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ABSTRACT 
Multi-core platforms are challenging the way software is 
developed, in all application domains. For the particular case of 
real-time systems, models for the development of parallel 
software must be able to be shown correct in both functional and 
non-functional properties at design-time. In particular, issues such 
as concurrency, timing behaviour and interaction with the 
environment need to be addressed with the same caution as for the 
functional requirements. 

This paper proposes an execution model for the parallelization of 
real-time software, based upon a fine-grained parallelism support 
being proposed to Ada, a programming language particularly 
suited to the development of critical, concurrent software. We 
also show the correctness of the proposed model in terms of 
satisfying constraints related to execution order and unbounded 
priority inversions.   

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – Concurrent programming structures.  

Keywords 
Multi-core; real-time; programming language; Ada; dispatching 
domains 

1. INTRODUCTION 
The importance of parallel computations has grown significantly 
as the trend to use multi-core and many-core platforms spreads to 
new application domains, and parallelization is the only means to 
continue to be able to support increasingly complex software in 
hardware architectures which no longer evolve to faster speeds. 
We are thus witnessing an immense growth in parallel 
programming methodologies and models, put forward to address 
the inherent complexity of developing reliable software on these 
platforms.   

This is the case even for domains which are traditionally more 
conservative in evolving to new hardware or software models, 
such as real-time applications. In this domain, systems are built in 
such a way as to guarantee at design time both functional 
behaviour, and timing behaviour in addition to other constraints. 
These systems present significant challenges to the development 
of applications, as they require the guarantee of predictable timing 
behaviour as they interact with, and react to, the external 
environment. 

To meet these challenges, models and technologies incorporate 
intrinsically the notion of time, priorities and concurrency. 
Programming models therefore need to be based in languages 
which integrate these notions, and any solution to the 
development of parallel software must adhere to the same 
requirements. Any approach which considers parallelization must 
be rigorous and amenable to verification. 

Within this context, it is necessary to address the integration of 
fine-grained parallelism in the Ada programming language [9]. 
Ada's sound specification of concurrency is based on the direct 
support for tasks, supporting coarse-grain multi-core 
programming. 

A fine-grain parallel model for Ada has recently been proposed 
[13], based on the notion of tasklets, which are non schedulable 
computation units (similar to Cilk [8] or OpenMP [12] “tasks”). 
Tasklets may be executed by a pool of worker tasks. 

This paper starts from this existent work [13] to propose a model 
of execution for the parallelization of real-time software based 
upon a separation of domains for the execution of the application 
tasks and the execution of their parallel components. The tasks of 
the application are executed in a single core, while the remaining 
cores are used as accelerators, to execute parallel code blocks on 
behalf of the application tasks. We also show analytically that the 
model can preserve important properties of such systems, such as 
avoidance of unbounded priority inversions, deadlocks[4] and 
race conditions. Further work is needed to include analysis of 
timing properties, including issues such as contention for common 
busses and shared global state. 

This work contrasts with other work on scheduling real-time tasks 
in multi-core systems (in [7] the reader will find a survey of the 
major directions being followed and approaches being proposed). 
In contrast to other proposals for parallel real-time tasks 
[6][11][17][2]) this approach tends to be much simpler and 
maintains the structure, methodologies, code, and verification 
techniques currently being used for real-time systems while 
providing extra processing power when needed in a less intrusive 
way.   
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Presently Ada does not have the necessary syntax and libraries to 
support the proposals given here. Paraffin [14][15] implements a 
set of generics which can already be used to achieve the results of 
[13], but require more explicit rearrangement of loops and 
function calls than can be done with dedicated syntax. 

The paper is structured as follows. The next section provides the 
required background, which is then further detailed in Section 3 
for the case of real-time programming models. Section 4 then 
provides some definitions, while Section 5 describes the ongoing 
work to address parallelism within Ada. Section 6 describes the 
model of computation and shows its correctness. Section 7 is 
conclusions and Future work. An annex is also included to show a 
complete example. 

2. BACKGROUND 
2.1 Brief Summary of Real-Time Systems 
Real-time systems are systems in which some or all events in the 
system must result in the correct response within a bounded fixed 
time interval [4]. Real-time systems are usually divided into 2 
domains. Soft real-time systems are ones where some calculations 
can exceed expected time (i.e. the system can accommodate some 
slippage). Hard real-time systems are characterized by the 
property that all of the bounds on calculations are absolute – i.e., 
a late answer is as bad as no answer or a wrong answer, and an 
early answer can also be problematic. Some examples of real-time 
systems are industrial processing systems, transportation systems 
such as airplane control, train braking systems and 
communication, such as network controllers for wifi and ethernet 
controllers. 

Real-time programming presents significant challenges even for 
single-CPU programming. It is event driven, feedback-oriented, 
time critical in that: 

• important calculations have “best before” (for soft real-time), 
“must before” and “not before” (for hard real-time) times; and 

• they are highly concurrent with a minimum of interrupt 
routines, event routines, and likely tasks (threads) to handle 
natural concurrency that occurs. 

In order to work with such systems, a notion of priority 
(imperativeness) is an important concept to ensure that the most 
imperative calculations are done in preference to other 
calculations, and to maintain schedulability (i.e. to meet the hard 
real-time deadlines for the critical tasks). Priority is so important 
that all CPU's have a notion of priority embedded in the hardware 
to control which classes of hardware get preferential service when 
conflict exists, and all operating systems and run times have a 
notion of software priority that extends the hardware priority right 
down to the “idle task”. 

A large real-time program may have: 

• Interrupt handlers delivering external I/O to the system; 

• Clock handlers managing time and making decisions about 
time; 

• Event handlers working with “softer” events with high 
software priority but low hardware priority; 

• Worker tasks interacting with sets of interrupt and event 
handlers; 

• Calculation engines maintaining real-world properties, such as 
velocity, position, acceleration; and 

• Managers managing system state, task states and modes. 

Such a program uses time, priority and programmed state to 
schedule and manage the interaction of the multitude of system 
components to keep the system functioning safely, securely and 
correctly. The precise interaction of many components is vital to 
that correct functioning [10]. 

2.2 Introduction of Parallel Computation 
Like all other domains, the real-time computation domain has 
been demanding more and more CPU power to solve its problems, 
as new applications such as vision systems are introduced, very 
large data sets are processed, and more fidelity is demanded of 
calculations. To date, almost all real-time systems have resided on 
single CPUs [10], or if using multiple CPUs, have highly 
restricted the ways that they can interact so that the constraints of 
the real-time domain can be satisfied. The  stagnation in the 
growth of CPU speed means that real-time systems must seriously 
consider how they can make use of multi-core and many-core 
systems. 

Even real-time systems sometimes need a bigger calculation 
window than can be delivered by a single CPU in the time 
constraints available, such as processing vision system frames to 
detect and identify obstacles. Many calculations are approximate, 
and increasing the processor power increases the fidelity of the 
calculation (and permits some complex algorithms that may not 
be permissible on a single CPU). Dividing the calculation across 
multiple cores permits increased calculation efficiency, provided 
that it can integrate into real-time systems constraints. 

