

Real-Time Programming on Accelerator Many-
Core Processors

Technical Report

*CISTER Research Center
CISTER-TR-131112

2013/11/10

Stephen Michell
Brad Moore
Luis Miguel Pinho*

Technical Report CISTER-TR-131112 Real-Time Programming on Accelerator Many-Core Processors

Real-Time Programming on Accelerator Many-Core Processors
Stephen Michell, Brad Moore, Luis Miguel Pinho*

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: lmp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Multi-core platforms are challenging the way software isdeveloped, in all application domains. For the particular
case ofreal-time systems, models for the development of parallelsoftware must be able to be shown correct in
both functional andnon-functional properties at design-time. In particular, issues suchas concurrency, timing
behaviour and interaction with theenvironment need to be addressed with the same caution as for thefunctional
requirements.

This paper proposes an execution model for the parallelization ofreal-time software, based upon a fine-grained
parallelism supportbeing proposed to Ada, a programming language particularlysuited to the development of
critical, concurrent software. Wealso show the correctness of the proposed model in terms ofsatisfying constraints
related to execution order and unboundedpriority inversions.

© CISTER Research Center
www.cister.isep.ipp.pt

1

Real-Time Programming on
Accelerator Many-Core Processors

Stephen Michell
Maurya Software Inc

Canada
stephen.michell@maurya.on.ca

Brad Moore
General Dynamics

Canada
brad.moore@gdcanada.com

Luís Miguel Pinho
CISTER/INESC-TEC, ISEP

Portugal
lmp@isep.ipp.pt

ABSTRACT
Multi-core platforms are challenging the way software is
developed, in all application domains. For the particular case of
real-time systems, models for the development of parallel
software must be able to be shown correct in both functional and
non-functional properties at design-time. In particular, issues such
as concurrency, timing behaviour and interaction with the
environment need to be addressed with the same caution as for the
functional requirements.

This paper proposes an execution model for the parallelization of
real-time software, based upon a fine-grained parallelism support
being proposed to Ada, a programming language particularly
suited to the development of critical, concurrent software. We
also show the correctness of the proposed model in terms of
satisfying constraints related to execution order and unbounded
priority inversions.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Concurrent programming structures.

Keywords
Multi-core; real-time; programming language; Ada; dispatching
domains

1. INTRODUCTION
The importance of parallel computations has grown significantly
as the trend to use multi-core and many-core platforms spreads to
new application domains, and parallelization is the only means to
continue to be able to support increasingly complex software in
hardware architectures which no longer evolve to faster speeds.
We are thus witnessing an immense growth in parallel
programming methodologies and models, put forward to address
the inherent complexity of developing reliable software on these
platforms.

This is the case even for domains which are traditionally more
conservative in evolving to new hardware or software models,
such as real-time applications. In this domain, systems are built in
such a way as to guarantee at design time both functional
behaviour, and timing behaviour in addition to other constraints.
These systems present significant challenges to the development
of applications, as they require the guarantee of predictable timing
behaviour as they interact with, and react to, the external
environment.

To meet these challenges, models and technologies incorporate
intrinsically the notion of time, priorities and concurrency.
Programming models therefore need to be based in languages
which integrate these notions, and any solution to the
development of parallel software must adhere to the same
requirements. Any approach which considers parallelization must
be rigorous and amenable to verification.

Within this context, it is necessary to address the integration of
fine-grained parallelism in the Ada programming language [9].
Ada's sound specification of concurrency is based on the direct
support for tasks, supporting coarse-grain multi-core
programming.

A fine-grain parallel model for Ada has recently been proposed
[13], based on the notion of tasklets, which are non schedulable
computation units (similar to Cilk [8] or OpenMP [12] “tasks”).
Tasklets may be executed by a pool of worker tasks.

This paper starts from this existent work [13] to propose a model
of execution for the parallelization of real-time software based
upon a separation of domains for the execution of the application
tasks and the execution of their parallel components. The tasks of
the application are executed in a single core, while the remaining
cores are used as accelerators, to execute parallel code blocks on
behalf of the application tasks. We also show analytically that the
model can preserve important properties of such systems, such as
avoidance of unbounded priority inversions, deadlocks[4] and
race conditions. Further work is needed to include analysis of
timing properties, including issues such as contention for common
busses and shared global state.

