduling, data structures of the Linux kernel: struct task_-

struct and struct rq. A Linux process is an instance of a program in execution [BC05].

From the Linux kernel point of view, a process is an instance of the struct task_struct

structure (see Listing 2.2). This structure encompasses the run-state of process, state, process
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///////////////////////////////////////////////
//Initial phase
//variable declaration
DEFINE_PER_CPU(struct hrtimer, my_hrtimer);

void my_hrtimer_init()
{

int cpu = smp_processor_id();
struct hrtimer *timer = &per_cpu(my_hrtimer, cpu);
hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
timer->function = my_hrtimer_callback;

}

///////////////////////////////////////////////
//Second phase
void my_hrtimer_start(ktime_t expires)
{

int cpu = smp_processor_id();
struct hrtimer *timer = &per_cpu(my_hrtimer, cpu);
hrtimer_start(timer, expires, HRTIMER_MODE_ABS);

}

///////////////////////////////////////////////
//Third phase
static enum hrtimer_restart my_hrtimer_callback(struct hrtimer *timer)
{

...
if(cond){
hrtimer_set_expires(timer,next_expire);
return HRTIMER_RESTART;

}
return HRTIMER_NORESTART;

}

Listing 2.1: The required steps to implement a high resolution timer in the Linux kernel.

priority, prio, scheduling class, sched_class, and scheduling policy, policy, among other

fields. Note that, in the context of this dissertation, the meaning of a process or a task is the same.

struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
...
int prio;
...
const struct sched_class *sched_class;
...
unsigned int policy;
...

};

Listing 2.2: The struct task_struct data structure.

At boot time, the Linux kernel creates a ready-queue (or run-queue) for each available proces-

sor. Each processor ready-queue is an instance of the struct rq data structure (see Listing 2.3).

Some fields of that structure are for management purposes, while others are for storing the ready

tasks currently assigned to the respective processor. The ready tasks are stored in sub-ready-

queues according to the scheduling class, cfs and rt, of the tasks (these fields are discussed later

in the next subsection). Such management information is about the number of ready tasks, nr_-

running, a pointer to the currently running task, curr, as well as a pointer to the idle task, idle,
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struct rq {
spinlock_t lock;
...
unsigned long nr_running;
...
struct cfs_rq cfs;
struct rt_rq rt;
...
struct task_struct *curr, *idle;
...

};

Listing 2.3: The struct rq data structure.

and a locking variable (called lock of the type spinlock_t; as it name implies if the lock is not

immediately acquired, it spins until acquiring the lock) that can be used to lock the ready-queue

for updating its state (for instance, when a task is enqueued or dequeued from the respective ready-

queue). This ready-queue lock variable plays an important role in the scheduling framework. It

is used to serialize the access to the ready-queue of each processor. Then, whenever this lock is

acquired by one processor only that processor is allowed to manage that ready-queue. In other

words, only the processor holding that lock can change the state of that ready-queue. In a multi-

processor system, whenever a task migrates from one processor to another processor, the source

processor needs to lock both ready-queues, in order to atomically dequeue from the ready-queue

of the source processor and enqueue in the ready-queue of the target processor. When multiple

ready-queue locks are required, it is important to always obtain those ready-queue locks in the

same order to avoid deadlocks. In the source code of the Linux kernel, the following comment

can be found: “Locking rule: those places that want to lock multiple runqueues (such as the load

balancing or the thread migration code), lock acquire operations must be ordered by ascending

runqueue”. Therefore, Linux requires that ready-queue locks are always acquired in order of in-

creasing memory addresses. Then, whenever a processor holds a ready-queue lock it may only

attempt to lock a ready-queue with higher address. But, when a processor holds a ready-queue

lock that needs to acquire a second, lower address ready-queue lock, it first must release the lock

that it already holds and then acquire both locks in ascending order. Due to this rule, the state of

the ready-queues may change in between lock acquisitions. Considerable complexity in the Linux

scheduler is devoted to detecting and reacting to such concurrent state changes.

2.3.1.3 Linux modular scheduling framework

The introduction of scheduling classes (in the Linux kernel version 2.6.23) made the core scheduler

quite extensible. The kernel scheduling framework consists of a scheduler (implemented by means

of the schedule function) and various scheduling classes (see Figure 2.7).

The scheduler (or dispatcher) is the part of the kernel responsible, at run-time, for allocating

processors to tasks for execution and the scheduling classes are responsible for selecting those

tasks. The scheduling classes encapsulate scheduling policies. These scheduling classes are hier-

archically organized by priority and the scheduler inquires each scheduling class in a decreasing
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priority order for a ready task. Currently, Linux has three main scheduling classes: Real-Time

(RT), Completely Fair Scheduling (CFS) and Idle. In this system, the scheduler first inquires the

RT scheduling class for a ready task. If RT scheduling class does not have any ready task, then it

inquires the CFS scheduling class. If CFS does not have any ready task, then it reaches the Idle

scheduling class, used for the idle task: every processor has an idle task in its ready-queue that is

executed whenever there is no other ready task.

Scheduling policies

SCHED_RR

SCHED_FIFO

SCHED_IDLE

SCHED_BATCH

SCHED_NORMAL

Scheduling classes

RT CFS Idle

Scheduler core

Scheduler

Figure 2.7: Scheduling framework architecture.

Any scheduling class is implemented as an instance of the struct sched_class data

structure, and according to the rules of the Linux modular scheduling framework, each scheduling

class must implement a set of functions specified by this data structure. Listing 2.4 shows the

most important contents of the rt_sched_class, which implements the RT scheduling class

(described in the next subsection), in the context of this dissertation. The first field of the rt_-

sched_class structure, next, is a pointer to the next sched_class in the hierarchy. In that

case, it stores the address of the fair_sched_class variable that implements the CFS schedu-

ling class. The other fields are hooks to functions for handling specific events.

Let us first explain how a task is associated to one scheduling class, and then continue with

the description of sched_class data structure. While it is possible to change the scheduling

class of a task during its life cycle, at any time instant it belongs to only one scheduling class. A

task is associated to one scheduling class through the sched_class pointer, a struct task_-

struct field (see Listing 2.2). This pointer contains the address of the corresponding sched_-

class variable that it is currently associated with. Thus, whenever a task becomes ready to be

executed, the respective function pointed to by sched_class->enqueue_task is invoked. As

a default behaviour, it inserts the newly ready task into the respective processor ready-queue. Then,

the respective function associated with sched_class->check_preempt_curr is invoked for

checking if the currently executing task must be preempted (according to the scheduling policy of

the newly ready task), and if it is the case, then, the latter is marked to be preempted. This operation

(marking the currently executing task to be preempted) triggers the invocation of the scheduler.
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Whenever a task is no longer ready, the function pointed to by sched_class->dequeue_task

is invoked. As a default behaviour, it removes the task from the respective processor ready-queue.

The scheduler can be periodically invoked at every expiration of the timer tick through the ex-

ecution of the respective timer callback function, which invokes the scheduler_tick function.

In turn, the scheduler_tick function invokes the sched_class->task_tick function of

the scheduling class of the currently executing task. This gives the opportunity to implement

time-driven scheduling policies.

static const struct sched_class rt_sched_class = {
.next = &fair_sched_class,
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
...
.check_preempt_curr = check_preempt_curr_rt,
.pick_next_task = pick_next_task_rt
...
.pre_schedule = pre_schedule_rt,
.post_schedule = post_schedule_rt,
...
.task_tick = task_tick_rt,
...

};

Listing 2.4: The rt_sched_class definition.

The scheduler is implemented through the schedule function. This function is, basically,

executed whenever the currently executing task is marked to be preempted or whenever a task

completes or voluntarily yields the processor (such as when a task waits for signal to occur or wants

to sleep). For instance, the completion of a task is done by invoking the exit system call (even

if this is not explicit in the programmer code). The exit system call performs a set of cleanup

operations for freeing the task resources and then it invokes the schedule function. Listing 2.5

presents a snippet code of the schedule function. The first step is therein to disable preemptions.

Next, it retrieves the ready-queue of the current processor (the processor executing this code). For

that purpose, it obtains, via smp_processor_id macro, the identifier of the current processor,

and then, via the cpu_rq macro, it retrieves the ready-queue, rq, of that processor. The currently

executing task is pointed to by the rq->curr pointer. In the context of the code of the schedule

function, whose purpose it to get the next task to be executed, the current task is then marked as

the previous executing task, via the prev = rq->curr assignment.

The next step is to lock the current processor ready-queue. After these steps, the pre_-

schedule function is executed, which invokes the sched_class->pre_schedule function

of the current task pointed to by prev. This is the hook for the scheduling class to execute

any logic before the scheduler calls pick_next_task. Currently, only the RT scheduling class

implements this function (see Subsection 2.3.1.4 below). The next task selected for executing is

retrieved by the pick_next_task function. This function iterates over the linked list of the

scheduling classes, starting by the highest-priority scheduling class. For each scheduling class, it

invokes the function associated to the pick_next_task hook of each scheduling class and the

iteration is broken whenever that function returns a non-null pointer. Note that, in the last case
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the idle task is selected. Next, the scheduler can switch the previous task (pointed to by prev)

with the next task (pointed to by next), by invoking the context_switch function. Note that,

this function unlocks the ready-queue. When the switching of tasks is done, the scheduler calls

the post_schedule function that invokes the function pointed to by sched_class->post_-

schedule of the next task (now pointed to by rq->curr). This function locks the ready-queue.

Again, only the RT scheduling class (described next) implements this function and it is a hook that

allows the RT scheduling class to push real-time tasks of the current processor. As a final step, the

preemption is again enabled.

static void __sched __schedule(void)
{

...
preempt_disable();
cpu = smp_processor_id();
rq = cpu_rq(cpu);
prev = rq->curr;
...
raw_spin_lock_irq(&rq->lock);
...
pre_schedule(rq, prev);
...
next = pick_next_task(rq);
...
rq->curr = next;
...
context_switch(rq, prev, next); /* unlocks the rq */
...
post_schedule(rq);
...
preempt_enable_no_resched();
...

}

Listing 2.5: The schedule function.

2.3.1.4 The real-time scheduling class of Linux

As mentioned before, each processor holds a ready-queue of all ready tasks currently assigned

to it. Actually, the ready-queue of each processor has one sub-ready-queue for each scheduling

class, as depicted by Listing 2.3. The sub-ready-queue of the CFS scheduling class is an instance

of the struct cfs_rq data structure while the sub-ready-queue of the RT scheduling class is

an instance of struct rt_rq data structure. This allows each scheduling class to organize per-

processor their ready tasks in an appropriate manner. As depicted in Figure 2.8, tasks in the RT

scheduling class are organized by priority level. Inside of each priority level, the RT scheduling

class implements two scheduling policies: SCHED_FIFO and SCHED_RR. SCHED_FIFO is based

on the First-In-First-Out (FIFO) heuristic: whenever a SCHED_FIFO task is executing, it continues

until preempted (by a higher priority task) or blocked (e.g., by an I/O operation). SCHED_RR

implements the Round-Robin (RR) heuristic: a SCHED_RR task executes (if it is not preempted

or blocked) until it exhausts its time-slice. At the same level of priority, the RT scheduling class

favours SCHED_FIFO tasks over SCHED_RR tasks.
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Figure 2.8: RT scheduling class ready-queue.

Each processor, at any time instant, is executing one task stored in its ready-queue. This

may result in unbalanced workloads across processors. In order to balance the workload across

processors, the RT scheduling class adopts an active push/pull strategy as follows: whenever the

scheduler inquires the RT scheduling class (through the pick_next_task function), it first tries

to pull the highest-priority non-executing task from the other processor ready-queue using the

pre_schedule function and, after selecting the next running task, it checks if it can, using the

post_schedule function, push the (freshly) preempted task to another processor ready-queue

that is executing a task with lower priority than the preempted task. Observe that, moving tasks be-

tween two ready-queues requires locking both ready-queues and this might introduce considerable

overheads.

2.3.2 The Linux PREEMPT-RT patch

There exist several important sources of unpredictability in the mainline Linux kernel, namely:

(i) interrupts are generated by the hardware often in a unpredictable manner and when an interrupt

arrives, the processor execution switches to handle it; (ii) multiple kernel threads running on dif-

ferent processors in parallel can simultaneously operate on shared kernel data structures, requiring

serialization of the access to such data; (iii) disabling and enabling preemption features used in

many parts of the kernel code can postpone some scheduling decisions.

The unpredictability in the mainline Linux kernel can cause arbitrary delays to the real-time

tasks running on the system. To address these problems, a kernel developer community [Mol04a,

McK05, RH07] has been working on the PREEMPT-RT patch [PR12]. This patch (that aims to

derive a fully preemptible kernel) adds some real-time capabilities to the Linux kernel.

The following subsections illustrate the different sources of unpredictability, and how the

PREEMPT-RT patch deals with: priority inversion; large non-preemptive sections; locking mech-

anisms; and interrupt management.

2.3.2.1 Priority inversion and Priority inheritance

Let us illustrate the classical example of priority inversion (see inset (a) of Figure 2.9). Consider

a task set composed by three tasks: τ1, τ2, and τ3. The priority of each task is according to
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their indexes. Lower index implies higher priority, thus, τ1 is the highest-priority task while τ3 is

the lowest-priority task. Tasks τ1 and τ3 share some resource (graphically illustrated by a black

rectangle). Task τ3 becomes ready at time instant t0, and immediately it starts executing (because

it is the only ready task). At time t1, task τ3 locks the shared resource. At time t2, task τ1 becomes

ready, preempts task τ3, and executes until t4, when it is blocked on due to the shared resource that

is held by the lowest-priority task τ3. Meanwhile, at time t3, task τ2 becomes ready. Since task τ1

is blocked, the current highest-priority task is task τ2. Thus, task τ2 executes until its completion

(time t5). At time t5, the only task that is ready to be executed is task τ3; then it executes until

freeing the resource, which occurs at time t6. At this time, task τ1 becomes ready and preempts

task τ3. Task τ1 executes until its completion that occurs at time t7, and task τ3 restarts its execution

until its completion at time t8. As can be seen from inset (a) of Figure 2.9, the highest-priority

task τ1 is prevented from being executed by the lowest-priority task τ3. This could be harmful if

the execution time of task τ2 is unbounded, thus indefinitely extending this blocking time. This is

what is known as unbounded priority inversion.

One approach to avoiding the priority inversion is the technique of priority inheritance. The

PREEMPT-RT patch implements Priority Inheritance (PI). The underlying idea of PI is: “a task

that holds the lock on shared resource inherits the maximum priority of all tasks waiting for that

resource, but only during its execution with the shared resource”. Afterwards, it returns to the

original priority level. Thus, the highest-priority task can only be blocked by a lower priority

task only during the intervals that the latter is executing holding the shared resource. Inset (b) of

Figure 2.9 illustrates that effect. Independently of whether the execution time of task τ2 is known

or not, the highest-priority task τ1 is only blocked during the execution with the shared resource

of task τ3. Therefore, the blocking time of the highest-priority task is bounded with PI.

t0
tt1 t2 t3 t4 t5 t6 t7 t8

τ3

τ2

τ1

(a) Priority inversion

t0
tt1 t2 t3 t4 t5 t6 t7 t8

τ3

τ2

τ1

(b) Priority inheritance

Figure 2.9: Illustration of the priority inversion and priority inheritance.

2.3.2.2 Fully preemptible kernel

The PREEMPT-RT patch reduces the Linux kernel latencies by reducing its non-preemptible sec-

tions. A non-preemptible section is a series of operations that must be performed without any

preemption. One of the most intrusive mechanism is the Big Kernel Lock (BKL). The BKL is a

system-wide locking mechanism used to protect concurrent accesses of non-preemptible sections

from tasks running on separate processors. The BKL was implemented by a spin lock. Further,
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it was also recursive, which means that the holder of the BKL was allowed to re-acquire it again.

Last and worst, the BKL holder could sleep. As expected, the BKL does not have many fans,

according to [Mau08]: “Although the BKL is still present at more than 1,000 points in the kernel,

it is an obsolete concept whose use is deprecated by kernel developers because it is a catastrophe

in terms of performance and scalability.”

The implementation of the BKL [Mol04b] was modified by replacing the spin lock with a

mutex (more details in the next subsection), which allows the preemption of the BKL holder.

Kernel preemptibility is also achieved by replacing most kernel spin locks by mutexes, which

support PI, and by transforming all interrupt handlers into preemptive kernel tasks, scheduled by

the RT scheduling class.

2.3.2.3 Locking primitives

The Linux kernel employs locking primitives to protect critical sections. A critical section is a

code path that accesses a shared resource (data structure or device) that must not be concurrently

accessed by more than one task. In other words, it must be ensured that such a code path executes

atomically; that is, operations complete without interruption as if the entire critical section were

one indivisible instruction. Otherwise, if more than one task accesses a critical section at a given

time this is generally referred to as race condition, because such tasks race to get there first. As it

is intuitive, race conditions could be fatal in the literal sense of the word.

On uniprocessor systems race conditions can be protected by disabling preemptions during the

execution of critical sections, then, since tasks may execute until the end of such critical sections

without being preempted, at given time only one task may access to each shared resource. On

multiprocessor systems, disabling preemptions is not enough to protect a shared resource, because

enabling and disabling preemptions is performed on a per-processor basis. In other words, suppose

that two tasks are executing on two different processors: disabling preemptions on each respective

processor does not prevent such tasks from accessing the same shared resource. Consequently, a

system-wide locking mechanism is required to prevent such an event. The Linux kernel provides

some locking primitives that can be used to avoid race conditions, such spin locks, semaphores

and mutexes.

The operation mode of a spin lock is as follows: whenever a task attempts to enter into a critical

section protected by a spin lock, it immediately acquires the lock, if it is free, otherwise (as the

name implies) it spins until the lock is free. Then, a waiting task performs a busy waiting by means

of a loop for acquiring the lock. As it is intuitive, this approach should be only employed whenever

the expected waiting time is small. Spin locks are considered fast compared to sleeping locks,

because they avoid the context switch overheads (from switching the processor from one task to

another). However, the use of spin locks to protect large sections (as unfortunately happens within

the Linux kernel) and, especially, the use of nested spin locks can cause large and, potentially,

unpredictable latencies.

The PREEMPT-RT patch converts most spin locks into sleeping locks denoted as mutexes a

name which comes from mutually exclusive). Before describing mutexes, let us discussing the
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more general locking mechanism denoted by the term semaphore. A semaphore is a locking

mechanism that can control the concurrent access to a shared resource. Semaphores can be either

binary or counting. In the former case, they protect a shared resource from multiple accesses; that

is, only one task can use such a resource. In the latter case, multiple accesses are allowed; that is,

many tasks can use the shared resource at a given time. Unlike what holds for spin locks, a task

holding a semaphore (binary or counting) may sleep. Semaphores, with the property of allowing

more than one task into a critical section, have no concept of an owner. Indeed, one task may even

release a semaphore acquired by other another task. A semaphore is never linked or associated to

a task.

A mutex, on the other hand, always has a one-to-one relationship with the holder task. A

mutex may be owned by one, and only one, task at a time. This is a key to the PREEMPT-RT

patch, as it is one of the requirements of the PI algorithm; that is, a lock may have one, and only

one, owner. This ensures that a priority inheritance chain follows a single path, and does not

branch with multiple lock owners needing to inherit the priority of a waiting task.

2.3.2.4 Threaded ISRs

In the mainline Linux kernel, the interrupts are the event with the highest-priority. Whenever an

interrupt fires, the processor stops the execution of the current task to execute the ISR associated

with that interrupt. Suppose that the currently executing task is the highest-priority task in the

system and a low-priority task has requested hard disk I/O operations. What happens in this case

is that the execution of the highest-priority task will be greatly affected by the low-priority task.

The hard disk I/O operations are, usually, managed under Direct Memory Access (DMA), which

allows data to be sent directly from the hard disk to the main memory out of the processor control;

however, the processor is notified whenever an operation ends. This kind of event comes in a

unpredictable manner, therefore, it may unpredictably prevent the execution of the highest-priority

task as well as of all other tasks.

PREEMPT-RT creates a kernel thread (or task) for each interrupt line and whenever some

device fires a request, the respective kernel task is woken up; that is, it becomes ready to be

executed. Thus, it is scheduled according to the RT scheduling policies. It has a priority level

(50 by default) and therefore it causes the preemption of the lower-priority tasks and is preempted

by higher-priority tasks. Despite of the benefits of this approach, there are some cases where

an ISR is not converted into a kernel task. For that purpose, those ISRs have to be flagged as

IRQ_NODELAY.

2.3.2.5 Scheduling policies

The RT scheduling class, as implemented in the PREEMPT-RT patch, supports the same sche-

duling policies as the mainline Linux kernel: SCHED_FIFO and SCHED_RR scheduling policies.

While these scheduling policies are appropriate for uniprocessors, they are not adequate for multi-

processor systems because (i) their performance is poor on multiprocessors (since there exist task
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sets were a system with a load a little over 50% fail to meet deadlines) and (ii) they adopt an ac-

tive push/pull approach for balancing tasks across processors. Such push/pull operations require

locking multiple processor ready-queues, which cause an additional source of unpredictability.

The scheduling algorithm suitable for multiprocessor systems must be supported by the RT

scheduling class, but the PREEMPT-RT patch does not add any scheduling algorithms suitable

for multiprocessor systems. This is an important omission in the PREEMPT-RT patch, which is

addressed in this work.

2.3.3 Real-time scheduling add-ons

During the last years some works, mostly, from the academia have provided the Linux kernel

(some directly in the mainline and others using PREEMPT-RT-patched Linux kernel) with support

for some algorithms suitable for real-time systems.

The LITMUSRT framework [LR12], whose name stands for LInux Testbed for MUltiprocessor

Scheduling in Real-Time systems, focuses on real-time scheduling algorithms and synchronization

protocols for multiprocessor systems and its primary goal is to provide a useful experimental

platform for applied real-time systems research. To this end, the mainline Linux kernel is modified

and distributed as a patch file, which requires the Linux kernel to be compiled with it.

The first prototype of LITMUSRT was developed back in 2006 based on the Linux 2.6.9 kernel

version [CLB+06], and since that time many releases have been produced [BBC+07, BCA08,

BA09c, Bra11]. The current version is based on the mainline Linux 3.0.0 kernel version. The

project was initially focused on partitioned and global scheduling algorithms. More recently, it

also incorporated clustered scheduling algorithms. The current LITMUSRT version also supports

semi-partitioned scheduling algorithms [BBA11].

The implementation approach followed for LITMUSRT is based on scheduler plugins that

implement the respective scheduling algorithms. Architecturally, LITMUSRT is based on a generic

scheduling class (in Section 2.3.1.3 the Linux modular scheduling framework is described) called

litmus_sched_class and positioned on the top of the Linux hierarchy of scheduling classes.

This scheduling class does not implement any particular scheduling algorithm. It is a thin wrapper

that delegates all scheduling decisions to the currently active scheduler plugin. The idea behind

the scheduling plugins is to have the possibility of switching the scheduling algorithm at run-time.

The REal-time SCHeduler (RESCH) is a loadable suite for Linux [KY08a, KRI09, Kat12].

The primary objective of RESCH is to facilitate academic research on real-time systems for prac-

tical use, and to make them available in the real world. From the implementation point-of-view, it

uses a different approach as it does not require any kernel patch. Consequently, there is no need to

recompile the Linux Kernel. The RESCH core is implemented as a character device driver. Note

that, developing a device driver module is similar to developing any user-space application. In

order to activate RESCH, it is only required to install the respective device driver module, which

is also similar to the installation of a user-space application.

As with the LITMUSRT framework, RESCH also supports a variety of scheduling algorithms:

partitioned, global and semi-partitioned. Initially, such scheduling algorithms were implemented
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using the native real-time scheduling class of Linux using the POSIX-compilant SCHED_FIFO

scheduling policy (described in Section 2.3.1.4). Nowadays, it is instead designed and imple-

mented using SCHED_DEADLINE [SCH12].

Originally, SCHED_DEADLINE [FTCS09] only supported partitioned-EDF. Nowadays, glo-

bal- and clustered-EDF [LLFC11] are also supported. The SCHED_DEADLINE implementation

is compliant with POSIX interfaces and follows the rules defined by the Linux modular scheduling

framework (described in Section 2.3.1.3). SCHED_DEADLINE is implemented as a scheduling

class (called dl_sched_class) that is positioned on the top of the Linux scheduling class hier-

archy, thus, becomes the highest-priority scheduling class.

Contrarily to LITMUSRT, SCHED_DEADLINE does not use a shared global ready-queue to

implement the global-EDF scheduler. Actually, in terms of implementation, there is no difference

among the different categories of supported scheduling algorithms by SCHED_DEADLINE. It

uses a ready-queue per-processor (as the Linux native real-time scheduling class) that is suitable

for partitioning. Note that, under this approach, each processor can only execute tasks stored into

its own ready-queue. Therefore, to support global and cluster scheduling, tasks are allowed to

migrate among processors. This migration mechanism is, essentially, supported by pull/push op-

erations (also used by the real-time scheduling class of mainline Linux; Section 2.3.1.4 describes

such operations).

AQuoSA [AQu13] whose name stands for Adaptive Quality of Service Architecture, focuses

on providing Quality of Service (QoS) management functionalities to the Linux kernel. For that

purpose, it employs a resource reservation scheduler (that assures the temporal protection in al-

locating CPU to a set of tasks) and a feedback-based mechanism (that can be used to self-tune

the scheduling parameters). By combining both, AQuoSA is capable of dynamically adapting the

CPU allocation for QoS aware tasks based on their run-time requirements. Originally, AQuoSA

was limited to uniprocessor systems [PCML09], but in [CCFL09] it was extended to multipro-

cessor systems. Furthermore, it has been used to schedule virtual machines in the context of

the IRMOS (that stands for Interactive Real-time Multimedia Applications on Service Oriented

Infrastructures) European project [IRM13, CCK+10].

From the implementation point of view, AQuoSA is comprised of a middleware layer (po-

sitioned between the kernel-space and user-space) and of a set of modules running in the Linux

kernel. The resource reservation algorithm is implemented inside a Linux kernel module, while

the management strategies can be implemented partly at the kernel level and partly at the middle-

ware level. In order to interconnect the Linux scheduler and the AQuoSA kernel modules, it is

required to apply a generic scheduler patch to the Linux kernel. This is a small patch, which ex-

tends the Linux scheduler functionality by intercepting some scheduling events. For each of these

events, it is created a function pointer that is exported to be used by the AQuoSA kernel modules.

This approach requires the applications to be coded according to a specific API. This can be a

problem for applications coded without that specific API, as happens with legacy applications. To

address this issue, this adaptive scheduling framework was extended in [CAPC09], by combining

tracing and run-time identification mechanism (which extracts from high-level observations such



2.3 Software in multiprocessor systems 31

important parameters as the execution rate) that identifies the correct amount of processing needed

by each application.

2.3.4 Micro kernel-based approaches

A micro kernel-based approach is used in some Linux-based RTOSs [Yod99, RTA12, Xen12] to

support the real-time system requirements. Under this approach, a software layer called micro ker-

nel is created and placed between the Linux kernel and the hardware (see Figure 2.10). Thus, the

micro kernel interfaces the hardware with the rest of the software. Therefore, it is in a privileged

position to control the entire system if it is provided with the required mechanisms for handling

interrupts and scheduling tasks, for example.

Hardware

Micro-kernel

Kernel-space

User-space

Real-time tasks Linux kernel

Non-real-time tasks

Figure 2.10: Computer system architecture with the micro kernel layer.

The first implementation of such an approach was RTLinux [Yod99], which stands for Real-

Time Linux. RTLinux handles the interrupts from peripherals and dispatches the interrupts to

Linux kernel when there are no ready real-time tasks. Whenever the Linux kernel disables in-

terrupts, RTLinux queues the interrupts to be delivered after the Linux kernel has enabled the

interrupts once again.

The RTLinux implements real-time tasks as kernel modules: kernel modules are pieces of

code, which may be loaded and unloaded into the kernel and do not require a kernel compilation.

Hence, such tasks execute in kernel-space like the Linux kernel. In order to guarantee the priority

of the real-time tasks, RTLinux considers the Linux kernel as the lowest-priority task in the system,

which may do its normal operations whenever there are no real-time tasks running.

For scheduling real-time tasks, RTLinux implements its own scheduler as a module, fully pre-

emptive and based on a fixed-priority scheme. However, given the modular nature of the scheduler,

other scheduling policies can be easily added. The mainline Linux scheduler is not involved and

given overall system control by RTLinux, Linux cannot delay or interrupt (or preempt) the execu-

tion of any real-time task.

Implementing real-time tasks as kernel modules presents two drawbacks though: first, it is

very difficult to debug such tasks, and second, when executing in kernel-space, a software bug in

a real-time task could be catastrophic for the entire system.

These drawbacks are addressed by a more recent RTOS, called RTAI (that stands for Real-

Time Application Interface)[RTA12]. RTAI uses the same approach as RTLinux, since it also
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considers the Linux kernel as the lowest-priority task in the system, but it provides a complete

Application Programming Interface (API) for developing real-time tasks, called LXRT (which

stands for LinuX-RT). These tasks execute in user-space context. In essence, for each real-time

task, LXRT creates a real-time agent that executes in kernel-space context. Whenever, a real-time

task starts executing, the real-time agent disables interrupts and preemptions, removes the task

from the Linux ready-queue and adds it to the RTAI scheduler queue. This way, such a task is

protected from the other Linux processes.

More recently appeared ADEOS (which stands for Adaptive Domain Environment for Operat-

ing Systems). ADEOS consists of a resource virtualization layer placed on the top of the hardware

and below the kernel layer [Ade13]. It intends to provide the possibility of sharing the hardware

among several operating systems, referred to as domains (see Figure 2.11), which are ordered by

priority. Each domain can request to ADEOS to be notified of some important events, such as

interrupts, system call invocations, task-switching and task completions, just to mention a few.

An event pipeline is formed according to the domain’s priority. Incoming events are pushed into

the head of the pipeline and flow down to its tail. This way, the events are handled first by the

highest-priority domain and then by the next one and so on until reach the lowest-priority domain.

The event propagation is constrained to some rules. For instance, a domain can forward or stop an

event. For critical operations, a domain can stall events in its own pipeline stage; this is equivalent

to disabling events for the subsequent domains. The events can be unstalled later, and then they

continue the flow to the subsequent domains.

Xenomai [Xen12] is a more recent implementation for supporting real-time system require-

ments. Xenomai makes use of ADEOS for its own purposes. As illustrated in Figure 2.11, a

Xenomai system is composed by three domains: Xenomai, the interrupt shield, and the Linux

kernel. In the Xenomai’s jargon, the Xenomai domain (the highest-priority domain) is said to to

be the primary execution mode, while the Linux kernel domain (the lowest-priority domain) un-

dergoes the secondary execution mode of real-time tasks. The interrupt shield domain, as its name

implies, provides a mechanism for managing the interrupt flow across domains.

Hardware

ADEOS

Kernel-space

User-space

Domain 1 Domain 2 Domain 3

Xenomai Interrupt shield Linux kernel

Real-time tasks Non-real-time tasks

Figure 2.11: Xenomai computer system architecture.

Real-time tasks can be executed in the primary context mode as well as in the secondary

execution mode; that is, a real-time task starts its execution on Xenomai, but it can jump to the
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Linux kernel whenever it invokes a Linux system call and can then return once again to Xenomai.

Whenever this happens, the real-time task is removed from Xenomai’s ready-queue and is inserted

into the Linux ready-queue, more specifically into the queue for the RT scheduling class. As

mentioned before, the RT scheduling class organizes its tasks according to their priority level and,

for each level, it uses two scheduling policies: SCHED_FIFO and SCHED_RR. In this case, such

tasks are scheduled according to the SCHED_FIFO scheduling policy. However, this implies the

use of a common priority scheme by the Xenomai and the Linux kernel. Hence, to guarantee the

priority compatibility, the real-time tasks have a priority level in the same order of magnitude as

the Linux RT scheduling class (from zero to 99).

Xenomai is provided with mechanisms for guaranteeing the predictability of the execution

of real-time tasks. However, whenever a real-time task jumps to the Linux kernel, it is out of

its control, therefore Xenomai can no longer guarantee the predictability of that execution. One

type of events that contributes to such unpredictability is interrupts. When a real-time task is

being executed on the Linux kernel, it should not be perturbed by non-real-time Linux interrupt

activities. To isolate those tasks from such events, Xenomai employs a mechanism that starves

the Linux kernel from interrupts when a real-time task is being executed on it. For that purpose,

Xenomai instructs the intermediate domain, the interrupt shield domain, to stall such interrupts

during the time that such tasks are being executed on Linux kernel.

Another source of unpredictability are the long non-preemptible (and time unbounded) sec-

tions. Long non-preemptible sections could considerably delay scheduling decisions. Whenever a

real-time task jumps to the Linux kernel, it is only executed after a scheduling decision has been

taken. Therefore, the responsiveness of a system increases if such scheduling decisions are fre-

quent, otherwise the responsiveness decreases. Hence, the probability of such a task experiencing

long delays depends on the existence of long non-preemptible sections in the system. For this

reason, Xenomai keeps an eye on the developments provided by the PREEMPT-RT patch [PR12],

described earlier in this chapter, which aims for a fully preemptible Linux kernel.

One last source of unpredictability, stems from the priority inversion phenomena. Xenomai

provides mechanisms for handling such phenomena, but the Linux kernel does not provide any

mechanism. Once more, Xenomai uses the development provided by PREEMPT-RT patch, which

implements the PI resource sharing protocol to reduce priority inversion.

2.4 Summary

In this chapter, we have addressed the most important platform-related issues of multiprocessor

systems. We first discussed some hardware issues of the multiprocessor systems, namely, those

that contribute to unpredictability, such as memory caches and interrupts. We then addressed

software-related aspects, and described the most important features of the mainline Linux kernel.

This research aims at putting real-time slot-based task-splitting scheduling algorithms into prac-

tice, and, in this chapter, we described several enablers of our experimental work, such as the Linux

kernel features that support the implementation of a real-time scheduler and the PREEMPT-RT
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patch. We note that the PREEMPT-RT patch does not yet proper support real-time multiproces-

sor scheduling policies, something addressed by this work. We have also reviewed several other

approaches introducing real-time capabilities into Linux-based operating systems, namely those

that use a co-kernel to guarantee the real-time system requirements, and others that incorporate

real-time features into the Linux kernel.



Chapter 3

Background on real-time systems

3.1 Introduction

Initially, real-time systems were restricted to some very specific domains as military, avionics, and

industrial plants, just to mention a few. Nowadays, real-time systems are becoming increasingly

important and pervasive, as more and more industries, infrastructures, and even ordinary people

depend on them. Indeed, the increase of real-time domains as well as the increase of real-time

systems have been in an order of magnitude that human beings use them daily and often without

knowing. Naturally, with the general proliferation of multi-core platforms, it is expected that real-

time applications start to be massively deployed on such platforms. A key factor for that, among

other reasons, is the considerable boost in processing capacity in a relatively cheap, small, and

low power consuming chip. Therefore, they offer an opportunity to maximise performance and

execute more complex and computing-intensive tasks whose stringent timing constraints cannot

be guaranteed on single-core systems.

In this chapter, we aim to provide the required background in real-time concepts for multi-

processor systems. We start by presenting and discussing the real-time concepts in general and

then we focus on those specific to multiprocessor systems. Next, we review some relevant real-

time scheduling algorithms for multiprocessor systems. After that, using a task set example, we

go through the details of several real-time scheduling algorithms for multiprocessor systems. We

finish this chapter with a historical perspective of the scheduling algorithms under consideration

in this work.