To satisfy the constraints, one must verify before the system is 
fielded that it will operate correctly always, that all eventualities 
have been considered and that all corner cases have been 
considered. Typical approaches are static verification-based 
analysis at design time that may include formal verification, 
Worst Case Execution Time (WCET) analysis, Worst Case 
Response Time (WCRT), measurement, modelling, and extensive 
human review. 

Multi-core systems dramatically change the way that components 
interact with each other and with the external world in that: 

• Tasks executing on separate cores often have very different 
access to memory, network, busses and registers, interfering 
with each other via those covert resources; 

• Some hardware or interrupts may not be available on all 
CPU's; 

• Memory access may be orders of magnitude slower, 
depending upon locality of reference and cache issues; and 

• Objects such as spin locks may give (unintended) preferential 
treatment to some cores or tasks. So, although multi-core 
systems are assumed to be homogenous, bottlenecks such as 
memory bus speeds and number of cores trying to access 
common memory are leading to non-homogeneous systems, 
such as CC-NUMA. 

The items discussed above simply add to the complication that 
multiprocessing systems already present to any previously 
sequential algorithm. 



3. DEFINITIONS 
Task – in Ada is both a unit of design mapping of concurrency 

and unit of concurrent execution. In terms of execution model, 
tasks are similar to threads in POSIX. In fact they are 
typically mapped to OS threads unless accompanied by a 
specialized runtime. 

Application Task (AT) – A task that is declared by the 
programmer. Application tasks are declared to be in a single 
domain that, in this example, execute on a single processor. 
All real-time ATs have a unique priority that is higher than 
any non-real-time application task. An application task with 
priority i is labelled ATi. 

Parallelism OPportunity (POP) – The place in an application 
where sequential code can be executed by parallel units (but is 
not mandated to be executed in parallel). 

Dispatching Policy – The policy which governs the allocation and 
scheduling behaviour of tasks on specific processors. 

Dispatching Domain – a named set of CPUs within which tasks 
assigned to that domain are scheduled according to the 
dispatching policy for that domain. 

Worker Task – A task that belongs to a task pool and executes 
parallel code on behalf of an AT at a POP. All q worker tasks 
WTi(1..q) of a dedicated task pool service a single application 
task ATi. In this model, all WTi execute on a specific 
dispatching domain. 

Spawn – To create an object representing a parallel code unit and 
submitting it to be processed by a worker task. 

4. PARALLEL ADA MODEL PROPOSAL 
Having identified the lack of direct support for use of fine-grained 
parallelism in Ada, we recently proposed a mechanism that the 
programmer can use and precisely control fine-grain parallelism 
in loops and subroutine calls [13]. The basic mechanism leverages 
from the new Ada (2012) aspects syntax to permit an aspect “with 
parallel” to suggest to the compiler that work be parallelized 
across processors, together with a set of library package interfaces 
to support user-defined or user-augmented fine-grained 
parallelism. 

In order to effectively describe the new concurrent behaviour, this 
work introduced a unit of parallelism called a “tasklet” (similar to 
the Cilk concept of task). Unlike Ada tasks, tasklets are not 
nameable or directly visible in a program. A tasklet carries the 
execution of a subprogram or of a code fragment (such as part of 
a “for” loop) in parallel with other tasklets executing the same 
code fragment (with different state) and possibly in parallel with 
other tasklets executing code fragments from other Ada tasks. 

This proposal incorporates logical units of parallelism in the 
semantic model of the language, allowing potential parallelism to 
be expressed both for task/control parallelism, where the control 
structures of the code (e.g. loops and subprograms) which are 
amenable to parallelization are identified, and for data parallelism 
where data structures (arrays or records) are potentially processed 
in parallel, based on the notion of a logical unit of parallelism. 

The programmer identifies these potential parallel opportunities in 
the code, guiding the compiler in generating code that creates the 
logical tasklets. During execution, the runtime executes the 
tasklets in parallel, if the load of the system allows it. These 

tasklets may actually not exist as runtime identifiable objects (it 
depends on actual compiler and libraries implementation) but 
exist as logical entities of the program. Note that this model also 
allows integrating vectorization, as logically the compiler can 
decompose parallel processing in several tasklets which are 
directly executed in hardware. 

There are two types of tasklets. The first is created by the 
compiler when it can determine that an operation can be 
parallelized and submitted to multiple processors, and hence is 
not visible to the programmer. Usages of this could include 
default initialization, assignment of values to arrays of records, 
copying large structures using the Ada assignment operator, or 
compiler identifiable parallelizable loops, as shown in Figure 1. 

 
Figure 1 - Proposal for Tasklets in Ada 2012 [13] 

The second tasklet type is created by the compiler upon 
instruction from the programmer, who uses explicit syntax to 
guide the compiler and runtime in deciding how much parallelism 
should be provided (e.g. by “chunking”), and whether the tasklets 
should process work bundles using a work-sharing, work-seeking1 
or work-stealing model. The syntax includes the use of aspects on 
subprograms and loops. 

Tasklets are meant to augment, not replace tasking as the unit of 
concurrency. Programmers will declare an intent that code 
fragments be executable in parallel, but do not necessarily 
concern themselves with the details of the parallelism itself, or 
how it interoperates with other tasks. They can, however, as we 
will show, extend the syntax and add runtime mechanisms to 
achieve specific concurrency behaviours. 

Each tasklet behaves as if it were executed by a single Ada task 
that was explicitly created for the execution of the tasklets and 
terminated immediately after execution of the code fragment. In 
order to make tasklets integrate smoothly with the tasking 
mechanism, priority, and real-time bounds, tasklets can be 
executed by worker tasks. The Ada tasking model is then used to 
express the concurrency since tasks in Ada already have a 
computationally sound model that addresses the issues (i.e. 
proven support for real-time systems) raised here. To not base this 

                                                                 
1  Work seeking is similar to work stealing, but the worker with 

extra work participates directly in process by frequently 
checking to see if idle workers are available and offering 
work directly to the idle worker. We believe (but have not 
confirmed) that work seeking is safe from priority inversions. 
See [14][15]. 



concurrency on tasks puts at risk the priority model of Ada for 
any real-time programs. 

In a generic system the compiler is free to create as many tasks as 
it needs to execute tasklet code, and any such tasks that execute 
tasklets are not visible to application code. This can be augmented 
with user-defined pools of tasks to execute tasklet code by 
matching the interface that the compiler exposes; a set of 
packages and generics to let the pool provide the service. 

4.1 Syntax 
The most obvious opportunities for parallelism are the 
subprogram call and the loop. For a subprogram call one can 
declare to the compiler the desire to execute the subprogram in 
parallel with its caller by writing 
A_Value :=  Some_Function(Value1) with Parallel  
 + Some_Function(Value2); 
 

Here the subprogram Some_Function(Value2) will be 
executed in parallel with Some_Function(Value1) and the 
caller waits at a point before its return value is consumed by the 
“+” operation 2. 

For loops the basic syntax is 
for I in Integer 1..N with Parallel loop 
   -- some calculation on I 
end loop; 

or if we wanted to control chunking of the algorithm (say to split 
among C cores using work-sharing) 

for I in integer 1..N  
      with Parallel, Chunk_Size => N/C 
loop 
   -- some calculation on I 
end loop; 
 

More details can be found on [13] on the syntax and how issues 
such as managing complex calculations that need reduction, 
identity values, and other tuning parameters, are addressed. 