This work contrasts with other work on scheduling real-time tasks
in multi-core systems (in [7] the reader will find a survey of the
major directions being followed and approaches being proposed).
In contrast to other proposals for parallel real-time tasks
[6][11][17][2]) this approach tends to be much simpler and
maintains the structure, methodologies, code, and verification
techniques currently being used for real-time systems while
providing extra processing power when needed in a less intrusive
way.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
HILT’13, November 10–14, 2013, Pittsburgh, PA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2467-0/13/11…$15.00.
http://dx.doi.org/10.1145/2527269.2527270.

Presently Ada does not have the necessary syntax and libraries to
support the proposals given here. Paraffin [14][15] implements a
set of generics which can already be used to achieve the results of
[13], but require more explicit rearrangement of loops and
function calls than can be done with dedicated syntax.

The paper is structured as follows. The next section provides the
required background, which is then further detailed in Section 3
for the case of real-time programming models. Section 4 then
provides some definitions, while Section 5 describes the ongoing
work to address parallelism within Ada. Section 6 describes the
model of computation and shows its correctness. Section 7 is
conclusions and Future work. An annex is also included to show a
complete example.

2. BACKGROUND
2.1 Brief Summary of Real-Time Systems
Real-time systems are systems in which some or all events in the
system must result in the correct response within a bounded fixed
time interval [4]. Real-time systems are usually divided into 2
domains. Soft real-time systems are ones where some calculations
can exceed expected time (i.e. the system can accommodate some
slippage). Hard real-time systems are characterized by the
property that all of the bounds on calculations are absolute – i.e.,
a late answer is as bad as no answer or a wrong answer, and an
early answer can also be problematic. Some examples of real-time
systems are industrial processing systems, transportation systems
such as airplane control, train braking systems and
communication, such as network controllers for wifi and ethernet
controllers.

Real-time programming presents significant challenges even for
single-CPU programming. It is event driven, feedback-oriented,
time critical in that:

• important calculations have “best before” (for soft real-time),
“must before” and “not before” (for hard real-time) times; and

• they are highly concurrent with a minimum of interrupt
routines, event routines, and likely tasks (threads) to handle
natural concurrency that occurs.

In order to work with such systems, a notion of priority
(imperativeness) is an important concept to ensure that the most
imperative calculations are done in preference to other
calculations, and to maintain schedulability (i.e. to meet the hard
real-time deadlines for the critical tasks). Priority is so important
that all CPU's have a notion of priority embedded in the hardware
to control which classes of hardware get preferential service when
conflict exists, and all operating systems and run times have a
notion of software priority that extends the hardware priority right
down to the “idle task”.

A large real-time program may have:

• Interrupt handlers delivering external I/O to the system;

• Clock handlers managing time and making decisions about
time;

• Event handlers working with “softer” events with high
software priority but low hardware priority;

• Worker tasks interacting with sets of interrupt and event
handlers;

• Calculation engines maintaining real-world properties, such as
velocity, position, acceleration; and

• Managers managing system state, task states and modes.

Such a program uses time, priority and programmed state to
schedule and manage the interaction of the multitude of system
components to keep the system functioning safely, securely and
correctly. The precise interaction of many components is vital to
that correct functioning [10].

2.2 Introduction of Parallel Computation
Like all other domains, the real-time computation domain has
been demanding more and more CPU power to solve its problems,
as new applications such as vision systems are introduced, very
large data sets are processed, and more fidelity is demanded of
calculations. To date, almost all real-time systems have resided on
single CPUs [10], or if using multiple CPUs, have highly
restricted the ways that they can interact so that the constraints of
the real-time domain can be satisfied. The stagnation in the
growth of CPU speed means that real-time systems must seriously
consider how they can make use of multi-core and many-core
systems.