3.2 Basic concepts

In this section, we discuss the real-time concepts used throughout this dissertation. First, we

describe the system model and then we address the fundamental concepts of real-time scheduling.

35
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3.2.1 System model

Consider a system composed by m processors. Each processor is uniquely indexed in the range P1

to Pm and U [Pp] denotes the utilization of processor Pp; that is, the current workload of processor

Pp.

A real-time application is, typically, composed of a static set, τ , of n tasks (τ = {τ1, · · · ,τn}).
Each task, τi, generates a sequence of z jobs (τi,1, · · · ,τi,z, where z is a non-negative number and

potentially z→ ∞), and is characterized by a three-tuple (Ci, Ti, Di).

The worst-case execution time, Ci, is the maximum time required by the processor to execute a

job of task τi without any interruption. Ti defines the frequency at which jobs of task τi are released

in the system and, according to the nature of Ti, the systems are classified in three broad cate-

gories: (i) periodic, jobs are released regularly at some known rate (called period); (ii) sporadic,

jobs are released irregularly at some known rate (called minimal inter-arrival time); and finally,

(iii) aperiodic jobs appear with irregular arrival times, typically, at unknown rate. Aperiodic tasks

are out of the scope of this dissertation (the reader is referred to [AB98] for more details how to

handle aperiodic tasks). The temporal constraint of each task, τi, is defined by its relative deadline,

Di, the size of the time window for executing a job of such task τi.

A task set, τ , is said to have implicit deadlines if the relative deadline of every task is equal

to its period (Di = Ti), constrained deadlines if the relative deadline of every task is less than or

equal to its period (Di ≤ Ti), and arbitrary deadlines if there is no such constraint; that is, Di can

be less than, equal to, or greater than Ti.

For implicit deadline task set, the utilization of task τi, ui, is given by the ratio between its

worst-case execution and its period/minimal inter-arrival time:

ui =
Ci

Ti
(3.1)

The utilization of the system, Us, is the sum of the utilization of all tasks normalised by the

number of processors (m):

Us =
1
m

n

∑
i=1

ui (3.2)

A task’s density is an adaptation of its ui for constrained or arbitrary deadline task sets and is

computed as:

λi =
Ci

min(Di,Ti)
(3.3)

A task set, τ , is said to be synchronous if the first jobs of all tasks are all released at the same

time (usually this time instant is assumed to be time zero), otherwise it is said to be asynchronous

and, in this case, it is necessary to define an offset, Oi, of the first job arrival of each task τi related

to time zero. Typically, time zero is the time instant when the real-time system starts operating.

Each job τi, j (this notation means the jth job of task τi) becomes ready to be executed at its

arrival time, ai, j, and continues until its finishing (or completion) time, fi, j. The absolute deadline,
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di, j, of job τi, j is computed as: di, j = ri, j +Di. Therefore, a deadline miss occurs when fi, j > di, j.

As mentioned before, we do not consider aperiodic tasks; then, the time difference between the

arrivals of two consecutive jobs by the same task τi must be equal to Ti (for periodic tasks) or at

least equal to Ti (for sporadic tasks).

Figure 3.1 illustrates the relation among the timing parameters of the job τi, j. The execution

of the job τi, j is represented by a gray rectangle and the sum of all execution chunks (cx
i, j), which

correspond to the execution time of that job, cannot exceed Ci.

τi, j τi, j

c1
i, j + c2

i, j ≤Ci

ai, j ai, j+1di, j

ai, j +Ti

ai, j +Di

fi, j t

Figure 3.1: Illustration of the job timing parameters.

According to its criticality level, a real-time task can be classified as: hard real-time or soft

real-time. A task is said to be a hard real-time task if it is not allowed to miss any job deadline,

otherwise undesirable or fatal results will be produced in the system. On the other hand, soft real-

time tasks can miss some deadlines and the system is still able to work correctly. For example,

a heart pacemaker1 is a hard real-time system because a delay on electrical impulses may kill a

person while a live audio-video system is categorized as a soft real-time system because missing

a deadline results in degraded quality, but the system can continue to operate.

Real-time tasks can be categorized as dependent, if they interact with other tasks and its exe-

cution can be blocked by those tasks, or independent, if they do not.

3.2.2 Fundamental concepts of scheduling

According to [But04] the preemption is: “the operation of suspending the executing task and

inserting it into the ready-queue”. Thus, in a preemptive system, the execution of the running task

can be interrupted in order to execute a more important task on the processor. On the contrary, in

a non-preemptive system, a task that has started executing on the processor cannot be interrupted

before the end of its execution.

A scheduling algorithm is a method for defining an order/sequence for a set of ready jobs to

have access to processor or processors. Real-time scheduling algorithms should schedule ready

jobs according to their demands such that their deadlines are met.

A scheduling algorithm is said to be fixed-task priority if priorities are assigned per-task before

run-time and applied to all jobs of each task and do not change during run-time. One example is

the Rate Monotonic (RM) [LL73], where priorities are assigned according to the periodicity of

1A heart pacemaker is a medical device that uses electrical impulses to regulate the beating of the heart.
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each task. A scheduling algorithm is said to be fixed-job priority if the priority of a task might

change during run-time but each job has a fixed priority. For example, the Earliest Deadline First

(EDF) [LL73] scheduling algorithm assigns the highest-priority to the job with the earliest absolute

deadline. Finally, a scheduling algorithm is said to be dynamic-job priority if the priority of a job

might change during run-time. For example, the Least-Laxity-First (LLF) [Der74] scheduling

algorithm is a dynamic-job priority scheduling algorithm since it assigns higher priority to a job

with the least laxity, which is, at time t, a measure of urgency for a job, however, such urgency

varies during the execution of the job.

A task set is said to be feasible if there exists some scheduling algorithm under which it is

schedulable. A scheduling algorithm is said to be optimal if it is able to schedule any task set that

is feasible.

Multiprocessor systems introduce an additional dimension to the scheduling algorithm classi-

fication known as the migration degree. According to the migration degree, multiprocessor sche-

duling algorithms have traditionally been categorized as global or partitioned. Global scheduling

algorithms store all ready tasks (or jobs) in one global queue that is shared by all processors. At

any moment, the m highest-priority ready tasks among those are selected for execution on the

m processors. Tasks can migrate from one processor to another during its execution; that is, the

execution of a task can be preempted on one processor and resume on another processor. Some

of these scheduling algorithms are said to be work-conserving, because it is not possible to have

any processor in idle state while there is a ready task waiting for execution. As a consequence of

that, this category of scheduling algorithms naturally provides a good workload balance among

processors which, in overload situations, may help prevent a deadline miss because there is no

constraint restricting on which processor a task can be executed.

In contrast, partitioned scheduling algorithms divide the task set such that all tasks in a partition

are assigned to the same processor thus, reducing a multiprocessor scheduling problem, at least

conceptually, to a set of m uniprocessor problems. Since tasks are not allowed to migrate from

one processor to another, generally, these kind of scheduling algorithms are non work-conserving,

because it is possible to have a processor in an idle state when there is some ready task waiting for

execution on other processor.

Partitioning implies assigning tasks to processors. Assigning tasks to processors is a bin-

packing problem, which is known to be a NP-hard problem [CGJ97]. The main goal of bin-

packing is to pack a collection of items with different sizes into the minimum number of fixed-size

bins such that the total weight, volume, etc. does not exceed some maximum value. In the context

of a real-time scheduling algorithm, each item is a task, τi, belonging to the task set, τ , the size of

each item is the utilization of that task, ui, each bin is a processor, Pp, and the size of each bin is

the capacity of a processor, usually considered to be 100%.

There are several heuristics for this kind of problems. Examples of such heuristics are: Next-

Fit (NF), First-Fit (FF), Best-Fit (BF), and Worst-Fit (WF). NF assigns tasks to the current pro-

cessor and if one task does not fit on the current processor it moves on and continues packing on

the next processor. FF assigns each task to the first (lowest-indexed) processor that can accept
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that task. BF assigns a task to the lowest-indexed processor that will have the smallest remaining

capacity after the assignment. WF is the inverse of the BF heuristic, that is, it assigns a task to the

lowest-indexed processor that will have the greatest the remaining capacity after the assignment.

In the last years, a new class of scheduling algorithms, called semi-partitioned or task-splitting,

has been proposed. Under a semi-partitioned scheduling algorithm, some tasks are assigned to

specific processors, as in partitioned schemes, while other tasks may migrate between processors,

as in global schemes.

There is also an orthogonal variant of the global, partitioned, and semi-partitioned categories

called clustered scheduling. Clustered scheduling [BB07] is a hybrid of global, partitioned, and

semi-partitioned [AT06, BA09b] scheduling that groups processors according to some criterion.

The most common criterion is the cache level [GCB13], that is, a cluster is formed out of the

cores that share the same cache level. For example, tasks may be partitioned to clusters and the

tasks within each cluster may be scheduled using some global or some semi-partitioned algorithm.

This avoids migrations among cores on different chips that cause cache misses, which imply extra

accesses to the main memory with the consequent performance degradation. From this point of

view, partitioned scheduling uses clusters composed by only one processor, while global and semi-

partitioned scheduling use a single cluster containing all processors in the system. However, there

is an important aspect common to all these scheduling categories: at given time instant one task

can be executed by only one processor; that is, execution parallelism is not allowed.

All of the above defined concepts are used to characterize the task set model, scheduling

algorithm, and host platform. A schedulability test is formal tool for checking if a task set is

schedulable (no deadline miss occurs) using a specific scheduling algorithm running on a specific

platform or not. Note that, schedulability tests play an important role in real-time systems. In the

words of Bertogna [Ber08]: “Having a good scheduler without being able to prove the correctness

of the produced schedule is almost useless in the real-time field. Since designers are interested in

finding efficient scheduling algorithms at least as much as they are interested in proving that no

deadline will be missed, the tightness of existing schedulability tests is a key factor when selecting

which class of schedulers to adopt”.

A common way to characterize the performance of scheduling algorithms is by using the no-

tion of a utilization bound. The utilization bound of a real-time scheduling algorithm is a threshold

for the task set utilization such that all tasks meet their deadlines when scheduled by the algorithm

in consideration if the task set utilization does not exceed that threshold. This concept is commonly

used to compare scheduling algorithms and it is also an indicator of the expected performance of

a scheduling algorithm.

So far, we have described the generic concepts of the real-time systems, in general, and specific

for multiprocessor systems. We next review the relevant work of real-time scheduling algorithms

for multiprocessor systems.
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3.3 Review of relevant work on multiprocessor scheduling

In this section, we present a global picture of the most relevant work on multiprocessor scheduling

algorithms. For a survey on real-time scheduling algorithms and related issues, the reader is

referred to [DB11b]. Real-time systems are computing systems that need to compute the right

result at the right time. Real-time scheduling algorithms were designed, analysed and used to

schedule computer programs in the on-board computer during the first manned space flight to the

moon [Liu69, LL73] during the 1960s. These algorithms, RM and EDF, were intended to be used

in uniprocessor computer systems [LL73].

During the 1980s and 1990s, these algorithms were extended to take into account more real-

istic models of preemption overhead [KAS93], deadlines [Leh90], and synchronization [SRL90].

Today, these techniques are considered mature for uniprocessor systems. Unfortunately, real-time

scheduling on multiprocessors did not experience the same level of success as it did on a unipro-

cessor. As early as in the 1960s, it was observed by Liu [Liu69], the inventor of RM and EDF, that:

“Few of the results obtained for a single processor generalize directly to the multiple processor

case; bringing in additional processors adds a new dimension to the scheduling problem. The

simple fact that a task can use only one processor even when several processors are free at the

same time adds a surprising amount of difficulty to the scheduling of multiple processors”.

Later, it was found that RM and EDF were not fit for multiprocessors; deadlines can be missed

although close to 0% of the computing capacity is requested [DL78, Dha77]. This is known as

Dhall’s effect, which occurs when a task set is composed by m low-utilization tasks and one high-

utilization task: consider the following synchronous periodic task set composed by n=m+1 tasks

(Ti = 1 and Ci = 2ε , i∈ [1,m] (ε is an arbitrarily small value) and Tm+1 = 1+ε and Cm+1 = 1) with

implicit deadlines, to be scheduled on m processors according to the EDF scheduling algorithm.

All tasks are released at time t = 0, hence task τm+1 has the lowest-priority due to it having the

longest deadline (at time 1+ ε). Figure 3.2 shows the time-line execution of just one job of each

task to illustrate Dhall’s effect. The schedule produced by the scheduling algorithm is presented

according to two equivalent perspectives: tasks (above) and processors (below). Task arrivals

and deadlines are represented by upwards and downwards pointing arrows, respectively. Gray

rectangles represent the execution of tasks and black circles state the end of their execution. For

sake of simplicity, in the description of the resulting schedule the term job will be avoided in

favour of the more generic term task, even if some job-related concepts are used.

The high-utilization task τm+1 misses its deadline due to the interference of the m low-utiliza-

tion tasks. By letting ε → 0+, the utilization of the m tasks becomes close to 0%, and task τm+1

has a utilization of 100%. Therefore, the total utilization of the task set, Uτ , is just over 100%.

Considering m→ ∞ the system utilization, Us, decreases to almost 0%. Thus, a deadline can be

missed even if Us is almost 0%.

For this reason, researchers initially shunned global scheduling and instead explored parti-

tioning algorithms [DL78, Dha77, AJ03] where a set of tasks are partitioned such that all tasks

in one partition are assigned to its dedicated processor and are not allowed to migrate. In this
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Figure 3.2: Illustration of Dhall’s effect.

way, uniprocessor scheduling algorithms can be used on each core, but unfortunately, the utiliza-

tion bound is limited to 50%, as the following examples shows: consider a task set composed by

n = m+ 1 tasks each of which has a utilization factor barely higher than 50% (ui =
1
2 + ε) to be

scheduled on m processors. Assuming that tasks are assigned to processors according to the FF

bin-packing heuristic, there is no processor with enough utilization capacity to accommodate task

τm+1. Figure 3.3 illustrates the partitioning problem. Assuming ε→ 0+, the worst-case utilization

of any partitioned scheduling algorithm is limited by (m+1)/2 [LGDG00]. Further, with m→∞,

the least schedulable utilization of any partitioned scheduling algorithm decreases to 50%.

P1
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Pm

0% 50%+ ε 100%
Processor capacity

τ1
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τm+1

τm+1 cannot be as-
signed to any processor

Figure 3.3: Illustration of the partitioning problem.

In the meantime, a class of algorithms called Proportionate Fairness (P-Fair) scheduling emer-

ged [BCPV93, BCPV96]. As its name implies, under P-Fair scheduling the execution of tasks

progresses proportionally over the time. For that purpose, these algorithms break a task into many
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unit-size sub-tasks that are scheduled with migration allowed at the sub-task boundary. Many P-

Fair variants have been developed [BGP95, AS00, SA02, AS04]. These algorithms are optimal,

however, at cost of many preemptions and migrations.

Recently, a class of scheduling algorithms denoted Deadline Partitioning Fairness (DP-Fair)

provides the same optimality as P-Fair, but with fewer preemptions and migrations. DP-Fair al-

gorithms [ZMM03, CRJ06, FKY08, LFS+10] divide the time into time slots bounded by two

consecutive task deadlines. Then, within each time slot a ready task executes during some amount

of time proportional to the time slot length in accordance with some criterion, such as the task

laxity, the task utilization, or the task density.

With the intent to reduce the number of preemptions and migrations incurred by global schedu-

ling algorithms, multiprocessor scheduling algorithms with migration and static task priority were

proposed like RM-US[m/(3m−2)] [ABJ01] and EDF-US[m/(2m−1)] [SB02]. Both algorithms

employ a Utilization Separation (US) factor, in which, for instance, the EDF-US[m/(2m−1)] clas-

sifies as heavy all tasks that ui > m/(2m−1) or as light otherwise. Heavy tasks statically receive

higher priority than light tasks. Light tasks are scheduled according to EDF scheduling algorithm.

However, they suffered from the same limitation as partitioning, in terms of utilization bounds; that

is, with m→ ∞ the utilization bound of the RM-US[m/(3m− 2)] and the EDF-US[m/(2m− 1)]

tends to m/3 (≈ 33.3%) and m/2 (50%), respectively. Despite this limitation, they generated

an increasing interest [Lun02, AAJ+02, AAJ03, Bak03, LL03] because these algorithms cause

a low number of preemptions. Another approach to reduce the number of preemptions is the

Fixed Priority until Zero Laxity (FPZL) scheduling algorithm [DB11a]. This algorithm combines

fixed priority scheduling algorithms, like RM, with LLF. The main idea is to limit the job priority

changes. Under this approach, jobs are only allowed to change the priority once. Tasks are sched-

uled according to the fixed priority algorithms, however, whenever a laxity of a task is zero it is

given to it the highest-priority.

In the context of global fixed priority scheduling algorithms, Davis and Burns [DB11c] ad-

dressed the issue of finding schedulable task priority assignment. Their work highlights the im-

portance of an appropriate choice of task priority assignment.

Consider again a task set composed by n = m+1 tasks each of which has a utilization factor

barely higher than 50% (ui =
1
2 + ε) to be scheduled on m processors. As mentioned before, this

task set cannot be scheduled by any partitioned scheme. However, researchers [ABD05, AT06]

observed that if the execution time of a task could be split into two pieces then it is possible to

meet deadlines. For example consider, assigning task τm+1 to two processors (for example P1

and P2) so that a task by τm+1 executes 0.25+ ε/2 time units on one of the two processors and

0.25+ ε/2 time units on the other. This makes it possible to meet its deadline, assuming that the

two pieces of task τm+1 are dispatched so that they never execute simultaneously. This approach

typifies semi-partitioning.

It should be noted that, contrarily to global scheduling algorithms where tasks can dynami-

cally migrate across all processors, task migration rules in semi-partitioned or task-splitting sche-

duling algorithms are statically defined at the design phase. Hence, semi-partitioned scheduling
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Table 3.1: Task set example.

Task Ci Ti ui

τ1 9 10 0.900
τ2 6 9 0.667
τ3 4 7 0.571
τ4 3 6 0.500

algorithms employ an off-line task-to-processor assignment algorithm, which also splits tasks as

necessary, and a run-time task-dispatching algorithm. Many recent algorithms are based on this

task-splitting idea and they differ in (i) how tasks are assigned to processors and split before run-

time and (ii) how tasks (and in particular, split tasks) are dispatched at run-time.

In [ABD05], it is proposed that the second piece of a split task τi should arrive Ti time units

later. This ensures that the two pieces of such a task do not execute simultaneously but unfortu-

nately it requires that Di ≥ 2Ti so this is only recommended for soft real-time tasks.

The remaining works that use task-splitting dispatching can be grouped according to two tech-

niques: (i) job-based task-splitting dispatching and (ii) slot-based task-splitting dispatching. Job-

based task-splitting dispatching [KY07, KY08b, KY09, LRL09, GSYY10, BDWZ12] splits a job

into two or more sub-jobs and forms a sequence of sub-jobs. The arrival time of a sub-job is set

equal to the absolute deadline of its preceding sub-job. Job-based task-splitting dispatching pro-

vides a utilization bound greater than 50% and few preemptions. The main drawback of job-based

task-splitting dispatching is that utilization bounds greater than 72.2% have not been attained

[SLB13].

Slot-based task-splitting dispatching [AT06, AB08, ABB08, BA09a, BA09b, BA11] sub-divi-

des time into time slots whose beginning and end are synchronized across all processors; the end

of a time slot of processor Pp contains a time reserve and the beginning of a time slot of processor

Pp+1 contains another time reserve, and these two reserves supply processing capacity for a split

task. Slot-based task-splitting dispatching causes more preemptions than job-based task-splitting

dispatching but, in return, it offers higher utilization bounds (higher than 72.2% and configurable

up to 100%).

3.4 Comparison of scheduling algorithms

This section highlights the differences and similarities of the most significant real-time scheduling

algorithms for multiprocessor systems. For that purpose, consider a preemptive system composed

by three (m = 3) identical processors (P1, P2, and P3) and a synchronous periodic task set com-

posed by four (n = 4) independent tasks (τ1, · · · ,τ4) with implicit deadlines. Table 3.1 shows the

parameters of each task. On the last column, the utilization of each task, ui, is presented. The

system utilization, Us, is equal to 0.879 (Us =
1
m ·∑

n
i=1 ui).

We next present the schedule produced by different real-time scheduling algorithms (of the

global, partitioned, and semi-partitioned categories) for the described system.
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Figure 3.4: Global-EDF execution time-line.

3.4.1 Global scheduling

Under the Global-EDF scheduling policy, all ready tasks are stored into a global ready-queue and,

at each time t, the m highest-priority ready tasks are executed on m processors.

For the sake of presentation, please note that in the next and also in the following figures, the

highest-priority task is assigned to the lowest-indexed processor and the next highest-priority task

is assigned to the next lowest-indexed processor, and so on. It should be noted that this could cause

more preemptions and migrations than if some optimization heuristic was adopted. (Such as, for

instance, keeping the task executing on the same processor whenever it is possible). For example,

in Figure 3.4, at time 3, task τ3 becomes the highest-priority task ready to execute and migrates

from processor P2 to processor P1. Task τ1 misses a deadline at time 10. Given that we will show

that this task set can in fact be scheduled by other algorithms, this shows that Global-EDF is not

optimal for multiprocessor systems.

The Earliest Deadline first until Zero Laxity (EDZL) scheduling algorithm for multiprocessor

systems [Lee94] is a global scheduling algorithm that combines the features of two uniprocessor

scheduling algorithms: EDF and LLF.

LLF [Der74] is a scheduling algorithm that assigns the highest-priority to the task with the least

laxity. The laxity of a real-time task at time t is defined as the difference between the deadline

and the amount of execution time remaining to complete. During execution, in addition to its

Ci, Ti, and Di parameters, a task τi is also characterized by its remaining execution time, crem
i (t),

and by its remaining time to absolute deadline, drem
i (t), at time t. The Laxity, Li(t), of a task at

time t is computed as Li(t) = drem
i (t)− crem

i (t) and provides a measure of urgency for this task.

Whenever the Li(t) is zero the task must be scheduled to execute immediately, otherwise it will

miss its deadline.
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Figure 3.5: Global EDZL execution time-line.

The EDZL scheduling algorithm integrates EDF and LLF in such a manner that it behaves like

EDF if there is no task with Li(t) equal to zero. When the Li(t) of some task becomes zero, the

task with positive laxity that has the latest absolute deadline among the currently executing tasks

is preempted in favour of the zero laxity task. Ties are broken by choosing the task with smallest

execution time [Lee94]. Figure 3.5 shows the time-line execution of the task set presented on

Table 3.1 when scheduled under EDZL. As it can be seen from Figure 3.5, no job misses the

deadline. However, EDZL is not an optimal scheduling algorithm; that is, it is not able to schedule

all feasible task sets.

Another approach is given by the P-Fair family of scheduling algorithms. The main idea of P-

Fair scheduling algorithms is to provide a proportionate progress according to the task utilization.

P-Fair scheduling algorithms are optimal. Figure. 3.6 presents a time-line execution considering

the P-Fair scheduling algorithm [BCPV96], called P-Fairness (PF). This algorithm assures that

within every interval [0, t) each task must be scheduled for bui · tc or dui · te time quanta. For that

purpose, PF breaks each task into an infinite sequence of quantum-length sub-tasks, τk
i , and each

sub-task has a pseudo-release, r
τk

i
=
⌊

k−1
ui

⌋
, and a pseudo-deadline, d

τk
i
=
⌈

k
ui

⌉
.

The time interval
[
r

τk
i
,d

τk
i

]
denotes the window of the τk

i and each sub-task must execute

within its associated window. The windows of two successive sub-tasks can partially overlap and

the successor bit, b
τk

i
=
⌈

k
ui

⌉
−
⌊

k+1
ui

⌋
, measures the number of overlapping quantum-length units

between two successive sub-tasks τk
i and τ

k+1
i . Different sub-tasks of a task are allowed to execute

on different processors, but cannot do so simultaneously.

Assuming that, at time t, sub-tasks τk
i and τx

j are both ready to execute, τk
i has higher priority

than τx
j (denoted τk

i > τx
j ) according to the following rules, applied sequentially until any tie is

broken:

(i) d
τk

i
< dτx

j
,



46 Background on real-time systems

0 t

Global
PF queue

τ4

τ3

τ2

τ1

P1

P2

P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

τ1

1

τ3

1

τ2

1

τ4

1

τ1

2

2

τ1

3

τ3

2

τ4

2

4

τ2

3

τ3

3

5

4

τ4

3

6

τ3

4

7

τ2

5

τ4

4

8

τ3

5

τ2

6

9

τ4

5

τ3

6

τ2

7

τ1

10

τ2

8

τ4

6

11

τ3

7

12

τ2

9

τ3

8

τ4

7

τ1

13

τ2

10

ai, j di, j Execution fi, j Window

Figure 3.6: PF execution time-line.

(ii) b
τk

i
> bτx

j
,

(iii) τ
k+1
i > τ

x+1
j .

If after applying all rules no sub-task has priority over the other, then the tie can be broken

arbitrarily. Figure 3.6 shows the time-line execution of the task set presented on Table 3.1, where

gray rectangles represent the execution of each sub-task and are labelled by its number. It also

highlights two drawbacks of this algorithm that is, the higher number of task preemptions and mi-

grations. Furthermore, another thing that should be noted is the computation complexity required,

in order to take scheduling decisions.

DP-Fair scheduling algorithms are also optimal. DP-Fair divides the time into time slots de-

marcated by two consecutive absolute job deadlines. For each time slot, Sk, DP-Fair allocates

the workload of all ready tasks and then schedules that workload. The workload is computed

according to the length of each time slot. These workloads share the same deadline. Figure 3.7

shows the time-line execution of the task set example according to the DP-Wrap scheduling al-

gorithm [LFS+10], which typifies the DP-Fair approach. DP-Wrap divides the time into unequal

time slots, then at the beginning of each time slot, Sk, it computes the workload of each ready task,

wk
τi
= ui · Sk, for that time slot. Then, it follows an adaptation of the NF bin-packing heuristic to

distribute these workloads to processors. It iterates over the set of workloads and assigns each task

workload, wk
τi

, to lowest-indexed processor where it fits. Whenever the assigned workload exceeds

the length of Sk, such workload is split between processors Pp and Pp+1. In this case, processor
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Figure 3.7: DP-Wrap execution time-line.

Pp+1 is allocated to such workload in the beginning of the time slot while processor Pp is allocated

to such workload in the end of the time slot. As it can never occur that wk
τi
> Sk, this ensures that

the execution parallelism of such workload is avoided.

According to [ZMM03], this approach can reduce the number of scheduling points up to 75%

comparatively to P-Fair scheduling algorithms. However, it still requires a great deal of computa-

tion in order to take scheduling decisions.

3.4.2 Partitioned scheduling

Partitioned scheduling algorithms are composed by two algorithms. The off-line task-to-processor

assignment algorithm and the run-time task-dispatching algorithm. The first one, assigns tasks to

processors and the second one, schedules tasks to execute on the processor(s). In other words,

partitioned scheduling algorithms statically assign tasks to processors and those are scheduled on

each processor using a uniprocessor scheduling algorithm, like, for instance, RM or EDF.

Returning to the task set example presented on Table 3.1, it is easy to check that this task set

cannot be partitioned onto three processors. Assuming that the assignment algorithm follows the

FF bin-packing heuristic that assigns tasks one by one to the lowest-indexed processor where each

fits, then, tasks τ1 (with U1 = 0.900), τ2 (with U2 = 0.667) and τ3 (with U3 = 0.571) are assigned

to processors P1, P2, and P3, respectively. Consequently, task τ4 (with U4 = 0.500) cannot be

assigned to any processor, because none of them have enough capacity to accommodate this task.

Nor it is possible succeed with any other bin-packing heuristic, as no two tasks can fit together on

the same processor.
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3.4.3 Semi-partitioned scheduling

Like partitioned scheduling algorithms, semi-partitioned scheduling algorithms are also composed

of an off-line task-to-processor assignment algorithm and a run-time task-dispatching algorithm

with the same purposes.

Figure 3.8 shows the time-line execution of the EDF-Window-constraint Migration (EDF-

WM) scheduling algorithm [KY09]. Each task is assigned to an individual processor using any

bin-packing heuristic. A task is split only when no individual processor has enough spare capacity

to accommodate that task. From Figure 3.8 we observe that tasks τ1, τ2, and τ3 are assigned to

processors P1, P2, and P3, respectively. None of them have sufficient capacity to entirely accom-

modate task τ4. The execution of task τ4 is then spread over processors with some spare processing

capacity (utilization), starting from the lowest-indexed processor. Therefore, task τ4 is split among

processors P1, P2, and P3. Consequently, task τ4 migrates across those processors, but it does so in

such a way that it never migrates back to the same processor within the same period, nor is it ex-

ecuted on more than one processor simultaneously. For that purpose, D4 is divided into three (the

number of processors on which that task τ4 executes) equal windows. The length of each window

is equal to two time units ( D4
3 = 6

3 = 2), in this case. The beginning and end of these windows de-

fine the pseudo-releases and also the pseudo-deadlines related to each processor. For instance, on

processor P1 the relative pseudo-release and the relative pseudo-deadline are at time zero and two,

respectively, while, on processor P2 the relative pseudo-release and the relative pseudo-deadline

are at time two and four, respectively, and so on.

An important issue is how to compute how much time task τ4 can be executed on each proces-

sor, that is, which are the C4[P1], C4[P2], and C4[P3]. An obvious issue here is that the execution of

task τ4 on processors P1, P2, and P3 cannot violate the timing requirements of the already assigned

tasks. In [KY09] it is defined how to compute that parameter. According to this, C4[P1], C4[P2]

and C4[P3] are approximately equal to 0.5, 1.5 and 1 time units, respectively. The run-time task-

dispatching algorithm schedules tasks on each processor under the uniprocessor EDF scheduling

algorithm.

The Sporadic-EKG (S-EKG) scheduling algorithm [AB08], was designed to schedule real-

time sporadic tasks – the name EKG, stands for “EDF with task splitting and k processors in a

Group”. It can be configured to achieve different levels of utilization bounds. It is categorized as

semi-partitioned, since it assigns m−1 tasks to two processors and the rest to only one processor.

S-EKG divides time into slots of length S = 1
δ
·minτi∈τ(Ti), where δ is a designer-set integer

parameter that controls the frequency of migration of tasks assigned to two processors. UBS−EKG

is the utilization bound of S-EKG scheduling algorithm and is determined by the chosen value for

δ (in Chapter 4, we provide more details). A task whose utilization exceeds UBS−EKG (henceforth

called heavy task) is assigned to a dedicated processor. Then, the remaining tasks are assigned

to the remaining processors in a way similar to NF bin-packing. Assignment is done in such a

manner that the utilization of processors is exactly UBS−EKG, except for the last processor, where

it could be less. Task splitting is performed whenever a task cause the utilization of a processor to
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Figure 3.8: EDF-WM execution time-line.

exceed UBS−EKG. In this case, this task (henceforth called a split task) is split between the current

processor Pp and the next one Pp+1. Then, in these processors, there are time windows (called

reserves) where this split task has priority over other tasks (henceforth called non-split tasks)

assigned to these processors. The lengths of the reserves are chosen such that no overlap between

them occurs, the split task can be scheduled, and all non-split tasks can also meet deadlines. The

non-split tasks are scheduled under the EDF scheduling algorithm.

Figure 3.9 shows the time-line execution of the S-EKG scheduling algorithm for the task

set example presented in Table 3.1 with a value of δ equal to four. According to [AB08], the

utilization of the S-EKG algorithm for δ equal to four is approximately 88.9% (UBS−EKG = 4 ·
(
√

δ · (δ +1)− δ )− 1 ≈ 0.889). Then, since τ1 is a heavy task, it is assigned to a dedicated

processor, P1. τ2 is assigned to processor P2, but assigning task τ3 to processor P2 would cause

the utilization of processor P2 to exceed UBS−EKG (0.667+ 0.571 > 0.889). Therefore, task τ3

is split between processor P2 and processor P3. A portion of task τ3 is assigned to processor P2,

just enough to make the utilization of processor P2 equal to UBS−EKG, that is 0.222. This part is

referred to as y[P2] and the remaining portion (0.349) of task τ3 is assigned to processor P3, and is

referred to as x[P3]. Finally, task τ4 is assigned to processor P3.

On a dedicated processor, the task-dispatching algorithm is very simple, whenever the assigned

task is ready to be executed, the processor executes that task. The time is divided into time slots

and non-dedicated processors usually execute both split and non-split tasks. For that purpose, the

time slot might be divided into at most three parts. The y[Pp] and x[Pp+1] time units are reserved

for executing the split task shared by Pp and Pp+1. However, it is important to note that one split

task executes one portion on processor Pp and the remaining portion on another processor Pp+1.

This means that a split task will execute on both processors but not simultaneously. The remaining



50 Background on real-time systems

0 t

P1 queue

P2 queue

Task split
between

P2 and P3

P3 queue
τ4

τ3

τ2

τ1

P1

P2

P3

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5

S S S S S S S S S

y y y y y y y y y

x x x x x x x x x

τ1

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ4

τ1

τ2 τ3

P2

τ3

P3

τ4

τ2 τ3

P2

τ3

P3

τ2 τ3

P2

τ3

P3

τ4

ai, j di, j Execution fi, j

Figure 3.9: S-EKG execution time-line.

part of the time slot is reserved for executing non-split tasks, on each processor.

The run-time task-dispatching algorithm works over the time slot of each processor and, when-

ever the dispatcher is running, it checks to find the time elapsed in the current time slot: (i) if the

current time falls within a reserve (x[Pp] or y[Pp]), if the assigned split task is ready to be executed,

then the split task is scheduled to run on processor, otherwise, the non-split task with the earliest

deadline is scheduled to execute on the processor; (ii) if the current time does not fall within a

reserve, the non-split task with the earliest deadline is scheduled to run on processor.

In the execution time-line illustrated in Figure 3.9, the time slot length is S = 1.5 because

minτi∈τ(Ti) is equal to six (the minimal inter-arrival time of task τ4) and δ is equal to four. The

split task τ3 executes only within the x[P3] and y[P2] reserves. Outside its reserves, it does not

use the processor, even if that is free. In contrast, the non-split tasks execute mainly outside the

x[Pp] and y[Pp] reserves but potentially also within the reserves, namely, when there is no split task

ready to be executed. There is one clear situation in Figure 3.9 that illustrates this. On processor

P3, within the time slot that starts at time six, task τ4 executes on x[P3] reserve because the split

task τ3 has finished its execution.

The Notional Processor Scheduling - Fractional capacity (NPS-F) [BA09b] algorithm, uses a

somewhat different approach from the scheduling algorithms previously presented in this section.

While the previous scheduling approaches are based on the concept of a task, the NPS-F uses

an approach based on bins. To each bin one or more tasks are assigned and there is a one to

one relation between each bin and each notional processor, which is a sort of server. Then, each

notional processor schedules tasks of the respective bin under the EDF scheduling policy. In turn,

all notional processors are implemented upon the m physical processors, P1 to Pm, by the means of

time reserves. In Chapter 4, we present more details about the NPS-F scheduling algorithm.