Using the same model, data-level parallelism can be supported by 
allowing the notion of potentially parallel data types, where 
operations can be parallelized (operations in data types are 
actually subprograms). These data types can have the operations 
overridden by specifying “with Parallel => true” and what would 
be the parallelizable units. 

In this model, the compiler is free to optimize and use SIMD 
hardware when available (as it already can), but may also 
generate logical tasklets, within the same generic model as above, 
and share the same task pools. 

For instance, the following example describes a simple parallel 
array, which the compiler can vectorize in some architectures: 
-- this can be vectorized 
type Par_Arr is array 1 .. 100 of Integer 
   with Parallel => true; 
function “+”(Left, Right: Par_Arr) return Par_Arr 

with Parallel_By_Element =>  
    function “+” (Left, Right: Integer)  
     return Integer; 

                                                                 
2  We also permit the “with Parallel” aspect to be placed on the 

subprogram specification, letting all calls to execute in 
parallel with the caller. In this case one would need “with 
Parallel => False” to prohibit it from happening. 

For more complex data types, the model would be the same: 

type My_Type is record 
   -- whatever 
end record; 
 
function “+”(Left, Right: My_Type) return My_Type;  
-- implements addition of two My_Type objects 
 
type My_Type_Arr is array 1 .. 100 of My_Type 
   with Parallel => true; 
 
function “+”(Left, Right: My_Type_Arr)  
   return My_Type_Arr 
   with Parallel_By_Element =>  
      function “+” (Left, Right: My_Type)  
     return My_Type, 

 Chunk_Size => 50; 
 

-- any “+” operation on My_Type_Arr can be 
-- parallelized by compiler 
-- even automatically vectorized when possible 
 

function “*”(Left, Right: My_Type_Arr)  
   return My_Type is  -- this cannot be  
                         by_element 
begin 
   -- implement dot product with parallel loop 
end “*”; 

 

Aspects could be allowed on the statement of execution  to 
control the level of chunking to perform, either in the 
specification of the type, or in the actual code performing the 
operation: 
My_Arr_1, My_Arr_2: My_Type_Arr; 
-- ... 
... My_Arr_1 + My_Arr_2 with  Parallel,  

       Chunk_Size => 10;  
 

Assignment into a parallel data type could be automatically 
parallelized by the compiler using the same context as the parallel 
operation being performed (or freely if no other operation was 
being performed). Note that for expressions, a “with Parallel” 
gives instructions to the compiler to parallelize as much as 
possible. If the programmer wishes finer control of the 
parallelization of the operations and subprograms she may need to 
rewrite the expression. Further research is needed on the best 
suitable approach for this finer control. 

4.2 Facilities for Programmer-defined  
Task Pools 
The examples given above are enough to have the compiler 
generate a set of parallel dispatches to tasks or processors to 
execute their work component and return partial results for final 
reduction. Many situations exist, however, in which more control 
is needed, such as when the priority of the application task 
requires a set of worker tasks with the same priority. Therefore, 
there are times when the application needs to define its own task 
pool, and to have the compiler invoke these explicit worker tasks. 
In order to integrate the worker tasks, there needs to be an 
interface between the worker tasks and the application program. 

This interface is provided by the addition of package 
Ada.Parallel together with a set of child packages to the Ada 
runtime library to support user-defined or user-augmented fine-
grained parallelism. This library contains interfaces to 
mechanisms (among other things) to support the creation of task 
pools to permit the dispatching of fine-grained parallel work to 



user-written pools of worker tasks, and parallel manager objects 
to control exactly how the parallel work is to be dispatched and 
controlled. The details of this work can be found in [13] and [16]. 

The Ada.Parallel interfaces  also include generic packages to 
implement function reducers and loop iterators that are shown in 
[13] as well as work plans to permit work to be processed by a 
much smaller number of processors (and tasks) than there are 
work packages to be done. For example, load balancing may 
improve performance in some situations but not in others. Thus, 
user-defined task pools can be created to satisfy specialized 
dispatch conditions, such as a bounded set of worker tasks, or set 
priority for all worker tasks, or even a set of Ravenscar 3 
compliant tasks for very specialized runtimes. 

Let us return to the basic syntax to invoke a tasklet, 
with parallel. In order to access the user-defined task pools, 
we need more machinery. Here detailed aspects can be used for 
that purpose. 

for I in 1 .. 1000 
    with Parallel  => True, 
  Worker_Count => 10, 
  Parallel_Manager  => 
   WSL.Work_Sharing_Manager, 
  Task_Pool  => My_Worker_Pool, 
  Chunk_Size => 100, 
  Priority   =>  

System.Priority’Last, 
  Load_Sensitive => True 
loop 
   --... 
end loop; 
 

In the example above, WSL.Work_Sharing_Manager 4 is a user-
defined package that is an instantiation of a generic child package 
of Ada.Parallel [16].  

An important point to note is that the communication between the 
application task that contains the POP and the worker tasks that 
execute the tasklets is always via an Ada protected object(s). Such 
protected objects obey the ceiling priority protocol [4], which 
means that priority-based scheduling is supported by sound 
scheduling theory. It is also important to note that worker task 
pools can be assigned to domains that match characteristics of the 
hardware [3], whether it be a few multi-cores in a homogenous 
environment or a many-core system without shared memory. 

5. THE ACCELERATOR MODEL – A 
POTENTIAL FOR REAL-TIME MULTI-
CORE SYSTEMS 
Building on this existent work, this section presents a model for 
real-time programming for multi-core and many-core processors, 
using available cores as accelerators of the real-time application 
tasks. We also present a couple of examples of alternative 
constructions of a real-time program that follows our model and 
shows how a real-time analysis of such a program could be 
undertaken. 

                                                                 
3  The Ravenscar Tasking Profile is a highly restrictive subset of 

Ada tasking with fixed priority tasks that can only be 
statically declared and that communicate by protected objects 
that can only have a single entry with a single queue element. 

4     WSL refers to Work_Sharing_Loops. 

For our real-time system model, we propose a system where all 
application tasks execute on a single core using the priority 
mechanism and communicate with each other and with interrupts 
and events via protected objects that obey the ceiling priority 
protocol (e.g. with FIFO spinning [5] or other applicable 
protocol). We assume that every application task has a unique 
priority to express its degree of urgency, and that the priority of 
all real-time tasks is higher than the priority of non-real-time 
tasks. For normal inter-task interactions, each protected object 
shared by two or more tasks has a priority equal to the highest 
priority task that can call a protected subprogram or entry of the 
object 5.  

For our system, we assume that there are P tasks with unique 
priorities 1..P (as in Ada higher numbers indicate higher priority), 
called application task 1..P and denoted AT1 .. ATp. Furthermore, 
for the examples below, we assume that task AT1 and AT2 need 
more computational power than is available from the first core, 
but we have M (in the examples below M=7) additional cores 
available. We now show two different configurations for 
distributing the work and show how the real-time properties of the 
program are preserved for each configuration. 