Even real-time systems sometimes need a bigger calculation
window than can be delivered by a single CPU in the time
constraints available, such as processing vision system frames to
detect and identify obstacles. Many calculations are approximate,
and increasing the processor power increases the fidelity of the
calculation (and permits some complex algorithms that may not
be permissible on a single CPU). Dividing the calculation across
multiple cores permits increased calculation efficiency, provided
that it can integrate into real-time systems constraints.

To satisfy the constraints, one must verify before the system is
fielded that it will operate correctly always, that all eventualities
have been considered and that all corner cases have been
considered. Typical approaches are static verification-based
analysis at design time that may include formal verification,
Worst Case Execution Time (WCET) analysis, Worst Case
Response Time (WCRT), measurement, modelling, and extensive
human review.

Multi-core systems dramatically change the way that components
interact with each other and with the external world in that:

• Tasks executing on separate cores often have very different
access to memory, network, busses and registers, interfering
with each other via those covert resources;

• Some hardware or interrupts may not be available on all
CPU's;

• Memory access may be orders of magnitude slower,
depending upon locality of reference and cache issues; and

• Objects such as spin locks may give (unintended) preferential
treatment to some cores or tasks. So, although multi-core
systems are assumed to be homogenous, bottlenecks such as
memory bus speeds and number of cores trying to access
common memory are leading to non-homogeneous systems,
such as CC-NUMA.

The items discussed above simply add to the complication that
multiprocessing systems already present to any previously
sequential algorithm.

3. DEFINITIONS
Task – in Ada is both a unit of design mapping of concurrency

and unit of concurrent execution. In terms of execution model,
tasks are similar to threads in POSIX. In fact they are
typically mapped to OS threads unless accompanied by a
specialized runtime.

Application Task (AT) – A task that is declared by the
programmer. Application tasks are declared to be in a single
domain that, in this example, execute on a single processor.
All real-time ATs have a unique priority that is higher than
any non-real-time application task. An application task with
priority i is labelled ATi.

Parallelism OPportunity (POP) – The place in an application
where sequential code can be executed by parallel units (but is
not mandated to be executed in parallel).

Dispatching Policy – The policy which governs the allocation and
scheduling behaviour of tasks on specific processors.

Dispatching Domain – a named set of CPUs within which tasks
assigned to that domain are scheduled according to the
dispatching policy for that domain.

Worker Task – A task that belongs to a task pool and executes
parallel code on behalf of an AT at a POP. All q worker tasks
WTi(1..q) of a dedicated task pool service a single application
task ATi. In this model, all WTi execute on a specific
dispatching domain.

Spawn – To create an object representing a parallel code unit and
submitting it to be processed by a worker task.

4. PARALLEL ADA MODEL PROPOSAL
Having identified the lack of direct support for use of fine-grained
parallelism in Ada, we recently proposed a mechanism that the
programmer can use and precisely control fine-grain parallelism
in loops and subroutine calls [13]. The basic mechanism leverages
from the new Ada (2012) aspects syntax to permit an aspect “with
parallel” to suggest to the compiler that work be parallelized
across processors, together with a set of library package interfaces
to support user-defined or user-augmented fine-grained
parallelism.

In order to effectively describe the new concurrent behaviour, this
work introduced a unit of parallelism called a “tasklet” (similar to
the Cilk concept of task). Unlike Ada tasks, tasklets are not
nameable or directly visible in a program. A tasklet carries the
execution of a subprogram or of a code fragment (such as part of
a “for” loop) in parallel with other tasklets executing the same
code fragment (with different state) and possibly in parallel with
other tasklets executing code fragments from other Ada tasks.

This proposal incorporates logical units of parallelism in the
semantic model of the language, allowing potential parallelism to
be expressed both for task/control parallelism, where the control
structures of the code (e.g. loops and subprograms) which are
amenable to parallelization are identified, and for data parallelism
where data structures (arrays or records) are potentially processed
in parallel, based on the notion of a logical unit of parallelism.

The programmer identifies these potential parallel opportunities in
the code, guiding the compiler in generating code that creates the
logical tasklets. During execution, the runtime executes the
tasklets in parallel, if the load of the system allows it. These

tasklets may actually not exist as runtime identifiable objects (it
depends on actual compiler and libraries implementation) but
exist as logical entities of the program. Note that this model also
allows integrating vectorization, as logically the compiler can
decompose parallel processing in several tasklets which are
directly executed in hardware.