Assume that there are four bins, b1 to b4, that are filled with the tasks of the task set presented
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Figure 3.10: NPS-F execution time-line.

in Table 3.1 in such a manner that task τ1 is in b1, τ2 is in b2 and so on. Then, the utilization

of each bin is equal to the utilization of the associated task. According to [BA09b], to ensure

the schedulability of all tasks, the utilization of each bin (denoted by U [bx]) must be inflated (the

reasons for this are also explained in Chapter 4). After this, each bin is instantiated as to one

notional processor, Ψq.

The notional processors are assigned to the physical processors as follows. Ψ1 is assigned

to processor P1, since P1 has some remaining capacity available (the capacity of each processor

is one), Ψ2 is assigned to P1 and also to P2. The remaining capacity available on processor P2

is not enough for Ψ3, thus Ψ3 is split between P2 and P3. Finally, Ψ4 is assigned to P3. To

finish the assignment, the length of reserves has to be computed. For that purpose, the time is

divided into fixed length time slots S = 1
δ
·minτi∈τ(Ti). In this example, minτi∈τ(Ti) is equal to six

and, consequently, S is equal to 6
4 = 1.5, because δ is set equal to four (note that, in the context

of the NPS-F, δ has the same purpose as in the context of the S-EKG). The notional processor

reserve on each physical processor is computed by multiplying the notional processor processing

requirements with S.

The task-dispatching algorithm is very simple (see Figure 3.10), tasks are only allowed to

execute within their respective reserves; that is, within the reserves of the respective notional

processors.

3.4.4 Discussion

Partitioned scheduling algorithms partition the set of tasks in the system such that all tasks belong-

ing to a given partition are executed always on the same processor. Thus, after partitioning, the

scheduling on a multiprocessor system reduces to multiple instances of the scheduling problem
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on a uniprocessor. However, we share the same opinion of Baker [Bak10] who states: “A multi-

processor system composed by m processors cannot simply be broken down into m uniprocessor

systems, because a multiprocessor system is not confined to processors. Cache and memory bus

conflicts introduce other dimension to the scheduling problem that it is not present on uniprocessor

systems”.

As a consequence of the partitioning such algorithms are not generally work-conserving,

which in turn may cause a low utilization. This is because an idle processor cannot be used to

run ready tasks which have been allocated a different processor. As it has been proven via con-

struction of some pathological cases, their utilization bound is 50%.

Global scheduling algorithms try to overcome this limitation by allowing tasks to migrate from

one processor to another. At any time instant, the m highest-priority runnable tasks in the system

can be selected for execution on the m processors. Some scheduling algorithms of this class are

work-conserving and present a utilization bound of 100%, but at a cost of many preemptions and

migrations. Although recent work has made some progress towards reducing the number of pre-

emptions and migrations [ZMM03, FKY08, LFS+10] as well as scheduling overheads [KY11],

the implementation of such algorithms requires the use of a global shared queue, which raises

scalability issues because of the need to prevent race conditions in the access to that queue. Fur-

thermore, some global scheduling algorithms require, at run-time, complex computations in order

to take scheduling decisions

Semi-partitioned, or task-splitting, scheduling algorithms try to address these issues by limit-

ing task migration. Typically, under task-splitting scheduling algorithms, most tasks execute only

on one processor as in partitioned algorithms, whereas a few split (or migratory) tasks may execute

on several processors, as in global scheduling algorithms. This approach produces a better balance

of the workload among processors than partitioning (and consequently presents a higher utilization

bound) and also reduces the contention on shared queues and the number of migrations, compared

to global scheduling (by reducing the number of migratory tasks). Furthermore, the run-time task-

dispatching algorithms benefits from the static nature of task-to-processor assignment performed

pre run-time, i.e., off-line at the design stage.

Generally, task-splitting approaches can be classified as job-based or slot-based. Slot-based

task-splitting scheduling algorithms present the highest utilization bound among scheduling algo-

rithms that do not share a global queue. However, in [BBA11], a survey and experimental eval-

uation of semi-partitioned algorithms are presented, both in terms of scheduling potential and in

terms of implementation practicality, the authors also attempt to quantify the deterioration of (the-

oretical) schedulability due to overheads and working set loss (especially in the case of memory-

intensive workloads). In those experiments, this performance deterioration was more marked for

slot-based (the NPS-F) than for job-based (the EDF-WM) scheduling algorithms, something which

the authors largely attribute to the NPS-F design as stated in Observation 6 in [BBA11]: “NPS-

F schedulability is heavily constrained by the pessimistic assumptions made in the bin-packing

heuristics of NPS-F’s assignment phase, and by higher preemption and migration delays”.

In our view, some of the conclusions in [BBA11] regarding NPS-F are debatable. For instance,
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there exist many conceivable ways in which the various run-time overheads can be safely incorpo-

rated into the analysis. Some of these may be more penalising to one scheduling algorithm than

to another, in terms of added pessimism. Indeed, it appears (although the exact approach is in fact

not properly documented in [BBA11], hence our reservation) that the authors model all overheads

as an increase to the execution time of each task. While this is a valid approach for some kinds

overheads, it is entirely unreasonable and unnecessarily pessimistic for others. For example, the

overhead incurred at the start of each reserve, in fact only affects one job per-time slot per-reserve;

yet, in [BBA11] it is applied to all tasks in that reserve. By comparison, in the context of this

dissertation, we formulate a much more efficient approach for incorporating that overhead.

Another point of concern is that of task migrations; the approach in [BBA11] relies on the ex-

isting Linux mechanisms for task migration, which introduce large delays, because of the fact that

each task migration necessitates the simultaneous locking of both the destination and the source

ready-queue. Even worse, the approach for performing task migrations in [BBA11] creates a sche-

duling dependency across processors, because it relies on IPIs (which, in the process, introduce

additional delays); that is, the origin processor informs the target processor when it will free the

migrating task. All in all, the evaluation in [BBA11] is an evaluation of NPS-F for the particular

implementation (i.e. as emulated on top of LITMUSRT), hence the results have to be interpreted in

that context. By comparison, our implementation, derived in the context of this dissertation, offers

a much more efficient approach to task migration (without any need for ready-queue locking).

Finally, in [BBA11] the original form of NPS-F is examined [BA09b], which employs time

slot boundaries synchronised across all processors. This variant suffers from the instantaneous

migration problem earlier highlighted and deeply discussed in Section 4.5. Yet in [BA11], the

staggered time slot approach is formulated, without any penalty in terms of schedulability, which

eliminates or, in the worst-case, greatly reduces such effects.

In any case, we believe that the study presented in [BBA11], largely validates the semi-

partitioned scheduling approaches for real-time systems and highlights the importance of the

implementation for semi-partitioned scheduling algorithms. Still, we believe that the schedula-

bility deterioration, observed therein in the case of slot-based task-splitting is mainly due to the

implementation and not the migration model.

Since the scheduling algorithms under consideration in this dissertation are those classified as

slot-based, in the next section, we present a historical perspective of this category of algorithms.

3.5 Historical perspective of slot-based scheduling algorithms

In 2006 the first slot-based task-splitting scheduling algorithm called EKG, was introduced (nowa-

days often retroactively referred to as “Periodic EKG” or “the original EKG”) [AT06]. Recall

that, we consider slot-based task-splitting scheduling algorithms those that divide the time into

time slots and, at design stage, map tasks to processors, and then, at run-time, schedule tasks.

Due to this view, we do not consider DP-Fair scheduling algorithms as slot-based task-splitting.

EKG was limited to the scheduling of periodic tasks only. Under this scheme, time is divided
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into time slots of unequal (in the general case) duration, with the time boundaries of a given time

slot corresponding to the time instants of two consecutive job arrivals (possibly by different tasks)

in the system. Most tasks are partitioned, but at most m− 1 tasks (with m being the number of

processors) are split – each, between a corresponding pair of successively indexed processors, Pp

and Pp+1. Within each time slot, the first piece of a split task is executed at the end of the time slot

on the first processor, Pp, utilized by that task, and the second piece is executed at the start of the

time slot on the other processor, Pp+1. All other tasks are executed under EDF on their respective

processors. The basic form of the algorithm has a utilization bound of 100%.

Clustered variants of EKG divide the system into m/k clusters of k processors each. Such

clustering may be used to trade off utilization bound for fewer preemptions and migrations.

However, the original EKG suffered from the limitation that, by design, it could not handle

sporadically arriving tasks. This was because split task budgets in each time slot were propor-

tional to the task utilization and the time slot length. However, given that time slots were formed

between successive job arrivals, it was necessary to know in advance the time of next job arrival in

order to compute these budgets. With periodic tasks, this is not a problem, since arrival times are

deterministic and may be computed in advance. However, with sporadic arrivals, this information

is neither known in advance nor predictable.

This is why, in 2008, Andersson and Bletsas [AB08] came up with an adapted design that came

to be known as Sporadic-EKG (S-EKG). In order to accommodate sporadic tasks, this algorithm

decouples the boundaries from the time instants of job arrivals. Therefore, all time slots are of

equal length. However, given that tasks can now arrive at unfavorable offsets relative to the time

slot boundary, there is a penalty to be paid in terms of utilization bound: in order to ensure schedu-

lability, processors can no longer be filled up to their entire processing capacity. Via a designer-set

parameter, which controls the time slot length, S-EKG can be configured for a utilization bound

from 65% to arbitrarily close to 100%, at the cost of more preemptions and migrations.

Later in the same year, Andersson et al. [ABB08] came up with a version of S-EKG, named

EDF-SS (that stands for EDF scheduling of non-split tasks with Split tasks scheduled in Slots),

which can handle arbitrary deadline tasks (whereas its predecessor was formulated in the context

of implicit deadline tasks). However, due to different task assignment heuristics, one version does

not dominate the other. Moreover, in part due to this break from the previous variant, no utilization

bound above 50% has been proven for EDF-SS.

The three EKG variants discussed above share a basic design: at most m− 1 tasks are split,

each between two successively indexed processors. The first piece of a split task executes at the

end of the time slot on the first processor used by that task and the second piece is executed at

the start of the time slot on the other processor. However, a less prescriptive approach to splitting

the execution time of tasks between processors, while at the same time maintaining a slot-based

dispatching, was soon devised.

In 2009, Bletsas and Andersson [BA09a] presented NPS (that stands for Notional Processor

Scheduling), rapidly superseded entirely by NPS-F [BA09b, BA11]. This algorithm (and its short-

lived predecessor) employ a server-based approach. Each server (termed notional processor in the
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context of that work) serves one or more tasks employing an EDF scheduling policy. Under NPS-

F, it is the execution time of these servers which is split – not directly that of the underlying tasks

served. In principle, this allows improved efficiency in the utilization of a multiprocessor system.

NPS-F has a utilization bound of 75% configurable up to 100% at cost of more preemptions and

migrations. Compared to S-EKG, for corresponding configurations characterised by roughly the

same number of preemptions, NPS-F has a higher utilization bound. However, a downside to

splitting servers instead of tasks is that the number of migrating tasks is not bounded a priori and

typically exceeds m−1.

3.6 Summary

In this chapter, we have addressed several issues related to real-time scheduling for multipro-

cessors. We presented an overview of the real-time theory, in general, and also specifically for

multiprocessor systems. We discussed the categories of scheduling algorithm for multiprocessor

systems highlighting the advantages and disadvantages of each category. We next focused on

some relevant scheduling algorithms for multiprocessor systems. Finally, we presented a histor-

ical perspective of the sub set of scheduling algorithms that is the focus of this work: slot-based

task-splitting algorithms.
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Chapter 4

Slot-based task-splitting scheduling
algorithms

4.1 Introduction

The real-time research community has produced many scheduling algorithms for multiprocessor

systems. Some of them are, theoretically, perfect, because they have the ability to schedule any

feasible task set; that is, they are optimal. However, when we jump from the theoretic field to

practice field, we sometimes get disappointed. Some of those scheduling algorithms are not easy

to implement and the amount of practice issues that needs to be addressed eliminates the theoretical

benefits of those scheduling algorithms. The explanation is simple, many of them are based on a

set of assumptions that have no correspondence with real systems. We believe that it is important

to develop new scheduling algorithms but they cannot be detached from practical issues. For that

purpose, real implementations play an important role, because they are fundamental for testing,

debugging, evaluating, and also for learning.

In this chapter, we aim to provide all details of slot-based task-splitting scheduling algorithms

and their implementation in a PREEMPT-RT-patched Linux kernel version. We present our as-

sumptions about the hardware architecture for the host system. We next present a unified de-

scription of the slot-based task-splitting scheduling algorithms under consideration showing the

generic principles of slot-based task-splitting and highlighting some particular features of specific

slot-based task-splitting schemes. We address and discuss one practical issue of the slot-based

task-splitting scheduling algorithms, the instantaneous migration problem. We describe the im-

plementation of the slot-based task-splitting scheduling algorithms under consideration in this

dissertation into the Linux kernel. Finally, the scheduling overheads incurred by these scheduling

algorithms are described.

57
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4.2 Assumptions about the hardware architecture

We assume identical processors, i.e. (i) all processors have the same instruction set and data layout

(e.g. big-endian/little-endian) and (ii) execute at the same speed.

We also assume that the execution speed of a processor does not depend on activities on an-

other processor (e.g. whether the other processor is busy or idle or which task it is busy executing)

and also does not change at run-time. In practice, this implies that (i) if the system supports SMT

– called hyperthreading by Intel – then this feature must be disabled and (ii) features that allow

processors to change their speed (e.g. power and thermal management) must be disabled.

We assume that each processor has a local timer providing two functions: (i) one function

allows reading the current real-time (i.e. not calendar time) as an integer; (ii) and another function

allows setting up the timer to generate an interrupt at x time units in the future (x being config-

urable).

We assume that the memory system follows the shared memory model. Hence, the access time

memory is uniform for any processor.

Finally, we assume that there is a perfect synchronization among all processor clocks; that is,

the local clocks of all processors are synchronized.

4.3 Generic slot-based task-splitting

In this section, we present a generic, unified, high-level description of the slot-based task-splitting

scheduling algorithms that covers the most relevant, either from utilization bound or implemen-

tation perspective, slot-based task-splitting scheduling algorithms: S-EKG and NPS-F. From this

section onwards, whenever we refer to slot-based task-splitting algorithms, we are only consider-

ing algorithms where the time is divided into equal-duration time slots (more specifically, S-EKG 1

and NPS-F).

For example, we overlook the (original) EKG scheduling algorithm [AT06] whose applica-

bility is limited to periodic task sets with implicit deadlines. That algorithm requires knowledge

about future task arrivals to take scheduling decisions, which may be difficult to achieve in a real

system. We also exclude DP-Fair [LFS+10] algorithms such as DP-Wrap because under such ap-

proaches use time slots of unequal duration and which in fact, are constructed dynamically (i.e.

on-the-fly), during the execution of the system. The arrival of a job may cause the current time slot

to terminate early and its remainder to become a new time slot, with task execution time budgets

having to be calculated anew, so as to accommodate the remaining execution times of all tasks

(which, therefore, need to be tracked, at run-time). From a practical point of view, such dynamic

time slot formation, the extensive associated book-keeping and the need to recalculate reserves

(potentially at every new job arrival), considerably increase the complexity of the scheduler.

1We focus on S-EKG and not in EDF-SS, because latter is a version of the former that explores different bin-packing
heuristics to get fuller processors.
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Figure 4.1: Task-to-server mapping.

A key concept of the generic slot-based task-splitting scheduling algorithm is that of a server.

A server is a logical entity that provides computation services to tasks and has a maximum capacity

equal to that of the underlying physical processors. Thus, in the generic template for a slot-based

task-splitting scheduling algorithm, a task is first mapped to a server, which is then assigned to

one or two processors. A processor may be allocated to multiple servers over time, but at any

time a processor is allocated to only one server and one server is served by at most one processor.

A time reserve is a time window during which a processor is exclusively allocated to a server,

i.e. executes tasks of only that server. Therefore, time reserves on a processor must be non-

overlapping. Furthermore, time reserves are periodic and we call their period, which is the same

for all reserves, the time slot.

The scheduling of a set of tasks in the generic algorithm comprises two procedures, one that

is performed off-line and another that is executed at run-time. The off-line procedure maps tasks

to servers, determines the computation requirement of each server and allocates reserves to the

processors in order to ensure that each server has the required capacity for executing its tasks. The

run-time procedure is a task-dispatching scheduling algorithm that runs on each processor which

uses EDF to choose the task of the server associated to the currently active time reserve.

We now describe the off-line procedure. The generic algorithm specifies a procedure com-

posed of four steps and what is performed in each step, but it does not prescribe any particular

algorithm for any of the steps. This is up to the specific scheduling algorithms. To illustrate the

generic algorithm, we use an example. The figures illustrating its application were obtained by

using the algorithms specified for NPS-F, later described in Subsection 4.4.2. The task set, τ , in

our example is comprised of seven tasks, τ1 to τ7. Inset (a) of Figure 4.1 represents each task in

that set by a rectangle whose height represents that task’s utilization.

The first step of the off-line procedure is mapping tasks to servers, which we denote P̃q. The

generic slot-based task-splitting algorithm does not prescribe how tasks are mapped to servers.

Each specific scheduling algorithm can use its own mapping. Inset (b) of Figure 4.1 shows the

task-to-server mapping obtained by the FF bin-packing heuristic as is done under NPS-F. The

server capacity is 100%.

The second step of the off-line procedure is to determine the (computation) capacity of each

server. This is obtained by inflating the sum of the utilizations of the server’s tasks. Utilization

inflation is required to compensate for the time intervals during which a server may have ready
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tasks, but none of them can be executed. Such a scenario may arise because none of the server’s

time reserves are active, and a processor executes tasks of only the server associated to its current

time reserve. Several methods can be used to determine by how much to inflate a server capacity,

some of these depend on the specific scheduling algorithm. In Section 5.4, we present one such

method in the context of the new schedulability analysis. At this point, we assume that such a

method exist, and illustrate its application in inset (c) of Figure 4.1.

The third step of the off-line procedure is to allocate processors to servers. Again, the generic

algorithm does not prescribe how this allocation is done. Figure 4.2 illustrates the server-to-

processor assignment obtained by applying the algorithm used in NPS-F to our running example.

Servers P̃1 and P̃4 are assigned to only one processor each, and are, hence, classified as non-split

servers; whereas servers P̃2, P̃3, and P̃5 are split servers because they are assigned to two processors

each.

The fourth and last step of the off-line procedure is to define the time reserves for each pro-

cessor. Again, the generic algorithm does not prescribe how this is done. Figure 4.3 illustrates the

reserves determined by the application of an algorithm used by NPS-F to our running example.

In this case, all processors synchronize at the beginning of each time slot. On each processor Pp,

the time slot can be divided into three reserves, at most: x[Pp], y[Pp], and N[Pp]. The x[Pp] reserve

occupies the beginning of the time slot and it is reserved for the split server shared by processor

Pp and processor Pp−1, if any. The y[Pp] reserve occupies the end of the time slot and it is reserved

for the split server shared by processor Pp and processor Pp+1, if any. The remaining part, N[Pp],

is reserved for the non-split server assigned to processor Pp, if one exists.

Before describing of the run-time task-dispatching algorithm, let us highlight that it executes

on a per-processor basis. The run-time task-dispatching algorithm is a two-level hierarchical sche-

duling algorithm. The top-level handles the time division into time reserves and identifies the

currently active server for each processor according to the server-to-processor assignment defined

by the off-line procedure. The low-level scheduler schedules tasks of the currently active server,

on each processor.

For notational purposes, we consider a unlimited set of servers, which are equivalent to phys-

ical processors in terms of processing capacity, indexed in the range P̃1 to P̃k. The set of tasks that

can be assigned to a server P̃q (denoted by τ[P̃q]) is limited by its processing capacity that is equal
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Figure 4.3: Run-time dispatching time-line produced by the slot-based task-splitting algorithm for
the task set example.

to 1.0 (100%). The utilization of a server P̃q, U [P̃q], is given by:

U [P̃q] = ∑
τi∈τ[P̃q]

ui (4.1)

and the symbol U in f l[P̃q] is used to denote the inflated capacity of server P̃q.

We have presented the generic slot-based task-splitting algorithm, in the next section we show

how to correlate the S-EKG and NPS-F with this generic algorithm.

4.4 Overview of specific scheduling schemes

The specific algorithms under consideration differ in how they implement the specific mechanisms

discussed earlier, for example, in how they map tasks to servers or in how they map servers to pro-

cessors. Therefore, before introducing the implementation (in this section) and the new generalised

schedulability analysis (in Chapter 5), it is worth highlighting, without going into too much detail,

some of these aspects for S-EKG and NPS-F. Where deemed necessary, we also briefly discuss

aspects of the original scheduling theory, which our new theory supersedes.

4.4.1 Discussion of S-EKG and its original theory

The S-EKG algorithm shares many features with the generic algorithm. Both are slot-based; both

use an off-line procedure to map tasks to processors and a run-time algorithm that uses EDF to

choose the running task. A major difference between the two is that S-EKG, as described in

its original publication [AB08], does not explicitly use the concept of server. Instead, it assigns

tasks to processors directly, employing a procedure similar to the NF bin-packing heuristic that

we describe next: in S-EKG, the task-to-processor mapping procedure strives to ensure that the

utilization of each processor is equal to UBS−EKG (the theoretical utilization bound of the algo-

rithm). It iterates over the set of tasks. If a task has a utilization that exceeds UBS−EKG, it assigns

that task to a dedicated processor. Otherwise, it assigns the task to the next available processor

whose utilization is lower than UBS−EKG. In this case, if task τi cannot be integrally assigned to
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the current processor, Pp, without exceeding that bound, it is split between that processor and the

next one, Pp+1, so that Pp ends up utilized exactly by UBS−EKG and Pp+1 receives the remaining

share of τi. Consequently, the number of split tasks is at most m− 1 and there is at most one

task split between each pair of successively indexed processors Pp and Pp+1. Furthermore, in a

schedulable system, the utilization of every non-dedicated processor (except possibly the last one)

is exactly UBS−EKG.

S-EKG uses a designer-set integer parameter δ , which determines the length of the time slot

according to Equation 4.2.

S =
1
δ
·min

τi∈τ
(Ti) (4.2)

This parameter also affects the utilization bound, UBS−EKG, and the inflation factor, α , as

follows:

UBS−EKG = 4 · (
√

δ · (δ +1)−δ )−1 (4.3)

α =
1
2
−
√

δ · (δ +1)+δ (4.4)

Depending on the chosen value for δ , UBS−EKG varies from 65% (with δ equal to one) to

arbitrarily close to 100% (for δ → ∞). (In Subsection 4.4.3 below, we reason further about this

parameter.) Therefore, the value of δ can be used to trade-off the target utilization bound against

the number of preemptions and migrations.

Although, the original description of S-EKG [AB08] does not use the concept of server, it is

straightforward to equivalently map tasks to servers, which are then allocated time reserves as done

in the generic algorithm. The rules to apply are as follows: (i) each task assigned to a dedicated

processor is mapped to a server, which is then allocated exclusively the same dedicated processor;

(ii) all non-split tasks that are assigned to one processor are mapped to a non-split server, which is

then allocated to the same processor; (iii) each split task is mapped to a server that is split between

the same processors that split task is assigned to.

With respect to the inflation of servers, under the original approach [AB08], each server is

(safely, but inefficiently) inflated by the same amount 2 ·α – in other words:

U in f l:orig
S−EKG [P̃q] =U [P̃q]+2 ·α (4.5)

with α calculated according to Equation 4.4.

4.4.2 Discussion of NPS-F and its original theory

It is rather straightforward to formulate NPS-F as an instance of the generic algorithm. Indeed,

NPS-F is based on the same concepts as the generic algorithm, and these concepts even have the
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same name, except for the servers, which were called notional processors, and gave the name to

NPS-F. Furthermore, NPS-F’s off-line procedure comprises exactly the same four steps.

Next we summarize the algorithms used by NPS-F, for each step of the off-line procedure.

These are the algorithms that were used in the running example in Subsection 4.3 to illustrate the

generic algorithm.

For the first step, the mapping of tasks to servers, NPS-F uses FF bin-packing heuristic. Inset

(b) of Figure 4.1, in the Subsection 4.3, shows the task-to-server mapping obtained with NPS-F.

In the second step, the original paper on NPS-F used the following expression to inflate the

capacity of each of the servers obtained in the first step:

U in f l:orig
NPS−F [P̃q] =

(δ +1) ·U [P̃q]

U [P̃q]+δ
(4.6)

where δ is an integer designer-set parameter, which is also used to set the length of the time slot

like in S-EKG (see Equation 4.2).

The algorithm used by NPS-F to allocate processors to servers, in the third step, just iterates

over the set of servers and assigns each server to the next processor that has yet some available

capacity. If the processor’s available capacity cannot accommodate the processing requirements

of a server, the server is split. That is, the current processor’s available capacity is allocated to

partially fulfil the server’s requirements, whereas the server’s remaining requirements are fulfilled

by the next processor.

Finally, the algorithm used by NPS-F in the fourth and last step is also straightforward. For

each processor, it allocates one reserve per-server which uses it. Furthermore, the duration of each

reserve is proportional to the processor capacity used by the corresponding server and is such that

each server is periodic with a period equal to the time slot, S.

We end this subsection with the utilization bound determined by the original schedulability

analysis:

UBNPS−F =
2 ·δ +1
2 ·δ +2

(4.7)

which ranges from 75% (for δ equal to one, which is the most preemption- and migration-light

setting) to arbitrarily close to 100% (for δ →∞). Note that, since δ controls the length of the time

slot, S (see Equation 4.2), its value can be used to trade-off the target utilization bound against

preemptions and migrations like in S-EKG.

4.4.3 Reasoning about the parameter δ

In all S-EKG and NPS-F publications, an explanation can be found, along the lines of “δ is a

designer-set integer parameter, which controls the frequency of migration of split tasks and can be

used to trade off the target utilization bound against preemptions and migrations”. The purpose

of this subsection is provide to the reader with the required intuition about this parameter. This is

because many parameters of these algorithms are computed based on δ .
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Figure 4.4: The intuition beyond δ parameter.

Originally, S-EKG and NPS-F compute S as follows: S = 1
δ
·minτi∈τ(Ti). This means that if

the chosen δ is equal to one, this implies a S equal to minτi∈τ(Ti), but if δ is equal to two, S is half

of the minτi∈τ(Ti), and so on.

The intuition beyond δ is illustrated by Figure 4.4. In the synthetic example presented in

Figure 4.4, we assume that minτi∈τ(Ti) is equal to three time units and the inflated utilization of

the server is equal to 0.5 (the reserve for server P̃q is, graphically, represented by a white rectangle).

Let us consider the sporadic jth job of the task τi whose Ci is equal to two time units and whose Ti

is equal to 4.5 time units. From a deadline miss point-of-view, the worst-case scenario for the job

τi, j is when its arrival, ai, j, happens on a time instant barely after the end of the associated reserve.

The execution of the job τi, j is graphically represented by a gray rectangle labelled with the job

identifier (except in inset (c), where the rectangles are not labelled because the identifier does not

fit into the rectangle). As it can be seen from inset (a) of Figure 4.4, job τi, j misses its deadline;

that is, fi, j is higher than di, j.

In contrast, in both insets (b) and (c), job τi, j meets its deadlines because the duration of the

longest continuous interval that job τi, j is ready to be executed but cannot be executed decreases

with the increase of the value of δ . A higher δ means a higher utilization bound, however, at cost

of many preemptions and migrations due to reduction of the time slot length.

4.5 Instantaneous migration problem

In the original publications introducing the various slot-based task-splitting schemes under consid-

eration [AB08, ABB08, BA09a, BA09b, BA11] a migrating server would migrate instantaneously
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Figure 4.5: Illustration of the adjacent time slots that cause the instantaneous migration problem.

from one processor to another. For example, observe two consecutive time slots in Figure 4.5

where the reserves for the split server P̃q are temporally adjacent on processor Pp and processor

Pp+1. Each server always selects the highest-priority task for executing, so, in practice, the execut-

ing task on processor Pp has to immediately resume its execution on its reserve on processor Pp+1.

Due to many sources of unpredictability in a real-world operating system this level of precision is

not possible. Consequently, this can prevent the dispatcher of processor Pp+1 from selecting the

task because processor Pp has not yet relinquished that task.

The result would be a waste of reserve time, possible endangering the schedulability of the

system. This could be avoided if the reserve on processor Pp+1 is available some time units later,

by shifting the beginning of the time slot on processor Pp+1 (see Figure 4.6).

In [SAT11] and [BA11] methods are proposed for calculating the optimal relative shifting

for the time slots of processors that share split tasks in the context of the S-EKG and NPS-F,

respectively. In the context of this dissertation, the method proposed by [BA11] was adopted,

because is, in fact, generalizable for any slot-based task-splitting scheduling scheme. According to

that formulation, for a split server P̃q, which executes on two reserves x[Pp+1] and y[Pp], the optimal

shifting is when the end of y[Pp] is separated from the start of x[Pp+1] by Ω (see Equation 4.8) time

units. This means that the end of x[Pp+1] is then also separated from the start of y[Pp] by the same

Ω time units. Note that, this does not impose any penalty for non-split servers.

Ω = (S− y[Pp]− x[Pp+1])/2 (4.8)

We denote this approach as the staggered version of the slot-based task-splitting algorithms.
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Figure 4.6: Illustration of the time slot shifting to solve the instantaneous migration problem. In
spite of it is not shown in the figure there is no penalty for non-split servers; that is, the system
supplies the same execution time to the non-split servers.
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Note that, the Ω time units of shifting on each processor, Ω[Pp], are cumulative, and are computed

as:

Ω[P1] = 0

Ω[Pp+1] = Ω[Pp]+ (S− y[Pp]− x[Pp+1])/2 (4.9)

A collateral benefit from staggered approach is that the required inflation for split servers

decreases. As explained in subsection 4.4.3, the reduction of the longest interval that a split server

cannot execute its tasks (resulting from the use of the staggered offsets) helps with schedulability,

which permits a reduction of the server’s utilization inflation. In this case, split servers receive a

smoother supply of processor time for executing their tasks.

Another weakness of the non-staggered (synchronized) time slots is that using synchronized

time slots causes m task migrations at same instant. Assuming that all task migrations imply a

cache miss event, this in turn implies m processors fetching data from the main memory. This will

cause contention for the cache memory and also for the memory bus. We empirically evaluated

these effects. For that purpose, we ran a set of experiments in a machine equipped with an Intel i7

processor 2 running Linux kernel 3.2.11 version (with the hyperthreading feature disabled). This

processor is a 4-core with a L3 cache memory of 8 MB, shared by all cores.

The code of the task used to run this set of experiments is shown in Listing 4.1. This task

receives two parameters: cpu and time0. cpu is the logical identifier of the processor that the

task is assigned to. time0 is used to define the initial absolute time instant of the experiment.

There is an initial setup phase that comprises the following steps. The first one is setting the

processor affinity of the task. Note that, with this feature the task is not allowed to migrate. The

second step is to set the scheduling policy. The task is scheduled according the SCHED_FIFO

policy (tasks scheduled according to such policy, in the Linux kernel, are given the processor for

as long as they want it, subject only to the needs of higher-priority tasks) and it is the highest

priority task in the system. The third step is to initialize an array of 32 MB of size. The last step

is to put the task into the sleep mode until the absolute time of time0 plus 20 seconds. After this

initial phase, this task periodically reads (with a period of two seconds) a non-sequential array of

32 MB of size. It reads the array 5000 times and for each read it measures the time consumed for

that read. At the end, it computes the average read time. Note that, given the reading pattern and

the size of the array the processor has to constantly fetch task data from main memory.

We created seven task sets. The first task set is composed by only one task, running on pro-

cessor P1. Then, there is no contention neither for the L3 cache nor for the memory bus, because

the task is the lone task in the system and has all resources available for it. The remaining six task

sets are composed by four tasks each. For these task sets, we applied the partitioned approach;

that is, each task was executed in only one processor and it was not allowed to migrate. In the

second task set, we simulated the behaviour under synchronous time slots by setting the time0

2http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html

http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html
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...
#define NSEC_PER_SEC 1000000000L
#define VEC_SIZE 4194304

int main(int argc, char* argv[])
{

struct sched_param param;
cpu_set_t cpu_set;
struct timespec next_release,t,t1;
unsigned int i,j,cpu;
unsigned long long nj=0,x,sum_exec=0,release,time0;
unsigned long long vector[VEC_SIZE];

cpu = (unsigned int) atoi (argv[1]);
time0=(unsigned long long)atoll(argv[2]);
srand(SEED);

CPU_ZERO(&cpu_set);
CPU_SET(cpu, &cpu_set);
sched_setaffinity(0, sizeof(cpu_set_t), &cpu_set);

param.sched_priority = 1;
sched_setscheduler(0,SCHED_FIFO,&param);

for(i=0;i<VEC_SIZE;i++)
vector[i]=i;

for(i=0;i<VEC_SIZE;i++){
j=rand()%VEC_SIZE;
x = vector[i];
vector[i]=vector[j];
vector[j] = x;

}

release = time0 + 20 * NSEC_PER_SEC;
next_release.tv_sec = release / NSEC_PER_SEC;
next_release.tv_nsec = release % NSEC_PER_SEC;
clock_nanosleep(CLOCK_MONOTONIC,TIMER_ABSTIME, &next_release,NULL);

for(nj=0;nj < 5000;nj++){

clock_gettime(CLOCK_MONOTONIC, &t);
x = vector[0];
for(i=1;i<VEC_SIZE;i++)
x = vector[x];

clock_gettime(CLOCK_MONOTONIC, &t1);
sum_exec +=(t1.tv_sec * NSEC_PER_SEC + t1.tv_nsec)-(t.tv_sec * NSEC_PER_SEC + t.tv_nsec);

release += 2 * NSEC_PER_SEC;
next_release.tv_sec = release / NSEC_PER_SEC;
next_release.tv_nsec = release % NSEC_PER_SEC;
clock_nanosleep(CLOCK_MONOTONIC,TIMER_ABSTIME, &next_release,NULL);

}
...
return 0;

}

Listing 4.1: The C language code of the task used to investigate the impact of the contention for
shared cache and also for memory bus.
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Figure 4.7: Experimental evaluation of the impact of the cache and bus memory contention on
the reading time of an array. These experiments highlight the benefit of the staggered against the
aligned versions.

equal to all tasks while in the third, fourth, fifth, sixth, and seventh we simulated the staggered

time slots by setting time0 with a shifting of 0.1, 0.2, 0.3, 0.4, and 0.5 seconds from the previous

task, respectively.

Figure 4.7 plots the average array read time of each task. We use the average read time,

because it is a measure of central tendency. As can be seen from that figure, the tasks being

synchronised by their reads introduces a great penalty to the reading time. This is due to the fact

that processors have to contend for the L3 cache and also for the memory bus. The impact of

such effects decrease with asynchronous tasks. This becomes more clear when the shifting time

is larger than the reading time, what happens for shifts larger than 0.3 seconds. For these task

sets the average array read time is very close to the value measured when there is only one task.

However, for a shifting of 0.1 and 0.2 seconds, tasks that execute on processors P2 and P3 present

higher values than tasks that execute on processors P1 and P4. In fact, those tasks that execute on

processors P2 and P3 do not execute alone, while tasks that execute processors P1 and P4 execute

alone during some part of their reading time. In any case, the average array read time is smaller

than for the synchronous task set.

4.6 Implementation of the slot-based task-splitting dispatcher

As mentioned before, the scheduling algorithms under consideration in this work require an off-

line procedure that maps tasks to processors and a run-time task-dispatching algorithm. This

section concerns with the run-time task-dispatching algorithm. The implementation of the task-

dispatching algorithm has to be done inside the kernel of the operating system.