5.1 Mapping 1 – Independent Worker 
Dispatching Domains 
The first mapping (Figure 2) is used when each application task 
ATi (∀i ∈ 1..P) is assigned a non-overlapping subset of the M 
accelerator cores, within a ATi-specific worker dispatching 
domain. In the example, we create three dispatching domains, AD, 
WD1 and WD2, where AD contains core 1 upon which all AT tasks 
execute. Dispatching domain WD2 contains 3 cores and has a task 
pool containing 3 (or more) 6 worker tasks WT2(1..3), each at 
priority 2, the same as AT2. The communication between AT2 and 
WT2(1..3) occurs via work manager protected object 2 (WMPO2) 
with a ceiling priority of 2. Similarly, AT1 is supported by 
dispatching domain WD1 consisting of 4 cores and a task pool 
containing 4 worker tasks WT1(1..4), and communication between 
AT1 and WT1(1..4) occurs via WMPO1. 

When ATi (i=1 or 2 in the example) dispatches work to its worker 
tasks, e.g. using 

for j in 1..N with Parallel => XXX loop,  

ATi calls a protected procedure of WMPOi to schedule up to N 
worker tasks and then spin-waits for a final result. Worker tasks 
WTi(1..q) iteratively collect a work packet, calculate a result, 
return the result, until all work packets have completed and a final 
answer can be returned. At this point, ATi is unblocked and 

                                                                 
5  The model and arguments provided herein rely upon the fact 

that all application tasks execute on a single CPU and rely 
upon the ceiling priority protocol to let correctness 
calculations be performed. If work is distributed to worker 
tasks in other cpu's, and these worker tasks cannot 
communicate or share variables with worker tasks from other 
applications, then they have no dependency with each other 
outside of the application tasks.    

6  It may permissible to create more tasks in a single pool than 
there are available CPUs. All can be dispatched by a “with 
Parallel” call and will sort themselves out to do the 
calculation. Some mechanisms, such as work sharing, may 
have better efficiency when there are more tasks than CPUs. 



returns with its result. In our model, parallelizable code cannot 
share resources with other application tasks. This means that 
worker tasks will not share resources between domains. 

 
Figure 2 -  Real-time Tasks Parallelizing in  

Dedicated Worker Domains 

The challenge is to show that real-time schedulability and 
analyzability of the application are preserved. For example, we 
need to show an absence of priority inversion where for 
priority(i)>priority(j), an ATi is ready to execute but cannot 
because an ATj is executing (excluding cases where ATj is calling 
a protected operation with priority >priority(i)). 

By priority rules, ATj can only execute when all higher priority 
tasks are waiting on a suspend, block or delay operation. It may 
be interrupted while it is doing its work, but cannot interrupt any 
ATi(3..P) except when calling a protected object to communicate 
with some ATi. Without loss of generality, in the example, AT2 can 
be interrupted when scheduling work for WT2(1..3) because 
WMPO2 has priority 2, and can be interrupted by all higher 
priority tasks. 

When AT2 has dispensed all of its work, and WT2(1..3) interacts 
with WMPO2, all interactions occur within the processor of each 
WT2 task and therefore do not impact ATi, i>2. Even when the 
work has completed and ATi must do some computation in 
WMPO2, the priority is such that higher priority tasks always get 
service. 

The argument made above for AT2 applies also to AT1, except that 
AT2 is now added to the set of application tasks that cannot be 
blocked by AT1 or its WT1(1..4). Now however, we must also 
consider interactions between WT2(1..3) and WT1(1..4). There is 
none, because each belongs on independent dispatching domains, 
there is no sharing of data between parallel opportunities in the 
ATi and ATj, and even the execution of WMPO code called by 
worker tasks is independent because of the independent domains. 

5.2 Mapping 2 – Shared Worker Domain 
The second mapping (Figure 3) considers the case where we only 
create a single worker domain of M cores and map all WT task 
pools to this WD domain. We further permit any AT requiring 

tasklets to be somewhere in the range of tasks, not necessarily 
only the lowest. 

In order to accomplish their work, application tasks make liberal 
use of tasklets implemented by pools of worker tasks executing in 
the single dispatching domain (WD) that contains all remaining 
processors. For this example we change the previous scenario by 
placing worker tasks into a single worker task domain, but here 
we permit the notion that application tasks at any priority can use 
tasklets. We continue to show for the example only AT1 and AT2 
using worker tasks but the analysis and verification is generalized 
for all combinations. 

In this case, when 2 or more application tasks compete for 
resources and they are at different priorities then all worker tasks 
for each task will compete on the multi-core domain with the 
same priority rules, meaning that all tasks for the highest priority 
work will receive computing resources, and lower priority worker 
tasks will only proceed when there are more available cores in 
WD than there are higher priority tasks left to execute. 

 
Figure 3 - Accelerator Example - Single Worker Domain 

For this model, we assume that there are N cores and M=N-1 
cores in WD. Without loss of generality we consider 2 arbitrary 
application tasks, ATi and ATj. We further assume that 
priority(ATi) > priority(ATj). Each ATi (and ATj) has a set of 
dedicated worker tasks WTi(1..Q<N-1) and WTj(1..R<N-1) and 
each communicates through its dedicated work manager protected 
object WMPOi and WMPOj. We further assume that  

priority(WMPOi) = priority(ATi) = priority(WTi),  

and similarly for ATj, WTj and WMPOj. We assume that ATi and 
ATj spin-wait on completion of worker tasks. We also discuss 
implications when ATi,j are free to block. 

We claim that this scenario does not introduce priority inversions 
(i.e. it never happens that ATi or any worker task WTi(q) is ready 
to execute but cannot because either ATj or WTj(r) occupies a 
processor) 7. 

                                                                 
7  The notion of priority inversion can only be applied on a 

single dispatching domain. If a task Ti, i>j is ready to run in 
domain D1 and Tj is executing domain D2, this is a design 
decision, not a priority inversion. 



5.3 Verification 
Assumptions 

• All tasks, by the nature of Ada protected objects when 
supported by the Ada real-time annex, and configured to use 
the ceiling priority protocol, follow the ceiling priority rules. 
This means that all communication between application tasks 
happens through protected operations at a priority higher than 
the highest priority task that uses them. This also means that 
all nested interactions occur at increasing levels of priority. 
Priority rules guarantee deadlock freedom and absence of 
unbounded priority inversion, in a single core [4]. 

• All real-time application tasks (AT) have a unique CPU 
priority and we label each ATi by its priority i and the lowest 
priority real-time task has priority greater than the highest 
priority non-real-time task. This is to guarantee that they 
complete their task in bounded time, which accounts for the 
total time taken by higher priority tasks. 

• All real-time ATi execute in a dispatching domain that consists 
of a single core, relying upon priority to give the most urgent 
task the processor, and relying upon tasklets to perform CPU-
intensive calculations while application tasks spin-wait for 
results. We nevertheless present a case (8a) where this is 
relaxed and application tasks may suspend. 

• Each ATi that requires additional computational power has a 
bounded dedicated pool of worker tasks WT to implement the 
tasklets. It also has a dedicated protected object (or set of 
protected objects in the case of a Ravenscar implementation 
of this model). We label WT for ATi as WTi(1..q) and they 
have the same priority in WD as ATi has in AD. 