There are two types of tasklets. The first is created by the
compiler when it can determine that an operation can be
parallelized and submitted to multiple processors, and hence is
not visible to the programmer. Usages of this could include
default initialization, assignment of values to arrays of records,
copying large structures using the Ada assignment operator, or
compiler identifiable parallelizable loops, as shown in Figure 1.

Figure 1 - Proposal for Tasklets in Ada 2012 [13]

The second tasklet type is created by the compiler upon
instruction from the programmer, who uses explicit syntax to
guide the compiler and runtime in deciding how much parallelism
should be provided (e.g. by “chunking”), and whether the tasklets
should process work bundles using a work-sharing, work-seeking1
or work-stealing model. The syntax includes the use of aspects on
subprograms and loops.

Tasklets are meant to augment, not replace tasking as the unit of
concurrency. Programmers will declare an intent that code
fragments be executable in parallel, but do not necessarily
concern themselves with the details of the parallelism itself, or
how it interoperates with other tasks. They can, however, as we
will show, extend the syntax and add runtime mechanisms to
achieve specific concurrency behaviours.

Each tasklet behaves as if it were executed by a single Ada task
that was explicitly created for the execution of the tasklets and
terminated immediately after execution of the code fragment. In
order to make tasklets integrate smoothly with the tasking
mechanism, priority, and real-time bounds, tasklets can be
executed by worker tasks. The Ada tasking model is then used to
express the concurrency since tasks in Ada already have a
computationally sound model that addresses the issues (i.e.
proven support for real-time systems) raised here. To not base this

1 Work seeking is similar to work stealing, but the worker with

extra work participates directly in process by frequently
checking to see if idle workers are available and offering
work directly to the idle worker. We believe (but have not
confirmed) that work seeking is safe from priority inversions.
See [14][15].

concurrency on tasks puts at risk the priority model of Ada for
any real-time programs.

In a generic system the compiler is free to create as many tasks as
it needs to execute tasklet code, and any such tasks that execute
tasklets are not visible to application code. This can be augmented
with user-defined pools of tasks to execute tasklet code by
matching the interface that the compiler exposes; a set of
packages and generics to let the pool provide the service.

4.1 Syntax
The most obvious opportunities for parallelism are the
subprogram call and the loop. For a subprogram call one can
declare to the compiler the desire to execute the subprogram in
parallel with its caller by writing
A_Value := Some_Function(Value1) with Parallel
 + Some_Function(Value2);

Here the subprogram Some_Function(Value2) will be
executed in parallel with Some_Function(Value1) and the
caller waits at a point before its return value is consumed by the
“+” operation 2.

For loops the basic syntax is
for I in Integer 1..N with Parallel loop
 -- some calculation on I
end loop;

or if we wanted to control chunking of the algorithm (say to split
among C cores using work-sharing)

for I in integer 1..N
 with Parallel, Chunk_Size => N/C
loop
 -- some calculation on I
end loop;

More details can be found on [13] on the syntax and how issues
such as managing complex calculations that need reduction,
identity values, and other tuning parameters, are addressed.

Using the same model, data-level parallelism can be supported by
allowing the notion of potentially parallel data types, where
operations can be parallelized (operations in data types are
actually subprograms). These data types can have the operations
overridden by specifying “with Parallel => true” and what would
be the parallelizable units.

In this model, the compiler is free to optimize and use SIMD
hardware when available (as it already can), but may also
generate logical tasklets, within the same generic model as above,
and share the same task pools.

For instance, the following example describes a simple parallel
array, which the compiler can vectorize in some architectures:
-- this can be vectorized
type Par_Arr is array 1 .. 100 of Integer
 with Parallel => true;
function “+”(Left, Right: Par_Arr) return Par_Arr

with Parallel_By_Element =>
 function “+” (Left, Right: Integer)
 return Integer;

2 We also permit the “with Parallel” aspect to be placed on the

subprogram specification, letting all calls to execute in
parallel with the caller. In this case one would need “with
Parallel => False” to prohibit it from happening.