Before describing the implementation of the slot-based task-splitting dispatcher, let us present

our reasons for choosing a PREEMPT-RT-patched Linux kernel version for implementing the

dispatcher. In recent years, a kernel developer community (composed by Ingo Molnar, Thomas

Gleixner and others) has been working on the PREEMPT-RT patch [PR12]. This patch (that

aims to get a fully preemptible kernel) adds some real-time capabilities to the Linux kernel. The
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PREEMPT-RT patch addresses sources of timing unpredictability in the mainline Linux kernel

by making most of the Linux kernel preemptible, by implementing priority inheritance (to avoid

priority inversion phenomena), and by converting interrupt handlers into preemptible kernel tasks.

Further, this community is closely linked to the mainline Linux kernel, and indeed several features

from the PREEMPT-RT patch have been introduced into the mainline Linux kernel. Other features

remain in the PREEMPT-RT, because the mainline Linux kernel is a GPOS and some PREEMPT-

RT features are not suitable for a GPOS. For instance, the high preemption level of the PREEMPT-

RT patch decreases the scheduling latencies but increases the overhead caused by such events,

because they happen more often.

However, it is a fact that real-time scheduling algorithms have been ignored by PREEMPT-RT

community (even if we are not aware of the reasons for that). Therefore, we try to contribute by

providing to PREEMPT-RT-patched Linux kernel version with suitable real-time scheduling algo-

rithms for multiprocessor systems. Furthermore, our implementations aim to be used as a testbed

framework for academic purposes. By the way, although the comparative evaluation between the

Linux and the co-kernel approaches presented in [BLM+08, BM10] claims better performance by

the co-kernel approaches, none of that work claims that the Linux (mainline or PREEMPT-RT-

patched) could not (be made to) support real-time systems.

During the work described in this dissertation, we, first, implemented S-EKG [SAT10b, SAT11]

and subsequently we implemented both (S-EKG and NPS-F) scheduling algorithms [SBTA11] in

a unified way; that is, using the same implementation for both. In all of the mentioned implemen-

tations, we used a scheduling class called retas_sched_class (ReTAS). The new scheduling

class was added on top of the native Linux module hierarchy, thus making ReTAS the highest-

priority scheduling class [ReT12]. However, such an approach cannot be employed in conjunction

with the PREEMPT-RT patch, because important functionalities, such as timer interrupt handlers,

needed by the ReTAS scheduling class, are implemented within the RT scheduling class and thus

ReTAS cannot have a higher priority than the RT scheduling class implemented in the PREEMPT-

RT patch. Thus, in this work, our focus is on the implementation where we added slot-based task-

splitting scheduling algorithms to the RT scheduling class of the PREEMPT-RT-patched Linux

3.2.11-rt20 kernel version [SPT12]. Therefore, we added to the RT scheduling class support for

scheduling algorithms that are suitable for real-time systems running in multiprocessor platforms.

4.6.1 Scheduler implementation

Recall that, the run-time task-dispatching algorithm of the scheduling algorithms under consid-

eration, divides the time into equal-duration time slots. Each time slot is composed by at most

three time reserves. The time slot is instantiated in a per-processor basis; that is, each processor

divides the time into time reserves. Each processor reserve is allocated to only one server. Split

servers have reserves assigned to different processors while non-split servers have one reserve.

Each server has one or more tasks assigned to it that are scheduled according to the EDF.

From this description, we can view the task-dispatching algorithm as a two-level hierarchical

algorithm. The top-level scheduling algorithm allocates processors to servers for the duration of
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Figure 4.8: The required data used to implement the task-dispatching algorithm and its organiza-
tion.

the respective server reserve(s) and ensures that for each server, at any time, there is at most one

processor allocated to it. The low-level scheduling algorithm employs the EDF policy to schedule

each server’s tasks.

Before describing the implementation, let us highlight how the scheduler works in a multi-

processor system. As mentioned before, the scheduler is implemented through the schedule

function. This function is invoked directly by the kernel code. In a multiprocessor system, this

means that this kernel code is being executed on some processor. For instance, consider a task that

is executing on processor Pp and completes. Upon the completion of the task, the exit system

call is invoked that performs a set of clean-up operations for freeing the task resources and in

turn it invokes the schedule function, which executes on processor Pp. Therefore, the scheduler

works on per-processor basis.

As a rule-of-thumb, the implementation of the task-dispatching algorithm should avoid inter-

actions across processors; that is, it should isolate the scheduling decisions on one processor from

activities and decisions on other processors. Figure 4.8 shows the required data for implementing

the task-dispatching algorithm. As can be seen from Figure 4.8, the data is divided into two parts:

one part associated to processors and another associated to servers. For each processor, we added

to the rq data structure a new data structure called retas_sb_rq. Next, we discuss about our

implementation approach with respect to those data elements and our choice of Linux 3.2.11-rt20

for the implementation.

Each server is an instance of a new data structure called server, which stores the following

information: (i) a field that uniquely identifies a server; (ii) an atomic variable that exposes the

server state; and finally, (iii) a ready-queue, which is a priority queue wherein ready tasks are

stored.

The Linux kernel defines one ready-queue per-processor. Such an arrangement is natural

under partitioning, but potentially inefficient in the presence of migrating tasks. If tasks are stored

locally on each processor (on a respective per-processor ready-queue), a task migration requires

locking the ready-queues of both the origin and the destination processor. This may introduce big

overheads, especially if the locking has to be serialised.

In the case of the slot-based task-splitting scheduling algorithms, where migrations involve the
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entire server, this would typically imply moving multiple tasks (hence, even higher overheads).

Given that the frequency of migration may be high, it is obviously not the best approach. We

opt instead for one ready-queue per-server (see Figure 4.8). Under this approach, all ready tasks

assigned to a server are always stored on (i.e. inserted to/dequeued from) the same respective

(per-server) ready-queue. Then, when a server migrates (i.e. with all its tasks) from processor Pp

to processor Pp+1, we simply change the ready-queues used by processors Pp and Pp+1.

We implement server ready-queues as red-black trees. This data structure was deemed ap-

propriate because: (i) the Linux kernel already implements red-black trees; (ii) they are balanced

binary trees whose nodes are sorted by a key (which, in our implementation is the absolute deadline

of each job); (iii) most operations take O(logn) time (good for performance if they are frequent).

In order to associate a task to a server all that is needed is a link between each task and its cor-

responding server. Under Linux, a task is an instance of a program in execution and the kernel uses

one instance of a data structure (of type struct task_struct) for each task. Therefore, we

simply added a field to that data structure, to hold the (unique) logical identifier of the respective

server.

The top-level scheduler is responsible for the management of time reserves. A timer is used

to trigger scheduling decisions at the beginning of each reserve. The Linux kernel offers high

resolution timers with nanosecond resolution and timers are set on a per-processor basis. Each

processor is configured with its time slot composition. The variable begin_curr_time_slot

holds (as suggested by its name) the beginning of the current time slot and it is incremented by

S (the time slot length). Observe that no synchronization mechanism is required for updates to

this variable. The time slot composition is defined by an array of 2-tuples <res_len, srv_id>

(see Figure 4.8). Each element of this array maps a reserve of length, res_len, to the respective

server, srv_id. For optimization purposes, there exists a per-processor variable curr_srv that

points to the current server. In other words, whenever the timer expires, at the beginning of one

reserve, curr_srv variable is updated with the correspondent server address.

The low-level scheduler picks the highest-priority task from the server pointed to by curr_-

srv. However, if the current server is a split server there is no guarantee that server is not also

the current server of another processor. At design stage, we solved this problem in principle with

the staggered time slot approach, but in practice, there is no absolute guarantee that this cannot

happen.

To highlight the synchronization mechanism described below, let us assume a synchronized

time slot scheme, which brings with it the instantaneous migration problem. In a such scheme,

whenever a split server consumes its reserve on processor Pp, whichever task was executing at

the time has to immediately resume execution on another reserve on processor Pp+1. However,

due to many sources of unpredictability, the scheduler of processor Pp+1 can be prevented from

selecting the task in consideration for execution because processor Pp has not yet relinquished

(the ready-queue associated with) that task. Two solutions could be used to solve this issue. One

solution could be for processor Pp+1 to send an IPI to Pp to relinquish (the ready-queue) of server

P̃q. Another could be for Pp+1 to set up a timer x time units in the future to force the invocation of
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static void
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
{

struct sched_rt_entity *rt_se = &p->rt;
if(retas_policy(p->policy)){
_enqueue_task_retas(rq,p);
return;

}
...

}

Listing 4.2: Changes to the enqueue_task_rt function.

its scheduler. We chose the latter option for two reasons: (i) we know that if a scheduler has not

yet relinquished the server ready-queue it was because something is preventing it from doing so

(e.g. the execution of an ISR); and, (ii) using IPIs in this manner introduces a dependency between

processors, because the scheduling decision on one processor is dependent upon the reception of

an interrupt sent by other processor.

In our implementation, to serialise the access to the ready-queue of a server, an atomic variable

(called flag) per-server is used to state if a task of that server is being executed by a processor

or not. Whenever a processor scheduler is invoked, it tries to increment by one that variable

(of type atomic_t) using the atomic_add_unless kernel function. The atomic_t data

type defined in the Linux kernel is simply an integer with a set of operations guaranteed to be

atomic without any need for explicit locking. The increment operation can only succeed if the

value of the flag is not one (i.e. if it is zero); otherwise, it fails. In the first case (success), by

atomically incrementing the flag, the scheduler locks the server to that processor. In the second

case (failure), the scheduler cannot pick any task from this server; it then sets up a timer to expire

some time later, which will trigger anew the invocation of the scheduler.

4.6.2 Adding support for slot-based task-splitting scheduling algorithms to the RT
scheduling class

Apart from the required code to manipulate servers (enqueue and dequeue of ReTAS tasks as well

as getting the task with the earliest absolute deadline) and the time slot infrastructure, incorporating

ReTAS into the RT scheduling class implies a set of modifications to some functions of the rt_-

sched_class scheduling class. Those functions are enqueue_task_rt, dequeue_task_-

rt, check_preempt_curr_rt, and pick_next_task_rt.

The function enqueue_task_rt (see Listing 4.2) is called whenever a RT task enters into

a ready state. It receives two pointers, one for the ready-queue of the processor that is running

this code, rq, and another to the task that is becoming ready, p. If the ready task is a ReTAS

task (in which cases, it is also a RT task, with a priority level, but it is scheduled according to

the SCHED_NPS_F or SCHED_S_EKG scheduling policies), then it is enqueued into the respective

server ready-queue. When a RT task is no longer ready, then the dequeue_task_rt function is

called to remove the task from the respective server ready-queue.
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static void
check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
{
if (p->prio <= rq->curr->prio) {
if(retas_policy(p->policy)){
if(_check_preempt_curr_retas(rq)){

resched_task(rq->curr);
return;

}
}

}
...

}

Listing 4.3: Changes to the check_preempt_curr_rt function.

As the name suggests, the check_preempt_curr_rt function (see Listing 4.3) checks

whether the currently running task must be preempted or not (e.g. when a RT task wakes up). It

receives two pointers, one for the processor ready-queue that is running this code, rq, and another

to the woken up task, p. If the priority of the woken up task is higher than or equal to (lower prio

values mean higher priority) the currently executing task (pointed to by rq->curr), it checks if

p is a ReTAS task and if the current reserve is mapped to the server that task p is assigned to. If

that is the case, then the currently running task is marked for preemption.

The pick_next_task_rt function also needs a small modification. This function selects

the task to be executed by the current processor and is called by the scheduler whenever the

currently executing task is marked to be preempted or finishes its execution. It first gets the

highest-priority RT task, then it gets the highest-priority ReTAS task. Afterwards, it selects the

highest-priority task between them (if any exists), otherwise it returns NULL, which forces the

scheduler to inquire the CFS scheduling module.

So far, we have presented the generic slot-based scheduling algorithm and addressed and

discussed all relevant details related to the operating system as well as the implementation of

slot-based algorithms. In the next section, we identify all run-time overheads incurred by such

static struct task_struct *
pick_next_task_rt(struct rq *rq)
{
struct task_struct *p = _pick_next_task_rt(rq);
struct task_struct *t = _pick_next_task_retas(rq);
if(t){
if(p){
if(t->prio <= p->prio){

return t;
}

}else{
return t;

}
}
....
return p;

}

Listing 4.4: Changes to the pick_next_task_rt function.
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algorithms.

4.7 Scheduling overheads

In order to carry out an overhead-aware schedulability analysis (presented in the next chapter),

we first need to identify the overheads that may be incurred at run-time because of the mecha-

nisms used in the implementation of the scheduling algorithms. In this subsection, we provide an

overview of the overheads that may arise in an implementation of a slot-based task-splitting sche-

duling algorithm. This overview is based on our implementation [SPT12] of S-EKG and NPS-F

in the Linux kernel for the x86-64 architecture described above.

The overheads that a system may incur because of a scheduling algorithm are related to the

following five mechanisms: (i) interrupts; (ii) timers; (iii) ready queues; (iv) context switching;

and (v) caches. We examine the overheads of each mechanism in turn.

Most real-time systems interact with their environment and use interrupts whenever they need

to react to environment events. We assume that the interrupt handlers, or ISRs, are implemented as

tasks, as supported in the PREEMPT-RT Linux kernel [PR12]. Nevertheless, the occurrence of an

interrupt suspends the execution of the currently running task to release a task that will service this

interrupt. Furthermore, depending on the deadline of the released task, it may cause a preemption

of the currently running task. A special kind of interrupt is the inter-processor interrupt, IPI. As

its name suggests, these interrupts are generated by one processor and handled on another, and

may be used by a processor to notify another of the occurrence of events. The processing of an

IPI by the target processor is similar to that of an interrupt generated by the environment. Our

algorithms only use the IPI in the implementation of split servers, more specifically, when a job

whose priority is higher than that of all ready jobs of its server, arrives on a processor at a time

instant that falls within the reserve of that server in the other processor. In this case, the newly

arrived job should immediately start execution in the server’s reserve on the other processor. We

denote the delay incurred by the use of IPI in the dispatching of a task the IPI Latency, I piL.

Timers are a per-processor mechanism of the Linux kernel designed for scheduling compu-

tations some time in the future. Our algorithms use timers to release tasks and also to trigger

server-switches at the end of each time reserve. Timers are implemented using a priority queue

and interrupts generated by some timer/counter device. They incur overheads related to the han-

dling of these interrupts as well. Timer interrupts are different from other interrupts in that they

are not handled by separate tasks, but immediately upon the occurrence of the interrupt. Thus,

the expiration of a timer suspends the execution of the current task on that processor. Another

imperfection associated with timers is that they do not measure time intervals in a precise way.

We denote the delay incurred in the release of periodic tasks because of these imperfections the

Release Jitter, RelJ.

The Linux kernel keeps the released tasks that are ready to run in queues, known as ready-

queues. Therefore, when a task is released, the kernel moves the task to a ready-queue, and the

dispatcher is invoked to select the next task to run, which may be either the task that was running
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before the release of the task, the released task or any some task that is ready to run. In the case

of the slot-based task-splitting algorithms considered, all these data structures are either private

to some processor or shared by two processors. Nevertheless, the release of a task requires some

processing, which we call the Release Overhead, RelO.

A context switch (or task switch) occurs whenever the dispatcher decides to change the running

task on a processor. This entails saving the state of the processor to some operating system data

structure associated with the task being evicted, and restoring the state of the processor to the

contents of the corresponding data structure associated with the task that was allocated to the

processor. We use the Context switch Overhead, CtswO, to account for this overhead.

The worst-case execution time of a task is usually computed assuming that the task is executed

without being preempted. However, when a task is preempted, it may incur additional costs when

it is resumed because the cache lines with its data may have been evicted by other tasks and need to

be fetched again from the main memory or from higher cache levels. Likewise, migrating one task

from one processor to another requires the destination processor to fetch anew the cache footprint

of the task. These costs are known as Cache-related Preemption and Migration Delays (CPMD).

To incorporate the CPMD, we pessimistically assume that every preemption incurs the worst-case

CPMD Overhead, CpmdO, cost. Furthermore, we do not distinguish between job preemption

and job migration events. This simplification is not as pessimistic as it may seem because there

is evidence [BBA10a, BBA10b] to suggest that, in a heavily loaded system, the CPMD costs of

preemptions and migrations can be similar.

Although in this subsection we have discriminated the different sources of overheads associ-

ated with slot-based task-splitting scheduling algorithms, in the analysis devised in the next chap-

ter, we sometimes lump in a single parameter, overheads of different sources that occur together

in sequence. The reasons for this are two-fold. First, this leads to shorter expressions. Second, it

simplifies the experimental measurement of the overheads and often leads to more precise experi-

mental estimates of these overheads.

4.8 Summary

In this chapter, we presented a generic description of slot-based task-splitting scheduling algo-

rithms and we also defined the terminology that is used in the remainder of this dissertation.

We have shown how to correlate the particular algorithms with the generic one. We also clari-

fied the impact of one of the most important parameters for slot-based task-splitting scheduling

algorithms, called δ . We have identified one practical problem (the instantaneous migration prob-

lem) of slot-based task-splitting scheduling scheduling algorithms and also how it can be solved.

Since the Linux kernel does not support any suitable mechanism for frequent task migrations,

we detailed how to solve that issue. Moreover, since neither the mainline Linux kernel nor the

PREEMPT-RT patch support any scheduling algorithm suitable for real-time multiprocessor sys-

tems, we described how we incorporated support for slot-based task-splitting scheduling in the

PREEMPT-RT-patched Linux kernel. Note that, we follow a different approach to other related
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works; that is, we incorporate the slot-based task-splitting scheduling algorithms into the RT sche-

duling class itself. Finally, we identified and described the run-time overheads incurred by the

slot-based task-splitting scheduling algorithms running in Linux.



Chapter 5

Slot-based task-splitting
overhead-aware schedulability analysis

5.1 Introduction

Real-time multiprocessor scheduling has seen, in recent years, the flourishing of semi-partitioned

scheduling algorithms. This category of scheduling schemes combines elements of partitioned and

migrative scheduling for the purposes of achieving efficient utilization of the system’s processing

resources with strong schedulability guarantees and with low dispatching overheads. The sub-

class of slot-based task-splitting scheduling algorithms, in particular, offers very good trade-offs

between schedulability guarantees (in the form of high utilization bounds) and the number of

preemptions/migrations involved. However, so far there did not exist unified scheduling theory for

such algorithms; each one was formulated with its own accompanying analysis.

In this chapter, we formulate a unified schedulability theory for slot-based task-splitting ap-

plicable to scheduling algorithms under consideration in this dissertation, S-EKG and NPS-F.

This new theory is based on exact schedulability tests, thus also overcoming many sources of

pessimism in existing analysis. Furthermore, as a response to the fact that many unrealistic as-

sumptions, present in the original theory, tend to undermine the theoretical potential of such sche-

duling schemes, we identified and modelled into the new analysis all overheads incurred by the

algorithms in consideration. The outcome is a new overhead-aware schedulability analysis that

permits increased efficiency and reliability. We provide the basic concepts that are used by the

new theory developed, then, we present the new schedulability analysis. We end this chapter with

a description how to implement the new theory.

5.2 Basis for the overhead-aware schedulability analysis

The scheduling algorithms under consideration in this dissertation assume that servers schedule

their tasks according to the EDF scheduling algorithm. For preemptive uniprocessor systems, any

77
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periodic task set with implicit deadlines is schedulable under EDF scheduling policy if the condi-

tion ∑τi∈τ ui ≤ 1.0 holds [LL73] and it is considered to be optimal [Der74] among all uniprocessor

scheduling algorithms. In other words, if a task set is schedulable (no job miss deadlines) under

any scheduling algorithm on a preemptive uniprocessor system is also under EDF.

The EDF schedulability analysis for sporadic task sets with arbitrary deadlines is based on the

concepts of processor demand and the demand bound function (dbf) [BMR90]. The dbf gives a

upper bound (over every possible time interval [t0, t0 + t) of length t) on the processor demand,

defined as the aggregate execution requirement of all jobs released at time t0 or later and whose

absolute deadlines lie before time t0 + t.

In the context of pure partitioned scheduling with arbitrary deadline task sets (meaning that

Di is different of Ti for any tasks) the execution demand of a set of tasks assigned to processor Pp,

τ[Pp], in a time interval of duration t is computed as:

dbf(τ[Pp], t) = ∑
i∈τ[Pp]

max
(

0,
⌊

t−Di

Ti

⌋
+1
)
·Ci (5.1)

Similarly (in the context of pure partitioned scheduling), the supply bound function (sbf) gives

a lower bound on the amount of execution time supplied to the task set assigned to processor Pp

over a time interval of length t without any constraint and is computed as follows:

sbf(τ[Pp], t) = t (5.2)

Intuitively, a partitioned real-time system is schedulable if following inequality holds:

dbf(τ[Pp], t)≤ sbf(τ[Pp], t) (5.3)

on every processor Pp and for every interval length t > 0.

Consider a task set composed by only one task with the following parameters: worst-case

execution time, Ci, equal to two; minimal inter-arrival time Ti equal to seven; and deadline, Di,

equal to five. Thus, it is an arbitrary deadline task. Inset (a) of Figure 5.1 shows the execution

demand of that task in an interval of 18 time units against the processing capacity supplied by the

system (assuming a uniprocessor system). As it is expected, the execution demand until the first

deadline (time instant five) is two time units, increases to four on the second deadline (time instant

12) and so on.

Let us assume that the release jitter is non-negligible, which means that the release of such a

task is delayed by RelJi. In practice, this means that the task is only ready for execution RelJi time

units after its arrival time. In other words, such task has to complete within Di−RelJi time units.

In order to consider such overhead, the dbf(τ[Pp], t) is changed to [Spu96, ZB08]:

dbf(τ[Pp], t) = ∑
i∈τ[Pp]

max
(

0,
⌊

t− (Di−RelJi)

Ti

⌋
+1
)
·Ci (5.4)
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Inset (b) of Figure 5.1 plots the execution demand considering that RelJi is equal to one. As

it can be observed, the processing demand by the task is shifted one time unit earlier due to the

reduction of the execution time window.
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Figure 5.1: Illustration of the execution demand of a task against the processing supplied by the
system.

Let us now consider that such task executes only inside of a reserve of length Reslen and

periodically available every S time units. The time supplied for the execution of such a task on

processor Pp over a time interval of length t is lower-bounded by [SBAT11]:

sbf(S,Reslen, t) =
⌊

t
S

⌋
·Reslen +max

(
0,
(

t−
⌊

t
S

⌋
·S
)
−
(

S−Reslen
))

(5.5)

Consider that Reslen is equal to three and S is equal to five. Inset (a) of Figure 5.2 plots the

time supplied (sbf) against the time demanding (dbf) in a time interval of 18 time units. Inset

(b) of Figure 5.2 illustrates graphically the relation between the time supplied and the time de-

manding. As it is intuitive, the worst-case phasing for task execution occurs when the task arrives

an infinitesimal amount of time after the respective reserve has been finished and the worst-case

phasing for supplying is when the arrival time of a task coincides with the beginning of the reserve

period.

The first term of Equation 5.5 (b t
Sc·Reslen) computes the amount of time supplied over the b t

Sc
periods integrally contained within the time interval under consideration. In that case of t = 18,

b18
5 c ·3 = 3 ·3 = 9 time units. The second term (max(0,(t−b t

Sc ·S)− (S−Reslen))) computes the

time supplied over the remaining tail (the last, incomplete period); in our example, during this tail,

the time supplies max(0,(18−b18
5 c·5)−(5−3)) =max(0,18−3 ·5−2) =max(0,18−15−2) =

max(0,1) = 1 time unit. Therefore, this system supplies 9+ 1 = 10 time units in a time interval

of 18 time units for executing such task.

Next, we use demand- and supply-based functions to derive the new schedulability analysis

for slot-based task splitting scheduling algorithms.
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Figure 5.2: Illustration of the execution demand of a task against the processing supplied by the
system considering time reserves.

5.3 New demand-based and overhead-aware schedulability analysis

The original schedulability analysis for slot-based task-splitting scheduling algorithms was based

on utilization. While this simplifies the derivation of utilization bounds, it also entails pessimism.

In [ABB08], the move towards processor-demand based analysis was not carried out in a way that

would preserve the most useful theoretical properties (namely, the utilization bound) of previous

work (S-EKG). Therefore, in [SBAT11], the authors present a schedulability analysis based on

processor demand specific for the S-EKG scheduling algorithm.

In this section, a new schedulability analysis, based on processor demand, is introduced that

can be applied to both S-EKG and NPS-F [SBT+13]. This new schedulability analysis super-

sedes all previous utilization-based analyses. Further, it defines new schedulability tests that

incorporate all real-world overheads incurred by one implementation of the S-EKG and NPS-F

algorithms [SPT12].

The schedulability analysis that we develop in this section has two stages, which correspond

to the two main stages of the task-to-processor mapping algorithm presented in Section 4.3. In the

first stage, the analysis focuses on the schedulability of the tasks assigned to each server, assuming

that each server is executed in isolation on a processor. The second stage examines whether there

is enough capacity to accommodate all servers in the system.

We present each stage of the new demand-based overhead-aware schedulability analysis in its

own subsection.

5.3.1 New demand-based schedulability test for mapping tasks to servers

In this subsection, we derive a schedulability test for the tasks mapped to a server based on

demand-bound functions taking into account the overheads described in the Section 4.7. This

leads to a new task-to-server mapping algorithm. For the purpose of the mapping of tasks to
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servers, we consider that a server is allocated a processor exclusively, i.e. it runs on a single pro-

cessor that it does not share with any other server. Hence, we treat each server as a uniprocessor

system.

Our analysis is based on the concept of demand-bound functions, which specifies a upper

bound on the aggregate execution requirements of all jobs (of τ[P̃q]) over any possible interval of

length t. Therefore the demand-based schedulability test for a server P̃q is given by:

dbfpart(P̃q, t)≤ t,∀t > 0 (5.6)

We use the text “part”, which stems from “partitioned”, as a superscript of all the dbfs of this stage

to distinguish them from functions of the second stage.

Ignoring all overheads and assuming sporadic task sets with arbitrary deadlines, the dbfpart(P̃q, t)

can be computed as:

dbfpart(P̃q, t) = dbfpart(τ[P̃q], t) = ∑
τi∈τ[P̃q]

max
(

0,
⌊

t−Di

Ti

⌋
+1
)
·Ci (5.7)

Next, we proceed by incorporating each source of overhead into the new overhead-aware

schedulability analysis, one at a time. First, we consider the overheads caused by the release

of tasks. We assume that all tasks are periodic, because it corresponds to the worst-case. For

periodic tasks we need to take into account not only the release overhead, but also the release jitter

caused by timers. Therefore, the effects of timers and task release will be considered together.

Next, we consider the effects of context switching and CPMD. Finally, we incorporate the effect

of interrupts other than those caused by timers.

Although other mechanisms may be used to release tasks, for sake of clarity, we assume that

the task release is done by the use of timers. Therefore, the release of periodic tasks is affected

by two of the overheads discussed in Section 4.7: the release overhead and the release jitter.

Figure 5.3 graphically shows these two overheads for job τi, j. (In all figures, the execution of a

job is graphically represented by a rectangle labelled with the job identifier.) As illustrated, the

effects of these two overheads are different. Whereas both overheads, the release jitter of job τi, j,

RelJi, j, and the release overhead of job τi, j, RelOi, j, reduce the amount of time that job τi, j has

to complete its execution, only the release overhead actually requires processing time. Thus, we

model the effect of these two overheads differently.

Let RelJ and RelO be the upper bounds on the release latency and on the release overhead,

respectively. As shown in Figure 5.3, the release jitter decreases the amount of time available to

complete a task, i.e., in the worst case, τi has Di−RelJ time units to complete. Therefore, we

modify the dbfpart(τ[P̃q], t) to:

dbfpart(τ[P̃q], t) = ∑
τi∈τ[P̃q]

max
(

0,
⌊

t− (Di−RelJ)
Ti

⌋
+1
)
·Ci (5.8)

Concerning the release overhead, one way of modelling it could be by increasing the execution
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Figure 5.3: Illustration of release jitter and release overhead.

demand of a task accordingly. However, that approach does not work properly when multiple

tasks are released too close together in time. The reason is that the release overhead contributes

immediately to the processor demand – meaning that to model the processor demand correctly, it

should be increased by RelO time units at the time of the release, not at the deadline of the task

released. Therefore, we instead model the release overhead as higher-priority interfering workload

(as it is in reality). This way, we may compute the execution demand for releasing all jobs of τ[P̃q]

in a time interval [0, t) as:

dbfpart
RelO(τ[P̃q], t) = ∑

τi∈τ[P̃q]

⌈
t +RelJ

Ti

⌉
·RelO (5.9)

Modifying accordingly dbfpart(τ[P̃q], t), we get:

dbfpart(τ[P̃q], t) =

dbfpart
RelO(τ[P̃q], t)+ ∑

τi∈τ[P̃q]

max
(

0,
⌊

t−Di +RelJ
Ti

⌋
+1
)
·Ci (5.10)

We now consider the context switching overhead, which is common to all schedulers. Every

job causes at most two context switches: when it is released and when it completes – but not every

job release causes a context switch. Therefore the number of context switches over a time interval

of length t is upper bounded by twice the number of job releases during that interval. Let CtswO

be a upper bound on the context-switch overhead. We amend the derivation of the dbfpart(τ[P̃q], t),

by increasing the execution demand of each job by twice CtswO, to:

dbfpart(τ[P̃q], t) =

dbfpart
RelO(τ[P̃q], t)+ ∑

τi∈τ[P̃q]

max
(

0,
⌊

t−Di +RelJ
Ti

⌋
+1
)
· (Ci +2 ·CtswO) (5.11)

In order to incorporate the cache-related overheads, i.e. the CPMD, we, pessimistically, as-

sume that every preemption incurs the worst-case CPMD cost, CpmdO. Furthermore, we compute
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a upper bound on the number of preemptions for server P̃q in a time interval of length t as:

nrpart
pree(P̃q, t) = ∑

τi∈τ[P̃q]

⌈
t +RelJ

Ti

⌉
(5.12)

That is, we assume that every task that may be released in a time interval of length t, causes a

preemption. Thus, the cumulative cost of CPMD over one interval of length t is:

dbfpart
CpmdO(P̃q, t) = nrpart

pree(P̃q, t) ·CpmdO (5.13)

Intuitively, this increases the server execution demand. We therefore amend the expression of

the dbfpart(P̃q, t) to:

dbfpart(P̃q, t) = dbfpart(τ[P̃q], t)+dbfpart
CpmdO(P̃q, t) (5.14)

In contrast with the other overheads, and also with a recent approach [LAMD13], the cache-

related overheads are not assigned to a particular task. Indeed, the jobs of some tasks may never

be preempted, whereas the jobs of other tasks may be preempted several times. This is the reason

why we do not incorporate the CMPD overheads in dbfpart(τ[P̃q], t).

Finally, we consider the interrupt overheads. We assume that interrupt service tasks have

higher priority than normal tasks. Thus, we model each sporadic interrupt as a task with worst-case

execution time equal to CInt
i , minimum inter-arrival time equal to T Int

i and zero laxity (CInt
i =DInt

i ).

Periodic interrupts are also modelled as zero-laxity tasks, but T Int
i represents their period and they

are also characterized by a release jitter JInt
i , which accounts for deviations from strict periodicity.

For sporadic interrupts, we let JInt
i equal to zero, since any variability in their arrival pattern is

already accounted for by T Int
i . Thus the interrupt execution demand for nInt interrupts is then

given by:

dbfpart
IntO(P̃q, t) =

nInt

∑
i=1

max
(

0,
⌊

t−DInt
i + JInt

i

T Int
i

⌋
+1
)
·CInt

i (5.15)

Intuitively, the interrupt overhead increases the execution demand of a server. Thus, the

dbfpart(P̃q, t), incorporating all the overheads, becomes:

dbfpart(P̃q, t) = dbfpart(τ[P̃q], t)+dbfpart
CpmdO(P̃q, t)+dbfpart

IntO(P̃q, t) (5.16)

Equation 5.16 can be used in a new schedulability test by the algorithm that maps tasks to

servers. Algorithm 5.1 shows the pseudo-code of this algorithm. The algorithm iterates over the

set of all tasks and, for each task τi, it checks whether it fits in one of the opened servers (subject

to the constraints of the bin-packing heuristics used, e.g., NF or FF). For each server P̃q checked

(q being the server index), it provisionally adds task τi to it, then it computes the length of the

testing time interval t (computed as twice the least-common multiple of the Ti of tasks in τ[P̃q])

and finally, it applies the new schedulability test, by invoking the dbf_part_check function. If

the test succeeds for some server P̃q, then task τi is permanently mapped to it, otherwise, a new
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server is opened and task τi is added to it. The task set is considered unschedulable whenever the

schedulability test fails for a server with only one task.

This algorithm applies only to NPS-F. In the case of S-EKG for reasons that will be explained

later, the task to server mapping and the server to processor assignment are performed in a single

step using the algorithm that is outlined in Subsection 5.4.2.1.

Algorithm 5.1: Pseudo-code of the new task-to-server mapping algorithm.
Input: set of n tasks τi, with 1≤ i≤ n
Output: set of k servers, with k ≥ 0 (k = 0 means failure)

k← 0
for i← 1 to n do

scheduled← 0
for q← 1 to k do

add_task_to_server(τi, P̃q)
t← 2 · lcm_T(P̃q)
if dbf_part_check(P̃q, t) then

scheduled← 1
break

else
remove_task_from_server(τi, P̃q)

end if
end for
if scheduled = 0 then

k← k+1 {add a new server}
add_task_to_server(τi, P̃k)
t← 2 · lcm_T(P̃q)
if not dbf_part_check(P̃k, t) then

k← 0
break {failure}

end if
end if

end for

To summarise, in this subsection we have developed a new overhead-aware analysis for sche-

dulability testing in the task-to-server mapping stage. However, this test considers each server in

isolation and it does not encompass all the scheduling overheads that may be incurred by servers

when they share a processor with other servers. In the next subsection, we develop a new schedu-

lability analysis for the processor-to-server allocation step.

5.3.2 New demand-based schedulability test for assigning servers to processors

To fully model all the overheads incurred by the use of periodic reserves, it is necessary to assign

each server to one or more processors. Precisely modelling the impact of these overheads allows

us to determine the processing capacity requirements of each server. In turn, this allows us to test

whether or not all servers can be accommodated on the m physical processors.

With the server-to-processor assignment described in Section 4.3, non-split servers are allo-

cated just one processor reserve whereas split-servers must be allocated two reserves. Because,

each type of server incurs different overheads, we deal with each type of server separately.
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5.3.2.1 Non-split servers

The approach we follow to check the schedulability of a server is to verify that the execution

demand by all jobs assigned to a server (computed using the dbf) does not exceed the amount

of time (computed using the sbf) that the system can provide for their execution, for every time

interval of length t. Formally, we can express this schedulability test as:

dbfsb:non−split(P̃q, t)≤ sbfsb:non−split(P̃q, t),∀t > 0 (5.17)

We use the superscript “sb” (an abbreviation for “slot-based”) to distinguish the functions/vari-

ables used in this subsection from similar functions/variables used in the previous subsection.

This superscript may be suffixed with either “:non-split” or “:split”, depending on whether the

function/variable applies to non-split servers or to split servers, respectively.

We develop an analysis that allows us to apply the schedulability test in Equation 5.17 to

non-split servers in two steps. First, we revisit the analysis developed in Subsection 5.3.1 to take

into account the effect of the reserve mechanism on the computing demand of a non-split server.