• ATi and ATj do not share memory resources except via 
protected objects. Also WTi(1..q) and WTj(1..r) do not share 
memory resources. 

• Spawning tasklets to worker tasks is not allowed in protected 
objects and no potentially blocking operations are called from 
any WTi. Note that this limits considerably the model and in 
particular prevents the use of blocking mechanisms when 
implementing nested or divide-and conquer parallelism. It 
provides a safer model for analysis at the expense of 
restricting parallelism. In domains where it is acceptable, 
these restrictions may be relaxed to allow for instance 
workers to spin-wait for the results of another worker, which 
would allow more efficient and expressive parallelism. 

• All WTi(1..q) execute in a single dispatching domain that 
includes all of the remaining cores after the allocation of the 
application task core. The model is independent of WTi being 
allowed or not to migrate within the cores of the domain. 
However, the analysis focuses on the case where WTi tasks are 
statically assigned to cores. 

• Non-real-time priority tasks may share the application task 
domain, if already foreseen in the application, but will not 
share the worker task dispatching domains. These tasks will 
execute with priorities lower than those of the real-time 
application tasks hence will not interfere with the progress of 
work for these tasks. Any communication between real-time 
and non-real-time tasks needs to be performed in a controlled 
and correct way, as it would already need to be 
(independently of the model here proposed), and cannot occur 
while real-time tasks are in a parallelized region. 

• The worker task domain manager (WTDM) for each 
application task contains the protected object(s) WMPOi used 
for communication between ATi and WTi(1..q). This protected 
object has the same priority as does the ATi and WTi that 
communicate through it. 

• The blocking model for application tasks waiting for replies 
from worker tasks is spin waiting at the priority of ATi. 

• All WCET calculations for each application task and worker 
tasks are determined as usual and include preemptions, 
migration, communications time, cache misses, bus 
contention. 

Claim 

No priority inversion is introduced by the model – i.e. there will 
be no task ATi ready to run with work with no available core 
while ATj, i>j and priority(i)>priority(j), is executing. Similarly 
there will be no task WTi ready to run with no available core 
while task WTj is executing. 

Proof: Break into cases. 

Case 1 – application task ATi is executing and has not initiated 
any work for WTi(1..q). By priority rules on the single core, 
task ATj cannot be executing. 

Case 2 – application task ATi is calling the work management PO 
(WMPOi), setting up the Q<N-1 work items for workers. Task 
ATj is on the same core as ATi and cannot be executing by 
priority rules. 

Case 3 – task ATi is spin-waiting on the return of results. Task ATj 
cannot commence execution. 

Case 4 – Task ATj is executing but has not reached a Parallel 
Opportunity and ATi is resumed. ATj is preempted and ATi 
executes, spawns its worker tasks, collects results, and 
finishes. ATj then completes execution, scheduling its worker 
tasks, collecting results and completing. 

Case 5 – ATi does not schedule to execute in this scenario and ATj 
wakes up, calls WMPOj and schedules WTj(1..r) on WD. The 
WTj complete, return values and ATj proceeds back to a 
suspend state. 

Case 6 – ATj executes, initiates worker tasks WTj(1..r), then spin-
waits for its workers to complete. While ATj is spinning, ATi 
commences execution, preempts ATj, initiates WTi(1..q) and 
spins waiting on results. In a shared domain, WTi(1..q) will 
preempt some or all WTj(1..r) and all proceed to completion, 
releasing ATi to finish its calculations. While ATi is finishing 
its calculations, WTj(1..r) workers have resumed. Once ATi 
completes, then ATj resumes spinning for its results, which 
may or may not already be there. 

Case 7 – ATi and ATj have initiated worker tasks and ATi is spin 
waiting for a result with ATj preempted still in the protected 
object WMPOj. WTi(1..q) complete, with the last one releasing 
ATi. ATj continues to be preempted on WMPOj waiting for the 
completion of WTj (1..r). WTj(1..r) execute while ATi executes 
on the application domain core. If some or all WTj(1..r) 
complete before ATi finishes, they try to access a protected 
procedure of WMP0j to deposit their results, but cannot  
acquire the protected object, since ATj has not released it. 
After ATi finishes execution, then ATj exits WMP0j and spin-
waits on the results from WTj(1..r). WTj(1..r) acquire WMP0j 



to deposit their results. Once all WTj (1..r) complete, then ATj 
is released. 

Case 8 – same as case 6, except that WTi(1..q) do not use all 
cores, or as WTi(1..q) complete, cores are released and all 
WTj(1..r) complete before all WTi(1..q) complete. At this point 
ATj is freed the next time that it checks for completed work, 
but the spinning of ATi does not let this happen until all 
WTi(1..q) complete and ATi completes and blocks for the next 
release. ATj then continues. 

If we permit blocking by ATi (i.e. self-suspend waiting for 
WTi(1..q) to complete instead of spin-waiting), then the following 
additional cases exist (Note that the system will not be ICPP 
compliant but some real-time systems analysis permits blocking 
by tasks in more than one place): 

Case 8a – same as Case 8 except that ATj is free to execute upon 
release as ATi is blocked waiting on the WTi to complete. ATj 
may or may not finish its iteration before ATi is released. 
Spawning tasklets inside a protected object is not allowed, 
thus we are guaranteed that ATi is not using any resources 
when suspending. 

The discussion and analysis above only shows that there is no 
structural contention that could cause deadlock or introduce 
priority inversions. It does not address platform-specific issues 
such as bus contention, DMA contention, cache-flush/cache-miss 
issues, or local memory/global memory access times: all of which 
are critical issues for real-time systems. Such analysis is the 
subject of several current (and future) research works. 

The discussion also does not discuss the role of high priority real-
time tasks that share the application domain but do not use 
tasklets. These tasks are the highest priority tasks that interact 
with the external environment but consume few processor cycles 
(e.g. Interrupt handlers). If such a task ATi preempts an executing 
application task that has not yet called its WMPOi, processing 
happens normally. If it is preempted while a call to WMPOi is in 
progress, the priority rules mean that the call waits until the 
preempting operation completes, as would happen in a single 
CPU system. If the higher priority task executes in the application 
domain while WTi are executing, ATi is preempted so no 
interruption occurs, and the processing of any returned values 
waits until the higher priority task completes. 

The model above was chosen specifically to closely match the 
existing knowledge base and verification approaches for real-time 
programs based on single CPUs and priority to control 
scheduling. The extension of the single core to a worker domain 
that matches the main single core extends the priority model to 
the worker tasks. The choice of a dedicated worker task protected 
object for each application task, and setting its priority to be 
identical to that of its application task guarantee that higher 
priority tasks will always get the computing resource upon 
demand, even at the expense of blocking possible execution 
cycles of worker tasks on different domains. We note that the goal 
in real-time systems is not to use the algorithm that extracts the 
most available work from the cores, but to use algorithms that can 
be verified to satisfy the time bounds as well as generate correct 
calculations. Furthermore, this approach allows not breaking the 
Ravenscar model in the application tasks single core, whilst 
allowing accelerating computation in worker cores.  