For more complex data types, the model would be the same:

type My_Type is record
 -- whatever
end record;

function “+”(Left, Right: My_Type) return My_Type;
-- implements addition of two My_Type objects

type My_Type_Arr is array 1 .. 100 of My_Type
 with Parallel => true;

function “+”(Left, Right: My_Type_Arr)
 return My_Type_Arr
 with Parallel_By_Element =>
 function “+” (Left, Right: My_Type)
 return My_Type,

 Chunk_Size => 50;

-- any “+” operation on My_Type_Arr can be
-- parallelized by compiler
-- even automatically vectorized when possible

function “*”(Left, Right: My_Type_Arr)
 return My_Type is -- this cannot be
 by_element
begin
 -- implement dot product with parallel loop
end “*”;

Aspects could be allowed on the statement of execution to
control the level of chunking to perform, either in the
specification of the type, or in the actual code performing the
operation:
My_Arr_1, My_Arr_2: My_Type_Arr;
-- ...
... My_Arr_1 + My_Arr_2 with Parallel,

 Chunk_Size => 10;

Assignment into a parallel data type could be automatically
parallelized by the compiler using the same context as the parallel
operation being performed (or freely if no other operation was
being performed). Note that for expressions, a “with Parallel”
gives instructions to the compiler to parallelize as much as
possible. If the programmer wishes finer control of the
parallelization of the operations and subprograms she may need to
rewrite the expression. Further research is needed on the best
suitable approach for this finer control.

4.2 Facilities for Programmer-defined
Task Pools
The examples given above are enough to have the compiler
generate a set of parallel dispatches to tasks or processors to
execute their work component and return partial results for final
reduction. Many situations exist, however, in which more control
is needed, such as when the priority of the application task
requires a set of worker tasks with the same priority. Therefore,
there are times when the application needs to define its own task
pool, and to have the compiler invoke these explicit worker tasks.
In order to integrate the worker tasks, there needs to be an
interface between the worker tasks and the application program.

This interface is provided by the addition of package
Ada.Parallel together with a set of child packages to the Ada
runtime library to support user-defined or user-augmented fine-
grained parallelism. This library contains interfaces to
mechanisms (among other things) to support the creation of task
pools to permit the dispatching of fine-grained parallel work to

user-written pools of worker tasks, and parallel manager objects
to control exactly how the parallel work is to be dispatched and
controlled. The details of this work can be found in [13] and [16].

The Ada.Parallel interfaces also include generic packages to
implement function reducers and loop iterators that are shown in
[13] as well as work plans to permit work to be processed by a
much smaller number of processors (and tasks) than there are
work packages to be done. For example, load balancing may
improve performance in some situations but not in others. Thus,
user-defined task pools can be created to satisfy specialized
dispatch conditions, such as a bounded set of worker tasks, or set
priority for all worker tasks, or even a set of Ravenscar 3
compliant tasks for very specialized runtimes.

Let us return to the basic syntax to invoke a tasklet,
with parallel. In order to access the user-defined task pools,
we need more machinery. Here detailed aspects can be used for
that purpose.

for I in 1 .. 1000
 with Parallel => True,
 Worker_Count => 10,
 Parallel_Manager =>
 WSL.Work_Sharing_Manager,
 Task_Pool => My_Worker_Pool,
 Chunk_Size => 100,
 Priority =>

System.Priority’Last,
 Load_Sensitive => True
loop
 --...
end loop;

In the example above, WSL.Work_Sharing_Manager 4 is a user-
defined package that is an instantiation of a generic child package
of Ada.Parallel [16].

An important point to note is that the communication between the
application task that contains the POP and the worker tasks that
execute the tasklets is always via an Ada protected object(s). Such
protected objects obey the ceiling priority protocol [4], which
means that priority-based scheduling is supported by sound
scheduling theory. It is also important to note that worker task
pools can be assigned to domains that match characteristics of the
hardware [3], whether it be a few multi-cores in a homogenous
environment or a many-core system without shared memory.