Second, we factor into our analysis the effect of the reserve mechanism on the computing supply

of a non-split server.

In Equation 5.16, we decomposed the demand of a server, dbfpart(P̃q, t), into three components.

The first, dbfpart(τ[P̃q], t), comprises the execution requirements induced by each task mapped to

server P̃q, including not only its execution time, but also overheads that may arise because of

mechanisms used by the scheduling algorithm, i.e. timers, task releases and context switches.

Clearly, these requirements are not affected by the use of reserves. However, now we also need

to take into account the Release Interference, dbfsb:non−split
RelI (P̃q, t), i.e. the overhead incurred by

the release of tasks mapped to other servers that share the processor with P̃q. Furthermore, as we

explain below, the other two components are also affected by the use of reserves. Hence, in a first

approximation, we have:

dbfsb:non−split(P̃q, t) =

dbfpart(τ[P̃q], t)+dbfsb:non−split
CpmdO (P̃q, t)+dbfsb:non−split

IntO (P̃q, t)+dbfsb:non−split
RelI (P̃q, t) (5.18)

We now proceed with the development of the analytical expressions for the dbfsb:non−split
XxxX pa-

rameters on the right-hand side of Equation 5.18.

The CPMD overheads now comprise not only the preemptions caused by tasks in the server,

but also the preemptions incurred due to the reserve mechanism. In the worst case, the reserve

mechanism preempts the last job that executes in the server’s reserve. Thus, during an interval of

duration S, a non-split server incurs at most one additional preemption due to the use of reserves:

nrsb:non−split
pree (P̃q, t) =

⌈
t +ResL

S

⌉
+nrpart

pree(P̃q, t) (5.19)
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where ResL, the Reserve Latency, is an overhead akin to the release overheads that occurs at the

beginning of a reserve and is explained later in this subsection.

Accordingly, the worst-case overall CPMD cost for that server in a time interval of length t is

given by:

dbfsb:non−split
CpmdO (P̃q, t) = nrsb:non−split

pree (P̃q, t) ·CpmdO (5.20)

Taking into account interrupts with reserves is somewhat harder than in the case of a unipro-

cessor. Indeed, whereas on a uniprocessor a sporadic interrupt can be modelled as a sporadic

interfering task, this is not the case with reserves. This is because reserve boundaries behave like

temporal firewalls, and therefore an interrupt affects only the reserve that was active at the time

the interrupt task is executed. Hence, each interrupt has to be modelled as a bursty periodic task.

Given the complexity of such a formulation, we deal with it in Appendix A. Let dbfsb:non−split
IntO (P̃q, t)

denote the amount of time required for executing all fired interrupts inside the reserves of P̃q in a

time interval of length t, as determined in Appendix A.

Finally, we consider the release overhead, i.e. the processor time required to handle the release

of jobs. On slot-based task-splitting scheduling algorithms, a server’s tasks share the processor

with other tasks whose servers are assigned to the same processor. Consistent with our implemen-

tation [SPT12] we assume that all jobs of a task are released on the processor(s) to which the task

is assigned. As shown in Figure 5.4, non-split server P̃q can incur not only the release overheads

of its own jobs, but also the release overheads of the jobs of both its immediate neighbour servers,

P̃q−1 and P̃q+1.
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Figure 5.4: Illustration of the release interference for non-split servers. In this example server P̃q

may suffer release interference from the arrivals of tasks served by P̃q−1 and P̃q+1 (if these occur
at an instant when P̃q is mapped to processor Pp).

Recall that the release overhead cost of all jobs of τ[P̃q] in a time interval of length t is already

accounted for in the derivation of dbfpart(τ[P̃q], t) (see Equation 5.10). Therefore, what remains is

to incorporate the release interference, dbfsb:non−split
RelI (P̃q, t), the release overhead cost from neigh-

bouring servers, i.e. servers sharing the same processor:

dbfsb:non−split
RelI (P̃q, t) = dbfpart

RelO(P̃q−1, t)+dbfpart
RelO(P̃q+1, t) (5.21)
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where dbfpart
RelO(P̃q, t) (see Equation 5.9) denotes the amount of time required to release all jobs

assigned to server P̃q in a time interval of length t.

We now consider the effect of the reserve mechanism on the amount of time supplied to the

execution of the tasks of a non-split server. In comparison with the analysis in Subsection 5.3.1,

the amount of time supplied to the execution of a non-split server is reduced because of two factors.

The first is the sharing of the processor with other servers. The second is the imprecision of the

timers used to measure the duration of the reserves. We analyse the effect of each of these factors

in turn.

In slot-based task-splitting scheduling algorithms, a non-split server P̃q is confined to execute

within a single periodic reserve of length Reslen[P̃q], which is available every S time units:

Reslen[P̃q] =U in f l[P̃q] ·S (5.22)

where U in f l[P̃q] represents the inflated processing capacity of server P̃q. Thus, for any time interval

of length t, only a fraction of such interval is supplied for the execution of a server. We model the

unavailability of the reserve as an interfering fake task with attributes:

C f ake = S−Reslen[P̃q]

T f ake = S

D f ake =C f ake (5.23)

Hence, the supply-bound function for non-split servers can be expressed, in a first approxima-

tion, as follows:

sbfsb:non−split(P̃q, t) = t−max
(

0,
⌊

t−D f ake

T f ake

⌋
+1
)
·C f ake (5.24)

The second source of the reduction in the amount of time supplied to the execution of a non-

split server is the processing time required to switch from one reserve to the next. The switch of

reserves is also associated with a delay between the time at which the current reserve should end

and the time at which it actually ends that is caused by timer drift, the execution of the timer call-

back, which performs the actions required to switch from a reserve to another, and the execution of

the scheduler. To facilitate the experimental measurement of this parameter, we decided to group

these three parameters in a single one that we call reserve latency. This is illustrated in Figure 5.5,

which also shows that this parameter includes the time required to switch to the first job of the

new reserve.

We model this reduction in the supply of processing time to the reserve as an increase in

the execution demand of the fake task. Let ResL be a upper bound for the reserve latency. The
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Figure 5.5: Illustration of the reserve overhead. In this example, the execution of job τi, j, inside
reserve A, is delayed by ResLi, j, the overhead of that reserve.

expression for sbfsb:non−split(P̃q, t) then becomes:

sbfsb:non−split(P̃q, t) = t−max
(

0,
⌊

t−D f ake +ResL
T f ake

⌋
+1
)
· (C f ake +ResL) (5.25)

Replacing this expression in Inequality 5.17 and moving some terms from the right-hand side

to the left-hand side, we obtain the following schedulability test for non-split servers:

dbfsb:non−split(P̃q, t)+dbfsb:non−split
Fake (P̃q, t)≤ t,∀t > 0 (5.26)

where dbfsb:non−split(P̃q, t) is given by Equation 5.18 and dbfsb:non−split
Fake (P̃q, t) is given by:

dbfsb:non−split
Fake (P̃q, t) = max

(
0,
⌊

t−D f ake +ResL
T f ake

⌋
+1
)
· (C f ake +ResL) (5.27)

To complete the analysis of non-split servers, we provide an algorithm to compute the inflated

utilization of server P̃q, U in f l[P̃q]. Indeed, evaluating dbfsb:non−split
Fake (P̃q, t) depends on U in f l[P̃q], via

Reslen[P̃q] and C f ake (see Equations. 5.22 and 5.23). Furthermore, dbfsb:non−split
IntO (P̃q, t) also depends

on U in f l[P̃q], as shown in Appendix A.

In order to achieve the highest possible schedulability, we are interested in determining the

minimum inflated utilization required for server P̃q. For that purpose, we employ a “binary search”

approach. We use the schedulability test developed in this section to determine an interval that is

guaranteed to include the inflated utilization. This interval can be arbitrarily small. We start with

the interval [U [P̃q],1.0]. Then we successively halve this interval in such a way that the inflated

utilization is guaranteed to be in every generated interval. Algorithm 5.2 shows the pseudo-code

for the inflate_sb_non_split function. In each iteration, it computes the current interval’s

midpoint and then applies the schedulability test, implemented in the dbf_sb_non_split_-

check function to that utilization value. If the outcome of the test is positive, i.e. the server is

schedulable with that utilization, the midpoint value computed becomes the upper bound of the

interval in the next iteration, otherwise it becomes the lower bound. The algorithm converges
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rather rapidly, and in more or less ten iterations, it generates an interval that is less than 0.1% wide

that contains the minimum inflated capacity of the server required for the server to be schedulable,

according to the schedulability test in Inequality 5.26. In Section 5.5, we provide some details on

the implementation of the dbf_sb_non_split_check function.

Algorithm 5.2: Pseudo-code algorithm of the inflate_sb_non_split function.
Inputs: P̃q {server to analyse}

ε {accuracy of desired estimate}
t {time interval for computing the demand bound function}

Output: U in f l [P̃q] {minimum inflated utilization, with an error smaller than ε ,
that ensures schedulability of P̃q}

Umin←U [P̃q]
Umax← 1.0
while Umax−Umin > ε do

U in f l [P̃q]← (Umin +Umax)/2
if dbf_sb_non_split_check(P̃q, t) then

Umax = (Umin +Umax)/2
else

Umin = (Umin +Umax)/2
end if
U in f l [P̃q]←Umax

end while

5.3.2.2 Split servers

In this subsection, we develop a schedulability analysis for split-servers similar to the one devel-

oped in the previous subsection. Again, we use a schedulability test based on the demand-bound

and the supply-bound functions:

dbfsb:split(P̃q, t)≤ sbfsb:split(P̃q, t),∀t > 0 (5.28)

and we derive the expression for dbfsb:split(P̃q, t), by revisiting the analysis developed in Subsec-

tion 5.3.1 to take into account the increase in the demand of processing time because of the reserve

mechanism, and the expression for sbfsb:split(P̃q, t), by accounting for the reduction in the amount

of time supplied to the server because of the reserve mechanism.

Based on the arguments used in the previous subsection, we can express dbfsb:split(P̃q, t) as

follows:

dbfsb:split(P̃q, t) =

dbfsb:split(τ[P̃q], t)+dbfsb:split
CpmdO(P̃q, t)+dbfsb:split

IntO (P̃q, t)+dbfsb:split
RelI (P̃q, t) (5.29)

Like non-split servers, preemptions and migrations of tasks, interrupts and the release of tasks

of servers that share processors with the split server also need to be taken into account, and

amended specifically to split servers. However, unlike with non-split servers, we also need to

amend dbfpart(τ[P̃q], t), i.e. the processor demand of the server’s tasks, assuming that they are ex-

ecuted in their own processor and accounting for the overheads incurred by the timers, the release

of the server’s tasks and the context switches between server’s tasks. This is because the release of
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tasks of a split server may use IPI, which, as we show below, affects the components of the demand

accounted for in dbfpart(τ[P̃q], t). We now develop an expression for each term in Equation 5.29.

As described in Section 4.7, slot-based task-splitting scheduling algorithms may use IPIs to

notify the dispatcher in another processor of the release of a task. As a result, the dispatching of a

task may incur an IPI latency, I piL. (Note that this parameter does not include the time required

for context switching; this is already accounted for, as it will occur whether or not the release is via

an IPI.) Figure 5.6 illustrates such a case. The arrival of a job of task τi assigned to a split server

shared between processors Pp and Pp−1, for instance, occurs at a time instant t and is handled on

processor Pp, but this time instant t falls inside the reserve of that server on the other processor,

Pp−1. If this job is the highest-priority job of its server, Pp notifies Pp−1 of the new arrival via an

IPI. Clearly, the overhead caused by the IPI, I piLi, j, only delays the dispatch of job τi, j (and only

if job τi, j is the highest-priority job of its server). Thus, the IPI latency, has an effect similar to the

release jitter.
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the ready
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t
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Figure 5.6: Illustration of the IPI latency at the release of a split job. It does not include the time
for context switching.

Let I piL be a upper bound for the IPI latency. Then, incorporating (in a pessimistic manner,

since in practice not all jobs are affected) this effect is just like increasing the release jitter in

dbfpart(τ[P̃q], t), see Equation 5.11:

dbfsb:split(τ[P̃q], t) =

dbfpart
RelO(τ[P̃q], t)+

∑
τi∈τ[P̃q]

max
(

0,
⌊

t−Di +RelJ+ I piL
Ti

⌋
+1
)
· (Ci +RelO+2 ·CtswJ) (5.30)

The cost of the CPMD is more of a concern for split servers than for non-split servers, because

tasks may actually migrate between two processors. Nevertheless, in our analysis we assume a

worst-case CPMD overhead, CpmdO, which accounts for both. Hence, compared with modelling
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CPMD overheads for non-split servers, the only difference is that other than EDF preemptions,

split servers incur two additional preemptions per-time slot (vs. one for non-split servers), one for

each reserve they use. Accordingly, nrsb:split
pree (P̃q, t) is calculated as follows:

nrsb:split
pree (P̃q, t) = 2 ·

⌈
t +ResL

S

⌉
+nrpart

pree(P̃q, t) (5.31)

and the cost of the CPMD over a time interval of length t is:

dbfsb:split
CpmdO(P̃q, t) = nrsb:split

pree (P̃q, t) ·CpmdO (5.32)

The interrupt overhead for split servers is modelled as for non-split servers; that is, each in-

terrupt is modelled as bursty periodic task. Given the complexity of such a formulation we deal

with that in Appendix A. Let dbfsb:split
IntO (P̃q, t) be a upper bound on the amount of time required for

executing all fired interrupts inside the reserves of P̃q in a time interval of length t.

Finally, we consider the release interference by servers that execute on the same processor.

As illustrated in Figure 5.7, a split server, P̃q, can incur the release interference of, at most, the

previous two, P̃q−1 and P̃q−2, and also, at most, the next two servers, P̃q+1 and P̃q+2.
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Figure 5.7: Illustration of the potential release interference exerted by neighbouring servers. In
this example server P̃q may suffer release interference from the arrivals of tasks served by P̃q−1 and
P̃q−2 (if these occur at an instant when P̃q is mapped to processor Pp) but also from the arrivals of
tasks served by P̃q+1 and P̃q+2 (if these occur at an instant when P̃q is mapped to processor Pp+1).

Thus, the release interference on P̃q by its neighbour servers is computed as:

dbfsb:split
RelI (P̃q, t) =

dbfpart
RelO(P̃q−1, t)+dbfpart

RelO(P̃q−2, t)+dbfpart
RelO(P̃q+1, t)+dbfpart

RelO(P̃q+2, t) (5.33)

This concludes the analysis of the effect of the reserve mechanism on the processing demand

by a split-server. Before, we analyse the effect of the reserve mechanism on the amount of time

supplied to the server, sbfsb:split(P̃q, t), recall the need of staggered time slots, due to the instanta-

neous migration problem (see Section 4.5). In that description, the reserves of a split server P̃q on
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different processors Pp and Pp+1 are temporally adjacent, as illustrated in Figure 4.5. In practice,

because of the limitations in the measurement of the duration of a reserve, this layout requires

explicit synchronization between the dispatchers on both processors to prevent simultaneous exe-

cution of the same task by both processors at the beginning of a time slot. This synchronization

would lead to an additional overhead, which can be avoided by shifting the beginning of the time

slot on processor Pp+1 in time, i.e. by staggering the time slots in consecutive processors.

In [BA11], the authors showed that the time shift Ω given by Ω = (S− x[Pp+1]− y[Pp])/2 is

optimal with respect to utilization for a split server P̃q whose reserves are x[Pp+1] and y[Pp]. With

this value, the end of x[Pp+1] is also separated from the start of y[Pp] by the same Ω time units,

as illustrated in Figure 5.8. Therefore, Ω is also optimal with respect to the reserve overhead

tolerated, i.e., it is the time shift that provides the maximum protection against race conditions

caused by the reserve jitter that may arise among schedulers of processors with reserves that are

mapped to the same server.

Although this result was formulated in the context of NPS-F, it applies to any slot-based task-

splitting scheduling algorithm. Therefore in our analysis, we assume that the two reserves of a

split-server P̃q are Ω apart of each other.
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Figure 5.8: Illustration of the Ω and O f ake parameters.

We now proceed with the development of the reduction in the time supplied to execute the

tasks of a split server because of the reserve mechanism.

Let U in f l
x [P̃q] and U in f l

y [P̃q] be the fractions of U in f l[P̃q] assigned to processors Pp+1 and Pp,

respectively. Then the durations of the reserves of P̃q are given by:

U in f l[P̃q] =U in f l
x [P̃q]+U in f l

y [P̃q]

x[Pp+1] =U in f l
x [P̃q] ·S

y[Pp] =U in f l
y [P̃q] ·S (5.34)

As in the analysis for non-split servers, we model the unavailability of the processor outside

the reserves with fake tasks, now two per-time slot, each with the following parameters:
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C f ake = Ω

T f ake = S

D f ake =C f ake (5.35)

Although the two fake tasks have the same arrival rate, they arrive at a relative offset. To

account for the worst case, we assume that the first fake task arrives at t = 0 and the second task

arrives at an offset of:

O f ake = Ω+min(U in f l
x [P̃q],U in f l

y [P̃q]) ·S (5.36)

Thus we can express the amount of time supplied to the execution of tasks of the split server,

sbfsb:split
Fake (P̃q, t), as:

sbfsb:split(P̃q, t) =

t−

max
(

0,
⌊

t−D f ake

T f ake

⌋
+1
)
·C f ake−

max
(

0,
⌊

t−D f ake−O f ake

T f ake

⌋
+1
)
·C f ake (5.37)

Like the reserve of a non-split server, each of the two reserves of a split server incurs the

reserve overhead. Let ResL be a upper bound for the reserve latency. Thus, to take into account

this overhead, we do just as in the case of non-split servers, i.e. we add ResL to the execution

demand of each of the two fake tasks, and sbfsb:split(P̃q, t) becomes:

sbfsb:split(τ[P̃q], t) =

t−

max
(

0,
⌊

t−D f ake +ResL
T f ake

⌋
+1
)
· (C f ake +ResL)−

max
(

0,
⌊

t−D f ake−O f ake +ResL
T f ake

⌋
+1
)
· (C f ake +ResL) (5.38)

Replacing this expression in Inequality 5.28 and moving some terms from the right-hand side

to the left-hand side, we obtain the following schedulability test for split servers:

dbfsb:split(P̃q, t)+dbfsb:split
Fake (P̃q, t)≤ t,∀t > 0 (5.39)
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where dbfsb:split(P̃q, t) is given by Equation 5.29 and dbfsb:split
Fake (P̃q, t) is given by:

dbfsb:split
Fake (P̃q, t) =

max
(

0,
⌊

t−D f ake +ResL
T f ake

⌋
+1
)
· (C f ake +ResL)+

max
(

0,
⌊

t−D f ake−O f ake +ResL
T f ake

⌋
+1
)
· (C f ake +ResL) (5.40)

To complete the analysis of split servers, we provide an algorithm to compute the inflated uti-

lization of server P̃q, U in f l[P̃q]. Indeed, evaluating dbfsb:split
Fake (P̃q, t) depends on U in f l[P̃q], via x[Pp+1],

y[Pp+1], Ω, C f ake and O f ake(see Equations 4.8, 5.34, 5.35, and 5.36). Furthermore, dbfsb:split
IntO (P̃q, t)

also depends on U in f l[P̃q], as shown in Appendix A.

In order to achieve the highest possible schedulability, we are interested in determining the

minimum inflated utilization required for server P̃q. The algorithm we use for split servers is sim-

ilar to that used for non-split servers, presented in Algorithm 5.2, except that it uses the function

dbf_sb_split_check, which implements the schedulability test in Equation 5.28, rather than

function dbf_sb_non_split_check. In Section 5.5, we provide some details on the imple-

mentation of these functions.

5.4 New server-to-processor assignment procedure

The application of the schedulability tests developed in the previous section raises two main issues.

First, computing the inflation of the utilization of each server requires knowledge of whether or not

the server is split, and of which servers it shares the processor with. However, this depends, among

other things, on the inflated utilization of the server. Second, when a server is split between two

processors, in marginal cases, the additional overheads incurred would necessitate the combined

length of its two reserves to exceed S (which is a unworkable arrangement, given that they should

not overlap in time). To prevent this undesirable outcome, we specify two assignment rules, which

further exacerbate the first issue. Thus, in this section, we start by describing the assignment rules.

After that, we address how to resolve the circularity associated with the first issue.

5.4.1 Assignment rules

The schedulability analysis formulated so far considers sporadic task sets with arbitrary deadlines.

Therefore, the time slot length, S, cannot be computed according to the Equation 4.2, because it

only consider task inter-arrival times, Ti. It has also consider the deadlines, Di. Therefore, we

amend Equation 4.2 to:

S =
1
δ
·min

τi∈τ
(Ti,Di),∀τi ∈ τ (5.41)

To prevent the creation of reserves too short to be useful, we add the following rule to the

assignment algorithms that are presented below:
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A1: Whenever a server would be split between two processors Pp and Pp+1 in such a way that

the length of the second reserve (i.e. on Pp+1) would be larger than the length of its only

reserve had it been assigned to a single reserve on Pp+1, then the server should not be split,

but rather assigned as non-split to Pp+1.

Figures 5.9 illustrates rule A1 using aligned time slots for reasons of clarity. Clearly, if the

size of the non-split reserve is smaller than that of the second reserve, not splitting the server will

lead to a lower computation demand by the server in both the first and the second processor. This

means that there will be more computational resources for the remaining servers in the second

processor. Although the computational resources not used on the first processor will not be used

to satisfy the demand of the task set to schedule, they can be used by other (non-real time) tasks.

On the other hand, if the second reserve of the split server is shorter than the single reserve

required if the server were not split, it must be the case that the first reserve is used for satisfying

the demand of the server’s tasks, and therefore, for the sake of improving the schedulability, the

server should be split.

t

S

Pp+1

Pp P̃q−1 P̃q P̃q+1

P̃q+1

Rule A1

t

S

Pp+1

Pp P̃q−1 P̃q

P̃q+1

Figure 5.9: Illustration of the assignment rule A1.

Another issue concerns the case when the two reserves of a split server (possibly after ap-

plication of rule A1) add up to almost S, or even surpass it. As a result, the schedulers on two

processors might attempt to run the same task simultaneously. To prevent such a scenario, we

specify the following rule:

A2: In cases where a server would be split such that (U in f l
x [P̃q] +U in f l

y [P̃q]) · S > S−ResL, the

server should instead become a single server.

A single server is assigned to a processor, utilizing its entire processing capacity, without being

confined in a time reserve. This arrangement amounts to partitioning. Figure 5.10 illustrates rule

A2.

5.4.2 Assignment procedure

Section 4.3 suggests that server-to-processor assignment is straightforward once the servers have

been inflated. However, with the schedulability tests developed in the previous section, this is not

so. The challenge is that server inflation depends on the assignment of servers to processors, be-

cause the release interference overhead depends on which servers are allocated the same processor.
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t

S

Pp+1

Pp P̃q P̃q+1

P̃q+1

ResL

Rule A2

t

S

Pp+1

Pp

Pp+a

P̃q

P̃q+1

Figure 5.10: Illustration of the assignment rule A2.

Therefore, we have a circularity issue: inflation depends on the assignment, and the assignment

depends on the inflation. For example, when we first inflate a server P̃q−1, we do not yet know the

servers that it will share a processor with it. We can assume that the next server, P̃q, will share the

processor with the server currently being analysed, but later, because of the application of rule A2,

server P̃q may be allocated its own processor (as a single server), and therefore server P̃q−1 will

share the processor not with that server but with the one that follows it, i.e. server P̃q+1, and it will

have to be re-inflated.

The approach we use to overcome this issue is backtracking. To limit the amount of backtrack-

ing, we merge several steps of the generic algorithm in a single step. In the next two subsections,

we illustrate the application of this approach to S-EKG and to NPS-F, respectively.

5.4.2.1 Task to processor assignment procedure in S-EKG

The distinctive feature of S-EKG is that the split servers, if any, have only one task. To ensure

this, we merge the four steps of the generic algorithm in a single one. The full algorithm is

somewhat complex, therefore, we just provide an overview of its main steps, which are illustrated

in Figure 5.11.

Pp

P̃q+1

P̃q

P̃q−1

Step 1

τi

τi+1

Step 2

Check

Check

Step 3

Inflate

Inflate

Step 4

if U [Pp]> 1.0 then
break

end if

Step 5

τi+1

Step 6

i++

Iteration

Figure 5.11: Illustration of the S-EKG task-to-processor mapping.

The algorithm starts by assigning empty servers (an empty server is a server without any task

assigned to it) to the processors. All processors are allocated to a non-split server, one split server

per-predecessor processor and one split server per-successor processor, so that the first and the
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last processors are allocated to only two servers, whereas the other processors are allocated to

three servers. Then, it iterates over the set of tasks, two tasks at time, if available, and it assigns

the tasks to the servers in an attempt to maximize the utilization of each server, subject to the

constraint that each split server has at most one task. In the first step (Step 1), it provisionally

assigns tasks τi and τi+1 to P̃q, the non-split server, and P̃q+1, the split-server shared with the next

processor, respectively, by invoking the add_task_to_server function. Then, it checks (Step

2) the schedulability of each server by invoking the dbf_part_check function. If some server

with only one task is not schedulable, then the task set is also not schedulable. Otherwise, if the

non-split server is not schedulable, the algorithm backtracks and assigns τi to P̃q+1, and moves

to the next iteration (where it will map tasks τi+1 and τi+2 to servers P̃q+2 and P̃q+3, respectively,

and check their schedulability). If both servers are schedulable, it proceeds by inflating (Step

3) the capacity of the previous, P̃q−1, and the current, P̃q, servers by invoking the inflate_-

sb_split and inflate_sb_non_split functions, respectively. It then checks (Step 4), if

U [Pp] = U in f l
x [P̃q−1]+U in f l[P̃q] is larger than 1.0. If yes, then it proceeds as in Step 2, when the

non-split server is not schedulable. Otherwise, (Step 5) it assigns τi permanently to P̃q, removes

τi+1 from P̃q+1 server, and moves to the next iteration (Step 6), in which it will attempt to map task

τi+1 to server P̃q and task τi+2 to server P̃q+1.

For sake of simplicity, in this description we omitted many details, including those related to

the application of rules A1 and A2.

5.4.2.2 New server-to-processor assignment for NPS-F

In the case of NPS-F, to limit the amount of backtracking, we keep the first step of the generic

algorithm, i.e. the mapping of tasks to servers, separated and merge the remaining steps in a single

one. The mapping of tasks to servers is performed in a first step, as described in Algorithm 5.1,

and is never undone. The backtracking can affect only the assignment of servers to processors,

and therefore their inflation and the definition of the reserves.

Algorithm 5.3 shows the pseudo-code of the new merged step. It assigns servers to processors

(employing a NF bin-packing heuristic) and maps processor reserves to servers. The algorithm

iterates over the set of servers created by the task mapping algorithm. First, it tries to assign

each server as a non-split server. For that purpose, it inflates the current server by invoking the

inflate_sb_non_split function, which considers the interference of the previous and the

next server. If U [Pp] (the utilization of the current processor already assigned to other servers)

plus U in f l[P̃q] (the inflated utilization of the current server) is smaller than or equal to 1.0 (100%),

the current server P̃q is assigned (non-split) to the current processor Pp and the algorithm moves

to the next server. Otherwise, it will try to assign the current server, P̃q, as a split server. Thus,

it computes the inflation of the server by invoking the inflate_sb_split function, which

considers the interference of the previous two and also the next two servers. If rule A1 applies,

then the server is assigned as a non-split server to the next processor, and the algorithm moves to

the next server. If rule A2 does not apply, then the current server P̃q becomes a split server and

is assigned to both the current and the next processor, and the algorithm moves to the next server.
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Otherwise, i.e. if rule A2 applies, the server is classified as a single server, moved to the end of

the server list (and the servers renumbered, for ease of description of the algorithm), so that it

is later allocated a dedicated processor. Furthermore, the algorithm is restarted, because servers

that have already been assigned to a processor may have to be re-inflated. For example, server

P̃q−1, which was inflated assuming that P̃q would share the processor with it, will now share the

processor with P̃q+1. However, this then entails the possibility that P̃q was not sufficiently inflated

(since the release interference from tasks on P̃q+1 might be greater than what the schedulability

test assumed). Thus backtracking is performed only when rule A2 is applied. Furthermore it is

bounded to the number of servers. This is because application of rule A2 determines that the server

will become a single server, and therefore will no more be subject to application of rule A2.

For the sake of ease of understanding, Algorithm 5.3 does not include some improvements

that could make it more efficient or that could reduce the pessimism in the server inflation for

some task sets. For example, when the algorithm applies rule A2 to a server, it moves it to the

end of the servers list and restarts the assignment from the beginning. However, there is no need

to backtrack all the way back to the beginning: it would be enough to backtrack until the highest

numbered processor whose y-reserve mapping is not affected. Therefore the amount of work that

has to be redone can be limited by slightly changing the algorithm. Yet another improvement on

the speed of the algorithm is to prevent attempting assignments that will surely fail. For example,

if the current processor has already been assigned a non-split server, the current server cannot be

assigned as non-split in that processor (or else the two servers’ contents would have been lumped

together into one server, at the bin-packing stage). Therefore, in this case, the algorithm should try

immediately to assign the server as a split server. Yet another example is the case where the sum

of the size of the x-reserve, in terms of utilization, and the uninflated utilization of the server under

analysis is larger than 1.0. Clearly, that server cannot be assigned to the N-reserve, and therefore

the algorithm should try immediately to assign the server as a split server.

Algorithm 5.3 takes a pessimistic stance and considers that a non-split server always shares

the processor with two other servers, and that a split server always shares the processors with

four other servers, but this is the worst-case. In the best-case scenario, a non-split server may

share the processor with only one more server, and a split server with two other servers. Thus,

by assuming the best-case, it is possible to eliminate any pessimism from the algorithm (all pes-

simism is included in the functions that inflate the servers). However, this comes at the cost of

additional backtracking, whenever an assumption is proved wrong. Still, it is possible to reduce

the pessimism without adding backtracking by taking into account previous assignment decisions.

For example, when inflating a non-split server and the x-reserve of the current processor is empty,

the algorithm need not consider the interference of the previous server, because they do not share

processors.

5.4.2.3 Effect of assignment rules on the schedulability analysis

As shown in Algorithm 5.3, the introduction of assignment rule A2 may lead to backtracking.

Although, as we have argued, backtracking is limited, it can nevertheless be undesirable for some
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Algorithm 5.3: Pseudo-code of the new server-to-processor assignment algorithm.
Input: set of k servers
Output: reserves for the m processors, allocating them to the input servers

S← 1
δ
·minτi∈τ (Ti,Di) {time slot}

restart← true
while restart do

restart← false
p← 1 {processor index}
q← 1 {server index}
U [Pp]← 0
while q≤ k and Type[P̃q] 6= SINGLE do

Type[P̃q]← NON-SPLIT
t← 2 · lcm_T(P̃q−1, P̃q, P̃q+1)

U in f l [P̃q]← inflate_sb_non_split(P̃q, t)
if U [Pp]+U in f l [P̃q]≤ 1.0 then

{server need not be split – we need not check rule A1, at this point}
U [Pp]←U [Pp]+U in f l [P̃q]
add_server_to_processor_N(Pp, P̃q,U in f l [P̃q])

else
{Server cannot be NON-SPLIT on Pp: try to split it}
U in f l

tmp ←U in f l [P̃q] {Note that we are considering the interference by P̃q−1, but that is not needed}
t← 2 · lcm_T(P̃q−2, P̃q−1, P̃q, P̃q+1, P̃q+2)

U in f l [P̃q]← inflate_sb_split(P̃q, t)
U in f l

y [P̃q]← 1.0−U [Pp]

U in f l
x [P̃q]←U in f l [P̃q]−U in f l

y [P̃q]

if U in f l
x [P̃q]≥U in f l

tmp then
{Rule A1 – note that inflate_sb_non_split() always considers 3 servers, but in this case we need only consider 2}
adjust_reserves(Pp) {the y reserve becomes empty}
p← p+1
U in f l [P̃q]←U in f l

tmp {non-split server inflated utilization, prev. computed}
add_server_to_processor_N(Pp, P̃q,U in f l [P̃q])
U [Pp]←U in f l [P̃q]

else
if (U in f l

x [P̃q]+U in f l
y [P̃q])≥ 1.0−ResL/S then

{Rule A2}
Type[P̃q]← SINGLE
move_to_last(P̃q) {so that split servers are assigned “neighbor” processors}
restart← true
break {start all over: inflation of other servers may have been affected}

else
Type[P̃q]← SPLIT
add_server_to_processor_Y(Pp, P̃q,U

in f l
y [P̃q])

U [Pp]←U [Pp]+U in f l
y [P̃q]

p← p+1
add_server_to_processor_X(Pp, P̃q,U

in f l
x [P̃q])

U [Pp]←U in f l
x [P̃q]

end if
end if

end if
q← q+1

end while
if restart then

continue
end if
p← p+1
while q≤ k do

{handle SINGLE servers, if any}
add_server_to_processor(Pp, P̃q)
U [Pp]← 1.0
p← p+1
q← q+1

end while
end while
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task sets, because it could take too much time. In such cases, one can avoid backtracking at the

cost of some pessimism, by amending Equations 5.21 and 5.33 (employed by the schedulability

test), respectively, to:

dbfsb:non−split
RelI (P̃q, t) = dbfpart

RelO(prev_server(P̃q), t)+dbfpart
RelO(P̃qA(q,t), t) (5.42)

and

dbfsb:split
RelI (P̃q, t) =

dbfpart
RelO(prev_server(P̃q), t)+dbfpart

RelO(prev_server(prev_server(P̃q)), t)+

dbfpart
RelO(P̃qA(q,t), t)+dbfpart

RelO(P̃qB(q,t), t) (5.43)

wherein prev_server denotes the previous server (not assigned a dedicated processor, i.e., not

single server) and the server indexes qA and qB are computed as:

qA(q, t) ∈ {q+1, · · · , k} :

dbfpart
RelO(P̃qA(q,t), t)≥ dbfpart

RelO(P̃p, t) ∀p ∈ {q+1, · · · , k} (5.44)

and

qB(q, t) ∈ {q+1, · · · , k}\{qA} :

dbfpart
RelO(P̃qB(q,t), t)≥ dbfpart

RelO(P̃p, t) ∀p{q+1, · · · , k}\{qA(q, t)} (5.45)

That is, when inflating a server, rather than considering the release interference from the next

server, we consider the maximum release interference that any of the servers not yet assigned may

cause, thus taking a worst-case approach. Similarly for split servers, but in this case we need to

consider the two largest values of the release interference that any of the servers not yet assigned

may cause.

Note that the values of indexes qA(q, t) and qB(q, t) may change with the values of t. How-

ever, since both dbfpart
RelO(P̃qA(q,t), t) and dbfpart

RelO(P̃qA(q,t), t)+ dbfpart
RelO(P̃qB(q,t), t) are non-decreasing

functions of t, the applicability of the Quick-Processor Demand (QPA) EDF analysis, which is

discussed in the next section, is not affected.