Other systems exist that can take advantage of the simple model 
presented here (e.g. for runtime simplicity) but that may not have 

the same strict requirements on static analysis. For those systems 
we may want to remove some of the assumptions presented in 
section 5.3, which may lead to a more efficient and balanced 
utilization of the system resources. This is outside of the scope of 
this paper, and subject of future research. 

Other mappings are clearly possible and supported by the 
mechanisms that we propose. We have already shown a mapping 
that dedicates a worker domain for each worker task needing such 
a resource and one sharing a domain. In particular, where it is 
known that processor layouts give preference to certain couplings 
of cores, then these cores can be combined into dispatching 
domains with work allocation managers defined that optimize 
such couplings in the configuration portion of the program, and 
invoked using the straightforward, analyzable methods shown 
here. 

The question naturally arises as to the applicability to other 
languages. There are real-time operating systems and kernels, as 
there are other languages and add-ons that permit some level of 
fine-grained parallelism. The challenge is in pulling them together 
so that the integration of the combination satisfies the tough 
requirements of real-time and of converting/dispatching work into 
multi-core domains. Certainly it is possible, but clearly Ada has a 
level of integration in the way that it combines real-time tasking 
with all of the paradigms of a modern programming language 
necessary to do this today. 

6. CONCLUSIONS AND FUTURE WORK 
This paper builds on recent work to introduce a model for parallel 
real-time programming in Ada. We develop and analyze a model 
where all cores but one are used to provide extra computational 
power to the application tasks executing in a single core. Because 
it is rooted in the real-time methodologies prevalent today it 
leverages those models and techniques to extend the traditional 
real-time approaches on single core systems to a variety of multi-
core possibilities. 

In the domain of non-uniform multi-core applications, further 
exploration of the effects that localized protected object calls have 
viz-a-viz spin-locks, fair-locks and message-exchanging systems 
would be useful. On systems where CPU architecture is 
heterogeneous, the interaction of Ada partitions, shared passive 
partitions, protected objects and tasklets may permit real-time 
behaviour across such systems, but further exploration is required. 
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APPENDIX – EXAMPLE 
This appendix provides an example with the application 
structured in a one-core system domain and two worker domains. 
We assume 5 tasks (P = 5) all in the application domain. Tasks 3 
to 5 read sensors, then update actuators. The devices that 
manipulate the sensor data and process actuator outputs are 
assumed to be external to this application. Tasks 1 and 2 perform 
computations which are amenable to parallelization. These tasks 
parallelize to worker domains D1 and D2 respectively. 

A generic interface for a Parallel Manager is provided in the back-
end. A Parallel Manager implementation may utilize a task pool, 
and interfaces to sharable task pools are also provided in the 
backend. The restrictions associated with the Ravenscar Profile, 
however necessitate a different task pool interface than for the 
general case. Since task pools only interface with Parallel 
Managers and not with user code, the backend design allows 
flexibility in supporting multiple task pool interfaces. This 
interface contains a set of routines that a pool of Ada tasks call to 
obtain work to be done, and to return the results of work. A task 
pool interface which follows the code restrictions of Ravenscar 
(but not fully the Ravenscar model) is shown here, since it is more 
relevant to real-time. 
 
pragma Profile (Ravenscar); 
 
package Ada.Parallel.Ravenscar_Task_Pools is 
 
   --  A Pool_Index uniquely identifies a worker                 
   --  within the Task Pool 
   type Pool_Worker_Count is new  
      Worker_Count_Type; 
 
   subtype Pool_Index is Pool_Worker_Count; 
 
   --  A Plan_Index uniquely identifies a worker  
   --  within the work plan and Parallel Manager 
   type Plan_Worker_Count is new  
      Worker_Count_Type; 
    
   subtype Plan_Index is Plan_Worker_Count; 
 
   --  A Work Plan gives the task pool client (the  
   --  Parallel Manager) the full control on 
   --  how the worker manages and approaches its  
   --  work. The task pool only provides 
   --  the workers, the work plan defines the work  
   --  to be done. 
    
   type Work_Plan is limited interface; 
 
   procedure Engage (Plan   : in out Work_Plan;    
                     Worker : Pool_Index;     
                     Item   : Plan_Index)  
      is abstract; 
   --  When a worker starts executing, it engages  
   --  the work plan. The parallelism manager  
   --  client decides how to execute the work  
   --  (tasklets). Engage is called once per  
   --  tasklet and executes the plan.  
   --  Upon returning, the Worker is once again  
   --  idle and returns to the task pool 
 
   procedure Starting (Plan      : in out  
                   Work_Plan; 
                       Requester : Plan_Index; 
                       Item      : out Plan_Index)  
       is null; 
   --  Routine that gets called before a work plan  

   --  is engaged, to allow the plan to initialize 
   --  any internal state. This routine is meant  
   --  to be called from within a protected object  
   --  associated with the pool, and therefore 
   --  must not be potentially blocking 
 
   procedure Completing (Plan : in out Work_Plan; 
                         Item : Plan_Index)  
       is null; 
   --  Routine that gets called immediately after  
   --  the work plan executed the tasklet, 
   --  to allow the plan to update any internal  
   --  state. This routine is intended to be  
   --  called from within a protected object  
   --  associated with the pool, and therefore  
   --  must not be potentially blocking. 
  
   type Task_Pool_Interface is limited interface; 
 
   procedure Reserve (Pool : in out  
                            Task_Pool_Interface;  
                      Worker_Count :  
                            Positive_Worker_Count)  
       is abstract  
   with Pre'Class =>  
       Pool.Available_Workers >= Worker_Count;  
   -- Allows a POP to request and reserve a number  
   -- of workers from the pool. 
 
   procedure Release (Pool : in out  
                            Task_Pool_Interface;  
                      Worker_Count :  
                            Positive_Worker_Count)  
       is abstract  
   with Pre'Class =>  
       Pool.Total_Workers – Pool.Available_Workers 
       >= Worker_Count; 
   --  Allows a POP to release the workers it had 
   --  reserved back to the pool 
 
   function Available_Workers (Pool :  
                              Task_Pool_Interface)  
       return Worker_Count_Type is abstract;  
   --  Returns the number of workers that may be  
   --  reserved in the pool. 
 
   function Idle_Workers (Pool :  
                              Task_Pool_Interface)  
       return Worker_Count_Type is abstract;  
   --  Returns the number of workers that are idle  
   --  in the pool 
 
   function Total_Workers (Pool :  
                              Task_Pool_Interface)  
       return Positive_Worker_Count is abstract; 
   --  Returns the total number of workers in the  
   --  pool 
 
   procedure Offer_Work (Pool : in out  
                             Task_Pool_Interface; 
                         Plan : aliased in out  
                             Work_Plan'Class; 
                         Item : Plan_Index)  
     is abstract 
   with Pre'Class => Pool.Available_Workers > 0; 
   --  Allows a Parallel Manager to request a  
   --  worker from the task pool. The Work plan is  
   --  offered to the task pool, which is then  
   --  engaged by an available worker. Note: This  
   --  routine is intended to be invoked by the  
   --  parallelism manager, and not exposed to the  
   --  user client code. 
 
    
 



   procedure Offer_Work_To_Group (Pool :  
                      in out Task_Pool_Interface;   
                                  Plan :  
                  aliased in out Work_Plan'Class;   
                                  Worker_Count :  
                           Positive_Worker_Count)  
       is abstract 
   with Pre'Class =>  
       Pool.Available_Workers >= Worker_Count; 
   --  Allows a Parallel Manager to request a  
   --  group of multiple workers from the task  
   --  pool. The Work plan is then engaged by each  
   --  worker up to the requested Worker_Count.  
   --  Note: This routine is intended to be called  
   --  by the parallelism manager, and not exposed  
   --  to the user client code. 
 
   function Priority (Pool : Task_Pool_Interface) 
     return System.Priority is abstract; 
   --  Get the priority of the task pool 
 
   procedure Next_Worker_Id (Pool :  
                      in out Task_Pool_Interface; 
                             Plan :  
                  aliased in out Work_Plan'Class; 
                             Requester :  
                                      Plan_Index; 
                             Item :  
                                  out Plan_Index)  
       is null; 
   --  Returns the next Plan_Index which will be  
   --  uniquely associated with a worker and 
   --  corresponding tasklet while it executes the  
   --  work plan. 
 
   procedure Finished_Work (Pool   :  
                     in out Task_Pool_Interface; 
                            Worker : Pool_Index; 
                            Plan   :  
                 aliased in out Work_Plan'Class; 
                            Item   : Plan_Index)  
       is null; 
   --  Allows a Parallel Manager to indicate to  
   --  the task pool that a tasklet has completed 
   --  execution. This provides the protected  
   -- subprogram context for calling the work plan 
   --  Completing primitive to allow the Parallel  
   --  Manager to perform any final processing 
   --  with synchronization and protection from  
   --  other workers. 
 
end Ada.Parallel.Ravenscar_Task_Pools; 

 
The specification for a possible implementation of this interface 
follows. 

 
pragma Profile (Ravenscar); 
 
with System.Storage_Elements; 
with System.Multiprocessors; use System; 
with Ada.Parallel.Ravenscar_Task_Pools; use 
Ada.Parallel.Ravenscar_Task_Pools; 
  
generic 
 
   Storage_Size : 
       System.Storage_Elements.Storage_Count :=  
                      Default_Worker_Storage_Size; 
   Worker_Priority :  
       System.Priority  :=  
                      System.Default_Priority; 
   Number_Of_Workers :  
       Pool_Worker_Count := 100; 

package Ravenscar_Pool_Implementation is 
 
   type Worker (Core : Multiprocessors.CPU_Range)  
       is limited private; 
 
   type Worker_Array is array (1 ..  
       Number_Of_Workers) of access Worker; 
   --  The Ada tasks in the task pool 
 
   type Task_Pool (Workers : access Worker_Array)  
       is limited new Task_Pool_Interface  
       with private; 
   --  task pool object type that has a pool of  
   --  real Ada tasks to process 
   --  tasklets that are submitted to the pool for 
   --  processing. 
 
private 
   ...  Implementation Defined 
end Ravenscar_Pools_Implementation; 

 
The Application specification identifies and configures the 
application tasks and associated task pools. 
 
private with Ravenscar_Pools_Implementation; 
 
package The_Ravens_Car_Application is 
 
   --  We assume here that Sensors and Actuators  
   --  are maintained by external devices. Sensors  
   --  can be read by the Ada application, and  
   --  actuators can be set by the Ada  
   --  application. 
 
   type External_Device is new Float with Atomic; 
 
   subtype Sensor_Type   is External_Device; 
   subtype Actuator_Type is External_Device; 
 
   type External_Data_Buffer  
       is array (Integer range <>) of Integer  
       with Atomic_Components; 
 
   Camera_Data :  
       External_Data_Buffer  (1 .. 1_000_000) :=  
                                    (others => 0); 
   --  Video capture 
    
   Brakes : Actuator_Type;             
   --  Controls the brakes of the vehicle 
 
   Audio_Data :  
        External_Data_Buffer (1 .. 2**20) :=  
                                    (others => 0); 
   Voice_Command : Actuator_Type;       
   --  Indicates current voice command to process 
 
   Desired_Temperature : Sensor_Type;   
   --  Monitors Desired temperature 
   Thermostat : Actuator_Type;          
   --  Controls the thermostat 
 
   Desired_Direction : Sensor_Type;     
   -- Monitors GPS direction 
   Steering_Wheel : Actuator_Type;      
   -- Controls direction of vehicle 
 
   Desired_Velocity : Sensor_Type;      
   --  Monitors the desired velocity 
 
   Speed : Actuator_Type;               
   --  Controls the speed 
 
 



private 
   --  Tasks T1 and T2 get the Camera and Audio  
   --  data and calculate the actuator 
   --  output. We assume that this can be  
   --  parallelized.  Create the application tasks 
 
   task AT1 with Priority => 1, CPU => 1;     
   --  Controls vehicles brakes via camera input 
 
   task AT2 with Priority => 2, CPU => 1;     
   --  Interprets voice data commands 
 
   task AT3 with Priority => 3, CPU => 1;     
   --  Controls vehicle direction via GPS input 
 
   task AT4 with Priority => 4, CPU => 1;     
   --  Controls vehicle speed 
 
   task AT5 with Priority => 5, CPU => 1;     
   --  Controls air temperature 
 
   --  Create the task pools 
   package D1_Task_Pool is new  
       Ravenscar_Pools_Implementation   
             (Storage_Size      =>    
          Parallel.Default_Worker_Storage_Size,                                                                      
              Worker_Priority   => 1,                                                                               
              Number_Of_Workers => 4); 
 
   Worker1 :  
       aliased D1_Task_Pool.Worker (Core => 2); 
   Worker2 :  
       aliased D1_Task_Pool.Worker (Core => 3); 
   Worker3 :  
       aliased D1_Task_Pool.Worker (Core => 4); 
   Worker4 :  
       aliased D1_Task_Pool.Worker (Core => 5); 
 
   D1_Workers :  
       aliased D1_Task_Pool.Worker_Array :=  
       (1 => Worker1'Access, 
        2 => Worker2'Access, 
        3 => Worker3'Access, 
        4 => Worker4'Access); 
 
   TP1 : aliased D1_Task_Pool.Task_Pool ( 
              Workers => D1_Workers'Access);   
   --  Task Pool for AT1 
 
   package D2_Task_Pool is new  
       Ravenscar_Pools_Implementation   
             (Storage_Size      =>  
         Parallel.Default_Worker_Storage_Size,                                                                       
              Worker_Priority   => 2,                                                                               
              Number_Of_Workers => 2); 
 
   Worker5 :  
       aliased D2_Task_Pool.Worker (Core => 6); 
   Worker6 :  
       aliased D2_Task_Pool.Worker (Core => 7); 
    
   D2_Workers :  
       aliased D2_Task_Pool.Worker_Array :=  
       (1 => Worker5'Access, 
        2 => Worker6'Access); 
 
   TP2 : aliased D2_Task_Pool.Task_Pool ( 
              Workers => D2_Workers'Access);   
   --  Task pool for AT2 
 
end The_Ravens_Car_Application; 
 