5.5 Schedulability tests

As discussed earlier, in slot-based task-splitting algorithms, overhead-aware schedulability testing

has to be done at two stages: (i) during the task-to-server mapping and (ii) during the server-to-

processor assignment. In our code, this testing is, respectively, performed by the C functions

(i) dbf_part_check (implementing Equation 5.6) and (ii) dbf_sb_non_split_check or

dbf_sb_split_check (implementing Equations 5.17 and 5.28, respectively).
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All these functions check whether or not, at every instant within a time interval [1, t), where

t is an argument of the functions, the supply of processor time satisfies the demand. Unlike what

is possible for conventional uniprocessor EDF scheduling where certain techniques allow the safe

use of much shorter intervals [GRS96, HBJK06, RCM96, Spu96], in our case, it is necessary to

set t to twice the least common multiple of all Tis of the tasks of the server under consideration,

including the fake task modelling the unavailability of the reserve(s). This can be a very big

number, therefore the length t of this testing interval can be exceptionally long. This raises two

difficulties. First, the value for t may exceed the range of a 64-bit integer. To overcome this

limitation, we used the GNU Multiple Precision Arithmetic C-Library1. Second, a longer testing

interval means many more iterations, in order to test for all integer values in the range [1, t). To

speed up the analysis, we implemented the schedulability testing using Quick Processor-demand

Analysis (QPA) [ZB09], which overcomes the need to test for all values in the interval [1, t). This

technique works by identifying large sub-intervals within which no deadline misses may occur,

and skipping them during testing. This way, for most cases, the analysis is significantly sped

up. Algorithm 5.4 shows, in pseudo-code, how the QPA technique can be used with each of the

schedulability tests we defined earlier (where dbfxxx stands for any of them).

Algorithm 5.4: Pseudo-code algorithm of the schedulability test functions.
Input: P̃q {server to analyse}
Returns: true if P̃q is schedulable, false otherwise

t← 2 · lcm_T(P̃q)
dmin←min

τi∈τ[P̃q ]
(Di)

while dbfxxx(P̃q, t)≤ t and dbfxxx(P̃q, t)> dmin do
if dbfxxx(P̃q, t)< t then

t← dbfxxx(P̃q, t)
else

t← t−1
end if

end while
return dbfxxx(P̃q, t)≤ dmin {true if P̃q is schedulable, false otherwise}

5.6 Summary

In this chapter, we proposed a unified schedulability analysis for slot-based scheduling algorithms.

This new schedulability analysis is a processor demand-based analysis that supersedes the the

original utilization-based analysis. The new schedulability analysis incorporates the overheads in-

curred by slot-based scheduling algorithms. It is used by the off-line task-to-processor assignment

algorithm. It is more efficient and also more reliable than the previous analysis.

1Available online at http://gmplib.org/

http://gmplib.org/
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Chapter 6

Reserve-based scheduling algorithm

6.1 Introduction

Given the increasing use of multiple processing units in computing systems, the problem of sche-

duling tasks with real-time constraints on such systems is particularly relevant. Therefore, al-

though an optimal algorithm for this problem is not possible, neither from a theoretical [FGB10]

nor from a practical perspective, we believe that there is always room for more scheduling algo-

rithms.

In this chapter, we present the Carousel-EDF [SSTB13], a new hierarchical scheduling algo-

rithm for a system of identical processors and its overhead-aware schedulability analysis based on

demand-bound functions. We start with a description of the Carousel-EDF scheduling algorithm,

then we ensue with a description of the implementation of Carousel-EDF in Linux kernel. We for-

mulate the demand-based overhead-aware schedulability analysis for Carousel-EDF scheduling

algorithm. We end this chapter with the derivations of the utilization bound and the preemption

upper bound of the Carousel-EDF scheduling algorithm.

6.2 Basics of the reserve-based scheduling algorithm

Carousel-EDF is an offshoot of the generic slot-based task-splitting scheduling algorithm de-

scribed in Chapter 4. It also relies on the concept of servers that are instantiated by the means

of time reserves. However, contrarily to slot-based task-splitting scheduling algorithms, which

migrate tasks at time slot and reserve boundaries, Carousel-EDF only migrates tasks at reserve

boundaries. Consequently, the time is no longer constrained to the time slot boundaries, but it is

only divided into time reserves instead. This approach preserves the utilization bounds of slot-

based task-splitting scheduling algorithms, namely that of NPS-F, which is the highest among

algorithms not based on a single dispatching queue and that have few preemptions. Furthermore,

with respect to slot-based task-splitting scheduling algorithms, Carousel-EDF reduces up to 50%

the worst-case number of context switches and the worst-case number of preemptions caused by

the time division mechanism.

103
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The Carousel-EDF scheduling algorithm comprises an off-line procedure and a run-time sche-

duling algorithm. The off-line procedure consists of (i) the partitioning of the task set into subsets

that are mapped to servers; (ii) the sizing of the reserve of each server; (iii) the cycling sequence

order of the server-to-processor assignment; and finally (iv) for each processor, the first server

assigned to it and the size of the first reserve. The run-time scheduling algorithm is a two-level

hierarchical algorithm, similar to the run-time scheduling algorithm under slot-based dispatching.

The top-level scheduling algorithm allocates processors to servers for the duration of the corre-

sponding reserves and ensures that for each server, at any time, there is at most one processor

allocated to it. The low-level scheduling algorithm uses the EDF policy to schedule the tasks in

a server during its reserves. In the next subsection, we describe the off-line procedure and in the

following one the run-time task-dispatching algorithms.

6.2.1 Off-line procedure

Carousel-EDF employs the off-line procedure as in the slot-based task-splitting algorithm de-

scribed in Section 4.3. Therefore, the first step of the off-line procedure is to partition the task set

into subsets that are mapped to servers. Servers have unique identifiers in the range P̃1 to P̃k. The

set of tasks in server P̃q is denoted τ[P̃q]. Recall that the utilization of server P̃q, U [P̃q], is the sum

of the utilizations of its mapped tasks, i.e. U [P̃q] = ∑τi∈τ[P̃q]
ui. Because at any time a server can

have at most one processor allocated to it, a server’s utilization must not exceed 100%. Thus, the

assignment of tasks to servers can be done by applying any bin-packing heuristic.

For the task set example presented in inset (a) of Figure 4.1 the outcome is thus equal to

the presented in inset (b) of the same figure. Once the servers have been defined, the off-line

procedure computes for each server the size of its reserve, i.e. the length of the time window

during which a processor is allocated to a server. The reserves are periodic and we call this period

the time slot, S, a term inherited from slot-based task-splitting scheduling algorithms. As in slot-

based task-splitting scheduling algorithms, S = 1
δ
·minτi∈τ(Ti,Di), where δ is an integer design

parameter that allows a trade-off between the number of preemptions and the utilization bound of

the algorithm.

Having determined the length of the time slot, S, the size of each reserve, Reslen[P̃q], can be

computed by multiplying S with the inflated utilization of that server, which we denote U in f l[P̃q].

The reason for inflation is the same as for slot-based task-splitting scheduling algorithms. Server

utilization inflation is required because the tasks of a server can run only when a processor is

allocated to that server. Thus, a server may have ready tasks, but cannot execute them. By inflating

the utilization of a server, we ensure that the tasks deadlines are met in spite of that delay. Below,

in Section 6.4 we present the server inflation algorithm. The last step defines the cycling sequence

order of the server-to-processor assignment as well as the initial phasing of each processor. This

assures that at any time instant there is a one-to-one relationship between processors and active

servers. In other words, at any time instant, each processor is allocated to only one server and a

server can be, at most, assigned to one processor (see Figure 6.1).
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6.2.2 Run-time task-dispatching algorithm

The top-level hierarchical scheduling algorithm allocates processors to servers. Each processor is

allocated for the duration of the corresponding reserve in a round-robin fashion. Furthermore, the

schedule of each processor is staggered so that each server is assigned to at most one processor at

any time and is periodically assigned, with period S, to some processor. As a result, each server

moves from one processor to the next also in a round-robin fashion.

Figure 6.1 illustrates the run-time dispatching time-line produced by the Carousel-EDF for the

example shown in Figure 4.1. In this example, we have four processors and five servers. At time

zero, processor P1 is allocated to server P̃1. When that server’s reserve expires, processor P1 is

allocated to server P̃2, and so on until it is allocated to the last server P̃5. Processor P1 is allocated

again to server P̃1 at time 4S; that is, at the next integer multiple of S after the reserve of the last

server (in this case, P̃5) expires on P1. This ensures not only that every reserve has period S, but

also that at any time there is at most one processor allocated to any server.

The cycling of servers (that inspired the name Carousel) through processors is also clear in

Figure 6.1. Server P̃1 is assigned to processor P1 at time zero. At time S, it is assigned to processor

P4, then, at time 2S, to processor P3, and so on (it will return to processor P1 every 4S time units).

This ensures not only that every reserve has period S, but also that at any time there is at most one

processor allocated to any server. Therefore, when the sum of the duration of all reserves is not a

multiple of the time slot, there is a time gap between the end of the last reserve and the beginning

of the first that we name empty reserve.

0 tS 2S 3S 4S 5S

P4

P3

P2

P1 P̃1 P̃2 P̃3 P̃4 P̃5 P̃1

P̃2 P̃3 P̃4 P̃5 P̃1 P̃2 P̃3

P̃3 P̃4 P̃5 P̃1 P̃2 P̃3 P̃4

P̃5 P̃1 P̃2 P̃3 P̃4 P̃5

Figure 6.1: Run-time dispatching time-line produced by the Carousel-EDF for the task set example
presented in Section 4.3.

The low-level scheduler uses EDF to schedule the tasks in a server. Because each reserve

instance occurs always at a single processor, the low-level scheduler operates on a local basis, i.e.

there is no need of coordination among the low-level schedulers of the different processors.

6.3 Implementation of the Carousel-EDF task-dispatching algorithm

In this section, we provide some details regarding the implementation of Carousel-EDF’s top- and

low-level scheduler. We also describe a new implementation technique for the release of tasks.

This technique eliminates the task release interference across reserves. This is important in order
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to better understand the overhead-aware schedulability analysis of Carousel-EDF that we develop

in the following section.

Following the same implementation approach of the slot-based task-splitting scheduling al-

gorithm described in Section 4.6, we added the Carousel-EDF scheduler to the RT scheduling

class of the PREEMPT-RT-patched Linux 3-2.11-rt20 kernel version [SSTB13]. Therefore, the

Carousel-EDF implementation shares many issues with the slot-based task-splitting scheduling

algorithm implementation. Actually, the changes introduced to the RT scheduling class are, basi-

cally, the same. Therefore, in this section, we opt for a high-level description of the Carousel-EDF

implementation.

6.3.1 Scheduler implementation

In the context of this work, our implementations have followed one rule-of-thumb, which we

believe is important for the implementation of scheduling algorithms for multiprocessor systems,

that is: the interactions among processors must be reduced.

The implementation of the Carousel-EDF scheduler shares many issues with the slot-based

scheduler described in Section 4.6. The Carousel-EDF scheduler implementation is also split into

top- and low-level scheduler implementation. The implementation of the Carousel-EDF sched-

uler is supported by three data structures (see Figure 6.2): the per-processor retas_rb_rq; the

carousel array; and server. Next, we discuss about our implementation approach with respect

to each such data element.

We model each server as an instance of a new data structure called server, which stores

the following information: (i) a field that uniquely identifies a server; (ii) a ready-queue; (ii) an

atomic variable that exposes the server state, called flag; (iv) the length of its reserve, res_len;

and finally, (v) the release-queue (whose purpose is explained later in this section). Tasks that are

ready to run are kept in a ready-queue, ordered by their deadlines. However, rather than using a

system wide ready-queue, our implementation uses a per-server ready-queue like the slot-based

scheduler implementation described in Section 4.6. The purpose of flag is the same as in the

slot-based scheduler implementation. Its main goal is to ensure that a task of a server is executed

by only one processor at any time instant.

Carousel-EDF scheduling guarantees that at any time there is at most one processor allocated

to any server, this eliminates contention in the access to the respective ready-queue. This is assured

by the carousel array; that is, an array, which implements a circular queue, that stores the server

identifier according to the cycling sequence order (in Section 6.4, we describe the algorithm to

create such a server cycling sequence order). Note that, the server cycling sequence order is

the same for all processors. The difference consists in the assignment of the first server to each

processor.

For each processor, we use a timer for handling the server reserves, a variable to store the index

of the carousel array that indicates the current allocated server, curr_car_idx, and a pointer to

the current allocated server, curr_srv.
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The top-level scheduler work as follows. At the setup each processor is configured with the

first allocated server through the index of the carousel array, curr_car_idx, and the length of

the first reserve (which in many cases is different from the server reserve length defined in res_-

len). Indeed, due to this initial phasing (which is described in Section 6.4) of every server it

is assured that any server is not allocated on two processors simultaneously. The timer is used

to measure that initial reserve and the index of the array is used to get the pointer to the current

allocated server (that is stored in curr_srv). At timer expiration, when the respective reserve

ends, the curr_car_idx is incremented (if it reaches the end of the array it re-starts from the

beginning), the pointer to the current allocated server is updated, and the timer is started for the

new reserve. Then, it triggers the invocation the low-level scheduler so that the processor switches

to a task belonging to the newly current server.

Processors

Pm rq

P2 rq

P1 rq

retas_rb_rq

timer
curr

_car_idx
curr_srv

Carousel

srv_id

srv_id

srv_id

[k]

[2]

[1]

Servers

P̃k flag res_len ready_queue release_queue

P̃2 flag res_len ready_queue release_queue

P̃1 flag res_len ready_queue release_queue

Figure 6.2: Data required to implement the Carousel-EDF scheduling algorithm in Linux kernel.

Consider again Figure 6.1. As it can be seen from that figure, during the first time slot of

the processor P4 there is some time not used by any server, the empty reserve. This continues on

processor P3 on the second time slot, and on processor P2 on the third time slot. In practice, this

unmapped reserve follows the same processor rotation pattern like real servers. Hence, from the

point of view of implementation, the best option for handling this unmapped reserve is to allocate

it to an empty server; that is, a server with a reserve length equal to the empty reserve length and

without any task assigned to it. Note that, from a practical point of view, the rotation of such an

empty server can be useful for the operating system, because this periodical idle time gives to the

processor some available processing capacity that can be used by the operating system to execute

some management stuff.

6.3.2 Releasing jobs

As mentioned before, each task generates a potentially infinite number of jobs. This generation is,

usually, done either by the means of interrupts or timers. This is known as job release. From the

implementation point of view, releasing a job consists in transferring a job from the release-queue

to the ready-queue. Our implementation supports the job release either by interrupts or timers,

however, we adopt the following release mechanism: each server also has its own release queue (a

red-black tree sorted by the arrival time) and whenever a server, P̃q, is allocated to one processor
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static enum hrtimer_restart begin_reserve(struct hrtimer *timer)
{

unsigned long long next_expire;
struct rq *rq = cpu_rq(smp_processor_id());
...
rq->retas_rb_rq.curr_car_idx = get_next_curr_car_idx(rq->retas_rb_rq.curr_car_idx);
rq->retas_rb_rq.curr_srv = get_server_id(rq->retas_rb_rq.curr_car_idx);
...

next_expire = timer->expires + rq->retas_rb_rq.curr_srv->res_len;
hrtimer_set_expires(timer, ns_to_ktime(next_expire);
wake_up_jobs(&rq->retas_rb_rq.curr_srv->release_queue, &rq->retas_rb_rq.curr_srv->

ready_queue);
resched_task(rq->curr);
...
return HRTIMER_RESTART;

}

Listing 6.1: Timer callback function that release all jobs whose ai, j is earlier that the beginning of
the current reserve.

(at the beginning of its reserve) its release-queue is polled to transfer all jobs with ai, j smaller than

or equal to the beginning of the current reserve. Further, in the case of some pending job releases

fall in within the current server P̃q reserve, a timer is set.

In practice, this is performed by the top-level scheduler at timer expiration (see Listing 6.1).

Thus, when a new reserve starts it updates the curr_srv pointer and transfers all pending jobs

from the respective release- to ready-queue. Then, it triggers the invocation of the low-level sched-

uler by flagging the currently executing task to be preempted.

6.4 Overhead-aware schedulability analysis

As mentioned before, the Carousel-EDF comprises two algorithms: the off-line task-to-server

assignment and the run-time task-dispatching algorithms. The purpose of the schedulability anal-

ysis is two-fold: (i) it checks if the task set is schedulable; and (ii) it configures the system; that

is, it computes the parameters used by the run-time task-dispatching algorithm. Therefore, the

schedulability analysis is used by the off-line procedure.

The first step in the off-line procedure is the partitioning of the task set into servers. Because

at any time a server is allocated at most one processor, the processing demand of all tasks in

a server, including overheads, must not exceed the processing capacity that can be supplied by

a processor. Thus, we use the same demand-based and overhead-aware schedulability analysis

used for mapping tasks to servers developed in Section 5.3.1, which ends with the task-to-server

mapping presented in Algorithm 5.1. The second step consists in: (i) sizing the server reserves;

(ii) creating the carousel; and finally, (iii) defining the initial phase of each processor. In order

to identify the related formulation to this stage, we superscript all functions with “rb” that is an

abbreviation of “reserve-based”.
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6.4.1 Server inflation

Carousel-EDF guarantees that each server is assigned to a processor for the duration of its reserve

every time slot (whose size is S time units); that is, tasks of a server can execute only within a

periodic reserve of length Reslen[P̃q] =U in f l[P̃q] ·S. Hence, given a time interval of length t, only a

fraction of t is supplied for the execution of a server. Thus, we can express this schedulability test

as:

dbfrb(P̃q, t)≤ sbfrb(P̃q, t),∀t > 0 (6.1)

Starting the derivation of dbfrb(P̃q, t) with dbfpart(τ[P̃q], t)(see equation 5.10):

dbfrb(P̃q, t) = dbfrb(τ[P̃q], t) = dbfpart(τ[P̃q], t) (6.2)

dbfpart(τ[P̃q], t) comprises the execution requirement of each task mapped to the server P̃q, includ-

ing the context switch (or task switch) as well as the release overheads.

Next, we derive the formulation taking into account the use of reserves. In order to model the

execution requirement of the CPMD and interrupts, we follow the same approach used for slot-

based non-split servers described in Subsection 5.3.2.1. In fact, both the slot-based non-split and

the reserve-based servers use only one reserve during each time slot. Then, the worst-case cost of

the CPMD in a time interval of length t is:

dbfrb
CpmdO(P̃q, t) = dbfsb:non−split

CpmdO (P̃q, t) (6.3)

On a uniprocessor, each interrupt Int i can be modelled as a sporadic interfering task with

minimal inter-arrival time of T Int
i and an execution time (and deadline DInt

i ) equal to CInt
i . However,

under periodic reserves, the interrupts only exert overhead when present inside the reserves of the

server under consideration. Outside its reserves, an interrupt contributes to the processor-demand

of some other server instead. Hence, each interrupt has to be modelled as a bursty periodic task.

This was the argument used for the approach followed to model the interrupts for the slot-based

task-splitting scheduling algorithm (see Equation A.8). Then, the execution demand of interrupts

is given by:

dbfrb
IntO(P̃q, t) = dbfsb:non−split

IntO (P̃q, t) (6.4)

Hence, the execution requirement of reserve-based server is:

dbfrb(P̃q, t) = dbfrb(τ[P̃q], t)+dbfrb
CpmdO(P̃q, t)+dbfrb

IntO(P̃q, t) (6.5)

Like the slot-based non-split servers, a reserve-based server P̃q is confined to execute within

a single reserve of length Reslen[P̃q] every time slot, S. We model this reduction by amending the

sbfrb(P̃q, t) to:

sbfrb(P̃q, t) = t−dbfrb
Fake(P̃q, t) (6.6)
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where dbfrb
Fake(P̃q, t) is computed as:

dbfrb
Fake(P̃q, t) =

dbfsb:non−split
Fake (P̃q, t) = max

(
0,
⌊

t−D f ake +ResL
T f ake

⌋
+1
)
· (C f ake +ResL) (6.7)

where C f ake = S−Reslen[P̃q], T f ake = S, and D f ake =C f ake are the attributes of the fake task that

models the unavailability of each reserve. ResL is a upper bound for the reserve latency. However,

ResL of the reserve-based scheduling algorithm could potentially be larger than the ResL of the

slot-based (see Figure 5.5) due to the release mechanism adopted for the reserve-based scheduling

algorithm.

Figure 6.3 illustrates the overheads associated with the switching from one reserve to another.

Note that, due to the release approach followed for Carousel-EDF the reserve latency includes the

release overhead of the jobs that the arrival time have elapsed. However, this overhead is already

accounted for in dbfpart(P̃q, t). In other words, we count this specific overhead twice. The reason

for that is: given the sporadic arrival nature of the tasks, we are not able to determine how many

jobs are either released inside or outside of the respective server reserves.

Pp τx,y τi, j

A−1 A

Reserve A
should start

ResJi, j ResOi, j CtswOi, j

Timer
interrupt for
beginning
reserve A

Waking up
all jobs that
the arrival
time have
elapsed.

Invocation
of the

scheduler

τi, j (re)starts
executing

ResLi, j

t

Figure 6.3: Illustration of the reserve latency. The ResL incorporates the release of jobs that arrival
time has elapsed.

Replacing sbfrb(P̃q, t) by the formulation presented in Equation 6.6 in Inequality 6.1 and mov-

ing some terms from the right-hand side to the left-hand side, we obtain the following schedula-

bility test for reserve-based servers:

dbfrb(P̃q, t)+dbfrb
Fake(P̃q, t)≤ t,∀t > 0 (6.8)

We use the schedulability test in Inequality 6.8, with dbfrb(P̃q, t) as given by Equation 6.5

and sbfrb(P̃q, t) as given by Equation 6.6, to determine the server’s inflated utilization. For that

purpose, we define the inflate_rb function. The algorithm of the inflate_rb function is
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similar to the pseudo-code described in Algorithm 5.2. The only difference is the function dbf_-

rb_check, which implements the schedulability test in Equation 6.1, rather than function dbf_-

sb_non_split_check. The dbf_rb_check function is implemented using the QPA. Hence,

the algorithm of that function is similar to the Algorithm 5.4 that shows, in pseudo-code, how the

QPA technique can be used with each of the schedulability tests we have defined so far. For the

dbf_rb_check function, dbfxxx is replaced by dbfrb(P̃q, t).

6.4.2 Generation of the carousel

The second step in the off-line procedure is the generation of the carousel. It comprises deter-

mining the size of the reserves and their sequence and also the initial phasing of the different

processors.

Before describing the carousel generator algorithm, let us reason about the server inflation.

The server inflation algorithm may lead to an inflated utilization close to 100% or even higher.

If the inflated utilization is 100% or higher, it means that the overheads incurred by the use of

reserves are higher than the unused processor capacity, and therefore the server should be assigned

to a dedicated processor, becoming a single server (a single server is assigned to one dedicated

processor, which is only allocated to that server, then, there is no need for reserves). Even if the

inflated utilization of a server is lower than 100% it may be worth that it be assigned to a dedicated

processor. This is because the size of the reserve of such a server is close to S, the period of

the reserves. In this case, the uncertainty in the temporal behaviour of the operating system in

general and in the time measurement in particular gives rise to the instantaneous migration problem

described in Section 4.5 that may lead to a race condition in which two processors schedule the

same task. To address this issue, we suggest the use of rule A2 described in Section 5.4 that states,

in other words, that:

A2: if a server’s inflated utilization is larger than 1.0−ResL/S, then the inflated utilization of the

server should be set to 1.0, and the server assigned to a dedicated processor; that is, the

server becomes a single server.

The rationale for this rule is to ensure that, when a processor switches to a new server reserve,

the previous reserve of that server has terminated. In other words, it does not make sense to employ

a reserve mechanism if the potential benefit of that is eliminated by the overheads incurred by such

a mechanism. Note that, this amounts to pure partitioning for the respective tasks.

Algorithm 6.1 shows the algorithm that generates the sequence of servers. It has a single

loop in which it iterates over the set of servers created by the task set partitioning algorithm (Al-

gorithm 5.1). For each server it inflates its utilization by invoking the inflate_rb function,

identifies single servers and assigns a sequence number to each server that determines the order of

the server in the carousel.

Sequence number zero is assigned to single servers, i.e. servers that are assigned to dedicated

processors and hence do not belong to the carousel. The algorithm returns true, if the set of servers

is schedulable over m processors, and false otherwise.
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Algorithm 6.1: Pseudo-code algorithm of reserve sequence generator.
Input: set of k servers P̃q, with 1≤ i≤ k

ε {accuracy in server inflation}
m {number of processors}

Output: boolean {true if schedulable}
Γ[] {server sequence}

S← 1
δ
·minτi∈τ (Ti,Di) {time slot}

s← 1 {sequence order}
U ← 0 {system utilization}
for q← 1 to k do

{inflate servers}
t← 2 · lcm_T(P̃q)
U in f l [P̃q]← inflate_rb(P̃q,ε, t)
if U in f l [P̃q]≥ 1.0−ResL/S then

U in f l [P̃q]← 1.0
T p[P̃q]← SINGLE
Γ[q]← 0 {0 means not in sequence}

else
Γ[q]← s
s← s+1

end if
U ←U +U in f l [P̃q]

end for
return U ≤ m

To complete the generation of the carousel, we need to determine the initial phasing of the

carousel in each processor, i.e. to determine the first reserve for each processor. Let r be the

number of processors used in the carousel. As illustrated in Figure 6.1, the schedule of each

processor must be such that processor Pp is S time units ahead of that of processor Pp−1, modulo r.

Therefore, for each of the r processors, we need to determine the server of its first reserve and its

duration. Algorithm 6.2 shows the pseudo-code of an algorithm that computes these parameters.

It takes as inputs the carousel, including the server parameters, the number of processors r, whose

identifier is assumed to range from 1 to r. The algorithm has one single loop in which it iterates

over the carousel (and also the r processors used to run the carousel). It then determines the servers

that are active in the first processor at each multiple of the time slot S, and the time left at that point

until the end of the reserve, and assigns these values as the parameters of the first reserve of the

corresponding processor.

6.4.3 Supporting other job release mechanisms

As mentioned before, the Carousel-EDF scheduler implementation also supports the release of

jobs by timer or interrupts. Using the criterion that jobs of a task can be released by any processor

used by that task, this means that, under Carousel-EDF any job may be released by any processor.

In that case, we have to compute the execution demand of a server taking into account the release

interference of the other servers. The release interference dbfrb
RelI(P̃q, t) in a time interval of length

t is computed as:

dbfrb
RelI(P̃q, t) =

k

∑
i=1∧i 6=q

dbfpart
RelO(P̃i, t) (6.9)
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Algorithm 6.2: Pseudo-code algorithm of first reserve generator
Input: set of k servers P̃q, with 1≤ i≤ k

Γ[] {server sequence}
n {number of processors running the carousel}

Output: ρ[] {server of first reserve of each processor}
Φ[] {duration of first reserve of each processor}

p← 1 {processor index}

S← 1
δ
·minτi∈τ (Ti,Di) {time slot}

t← 0 {accumulated schedule time}
for q← 1 to k do

if Γ[q]<> 0 then
{only servers that belong to the carousel}
t← t +U in f l [P̃q] ·S {expiration time of this reserve}
if t ≥ (p−1) ·S then

{reserves crosses time slot boundary}
ρ[p]← q {assign first server}
Φ[p]← t− (p−1) ·S {duration of first reserve}
p← p+1

end if
end if

end for

where dbfpart
RelO(P̃i, t) gives the release interference of a server (see Equation 5.9 ) and dbfrb(P̃q, t)

(see Equation 6.5) is amended to:

dbfrb(P̃q, t) = dbfrb(τ[P̃q], t)+dbfrb
CpmdO(P̃q, t)+dbfrb

IntO(P̃q, t)+dbfrb
RelI(P̃q, t) (6.10)

Further, in this case, all tasks could incur the IPI latency, I piL, as in the case of split tasks under

slot-based semi-partitioned scheduling (see Equation 5.30). Then, the dbfrb(τ[P̃q], t) has to be

modified to incorporate such overhead, as:

dbfrb(τ[P̃q], t) =

dbfsb:split(τ[P̃q], t) =

dbfpart
RelO(τ[P̃q], t)+

∑
τi∈τ[P̃q]

max
(

0,
⌊

t−Di +RelJ+ I piL
Ti

⌋
+1
)
· (Ci +RelO+2 ·CtswJ) (6.11)

6.5 Utilization bound

The utilization bound of an algorithm is a simple performance metric used to compare scheduling

algorithms. In this section, we present the utilization bound of the Carousel-EDF scheduling

algorithm based on the utilization factor. By design, Carousel-EDF offers, for the same value

of corresponding parameter δ , the same utilization bound as the original NPS-F algorithm. This

bound is given by the following expression:
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2 ·δ +1
2 ·δ +2

The following reasoning establishes this.

Lemma 1. A set of k servers is schedulable on m processors under Carousel-EDF if and only if

k

∑
q=1

U in f l[P̃q]≤ m

Proof. This follows from the fact that Carousel-EDF successfully schedules all servers if and

only if it provides U in f l[P̃q] · S time units to each server P̃q within every time window of length S

(equal to the time slot). This processing time is provided to the k servers from the m processors (by

design, in such a manner that each server only receives processing time from at most one processor

at any time instant).

Lemma 2. After the bin-packing stage of Carousel-EDF, it holds that 1
k ∑

k
q=1U [P̃q]>

1
2 , for the k

utilized bins (servers).

Proof. This follows from the fact that Carousel-EDF successfully schedules all servers if and

only if it provides U in f l[P̃q] · S time units to each server P̃q within every time window of length S

(equal to the time slot). This processing time is provided to the k servers from the m processors (by

design, in such a manner that each server only receives processing time from at most one processor

at any time instant).

Lemma 3. : For any server P̃q, it holds that U in f l[P̃q]≤ inflate(U [P̃q]).

Proof. This holds because Carousel-EDF inflates each server P̃q to the minimum U in f l[P̃q] suffi-

cient for schedulability, according to an exact schedulability test. In contrast, the inflate function

used by NPS-F potentially over-provisions.

Now we can prove the utilisation bound of Carousel-EDF. The following theorem and its proof

are analogous to Theorem 3 from [BA09b], which proved the utilisation bound of NPS-F.

Theorem 1. The utilization bound of Carousel-EDF is 2·δ+1
2·δ+2 .

Proof. An equivalent claim is that every task set with utilization not greater than 2·δ+1
2·δ+2 ·m is

schedulable under Carousel-EDF. We will prove this equivalent claim.

From Lemma 1, Carousel-EDF successfully maps all k servers to a feasible online schedule if

and only if

k

∑
q=1

U in f l[P̃q]≤ m
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Applying Lemma 3 to the above, a sufficient condition for the schedulability of all k servers is

k

∑
q=1

inflate(U [P̃q])≤ m (6.12)

For the function inflate(U) = (δ+1)·U
U+δ

, it holds that d
dU inflate(U) > 0 and d2

dU2 inflate(U) < 0

over the interval [0,1]. Therefore, from Jensen’s Inequality [Jen06], we have:

k

∑
q=1

inflate(U [P̃q])≤ k · inflate(Ū)

where

Ū =
1
k

k

∑
q=1

U [P̃q])

Hence, combining this with the sufficient condition of Inequality 6.12, a new sufficient condi-

tion for the successful mapping of the k servers is

k · inflate(Ū)≤ m (6.13)

Now, let the function α(U) denote the expression inflate(U)−U . Then, α(U) = U ·(1+U)
U+δ

and

Inequality 6.13 can be rewritten as

k · (Ū +α(Ū))≤ m (6.14)

Given that α(U) is a decreasing function of U over [1
2 ,1] it holds that

α(U)

U
<

α(1
2)

1
2

=
1

2δ +1
, ∀U ∈

(
1
2
,1
]
⇒ α(U)<

1
2δ +1

·U ∀U ∈
(

1
2
,1
]

Combining the above with the fact that (from Lemma 2) Ū > 1
2 , we obtain from Inequality 6.13

the following new sufficient condition:

k ·
(

Ū +
1

2δ +1
·Ū
)
≤ m (6.15)

In turn, this can be equivalently rewritten as:

kŪ ≤ 2δ +1
2δ +2

m (6.16)

But the left-hand side of the above inequality, corresponds to the cumulative utilization of all

tasks in the system. Therefore, if ∑τi∈τ ui ≤ 2δ+1
2δ+2 m, this is a sufficient condition for schedulability

under Carousel-EDF. This proves the theorem.
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6.6 Upper bounds on preemptions

Under either of the two approaches to server mapping formulated in [BA09b], for NPS-F, a upper

bound nrNPS−F
pree on the preemptions (including migrations) related to the reserves within a time

interval of length t is given by:

nrNPS−F
pree <

⌈ t
S

⌉
·3 ·m (6.17)

This follows from the fact that, within each time slot of length S, other that preemptions due to

EDF, there occur: (i) one preemption per-server (hence k in total), when its last (or only) reserve

runs out; plus (ii) m−1 (at most) migrations, corresponding to the case when some server migrates

between a pair of successively indexed processors.

Therefore

nrNPS−F
pree =

⌈ t
S

⌉
· k+

⌈ t
S

⌉
· (m−1) (6.18)

and the bound of Inequality 6.17 is derived from the fact that m− 1 < m and also, as proven by

Corollary 1 in [BA09b], k < 2 ·m.

By comparison, Carousel-EDF generates within each time slot, at most k preemptions/migra-

tions (other than those due to EDF). Each of those corresponds to the ending of the reserve of the

corresponding server. Therefore

nrCarousel−EDF
pree =

⌈ t
S

⌉
· k <

⌈ t
S

⌉
·2 ·m (6.19)

By comparing the respective bounds (Equations 6.17 and 6.19), we observe that the upper

bound for preemptions due to the time division under Carousel-EDF is 33.3% smaller than that

under NPS-F.

However, the above upper bounds are pessimistic with respect to the value of k (i.e. assume

that k is close to 2m, which is the unfavourable scenario, in terms of preemptions/migrations

generated). In fact, the number of servers k may range from m+ 1 to 2m− 1; if it were less, we

would use partitioning and it could not be 2m or higher from Lemma 2 in Section 6.5. In many

cases therefore, k could in fact be close to m. And, by inspection (see Equation 6.18, for k = m+1

and m→ ∞, the reduction in the upper bound on reserve-related preemptions/migrations when

using Carousel-EDF, as compared to NPS-F, would tend towards 50%. Therefore, Carousel-EDF

involves 33.3% to 50% fewer reserve-related preemptions and migrations than NPS-F.

6.7 Summary

In this chapter, we proposed a new scheduling algorithm for multiprocessor systems, called Carou-

sel-EDF. It presents some similarities with the slot-based task-splitting scheduling algorithms un-

der consideration in this dissertation. It also requires two algorithms: an off-line task-to-processor

algorithm and a run-time task-dispatching algorithm. The schedulability analysis, which guides
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the off-line algorithm, is also processor demand-based and overhead-aware. Using such schedu-

lability analysis, the off-line algorithm maps the tasks to servers, computes the server reserve

lengths, defines the cycling server order, and defines the initial phasing of each processor. The

run-time dispatching algorithm divides the time into reserves that are mapped to servers. Such

server reserves rotate through all processors, creating a carousel, in such a way that no two pro-

cessors are allocated the same server simultaneously. The tasks of each server are scheduled

according to EDF scheduling policy.

One question arises: how should Carousel-EDF be categorised? Is it global, partitioned, or

semi-partitioned? We observe that it does not easily fit in this taxonomy. It is a global algo-

rithm in that it allows the migration of any task, yet it can be implemented with contention-free

ready queues, like partitioned algorithms. Furthermore, like partitioned algorithms, it partitions

the task set into servers, such that tasks from one server do not directly contend for processing

resources with tasks from other servers. On the other hand, in many respects, Carousel-EDF is

closer to NPS-F [BA09b], a semi-partitioned algorithm from which it evolved. In particular, the

concept of server was inherited from NPS-F, where it is called notional processor. Furthermore,

servers, like notional processors, are allocated periodic reserves [AB08], time intervals during

which a processor is exclusively allocated for running tasks of the corresponding server. NPS-F

has many attractive features: its utilization bounds range from 75% to 100%, by trading off with

preemptions. Yet, it has lower upper bounds on preemptions than any known algorithm for the

same utilization. Carousel-EDF preserves the utilization bounds of NPS-F, including their trade-

off with preemptions, and further reduces the upper bounds on preemptions. This is achieved by

never splitting a server. As a result, it is able to reduce the maximum number of preemptions, and

therefore context switches, introduced by server reserves to half of those of NPS-F.

An additional benefit of not splitting reserves is that the overhead-aware schedulability anal-

ysis of Carousel-EDF presented here is much simpler than that of the slot-based task-splitting

scheduling algorithm described in Chapter 5 on which it is based.
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Chapter 7

Evaluation

7.1 Introduction

As mentioned before, the scheduling algorithms under consideration in this work comprise two

algorithms. An off-line task-to-processor assignment algorithm (in the form of task-to-server and

server-to-processor) and a run-time task-dispatching algorithm. In this chapter, we evaluate and

compare both algorithms.

7.2 The off-line schedulability analysis

In this section, we apply the new schedulability theory developed so far to three studies. The goal

of the first study is to compare the new slot-based task-splitting scheduling algorithm theory with

the utilization-based schedulability theory originally proposed. The goal of the second study is to

show the practicability of the new schedulability theory when we consider overheads. Finally, the

third study compares the slot-based task-splitting against reserve-based scheduling algorithms.

7.2.1 Quantification of overheads

In order to account for the effect of scheduling overheads using the new theory, worst-case esti-

mates for the various overheads themselves are required as input to the analysis. However, upper

bounds on the worst-case values of the previously identified overheads cannot be determined via

a purely analytical approach because they depend in complex ways on the characteristics of both

the hardware and software, including the operating system, that are rarely documented with suf-

ficient detail. Therefore, our approach was to experimentally measure (and log) the overheads of

100 randomly generated task sets, scheduled during 1000 seconds each, first under S-EKG and

then under NPS-F. The corresponding maximum recorded values were then treated as safe upper

bounds for the respective overheads. Although, arguably, there is always the possibility that worse

values might be observed if the experiment ran for more time, we deem this level of accuracy

sufficient for our purposes in this study. For a more detailed study, or in practice, the number of

119
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Table 7.1: Experimentally-derived values for the various scheduling overheads (in microseconds).

RelJ RelO ResL CtswO I piL
Measured 17.45 8.56 30.24 35.21 19.30

Used 20.00 10.00 40.00 40.00 20.00

measured values will likely vary, and depend on such factors as the variability of the measured

parameters or the level of safety required.

The 24-core platform used in our experiments is built from 1.9 GHz AMD Opteron 6168

chips [Dev] running at a frequency of 1.9 GHz. Each Opteron 6168 module has 12 cores and

occupies one socket on the motherboard. The operating system was the modified 2.6.31 Linux

kernel [SBTA11].

All parameters were determined in a way consistent to their definition in Section 4.7. The

context switch overhead is measured from the time instant the scheduler starts executing until the

time instant when it calls the assembly routine that switches from the current executing job to the

new one. To determine the release jitter, we measured the time interval between the (theoretical)

job arrival time and the time instant when the timer actually expires, i.e., when the timer callback

is invoked. The release overhead was determined by measuring the time interval between the time

instant when the timer callback is invoked and a task removed from the release-queue is inserted

into the ready-queue. The reserve latency was estimated by measuring the time interval from

the time at which a reserve should (theoretically) start until the time instant when a ready job (if

one exists) starts to execute within the reserve. Finally, we measured the IPI latency as the time

interval between the generation of the interrupt (by the emitting processor) and the time instant

the corresponding handler starts executing (on the other processor).

Table 7.1 presents the values of these parameters determined experimentally and the rounded-

up values that were used as input to our experimental evaluation of the demand-based overhead-

aware schedulability analysis. Essentially, we took a pessimistic stance and derived the values by

rounding up the maximum values measured for each of the parameters.

Other than the various earlier overheads identified, we also collected measurements for the

tick interrupt, which occurs on every processor. This is a periodic interrupt used by the operating

system kernel for triggering various operations such as the invocation of the scheduler. The worst-

case execution time measured for this interrupt was 8.06 microseconds. Although its periodicity

(approximately one milliseconds in our setup) can be configured via the Linux kernel macro HZ,

in practice this interrupt suffers from jitter. We estimated this jitter, by comparing the recorded

inter-arrival times with the reference period, as 177 microseconds. These values were obtained

with a Linux kernel compiled with both the tickless option (for suppressing the tick interrupts

during idle intervals) and the CPU frequency scaling features disabled.

We did not derive estimates for overheads from any interrupts other than the tick interrupt

because all other interrupts can be configured to be managed by one specific processor (preferably,

the least utilized one). Hence, we deemed that, even if we would have gone through that effort,
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their inclusion would not meaningfully change the overall picture. However, our analysis still

allows the overheads related to any interrupt to be specified as input and factored in.

Determining CPMD is a challenging research problem that exceeds the scope of this work. For

the state-of-the-art, see [Bas11, ADM12, LAMD13, DSA+13]. Nevertheless, our new schedula-

bility theory allows the incorporation of such effects. In the study with overheads, which we

present below, we have chosen an arbitrary value of 100 microseconds for CpmdO.

Although, in a strict sense, the measurement-based estimates characterize only the system in

which the measurements were made, we believe that this particular contribution is important for

the following reasons. First, it shows the feasibility of the new analysis, which in turn further

validates the slot-based task-splitting approach for multiprocessor scheduling as practical and ef-

ficient. Second, by documenting how we derived the measurement-based estimates in a manner

consistent with the earlier definitions of the respective overheads, it is possible to re-use the same

approach in order to derive estimates for the overheads in different systems.

7.2.2 Experiment design

Given the goals of our studies, we have chosen as metric the normalized inflated system utilization,

which is defined as follows:

U in f l
s =

1
m
·

k

∑
q=1

U in f l[P̃q] (7.1)

where m is the number of processors in the system, k is the number of servers, and U in f l[P̃q] is

the inflated utilization of each of the servers. A system is considered unschedulable whenever this

metric exceeds 1.0.

To compare schedulability analyses, this metric is used indirectly: a schedulability analysis

is better than another, if, for a given set of task sets, the former finds that more task sets are

schedulable than the latter. Likewise, this metric can be used indirectly in the evaluation of a

schedulability algorithm: an algorithm is better than another if it is able to schedule more task

sets.

In our studies, we consider different types of task sets. We characterize each task set by its

normalized utilization and by the characteristics of its tasks. Because, we use a synthetic load,

generated randomly using a unbiased random number generator, rather than specifying a single

value for the task set normalized utilization, we use an interval with minimum value Us:min and

width inc, [Us:min,Us:min + inc). With respect to the characteristics of the tasks, the period of each

task Ti, is uniformly distributed over [Ti:min, Ti:max). All tasks generated are implicit deadline

(Di = Ti) in order to allow comparisons with the original analysis. The worst-case execution time

of a task, Ci, is derived from Ti and the task’s utilization, ui, which is also uniformly distributed

over [ui:min, ui:max).

Algorithm 7.1 shows the pseudo-code of the task set generation procedure. It takes as inputs

the minimum normalized system utilization, Us:min, the granularity of the normalized system uti-

lization of each task set, inc, the number of task sets, nτ , the minimum and maximum values of the
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utilization of each task in all task sets, ui:min and ui:max, respectively, the minimum and maximum

values of the period of each task in all task sets, Ti:min and Ti:max, respectively, and the number of

processors in the system, m. The output of this procedure is nτ task sets which are put in array

Γ. The normalized system utilization of task set Γ[ j] (for j between 1 and nτ ) is in the range

[Us:min + ( j− 1) · inc, Us:min + j · inc), and the parameters of each task in these sets satisfy the

values specified in the inputs of the procedure.

Algorithm 7.1: Pseudo-code algorithm of the task set generator.
Input: Us:min, minimum normalized system utilization

inc, granularity of the normalized system utilization of the task sets
nτ number of task sets to generate
[ui:min,ui:max] range of the utilization of each task to generate
[Ti:min,Ti:max] range of the period of each task to generate
m number of processors/cores

Output: Γ[nτ ] set of generated task sets

Us:max←Us:min + inc
for j← 1 to nτ do

Γ[ j]← /0
i← 0
τ ← /0
Us← 0
in_range← false
while Us <Us:max do

{generate a task}
ui← uniform(ui:min,ui:max)
Ti← uniform(Ti:min,Ti:max)
Ci← Ti ·ui
τi← create_task(Ti,Ci)
{add task to task set}
add_task_to_taskset(τi,τ)
Us←Us +ui/m
i← i+1
if Us:min ≤Us <Us:max then

{Done with this task set: it has the target utilization}
add_taskset_to_set(τ,Γ[ j])
in_range← true
break

end if
end while
if ¬in_range then

{Abort current task set generation: utilization is above target}
j← j−1 {Try again}

else
{Generated task set successfully. Update target range utilization for next task set}
Us:min←Us:max
Us:max←Us:min + inc

end if
end for

In all experiments, we used Us:min = 0.75, inc = 0.001 and nτ = 250, allowing us to evaluate

the algorithms for a fairly loaded system, i.e. whose load has normalized utilization between 75%

and 100%. Because of the random nature of the load used, we ran each experiment ten times

initializing the pseudo-random number generator with different seed values. Thus, we generated

2500 task sets.

Indeed, for systems with a lighter load, we would expect no major differences, as all task sets

would most likely be schedulable. To evaluate the effect of different types of tasks, we consider

four classes of task sets according to the utilization of their tasks:
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• Heavy: Tasks whose ui is in the range [0.65, 0.95).

• Medium: Tasks whose ui is in the range [0.35, 0.65).

• Light: Tasks whose ui is in the range [0.05, 0.35).

• Mixed: Tasks whose ui is in the range [0.05, 0.95).

Independently of their utilization, the periods of all tasks of all task sets are uniformly dis-

tributed in the range [5 , 50] milliseconds, with a resolution of one millisecond. In Appendix B,

we deal with other periods.

Finally, in all experiments, we set m equal to 24, the number of processors in the system we

used to measure the overheads.

For the sake of clarity, in the plots presented in next subsections, task sets were grouped

together into utilization classes (each consisting of 100 task sets). For example, all task sets with

Us in the range [0.75, 0.76) are in one class; all task sets with Us in the range [0.76, 0.77) are in

the next class and so on. The values shown in the plots are the average of each class.

Given the goals of this study, we have chosen as metric the normalized inflated system utiliza-

tion U in f l
s = 1

m ·∑
k
q=1U in f l[P̃q] (see Equation 7.1). A schedulability analysis is more efficient than

another, if its normalized system inflated utilization is lower. Moreover, other metrics are used to

complement the information given by normalized system inflated utilization metric.

7.2.3 Preliminary evaluation of the merits of slot-based task-splitting over parti-
tioning, when overheads are considered

However, before going through the evaluation study, we believe that is important to assess the

benefit of using slot-based task-splitting scheduling algorithms against a simpler approach like

Partitioned-EDF (P-EDF).

First, let us note that the algorithms under consideration dominate P-EDF, even when over-

heads are taken into account. This is because they schedule tasks within each server using the EDF

scheduling policy. Moreover, they also use partitioning, but they partition tasks to servers, not to

processors. But, the overhead-aware task-to-server assignment algorithm employed by slot-based

task-splitting scheduling algorithms (defined by Equation 5.6) treats each server as a uniprocessor

(i.e. without the overheads related to the reserves migrations and other related issues). This is

equivalent to attempting to assign the task set using P-EDF. The difference is that, if more than

m bins are needed, P-EDF will declare failure (assuming a system composed by m processors),

whereas, with e.g. NPS-F there is still a chance that those task sets for which P-EDF fails will be

schedulable. On the other hand, any task set using no more than m bins can still be schedulable

with NPS-F using servers. (In the worst case, the overhead-aware server-to-processor mapping

algorithm will assign each server on a dedicated processor, i.e. partitioning.)

Hence, it is, by design, impossible for slot-based task-splitting to do worse than P-EDF (with

or without overheads). The question then becomes, just by how much the schedulability improves

and whether this justifies the added complexity. An answer to this question can be given by the
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Figure 7.1: Comparison of between NPS-F and P-EDF scheduling algorithms in the presence of
overheads.

plots presented by Figure 7.1. Those plots shows schedulability success ratio. This metric gives

for each utilization class (recall that each utilization class is composed by 100 task sets in a range

of 0.01) the percentage of task sets that are schedulable and is computed as:

percτ
sched =

nrτ
sched

nrτ
sched +nrτ

unsched
·100 (7.2)

where nrτ
sched is the number of task sets schedulable while nrτ

unsched is the number of task sets

unschedulable. The sum of nrτ
sched +nrτ

unsched gives the total number of task sets.

In Figure 7.1, we show a schedulability comparison between NPS-F and P-EDF in the presence

of overheads. NPS-F considerably outperforms P-EDF for all types of task sets, except for the task

sets composed by light tasks where its lead is smaller. This is because P-EDF performs very well

for such task sets to start with (since it is easier to partition a task set the smaller the maximum

task utilization is).
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Hence, these results establish that, even when considering overheads, slot-based task-splitting

is a valid option for real-time systems, with better performance than the traditional partitioning.

7.2.4 Evaluation of the new analysis in the absence of overheads

As a first step in the evaluation of the new analysis, we compare it to the original analysis pub-

lished for both algorithms, so as to evaluate the improvements in processor utilization that stem

from having less pessimism in the new analysis. Because the original analysis, utilization-based,

assumes no scheduling overheads, the results presented in this subsection were obtained consider-

ing all overheads equal to zero.

7.2.4.1 Experiments for the S-EKG scheduling algorithm

In order to apply the new analysis to S-EKG, we employed the task-to-processor mapping al-

gorithm outlined in Section 5.4.2.1. A major difference between this algorithm and the original

S-EKG algorithm is that it does not cap the utilization of each processor to the theoretical utiliza-

tion bound. UBS−EKG, but rather uses the new schedulability tests presented in Section 4.7.

In our study, we considered the effect of the S-EKG design parameter δ , in addition to the

workload itself, because in the original analysis this parameter has a major influence on the system

utilization. Thus, for each workload, i.e. task set, we computed the normalized utilization for each

of the following δ values: one, two, four, and eight.

Figure 7.2 provides a comparison between the original (utilization-based) and the new (pro-

cessor demand-based) theory, for task sets generated under the mixed setup (ui ∈ [0.05, 0.95) for

different values of δ .

As mentioned before, each point in the plots shown in this subsection represents an average

of the normalized utilization for 100 randomly generated task sets, satisfying the corresponding

parameter values.

As shown in inset (a) of Figure 7.2, many task sets of relatively low utilization are not schedu-

lable according to the original analysis even with higher values for δ . The results are completely

different when we apply the new schedulability analysis (see inset (b) of Figure 7.2), with almost

all task sets being schedulable even with δ equal to one (the most preemption-light setting). Fur-

thermore, the effect of δ on the schedulability of the task sets is much lower than in the original

analysis. Indeed, the original S-EKG schedulability test fails for all task sets with δ equal to one.

The explanation is that the original S-EKG task-to-processor assignment algorithm caps the uti-

lization of each processor to the theoretical utilization bound (UBS−EKG), and for δ equal to one,

UBS−EKG ≈ 0.65, which is less than the lowest Us, 0.75, of any task set used in the experiments.

As a complement to the information given by the average of the inflated utilization metric,

U in f l[P̃q], insets (c) and (d) of Figure 7.2 shows schedulability success ratio. As it can be seen

from Figure 7.2 there is a correspondence between the average inflated utilization metric and the

percentage of schedulable task sets, percτ
sched ; that is, if the average inflated utilization metric in-

dicates that some class of task sets is schedulable, the schedulability success ratio shows that most
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Figure 7.2: Comparison between the original S-EKG and the new schedulability analysis for task
sets composed by mixed, ui ∈ [0.05, 0.95), tasks.

of those task sets are schedulable, or the contrary. Observing insets (a) and (c) shows that there

is a relation between the average inflated utilization and the percentage of task sets schedulable

for the results produced by utilization-based schedulability analysis. The same can be observed,

insets (b) and (d), for the results produced by the time demand-based schedulability analysis

Figure 7.3 further highlights the benefits of the new schedulability analysis. It compares the

results of the new analysis with those of the original analysis for task sets generated according to

the light, medium and heavy parameter setup. The same conclusions as before apply. The new

analysis clearly improves the inflation efficiency, in all cases. The improvement is so large that the

inflated utilization is, at all points in the graph, very close to the uninflated utilization (drawn using

a line without any mark) even for δ equal to one. Further, it is also clear that the effect of δ (in

other words, the need for a high δ in order to keep inflation low) decreases. In the next subsection,

we discuss the results according to the type of tasks together with the results of the NPS-F.
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Figure 7.3: Comparison between the original S-EKG and the new schedulability analysis consid-
ering task sets composed by light, ui ∈ [0.05, 0.35), medium, ui ∈ [0.35, 0.65), and heavy tasks,
ui ∈ [0.65, 0.95).
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Figure 7.4: Comparison between the original NPS-F and the new schedulability analysis consid-
ering task sets composed by mixed, ui ∈ [0.05, 0.95), tasks.

7.2.4.2 Experiments for the NPS-F scheduling algorithm

We performed the same set of experiments using NPS-F rather than S-EKG. Figure 7.4 compares

the original, inset(a), and the new, inset(b), schedulability analysis for task sets generated under

the mixed setup, ui ∈ [0.05, 0.95), which demonstrates a considerable improvement in mapping

efficiency. In fact, using the new analysis, the points for the inflated and uninflated utilization

almost coincide in the graph (even for δ equal to one).

Again, we complement the information given by the average of the inflated utilization metric,

U in f l[P̃q], with information related to the percentage of schedulable task sets, percτ
sched , insets (c)

and (d). As it can be seen from Figure 7.4 there is a correspondence between two metrics.

These observations also apply to the experiments with the light, medium and heavy task uti-

lization setup, shown in Figure 7.5.

Focusing on the results from the new schedulability analysis, it is clear that NPS-F produces

better results than S-EKG (please note that the y-axis does not have the same scale among all
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Figure 7.5: Comparison between the original NPS-F and the new schedulability analysis consid-
ering task sets composed by light, ui ∈ [0.05, 0.35), medium, ui ∈ [0.35, 0.65), and heavy tasks,
ui ∈ [0.65, 0.95).
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Figure 7.6: Comparison between S-EKG and NPS-F scheduling algorithms according to the new
demand-based schedulability analysis using δ equal to one.

Figures 7.2, 7.3, 7.4, and 7.5). This is due to the FF bin-packing heuristic used by NPS-F that

produces fuller (in terms of processing capacity) servers and consequently less inflation is required.

Consequently, the number of servers is also smaller, because each server potentially has more tasks

assigned to it. Recall that the inflation is used to compensate the time when tasks are in the system

and are not allowed to be executed because of the exclusive nature of the server reserves. Hence,

if a reserve occupies almost the entire time slot the required inflation is less, because those tasks

(assigned to that reserve) are prevented from executing during a small amount of time in each time

slot. Conversely, the smaller the reserve, the higher the required inflation (as a fraction of that

reserve).

Figure 7.6 presents a comparison between S-EKG and NPS-F based on the schedulability

success ratio. For the sake of presentation, we opt to plot the results considering δ equal to one.

From the results presented in Figure 7.6, we can conclude that NPS-F is able to schedule more

task sets than S-EKG.
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Figure 7.7: Task-to-processor assignment patterns of the S-EKG and NPS-F.

Figure 7.7 illustrates the task-to-processor assignment pattern of S-EKG, inset (a), and of NPS-

F, inset (b). As mentioned before, this difference stems from the bin-packing heuristics used by

both. S-EKG employs an adapted NF bin-packing heuristic that ensures only one task per-split-

server, whereas NPS-F employs the FF bin-packing heuristic that produces fuller servers. As a

consequence of such heuristics, generally, the processor time slot composition for NPS-F is, most

often, divided into two reserves, whereas for S-EKG is divided into three reserves.

7.2.5 Evaluation of the new analysis in the presence of overheads

In our previous experiments, the new analysis and task assignment were shown to be efficient both

under S-EKG and NPS-F. Therefore, in the presence of overheads, we only provide results for

scheduling under NPS-F, because under the new schedulability analysis the S-EKG can be viewed

as a special case of NPS-F, where the split-servers have assigned only one task.

Contrary to what holds in the absence of overheads, our results (see Figure 7.8) generally show

that the schedulability improves as the value of parameter δ decreases. This is in accordance with

some of the findings in [BBA11], which states that δ equal to one produces the best schedule. In

other words, the most-preemption light setting is, contrary to intuition associated to the parameter

δ , also the best for schedulability, once all overheads are factored in. This is because of the

overheads associated with the implementation of the reserves themselves.

However, the results plotted in inset (b) of Figure 7.8 are different from the other results

plotted in the same figure. There are two reasons for those results. On one hand, such task sets

are composed by light tasks, whose ui is uniformly distributed in the range [0.05, 0.35), and, as a

consequence of the task-to-server assigning procedure, the capacity of the servers is almost full.

On the other hand, the server-to-processor assignment procedure classifies servers as single, if

the inflation of such servers exceeds the threshold defined by rule A2. Note that, single servers

execute on dedicated processors. In other words, a single server executes on one processor that

has assigned only one server, and in this case, there is no need to create reserves.

From the results presented and discussed in this subsection, it is clear that this kind of sche-

duling algorithms tend to require, in the presence of overheads, less inflation (i.e. less processing

capacity lost) with longer S, which is achievable with δ equal to one. Application of rules A1 and

A2 could provide a way for using a longer S without any processing capacity lost. S is computed

as the 1
δ
·minτi∈τ(Di,Ti) (see Equation 5.41); that is, considering all tasks of the task set. Probably,
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Figure 7.8: Evaluation of the effect of the overheads on the new schedulability analysis.

we could get longer S if the set of tasks, τ[P̃q], mapped to a single server, according to rule A2,

were excluded from such computation. Another strategy, could be, whenever rule A1 is applied

to compute a new S taking into account the set of tasks mapped to the remaining servers. Further-

more, with this strategy we could get a system with multiple time slot lengths. This is because

rule A1 creates an assignment break in the system; that is, there is no split server shared between

two subsequent processors when rule A1 is applied. Figure 7.9 illustrates this assignment break;

there is no shared server between processors P2 and P3, so, the time slot lengths could be different

in processors {P3,P4} vs. processors {P1,P2}. Recall that, this is achieved without any processing

capacity penalty.

7.2.6 Reliability of the schedulability analysis

The lower efficiency of the utilization-based analysis could conceivably (but naively!) be expected

to provide a safety margin to compensate for overheads that occur in real systems, instead of
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Figure 7.9: Multiple time slot lengths in a system.

explicitly accounting for them in the analysis. However, there is no guarantee that this over-

provisioning is sufficient. It may well be the case that the utilization-based test considers a task

set as schedulable, when it really is not because of the overheads incurred in real systems.

To better evaluate this possibility, we carried out a study in which we assessed whether the

task sets deemed schedulable using the utilization-based analysis (which ignored overheads) were

unschedulable according to the new demand-based overhead-aware schedulability analysis. There-

fore the metric we used in this study was:

percutil!db
sched =

nrutil
sched−nroa_db|util

sched

nrutil
sched

·100 (7.3)

where nrutil
sched is the number of task sets deemed schedulable according to the utilization-based

schedulability analysis and nroa_db|util
sched is the number of these task sets that are also schedulable

according to the demand-based overhead-aware schedulability analysis.

In all experiments of this study, we kept all overheads constant using the values presented in

Section 7.2.1. For the CpmdO, given the dependence of this parameter on the load, we chose to

perform a sensitivity analysis and experimented with two more values for this parameter: zero and

500 microseconds. The zero value represents a best case for the utilization-based analysis. The

500 microseconds value corresponds to a rather high value for the CPMD, taking into account

that the minimum task period, and consequently the time slot duration, in any task set is not much

higher than five milliseconds. For some light tasks, 500 microseconds may be larger than the

task computation time (or execution time) itself. The value of 100 microseconds, by comparison

should not penalize lighter tasks as much. As in the previous study, for each task set generated

according to Algorithm 7.1, we used all the values of the design parameter δ considered (one, two,

four, and eight). Furthermore, we ignored all the interrupts except the tick interrupts, which occur

on a per-processor basis. (This is tantamount to assuming that interrupt handling is performed by a

dedicated processor.) Like in the previous subsection, each point in the plots represents an average

of the normalized utilization for 100 randomly generated task sets, satisfying the corresponding

parameter values.
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Figure 7.10: Fraction of task sets schedulable according to the utilization-based analysis, but
not schedulable according to the new demand-based overhead-aware schedulability analysis, as a
function of the type of tasks of the task set and of the design parameter δ .
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Figure 7.10 summarizes the results of this study. Each inset shows the results for a different

value of the CpmdO parameter. The value of this parameter has a major effect, although it may

not be that apparent at first sight, because the ranges in the y-axis are different. As expected,

the higher the value of CpmdO, the higher the fraction of tasks deemed schedulable according

to the utilization-based analysis, but not schedulable by the new demand-based overhead-aware

schedulability analysis, for the parameter values considered. Also clear is the effect of the design

parameter δ . The higher the value of this parameter, the higher the fraction of tasks that are not

schedulable.

Figure 7.11 shows the fraction of non schedulable task sets ignoring the utilization of the task

set, to make the dependence on the factors considered more clear. Inset (a) of Figure 7.11 shows

the dependence on the utilization of the task sets, Us, for the mixed task sets with CpmdO equal

to zero. As shown, for utilizations lower than a certain value, which depends on the value of δ ,

all task sets are schedulable according to both analyses. However, at a given point the fraction

of non-schedulable task sets rises sharply to one, and remains around one until a point, which

also depends on δ , when it then drops more or less sharply to zero. As shown, the value of δ

determines the width of the plateau where the fraction is equal to one: the higher the value of δ

the earlier the fraction rises to one, and the later it drops back to zero. For these parameter settings,

for δ equal to one, the fraction of unschedulable task sets never reaches one, rather increases up

to around 0.60 and then drops back to zero. In any case, the pattern is clear and applies also to

other types of task sets and different values of CpmdO, and can be easily explained with the help

of inset (a) of Figure 7.4 and inset (b) of Figure 7.11, which show the average inflated utilization

respectively for mixed tasks task sets for the utilization-based analysis and for the demand-based

overhead-aware schedulability analysis with CpmdO equal to zero.

Consider a given value of δ , say four. For task sets whose utilization is below 0.91, the

overheads are small enough that virtually all task sets are considered schedulable by both analyses.

As the task set utilization, Us, increases from 0.91 to 0.95, the average inflated utilization according

to the new analysis increases and becomes higher than one, see inset (a) of Figure 7.11, so that

virtually all task sets are deemed unschedulable. On the other hand in that range, for δ equal to

four, the inflated utilization according to the utilization-based analysis, see inset (a) of Figure 7.4,

is still below about 0.97, and many task sets are still deemed schedulable. Therefore, in that

interval (from 0.91 to 0.95) the fraction of non-schedulable task sets rises from zero to one, and

remains one until it drops sharply for task sets whose utilization is in the range [0.99, 1.0), which

are all deemed unschedulable also by the utilization-based analysis.

Even though the new demand-based overhead-aware schedulability analysis is conservative,

i.e. is based on worst-case assumptions, and therefore it may be that a task set it considers non-

schedulable is actually schedulable, the parameter values we used are all values we measured in a

real system, except the values for the CPMD overheads. For the latter, we assumed several values

including zero, and even in this case, which is rather optimistic, the utilization-based analysis may

consider a given task set schedulable, when some tasks may miss their deadline. This is unaccept-

able in safety-critical hard-real time systems, where the consequences of missing a deadline may
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Figure 7.11: Fraction of mixed task sets that are considered schedulable by the original schedula-
bility analysis but are not by the schedulability with overheads (CpmdO equal to zero)

be catastrophic. The demand-based overhead-aware schedulability analysis we developed allows

to account for all overheads incurred by an implementation, does so in a conservative way, and

therefore ensures that its results are reliable, as long as the values of its parameters are valid.

7.2.7 Slot-based vs. reserve-based

In this subsection, we compare the schedulability of NPS-F against Carousel-EDF. We assume the

schedulability analysis as respectively formulated in Sections 5.3 and 6.4. However, for a question

of fairness, in the case of NPS-F, we eliminate the release interference among servers; that is,

dbfsb:non−split
RelI (P̃q, t) and dbfsb:split

RelI (P̃q, t) given by Equations 5.21 and 5.33, respectively, are both

equal to zero. Further, we assume that I piL (used in Equation 5.30) is also equal to zero. In doing

so, we assume that the release mechanism described in Subsection 6.3.2 can be also employed for

the slot-based task-splitting scheduling algorithms.

Figure 7.12 shows the average inflated utilization for each algorithm and the value of the

normalized utilization of the task set. The average normalized inflated utilization with Carousel-

EDF is smaller than that of NPS-F, independently of the task set type considered; that is, the

Carousel-EDF is able to schedule more task sets. This was expected, because NPS-F incurs more

overheads than Carousel-EDF. However, the pessimism of the analysis may be larger for NPS-F

than for Carousel-EDF. Indeed, based on experimental evidence [BBA10b], the analysis assumes

that the worst-case cache-related overheads caused by preemptions are the same whether or not

there is a migration. On average, however, the costs incurred by preemptions with migrations are

likely to be higher than without, and preemptions with migrations are more likely in Carousel-EDF

than in NPS-F.
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Figure 7.12: Comparison between the NPS-F and Carousel-EDF based on the normalized infla-
tion.

7.3 The run-time task-dispatching algorithm

In this section, we evaluate the run-time task-dispatching algorithm. As mentioned before, the

off-line procedure checks the schedulability of a task set; that is, if it is schedulable or not. It

also configures the run-time task-dispatching algorithm; In other words, the off-line procedure

computes the settings of the task-dispatching algorithm, such as, the set of tasks mapped to each

server, the length of each reserve and so on.

We evaluate the efficiency of the new schedulability analysis for slot-based task-splitting sche-

duling algorithms. For that purpose, we present a comparative study of the NPS-F run-time

task-dispatching algorithm. In that study, we compare the run-time task-dispatching algorithm

efficiency when the task-dispatching algorithm settings are computed according to the original

utilization-based and the new demand-based overhead-aware schedulability analyses. Next, we

present an evaluation of NPS-F and Carousel-EDF scheduling algorithms, and those supported by

the RT scheduling class of the PREEMPT-RT-patched Linux Kernel.
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All of these evaluations are based on the percentage of deadline met, which is computed as:

perc jobs
deadline:met =

nr jobs
deadline:met

nr jobs
deadline:missed +nr jobs

deadline:met

·100 (7.4)

where nr jobs
deadline:met is the number of jobs of all tasks that met their deadlines. nr jobs

deadline:missed is the

number of jobs of all tasks that missed their deadlines. nr jobs
deadline:met plus nr jobs

deadline:missed gives us

the total number of all jobs of all tasks in a task set. We consider that one algorithm is better than

the other if it meets more deadlines than the other.

Note that, in all experiments presented in this section the run-time task-dispatching (or sched-

uler) implementation of the slot-based algorithms is as described in Section 4.6 and the implemen-

tation of the reserve-based algorithms is as described in Section 6.3.

7.3.1 Experimental setup

The task sets used to evaluate the run-time task-dispatching algorithms were generated using the

same method as described in Subsection 7.2.2 and the host platform (a 24-core machine) is the

same one described in Subsection 7.2.1. We generated 50 task sets with utilization varying from

50% to 100% with an increment of 1%. We created task sets according to four types of tasks:

mixed, light, medium, and heavy. The settings of each type of tasks are as defined in Subsec-

tion 7.2.2. Then, we created 200 task sets. The periods of all tasks of all task sets are uniformly

distributed in the range [5, 50] milliseconds, with a resolution of one millisecond. In Appendix B,

we deal with other ranges of periods. We ran each experiment during 100 seconds.

In order to simulate the execution time of each task, we coded a task using C language, whose

snippet code is presented in Listing 7.1. In order to ensure that all tasks are ready for execution

at the same time, we put all task to sleep until time0. The clock_nanosleep function allows

the calling task to sleep for an interval specified with nanosecond precision. Then, the algorithm

of that task consists of a loop of nr_jobs iterations. In each iteration, which we consider a job,

it executes a set of empty for-loops to simulate (through the invocation of function do_work)

the execution time, which is defined by exec_time variable, of the task. Then, it computes

the release time of the next job, checks if the current job missed its deadline or not (by using

the clock_gettime function to get the current time) and then it sleeps until the next release.

Note that, this task is coded using functionalities provided by the Linux kernel; that is, it does not

depend on any special feature added to the Linux kernel.

7.3.2 Why overheads have to be accounted for

In this subsection, we show why the overheads must be considered into the schedulability analy-

sis. To this end, we present the results of several experiments that measure percentage of deadlines

met, according to Equation 7.4. Figure 7.13 plots the results of a set of task sets whose run-time

task-dispatching parameters were computed using the NPS-F original utilization-based schedu-

lability analysis and the new demand-based overhead-aware schedulability analysis presented in
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struct timespec next_release;
struct timespec now;
unsigned long deadline_misses = 0;
unsigned long long release_time;

//task settings
unsigned long long exec_time = atoll(argv[...]);
unsigned long long period = atoll(argv[...]);
unsigned long long time0 = atoll(argv[...])
unsigned long nr_jobs = atol(argv[...]);;
...
release_time = time0;

//Converting nanoseconds to timespec
next_release.tv_sec = release_time / NSEC_PER_SEC;
next_release.tv_nsec = release_time % NSEC_PER_SEC;

//Sleeps until time zero
clock_nanosleep(CLOCK_MONOTONIC,TIMER_ABSTIME, &next_release,NULL);

for(j=0;j<nr_jobs;j++){

//Executes its work
do_work(exec_time);

//Computes the next release
release_time = release_time + period;

//Converting nanoseconds to timespec
next_release.tv_sec = release_time / NSEC_PER_SEC;
next_release.tv_nsec = release_time % NSEC_PER_SEC;

//Gets the current time
clock_gettime(CLOCK_MONOTONIC, &now);

//Checks if it missed the deadline
//that is, if the current time is higher than the next release
if( (now.tv_sec * NSEC_PER_SEC + now.tv_nsec) > release_time)
deadline_misses++;

//Sleeps until next release
clock_nanosleep(CLOCK_MONOTONIC,TIMER_ABSTIME, &next_release,NULL);

}
...

Listing 7.1: The C language code of the task for experiments.

Section 5.3 (please note that y-axes do not have the same scale among all insets of Figure 7.13).

For the new analysis, we consider the overhead values presented in Subsection 7.2.1 and for both

analyses the parameter δ was set equal to one.

We set δ equal to one, because according to study pursued in Section 7.2 that value is best

when practical issues are considered, like for instance, run-time overheads. In such plots, we only

present and compare the results for the task set that are considered schedulable according to the

respective schedulability analysis. These results allow us to highlight the importance of incorpo-

rating the run-time task-dispatching overheads into the schedulability theory. As can be seen from

that figure, all task sets in which run-time task-dispatching input parameters were computed using

the new demand-based overhead-aware schedulability analysis met all deadlines, as predicted by

the schedulability analysis. By contrast, many of the task sets in which input parameters were
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computed using the original utilization-based missed deadlines, something not predicted by the

respective schedulability analysis. Actually, that schedulability analysis considers those task sets

as schedulable.