--  Change Cores of Worker 5-6 to overlap cores of  
--  Worker 1-4  to change to Mapping 2 
--  Note that to switch to MAPPING 2, nothing  
--  needs to be done in the tasks AT(1 or 2) or WT 

The actual code of the applications can be based on existent 
sequential code, with only adding parallelization information in 
the loops in tasks T1 and T2. For completeness we show the code. 
 
with Ada.Real_Time; use Ada; 
with Parallel.Functional_Reducing_Loops. 
                           Ravenscar_Work_Seeking; 
with Parallel.Functional_Reducing_Recursion_ 
                           Ravenscar_Work_Sharing; 
with Parallel.One_Shot_Wait_Free_ 
                           Synchronous_Barriers; 
use Parallel.One_Shot_Wait_Free_ 
                           Synchronous_Barriers; 
 
package body The_Ravens_Car_Application is 
 
   Start_Time :  
       constant Real_Time.Time := Real_Time.Clock; 
   use type Real_Time.Time; 
 
   task body AT1     
      --  Suppose AT1 controls the brakes of the  
      --  vehicle by monitoring camera views of  
      --  the road 
   is 
      package Integer_Loops is 
        new Parallel.Functional_Reducing_Loops  
           (Result_Type => Integer, 
            Reducer => Integer'Max, 
            Identity_Value => Integer'First, 
            Iteration_Index_Type => Integer); 
 
      package Max_Loop is new  
           Integer_Loops.Ravenscar_Work_Seeking; 
 
      Max_Value : Integer := Integer'First; 
 
      Next_Execution :  
           Real_Time.Time := Start_Time; 
      Period         :  
           constant Real_Time.Time_Span :=  
                       Real_Time.Milliseconds (1); 
 
   begin  -- AT1 body 
      loop 
         delay until Next_Execution; 
 
         for I in Camera_Data'Range  
             with Parallel, 
                  Task_Pool => TP1, 
                  Accumulator => Max_Value, 
                  Parallel_Manager =>  
                     Max_Loop.Work_Seeking_Manager 
         loop 
            Max := Integer'Max ( 
                            Max, Camera_Data (I)); 
         end loop; 
          
         --  Assume that the brake value is the  
         --  maximum value found in the camera  
         --  data. (Not at all realistic, a  
         --  realistic computation would be too  
         --  complex to show here) 
         Brakes := Actuator_Type (Max_Value); 
         Next_Execution := Next_Execution +Period; 
      end loop; 
   end AT1; 
 
-------------------------------------------------- 
   task body AT2 
   is 
      --  Suppose AT2 processes voice command  
      --  audio data, and acts on the interpreted  
      --  commands 



        
      --  The processing shown here is not  
      --  realistic, but nevertheless shows  
      --  parallel processing in two phases.  
 
      --  The simplistic algorithm shown here  
      --  calculates the average of the  array  
      --  segment, then adds 1 to all values 
      --  above the average, and then substracts  
      --  1 from all values below the average. 
 
      --  eg: An array of 8 elements with values  
      --  from 1 .. 8 
      --  there are only two worker tasks in the  
      --  task pool, therefore we indicate a  
      --  chunk_Size of 4 and the compiler  will  
      --  divide the work in two 
 
      --  data: 1,  2,  3,  4,  5,  6,  7,  8 
      -- 
      --  pass 1 (two workers in parallel): 
                 -------------  ------------- 
      --   Sum:       10,             26 
      --   Reduced Sum:       36 
 
      --  Average calculated by AT2: 4.5 
 
      --  pass 2 (two workers in parallel): 
                 -------------  ------------- 
      --  data: 0, 1,  2,  3,  6,  7,  8,  9 
       
      package Integer_Loops is 
        new Parallel.Functional_Reducing_Loops  
           (Result_Type => Integer, 
            Reducer => “+”, 
            Identity_Value => 0, 
            Iteration_Index_Type => Integer); 
 
      package Avg_Loop is new  
           Integer_Loops.Ravenscar_Work_Sharing; 
 
      Sum_Value : Integer := 0; 
      Avg_Value : Float; 
 
      
      Next_Execution  :  
           Real_Time.Time := Start_Time; 
      Period          :  
           constant Real_Time.Time_Span :=  
                       Real_Time.Milliseconds (5); 
 
      
   begin --  AT2 body 
 
      loop 
         delay until Next_Execution; 
 
         for I in 1 .. 8  
            with  Parallel,  
 Task_Pool => TP2,  
 Accumulator => Sum_Value,  

 Parallel_Manager =>  
                    Avg_Loop.Work_Sharing_Manager, 
 Chunk_Size => 4 
         loop  
     Sum_Value := Audio_Data(I) +Sum_Value; 
         end loop; 
         --  Parallel first phase calculating  
         --  aggregated sum 
 
         Avg_Value := Float(Sum_Value) / 8.0; 
         --  Sequential phase calculating the 
         --  average 
         
 

 
         for I in 1 .. 8  
            with  Parallel,  
 Task_Pool => TP2,  
 Chunk_Size => 4 
         loop  
      if (Float(Audio_Data(I)) >  
                                 Avg_Value) then 
  Audio_Data(I) := Audio_Data(I) + 1; 
             elsif (Float(Audio_Data(I)) <  

                  Avg_Value) then 
  Audio_Data(I) := Audio_Data(I) - 1; 
             end if; 
         end loop; 
         --  Parallel second phase updating values 
 
         Next_Execution := Next_Execution +Period; 
      end loop; 
   end AT2; 
 
-------------------------------------------------- 
   task body AT3 is 
      --  Suppose AT3 maintains the direction of  
      --  the vehicle according to 
      --  current route instructions from a  
      --  GPS device 
      Next_Execution :  
          Real_Time.Time := Start_Time; 
      Period :  
          constant Real_Time.Time_Span :=  
                     Real_Time.Milliseconds (10); 
   begin 
      loop 
         delay until Next_Execution; 
         Steering_Wheel := Desired_Direction;    
         Next_Execution := Next_Execution +Period; 
      end loop;       
   end AT3; 
 
-------------------------------------------------- 
   task body AT4 is 
      --  Suppose AT4 maintains the  
      --  cruise control speed 
      Next_Execution :  
          Real_Time.Time := Start_Time; 
      Period :  
          constant Real_Time.Time_Span :=  
                   Real_Time.Milliseconds (100); 
   begin 
      loop 
         delay until Next_Execution; 
         Speed := Desired_Velocity; 
         Next_Execution := Next_Execution +Period; 
      end loop; 
   end AT4; 
 
-------------------------------------------------- 
   task body AT5 is 
      --  Suppose AT5 maintains the cabin  
      --  temperature by controlling heating/AC 
      Next_Execution :  
          Real_Time.Time := Start_Time; 
      Period :  
          constant Real_Time.Time_Span :=  
                          Real_Time.Minutes (1); 
   begin 
      loop 
         delay until Next_Execution; 
         Thermostat := Desired_Temperature;      
         Next_Execution := Next_Execution +Period; 
      end loop; 
   end AT5; 
 
end The_Ravens_Car_Application;

 