We would like to highlight that, the only difference between the experiments is the way that

task-dispatching settings were computed, everything else is the same; that is, the code of each

task, the scheduler implementation, the operating system, and the host platform are the same.

Note that, in Subsection 7.2.6, it is shown that some task sets considered schedulable according

to the original utilization-based schedulability analysis are not schedulable according to the new

demand-based overhead-aware schedulability analysis. Here, we show that, on one hand, for some

task sets considered schedulable according to the utilization-based schedulability analysis are in

fact non-schedulable from the results collected from experiments running on a real system. On

the other hand, all task sets considered schedulable by the new demand-based overhead-aware

schedulability are, in fact, schedulable. From this, we can conclude that the real-world overheads

have to be considered into the schedulability to increase its reliability.

7.3.3 Enhancing real-time capabilities of the Linux kernel

The mainline Linux kernel is not designed for real-time systems, because none of its scheduling

policies consider one fundamental real-time parameter: the deadline. We believe that the efforts

of the PREEMPT-RT community on adding real-time capabilities have one drawback: the absence

of any real-time scheduling algorithm. In this subsection, we present a performance comparison

between the scheduling algorithms supported by the PREEMPT-RT-patched Linux kernel (RR and

FIFO scheduling algorithms) and those added in the context of this work, NPS-F and Carousel-

EDF.

As mentioned before, NPS-F and Carousel-EDF scheduling algorithms require the execution

of an off-line application, which implements the new schedulability analysis developed in the

context of this work. Given that, the release of tasks is performed by using the native Linux

clock_nanosleep function, which does not follow the task release mechanism defined for

Carousel-EDF (described in Subsection 6.3.2), we then use, for Carousel-EDF, the schedulability

analysis with the changes introduced in Subsection 6.4.3.

Therefore, for each task set, that application computes the settings of the run-time task-

dispatching algorithm, such as servers and respective reserves as well as their tasks and the time

slot length. Then, using a specific API the run-time task-dispatching algorithm is configured. Fi-

nally, all tasks belonging to the task set are created, configured with their parameters, and then,

launched.

The RR and FIFO algorithms have a more simplified setup phase. There is no need to configure

the run-time task-dispatching algorithms. Therefore, the only thing that is required is to create all

tasks of each task set, set their parameters and launch them.

We ran each task set scheduled according to RR, FIFO, NPS-F, and Carousel-EDF scheduling

algorithms during 100 seconds in a 24-core machine. Figure 7.14 plots the percentage of deadlines

met for each scheduling policy (please note that y-axes do not have the same scale among all insets
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Figure 7.13: A comparison between the utilization-based and the demand-based schedulability
analyses based on percentage of deadlines met.
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Figure 7.14: A performance comparison among RR, FIFO, NPS-F, and Carousel-EDF based on
percentage of deadlines met.
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of Figure 7.14). For the sake of presentation, we only present the RR and FIFO results for task sets

that are considered schedulable according to NPS-F. Otherwise, the plots would be misleading,

because the percentage of deadlines met decreases abruptly for task sets with Us higher than 89%.

As can be seen by inspecting Figure 7.14, NPS-F and Carousel-EDF met all deadlines, as

predicted by the theory. Note that, only schedulable task sets were considered. The difference

between NPS-F and Carousel-EDF is the number of task sets considered schedulable, which is

higher for Carousel-EDF than for NPS-F as predicted (and demonstrated in Subsection 7.2.7) by

the schedulability analyses. Both RR and FIFO fail to meet all deadlines. Even though this is not

visible in the plots, it should be noted that, all task sets with a Us higher than 55% failed deadlines

when scheduled under RR and FIFO.

It should be noted, that the slot-based task-splitting and also the reserve-based scheduling

implementations, apart from specific code for managing some specific data structures, require

minor modifications to the RT scheduling class. Therefore, in our opinion, adding support for

appropriate scheduling algorithms to the Linux kernel (compatible with the PREEMPT-RT patch)

is a practical and effective way to make this widely adopted operating system more suitable for

real-time systems.

7.4 Summary

In this chapter, we present an evaluation of the scheduling algorithms under consideration in this

work. We evaluated the efficiency of the off-line task-to-processor algorithms and also of the run-

time task-dispatching algorithm. We have compared the utilization-based and the new demand-

based overhead-aware schedulability analyses. We used as comparison metric the inflated utiliza-

tion factor, in which we consider that one algorithm is better than the other if the former requires

less inflated utilization than the latter.

From the study conducted in this chapter, we can conclude that the new demand-based overhead-

aware schedulability analysis is better than the original utilization-based schedulability analysis.

Using the new demand-based overhead-aware schedulability analysis, S-EKG is able to schedule

task sets with utilizations much higher than its theoretical utilization bound, UBS−EKG. For the

NPS-F, the new demand-based overhead-aware schedulability analysis is also more efficient than

the original utilization-based schedulability analysis. We also showed that NPS-F is better than

S-EKG, because it requires less inflation. This is due to the bin-packing employed, which tends to

produce fuller servers for NPS-F, compared to S-EKG. However, S-EKG presents one advantage

that is, the number of split servers (and consequently also the number of split tasks) is known at

design time, because S-EKG ensures that each split server is assigned only one task.

We also have concluded that, contrary to what holds for the utilization-based schedulability

analysis (where the schedulability improves with higher δ ), the new demand-based overhead-

aware schedulability analysis presents better schedulability as the parameter δ decreases. That

is, better schedulability is achieved with δ equal to one, because this creates longer time slots,

which in turn implies fewer run-time overheads related to the management of the time division
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into reserves. With the purpose of getting longer time slots, we defined two strategies that employ

rules A1 and A2 to use longer time slots without any penalty.

We measured the number of task sets that are considered schedulable according to the original

utilization-based schedulability analysis and not according the new demand-based overhead-aware

schedulability analysis. Note that, the former does not take into account the overheads, whereas

the latter incorporates the run-time overheads. We observed that in some cases almost 100% of

the task sets considered schedulable by the utilization-based schedulability analysis are in fact

unschedulable according to the new demand-based overhead-aware schedulability analysis, espe-

cially those with higher δ parameter values. Furthermore, we presented a comparative study in

a real system running on a 24-core machine where the run-time task-dispatching algorithm set-

tings were computed by the utilization-based schedulability analysis and the new demand-based

overhead-aware schedulability analysis. We observed many deadline misses for task sets con-

figured according to the utilization-based schedulability analysis whereas no deadline miss was

observed for task sets configured according to the new demand-based overhead-aware schedula-

bility analysis.

We also showed that the Linux kernel does not provide any suitable scheduling algorithm for

multiprocessor real-time systems. We presented a comparative study in a real system running on

a 24-core, where we compare the scheduling algorithms supported by the PREEMPT-RT-patched

Linux kernel, RR and FIFO, against the NPS-F and the Carousel-EDF scheduling algorithms

added to the Linux kernel in the context of this work. We observe that those scheduling algorithms

supported by the PREEMPT-RT-patched Linux kernel miss deadlines (all task sets with Us higher

than 55% miss deadlines), whereas no deadline misses occurred for task sets scheduled according

to NPS-F and the Carousel-EDF scheduling algorithms.

Finally, we observed that the Carousel-EDF scheduling algorithm performs a little better than

the NPS-F scheduling algorithm, in the sense that it is able to schedule more task sets (with higher

Us).



Chapter 8

Conclusions and future work

8.1 Introduction

The advent of multi-core chips has renewed the interest of the research community on real-time

scheduling upon multiprocessor systems. Real-time scheduling theory for single-cores is consid-

ered a mature research field, but real-time scheduling theory for multiprocessors is an emerging

research field.

Multiprocessor systems may provide great computing capacity if appropriate scheduling algo-

rithms are used. Unfortunately, many of the research work on scheduling algorithms for multipro-

cessor systems are based on a set of assumptions that have no correspondence with a real-system;

that is, only few works have addressed the scheduling algorithms implementation and the operat-

ing system related issues.

Focused on slot-based task-splitting scheduling algorithms, we bridge the gap between the

theory and practice for those scheduling algorithms. For that purpose, we implemented those

scheduling algorithms on a PREEMPT-RT-patched Linux kernel version. We also developed new

scheduling theory for that type of scheduling algorithms that incorporates practical issues to in-

crease the reliability and efficiency.

In this chapter, we review and discuss the results and contributions presented in this disserta-

tion. We also provide some directions for future work.

8.2 Summary of results

As mentioned above, in the course of this work, we narrow the gap between theory and prac-

tice for slot-based task-splitting scheduling algorithms for multiprocessor systems. To achieve

such goal, we create a unified model that accommodate most of all scheduling algorithms of that

class (Section 4.3). We identified one practical issue that could decrease the performance of the

scheduling algorithm, which we denoted as the instantaneous migration problem (Section 4.5).

The identification of such practical issues guided us towards one implementation rule, which was

followed throughout the implementation of the scheduling algorithms under consideration in this

145
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work, namely that: the interactions among processors must be reduced. Following this rule, we

implemented slot-based task-splitting scheduling algorithms in which the scheduling decisions

are taken on a per-processor basis; that is, our implementations isolate the scheduling decisions

on one processor from activities and decisions on other processors. Further, given the potentially

higher number of task migrations imposed by the slot-based task-splitting scheduling algorithms

and the associated high overheads for migrating tasks, our implementations employ a lightweight

task migration procedure that avoids the locking of multiple ready-queues (Section 4.6). For that

purpose, we made available a ready-queue per-server, in which all its ready tasks are stored. An

atomic variable is used for stating the queue as busy if some ready task of that server is being

executed on any processor or free otherwise.

The implementation of the scheduler follows a two-level hierarchical approach. Recall, that

the processor scheduler executes on per-processor basis; that is, the scheduler executes on the

processor in which it is invoked (through the invocation of the schedule function) and can be

executed simultaneously in multiple processors. For each processor, the top-level scheduler is

responsible for the management of the time (through the high resolution timers). It divides the

time into slots and then each slot is divided into reserves. Whenever a reserve starts, it sets the

corresponding server for that reserve (by updating a pointer) and triggers the invocation of the low-

level scheduler. The low-level scheduler picks the highest-priority task, if any, from the assigned

server, if the server is stated as free, otherwise it forces its invocation some time later (empirically

set to five microseconds). This procedure repeats until the end of the reserve if the server has ready

tasks and it is stated as busy, otherwise this mechanism is not triggered.

Being aware of the efforts of the PREEMPT-RT kernel developer community to add real-time

capabilities to the Linux kernel and its wide acceptance, we made our implementation completely

compatible with the PREEMPT-RT patch. It was implemented with minor modifications to the

PREEMPT-RT-patched Linux kernel. Using our implementation, we identified and modelled all

the scheduling overheads incurred by slot-based task-splitting scheduling algorithms when run-

ning in a real operating system (Section 4.7).

In Chapter 5, we formulated a unified schedulability theory applicable to slot-based task-

splitting scheduling algorithms. This new theory is based on exact schedulability tests, thus also

overcoming many sources of pessimism in the previous related work. Furthermore, as a response

to the fact that many unrealistic assumptions, present in the original theory, tend to undermine the

theoretical potential of such scheduling schemes, we identified and modelled into the new analysis

all the overheads incurred by the algorithms in consideration. The outcome is a new overhead-

aware schedulability analysis that permits increased efficiency and reliability.

In Chapter 6, we presented a reserve-based scheduling algorithm called Carousel-EDF. Carou-

sel-EDF is an offshoot of the slot-based task-splitting scheduling algorithms described in Chap-

ter 4. It also relies on the concept of servers that are instantiated by the means of time reserves.

However, contrarily to slot-based task-splitting scheduling algorithms, which migrate tasks at time

slot and reserve boundaries, Carousel-EDF only migrates tasks at reserve boundaries. Conse-

quently, the time is no longer constrained to time slots; it is divided into time reserves instead.
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Carousel-EDF preserves the utilization bounds of slot-based task-splitting scheduling algorithms,

namely that of NPS-F, which is the highest among algorithms not based on a single dispatching

queue and that have few preemptions. Furthermore, with respect to slot-based task-splitting sche-

duling algorithms, Carousel-EDF reduces up to 50% the worst-case number of context switches

and the worst-case number of preemptions caused by the time division mechanism. We also for-

mulated an overhead-aware schedulability analysis based on demand-bound functions grounded

on an implementation on a PREEMPT-RT-patched Linux kernel version.

In Chapter 7 (complemented with Appendix B), we showed that the new demand-based over-

head-aware schedulability analysis for slot-based task-splitting scheduling algorithms is much

more efficient and reliable than the original utilization-based one. Assuming that the cost of the

overheads is negligible, the new demand-based overhead-aware schedulability analysis is much

more efficient; that is, it is able to schedule more task sets with higher utilizations.

When the estimates for the various overheads are factored into the new demand-based over-

head-aware schedulability analysis, it appears to perform worse (in terms of the fraction of tasks

sets declared schedulable) compared to the original utilization-based (but still, overhead-oblivious)

analysis. However, when those task sets are executed in a real systems (on a 24-core machine) it

was verified that, in fact, many tasks deemed schedulable by the overhead-oblivious utilization-

based analysis missed deadlines, whereas all task sets considered schedulable by the new demand-

based overhead-aware schedulability analysis were, in fact, schedulable, and did not miss any

deadlines. This shows that incorporating overheads into schedulability analysis of a scheduling

algorithm is fundamental from the reliability perspective. As it is intuitive, this imposes the need to

accurately measure the overheads in order to provide a correct input to the schedulabilty analysis.

From the research conducted in Chapter 7, slot-based task-splitting scheduling algorithms

benefit from longer time slots, in the presence of reserve-related overheads. In that sense, we

defined two strategies for using longer time slots without any penalty. As it is intuitive, the benefits

of longer time slots come from the decrease in overheads.

We compared a slot-based task-splitting scheduling algorithm, the NPS-F, against reserve-

based scheduling algorithm, the Carousel-EDF. In average, Carousel-EDF performs better than

NPS-F because it is able to schedule task sets with higher utilization and when executed on a real

system no task misses its deadlines.

In our opinion, adding appropriate scheduling algorithms to the Linux kernel (compatible with

PREEMPT-RT patch) is an important step towards making this widely adopted operating system

more suitable for real-time systems. We presented a comparative study in a real system running

on a 24-core machine, where we compare the scheduling algorithms supported by the PREEMPT-

RT-patched Linux kernel (RR and FIFO) against the NPS-F and the Carousel-EDF scheduling

algorithms added to the Linux kernel in the context of this work. We observe that those scheduling

algorithms supported by the PREEMPT-RT-patched Linux kernel miss deadlines (all task sets with

a utilization higher than 55% miss deadlines), whereas no deadline miss was observed for task sets

scheduled according to NPS-F and Carousel-EDF, which were deemed schedulable by the new

analysis.
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8.3 Future work

There are several open topics for further research that have been identified: (i) support of different

hardware platforms; (ii) addressing multi-criticality systems; (iii) use of different/variations of the

scheduling algorithms; (iv) considering resource sharing; (v) implementation slot- and reserve-

based scheduling algorithms in co-kernel approaches; (vi) improve the run-time overheads mea-

surements; and (vii) practical performance comparison with other real-time scheduling algorithms.

Each of these topics will be briefly developed in the following paragraphs.

Support of different hardware platforms. Supporting other hardware platforms would re-

quire the adaptation of the schedulability analysis developed in the context of this work as well as

the implementation techniques. Possibly, other platform-related details could require significant

changes on both. Our hardware platform is based on x86-64 architecture. It could be interesting

to extend the work presented in this dissertation to other hardware platforms. In terms of memory

model, our target platform is a UMA platform; that is, it has a shared memory model, which im-

plies a uniform memory access. It could be interesting to investigate distributed memory models,

where the memory access times are not uniform (that is, NUMA platforms). NUMA platforms

impose a set of challenges, especially for migrating tasks. Note that such platforms scale better

(in terms of number of processors) than UMA platforms. Other platform issue to be investigated

would be the consideration of platforms equipped with non-identical processors. This could reveal

itself as a very challenging work.

Addressing multi-criticality systems. In our work, no distinction of tasks according to the

criticality was made: task sets composed by different types (in terms of criticality level) of tasks

were not considered. It could be interesting to address task sets composed by hard and soft real-

time tasks as well as other types as best-effort tasks [BA07], for instance. The scheduling algo-

rithms under consideration in this work could be a valid option for those task sets. In fact, some

works have recently addressed mixed-criticality tasks [Ves07]. We believe that the scheduling

algorithms under consideration in this work provide nice features suitable for mixed-criticality,

namely, the isolation provided by the time reserves. Additionally, S-EKG could be an interesting

approach for systems with very strict requirements such as hard real-time, because most of the

tasks are assigned to one processor and a few to two processors. In the course of this work, we did

not investigate this feature.

Use of different/variations of the scheduling algorithms. All scheduling algorithms stud-

ied in the context of this work are EDF-based. It could be interesting to investigate slot-based

task-splitting and reserve-based scheduling algorithms using other type of scheduling algorithms,

namely with static-priorities algorithms like RM or Deadline Monotonic.

Some recent work on real-time systems have addressed the possibility to defer scheduling

decisions to as late as possible to increase the effectiveness of the systems [BB10, DBM+13]. This

approach tends to reduce the impact of the practical issues on the performance of the scheduling

algorithms. Given the time division mechanism employed by the scheduling algorithms under

consideration in this dissertation, we believe that those algorithms could benefit from the above
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mentioned approach. Let us assume the following scenario: a task is executing on the respective

server reserve and other server’s task with higher priority is released in a time instant very close to

the end of the respective server reserve. According to the currently defined rules the low priority

task must be preempted to give execution to the higher priority task. However, let us assume that

the time to the end of the reserve is smaller that the cost of switching tasks. In such case, it is

better to keep the low priority task executing until the end of the reserve and when the subsequent

server reserve starts the higher priority task will be start being executed.

We did not investigate the cluster variants of the slot-based task-splitting, in which each cluster

is formed out of processors on the same chip. The purpose of those variants is to eliminate off

chip task migrations, which could be costly due to Cache-related Preemption and Migration Delay

(CPMD). As mentioned in Section 7.2, the cost of the CPMD can degrade the performance of

slot-based task-splitting and also of reserve-based scheduling algorithms. It could be interesting

to evaluate the performance of both types of scheduling algorithms taking into account the CPMD.

In the slot-based task-splitting and in the reserve-based scheduling algorithms the time slot

length is computed according to Equation 5.41 (S = 1
δ
·minτi∈τ(Ti,Di)); that is, it depends on the

tasks parameters and also on the δ parameter. It could be interesting to investigate the impact on

those scheduling algorithms of an arbitrarily chosen time slot length.

Considering resource sharing. Supporting resource sharing is fundamental for the wide ac-

ceptance of our scheduling algorithms [BSNN07, BA08, BA10, FLC10, Cuc13]. Usually, when

several tasks share a resource, only one task is allowed to use that resource in turn. This requires

the use of some locking protocol to assure mutual exclusion. Moreover, real-time systems require

predictability. Therefore, the real-time locking protocols must assure the correct use of the shared

resource as well as the predictable real-time behaviour. Some work has been done to address this

issue on multiprocessor systems. However, at our best knowledge, there is no published work

specific for the scheduling algorithms we proposed in this work. Therefore, adding support for re-

source sharing to slot- and reserve-based scheduling algorithms is a very relevant and challenging

future research effort.

Implementation slot- and reserve-based scheduling algorithms in co-kernel approaches.

Our target platform for implementations runs Linux. It could be interesting to extend the work pre-

sented in this dissertation to other operating systems, namely those based on co-kernel approaches

like Xenomai [Xen12] or RTAI [RTA12], for instance. Note that, the co-kernel approaches are

able to offer more predictability than the Linux kernel. Due to that, they are employed in many

real-time systems.

Improve the run-time overheads measurements. Measuring the run-time overheads re-

quires intrusive operations into the operating system. Developing non-intrusive or lightweight-

intrusive procedures to measure the run-time overheads could be an interesting add-on to the work

presented in this dissertation. Note that, probably, it is not possible to get overhead costs via a

purely analytical approach. As mentioned before, computational systems are complex and com-

posed by many components of hardware and software, including the operating system, that are

rarely documented with sufficient detail allowing the derivation of the required overhead costs.
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Practical performance comparison with other real-time scheduling algorithms. In the

context of real-time systems, the comparison of scheduling algorithms is, typically, based on the

utilization factor and other theoretically-derived parameters. Practical evaluations are much more

difficult to perform than theoretical-only evaluations, since the former are subject to many prac-

tical issues imposed by the host platform (formed by the operating system and the hardware).

Worst, some of them cannot be controlled. Even when it is possible to install into the same host

platform the system that we want to evaluate, other issues arise. For instance, it is not possible

to execute tasks, which code is presented in Listing 7.1, in the LITMUSRT [LR12] or RESCH

[Kat12] frameworks, because specific APIs for implementing the tasks are needed to be used. The

same happens in systems with co-kernel approaches. Therefore, some changes are required to the

system (tasks or frameworks) in order to be comparable. In any case, benchmarking against other

real-time Linux kernel implementations is also a very relevant and challenging future research

effort.
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Appendix A

Interrupts

Interrupts in an operating system are raised by any hardware or software component when it wants

the processor’s attention. Basically, when a processor receives an interrupt, it stops the execu-

tion of the current task to execute the interrupt service routine (ISR) associated with the received

interrupt. We model each sporadic interrupt Inti as a sporadic interfering task with minimum inter-

arrival time of T Int
i and an execution time equal to CInt

i which runs at a higher priority than normal

tasks. Some periodic interrupts (for example, the periodic tick) are also characterised by an ar-

rival jitter JInt
i . We assume that CInt

i is much smaller than S (CInt
i � S) and the number of distinct

types of interrupts is limited to nInt . Modelling interrupts in this manner allows safely upper-

bounding the cumulative execution demand by interrupts using conventional analysis for sporadic

tasks (which we next formulate in detail). However, specifically for interrupts with T Int
i < S, mod-

elling such interrupts instead as bursty periodic tasks1 is sometimes less pessimistic. Intuitively,

this is because under slot-based task-splitting scheduling algorithms, interrupts only exert over-

head when present inside the reserve(s) of the server under consideration. Outside its reserve(s),

an interrupt contributes to the processor-demand of some other server instead. Therefore, for each

interrupt with T Int
i < S, we consider both models and pick the least pessimistic value.

Next, we present in detail how the processor demand of interrupts is bounded under our anal-

ysis. Note that depending on the server type (split or non-split), we model the execution demand

of interrupts in a slightly different way. First, let us consider non-split servers:

A non-split server executes in a single reserve of length Reslen[P̃q] (see Equation 5.22). The

cumulative execution demand by all interrupts on the server can be upper-bounded as

dbfsb:non−split
IntO (P̃q, t) =

nInt

∑
i=1

dbfsb:non−split
Int (Inti, P̃q, t) (A.1)

where dbfsb:non−split
Int (Inti, P̃q, t) is the respective upper bound on the processor demand by interrupt

Inti.

1The bursty periodic arrival model was introduced in [ABR+93]
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For every interrupt Inti (irrespective of whether T Int
i < S or T Int

i ≥ S), a upper bound for

dbfsb:non−split
Int (Inti, P̃q, t) can be (pessimistically) computed as:

dbf(continuous)
Int (Inti, t) =

⌈
t + Jint

i

T Int
i

⌉
·CInt

i (A.2)

The pessimism in this derivation lies in that even interrupts raised outside the reserves of

the server in consideration are treated as interfering. However, for interrupts with T Int
i < S, an

alternative derivation of an upper bound for dbfsb:non−split
Int (Inti, P̃q, t) is possible, using the bursty

periodic model, as explained earlier. Namely:

dbf(non−split:bursty)
Int (Inti, P̃q, t) =

nrS(t) ·dbfN
Int(Inti, P̃q)+dbftail:N

IntO (Inti, P̃q) ∀i,T Int
i < S (A.3)

where nrS(t) is a upper bound on the number of time slots fully contained in the time interval

under consideration (of length t) and dbfN
Int(Inti, P̃q) is a upper bound on the demand by Inti inside

the reserve (of length Reslen[P̃q]) of server P̃q in a single time slot (of length S). Similarly for

dbftail:N
Int (Inti, P̃q), but over the remaining time interval (i.e. the “tail”) of length ttail . These terms,

in turn, are derived as:

nrS(t) =
⌊

t +ResJ
S

⌋
(A.4)

ttail = t−nrS(t) ·S (A.5)

dbfN
Int(Inti, P̃q) = dbf(continuous)

Int (Inti,Reslen[P̃q]) (A.6)

and

dbftail:N
Int (Inti, P̃q) = dbf(continuous)

Int (Inti,min(ttail,Reslen[P̃q])) (A.7)

Often, though not always, dbf(non−split:bursty)
Int (Inti, P̃q, t) provides a less pessimistic estimate

than dbf(continuous)
Int (Inti, t), for interrupts with T Int

i < S. Hence in the general case dbfsb:non−split
Int (Inti, t)

is computed as:

dbfsb:non−split
Int (Inti, P̃q, t) =

dbf(continuous)
Int (Inti, t) if T Int

i ≥ S

min
(

dbf(continuous)
IntO (Inti, t), dbf(non−split:bursty)

Int (Inti, P̃q, t)
)

if T Int
i < S

(A.8)
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Next, we deal with split servers. For convenience we define:

Reslen
x [P̃q] = x[Pp+1] =U in f l

x [P̃q] ·S

Reslen
y [P̃q] = y[Pp] =U in f l

y [P̃q] ·S (A.9)

As mentioned before, a split server P̃q executes on two reserves (of length Reslen
x [P̃q] and

Reslen
y [P̃q]) separated by Ω time units. That is, it is idle during Ω time units, next it executes

during x[Pp+1] on processor Pp+1, then it is idle again during Ω time units, and finally it executes

during y[Pp] on processor Pp (see Figure 4.6).

The cumulative execution demand by all interrupts on the server reserves can be upper-boun-

ded as

dbfsb:split
IntO (P̃q, t) =

nInt

∑
i=1

dbfsb:split
Int (Inti, P̃q, t) (A.10)

where dbfsb:split
Int (Inti, P̃q, t) is the respective upper bound on the processor demand by interrupt

Inti.

For every interrupt Inti (irrespective of whether T Int
i < S or T Int

i ≥ S), a upper bound for

dbfsb:split
Int (Inti, P̃q, t) can be (pessimistically) computed by dbf(continuous)

Int (Inti, t). As for non-split

servers, the pessimism in this derivation lies in that even interrupts raised outside the reserves

of the server in consideration are treated as interfering. Then, for interrupts with T Int
i < S it is

possible to employ the bursty periodic model that may reduce the pessimism:

dbf(split:bursty)
Int (Inti, P̃q, t) =

nrS(t) · (dbfX
Int(Inti, P̃q)+dbfY

Int(Inti, P̃q))

+ dbftail:X
Int (Inti, P̃q)+dbftail:Y

Int (Inti, P̃q) ∀i,T Int
i < S (A.11)

where dbfX
Int(Inti, P̃q) and dbfY

Int(Inti, P̃q) are upper bounds on the demand by Inti inside the re-

serves (of length Reslen
x [P̃q] and Reslen

y [P̃q]) of server P̃q in a single time slot (of length S). Similarly

for dbftail:X
Int (Inti, P̃q) and dbftail:Y

Int (Inti, P̃q), but over the remaining time interval (i.e. the “tail”) of

length ttail . These terms, in turn, are derived as:

dbfX
Int(Inti, P̃q) = dbf(continuous)

Int (Inti,Reslen
x [P̃q]) (A.12)

dbfY
Int(Inti, P̃q) = dbf(continuous)

Int (Inti,Reslen
y [P̃q]) (A.13)
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dbftail:X
Int (Inti, P̃q) =

0 if ttail ≤Ω

dbf(continuous)
Int (Inti, ttail−Ω) if Ω < ttail ≤Ω+Reslen

x [P̃q]

dbf(continuous)
Int (Inti,Reslen

x [P̃q]) if Ω+Reslen
x [P̃q]< ttail ≤ S

(A.14)

dbftail:Y
Int (Inti, P̃q) =

0 if ttail ≤ 2 ·Ω+Reslen
x [P̃q]

dbf(continuous)
Int (Inti, ttail−2 ·Ω+Reslen

x [P̃q]) if 2 ·Ω+Reslen
x [P̃q]< ttail ≤ S

(A.15)

As for non-split servers, often, though not always, dbf(split:bursty)
Int (Inti, P̃q, t) provides a less

pessimistic estimate than dbf(continuous)
Int (Inti, t), for interrupts with T Int

i < S. Hence in the general

case dbfsb:split
Int (Inti, t) is computed as:

dbfsb:split
Int (Inti, P̃q, t) =

dbf(continuous)
Int (Inti, t) if T Int

i ≥ S

min
(

dbf(continuous)
Int (Inti, t), dbf(split:bursty)

Int (Inti, P̃q, t)
)

if T Int
i < S

(A.16)



Appendix B

Other results

This appendix complements the evaluation presented in Chapter 7. The results presented in Chap-

ter 7 are all from task sets with short-period, in the range 5 to 50 milliseconds. Here, we also

provide results considering for task sets with long-period, in the range 50 to 250 milliseconds,

and with mixed-period, in the range 5 to 250 milliseconds. As the name implies, the utilization-

based schedulability analysis relies on the ratio between Ci and Ti. The task set generation, whose

pseudo-code is presented in Algorithm 7.1, first, randomly generates the utilization, next, ran-

domly generates the period, and then, computes the execution time of each task τi as Ci = ui ·Ti.

The system utilization (Us) is used as a criterion for task set generation, which means that for the

same utilization-related input parameters the task set generated is the same. Therefore, the results

for mixed- and long-period task sets are equals to the results for short period task sets presented in

in Chapter 7. In this appendix, we focus on the NPS-F and also in the Carousel-EDF scheduling

algorithms.

B.1 Off-line task-to-processor algorithm

Figure B.1 plots the results of the new overhead-aware schedulability analysis with δ equal to one,

CpmdO equal to 100 microseconds, and the remaining parameters set according to the Table 7.1.

Recall that, to compare schedulability analyses, this metric is used indirectly: a schedulability

analysis is better than another, if, for a given set of task sets, the former finds that more task sets

are schedulable than the latter.

Mixed- and long-period task sets present better results than the short-period task sets. These

results are due to: (i) larger time slots created by mixed-period and, especially, long-period task

sets and (ii) larger task periods. Note that, overhead costs do not change according to either the

length of the time slots or the periodicity of tasks. Then, with larger time slots the associated

overhead costs decrease. Figure B.2 shows the mean and the standard deviation of the time slot

length for each type of task sets (according to both the period ranges and task utilizations). Further,

less frequently arriving tasks also decrease the costs of the task release and also the task switch

overheads. However, CPMD overheads could change according to the working set size of each
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Figure B.1: Comparison of the new NPS-F demand-based overhead-aware schedulability analysis
for short-, mixed-, and long-period task sets.

task. It is possible that tasks with larger execution time could require more memory operations,

which could imply larger CPMD overheads. As mentioned before, computing the CPMD values

is out of the scope of this work.

B.2 Run-time task-dispatching algorithm

Figure B.3 and Figure B.4 plots the percentage of deadlines met for mixed- and long-period task

sets scheduled under the NPS-F scheduling algorithm (please note that y-axes do not have the same

scale among all insets of Figure B.3 and Figure B.4), respectively. In those figures, we present for

each type of tasks (mixed, light, medium, and heavy) a reliability comparison of the NPS-F sche-

duling algorithm based on the percentage of deadlines met when the run-time task-dispatching

settings are computed according to the original, utilization-based, and the new, demand-based
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Figure B.2: The mean and the standard deviation of the time slot length for short-, mixed-, and
long-period task sets according to the type of tasks.

overhead-aware, schedulability analyses. Despite being considered schedulable by the utilization-

based analysis many task sets miss deadlines. We would like to highlight that all task sets com-

posed by light tasks miss deadlines. In our opinion, this is due to the fact that these task sets are

composed by more tasks than the other task sets. Thus, a higher number of tasks implies more

task-related overheads such as task releases and task switches. And, the pessimism of the utiliza-

tion factor of the utilization-based schedulability analysis is not sufficient to accommodate such

overheads. By comparison almost all task sets composed by heavy tasks, meet their deadlines.

These task sets are composed by a small number of tasks and therefore incur fewer task-related

overheads. The pessimism associated to the utilization-based schedulability analysis is enough to

absorb the overheads. From these results, we can observe that the type of tasks has impact on the

performance of the task-dispatching algorithm. In any case, no task set deemed schedulable by

the new analysis missed any deadline.

This comparative study shows that the overheads have to be considered into the schedulabilty

analysis of the slot-based task-splitting scheduling algorithms to increase their reliability.

Figure B.5 and Figure B.6 plot the percentage of deadlines met for mixed- and long-period task

sets scheduled under the RR, FIFO, NPS-F, and Carousel-EDF scheduling algorithms (please note

that y-axes do not have the same scale among all insets of Figure B.5 and Figure B.6), respectively.

For the sake of presentation, we, in the plots, limit the results to 90%; that is, we do not present

the results for task sets that have a percentage of deadlines met below to 90%. As can be observed,

NPS-F and Carousel-EDF meet all deadlines, whereas RR and FIFO miss deadlines (and, in fact,

even though this is not visible in the plots, this even happens for some task sets with with Us equal

to 50%).
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Figure B.3: A comparison between the utilization-based and the demand-based schedulability
analyses based on percentage of deadlines met for mixed-period, in the range [5, 250] millisec-
onds.
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Figure B.4: A comparison between the utilization-based and the demand-based schedulability
analyses based on percentage of deadlines met for long-period, in the range [50, 250] milliseconds.
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Figure B.5: A performance comparison among RR, FIFO, NPS-F, and Carousel-EDF based on
percentage of deadlines met for mixed-period (in the range [5, 250] milliseconds) task sets.



B.2 Run-time task-dispatching algorithm 171

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
97 %

98 %

99 %

100 %

Task set utilization

(perc jobs
deadline:met ) (a) Mixed tasks

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

96 %

98 %

100 %

Task set utilization

(perc jobs
deadline:met ) (b) Light tasks

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
97 %

98 %

99 %

100 %

Task set utilization

(perc jobs
deadline:met ) (c) Medium tasks

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

96 %

98 %

100 %

Task set utilization

(perc jobs
deadline:met ) (d) Heavy tasks

RR; FIFO; NPS-F; Carousel-EDF

Figure B.6: A performance comparison among RR, FIFO, NPS-F, and Carousel-EDF based on
percentage of deadlines met for long-period (in the range [50, 250] milliseconds) task sets.
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C.2 Materials

In the course of this work, we developed the ReTAS (that stands for Real-time TAsk-Splitting

scheduling algorithms) framework [ReT12]. The ReTAS framework implements, in a unified way,

slot-based task-splitting scheduling algorithms in the Linux kernel. Further, it also implements one

reserve-based scheduling algorithm, called Carousel-EDF. All Linux kernel patches and the related

tools, which implement the schedulability analyses for slot-based task-splitting and reserve-based

scheduling algorithms, can be freely downloaded from http://webpages.cister.isep.

ipp.pt/~pbsousa/retas/.
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