5. THE ACCELERATOR MODEL – A
POTENTIAL FOR REAL-TIME MULTI-
CORE SYSTEMS
Building on this existent work, this section presents a model for
real-time programming for multi-core and many-core processors,
using available cores as accelerators of the real-time application
tasks. We also present a couple of examples of alternative
constructions of a real-time program that follows our model and
shows how a real-time analysis of such a program could be
undertaken.

3 The Ravenscar Tasking Profile is a highly restrictive subset of

Ada tasking with fixed priority tasks that can only be
statically declared and that communicate by protected objects
that can only have a single entry with a single queue element.

4 WSL refers to Work_Sharing_Loops.

For our real-time system model, we propose a system where all
application tasks execute on a single core using the priority
mechanism and communicate with each other and with interrupts
and events via protected objects that obey the ceiling priority
protocol (e.g. with FIFO spinning [5] or other applicable
protocol). We assume that every application task has a unique
priority to express its degree of urgency, and that the priority of
all real-time tasks is higher than the priority of non-real-time
tasks. For normal inter-task interactions, each protected object
shared by two or more tasks has a priority equal to the highest
priority task that can call a protected subprogram or entry of the
object 5.

For our system, we assume that there are P tasks with unique
priorities 1..P (as in Ada higher numbers indicate higher priority),
called application task 1..P and denoted AT1 .. ATp. Furthermore,
for the examples below, we assume that task AT1 and AT2 need
more computational power than is available from the first core,
but we have M (in the examples below M=7) additional cores
available. We now show two different configurations for
distributing the work and show how the real-time properties of the
program are preserved for each configuration.

5.1 Mapping 1 – Independent Worker
Dispatching Domains
The first mapping (Figure 2) is used when each application task
ATi (∀i ∈ 1..P) is assigned a non-overlapping subset of the M
accelerator cores, within a ATi-specific worker dispatching
domain. In the example, we create three dispatching domains, AD,
WD1 and WD2, where AD contains core 1 upon which all AT tasks
execute. Dispatching domain WD2 contains 3 cores and has a task
pool containing 3 (or more) 6 worker tasks WT2(1..3), each at
priority 2, the same as AT2. The communication between AT2 and
WT2(1..3) occurs via work manager protected object 2 (WMPO2)
with a ceiling priority of 2. Similarly, AT1 is supported by
dispatching domain WD1 consisting of 4 cores and a task pool
containing 4 worker tasks WT1(1..4), and communication between
AT1 and WT1(1..4) occurs via WMPO1.

When ATi (i=1 or 2 in the example) dispatches work to its worker
tasks, e.g. using

for j in 1..N with Parallel => XXX loop,

ATi calls a protected procedure of WMPOi to schedule up to N
worker tasks and then spin-waits for a final result. Worker tasks
WTi(1..q) iteratively collect a work packet, calculate a result,
return the result, until all work packets have completed and a final
answer can be returned. At this point, ATi is unblocked and

5 The model and arguments provided herein rely upon the fact

that all application tasks execute on a single CPU and rely
upon the ceiling priority protocol to let correctness
calculations be performed. If work is distributed to worker
tasks in other cpu's, and these worker tasks cannot
communicate or share variables with worker tasks from other
applications, then they have no dependency with each other
outside of the application tasks.

6 It may permissible to create more tasks in a single pool than
there are available CPUs. All can be dispatched by a “with
Parallel” call and will sort themselves out to do the
calculation. Some mechanisms, such as work sharing, may
have better efficiency when there are more tasks than CPUs.

returns with its result. In our model, parallelizable code cannot
share resources with other application tasks. This means that
worker tasks will not share resources between domains.

Figure 2 - Real-time Tasks Parallelizing in

Dedicated Worker Domains

The challenge is to show that real-time schedulability and
analyzability of the application are preserved. For example, we
need to show an absence of priority inversion where for
priority(i)>priority(j), an ATi is ready to execute but cannot
because an ATj is executing (excluding cases where ATj is calling
a protected operation with priority >priority(i)).

By priority rules, ATj can only execute when all higher priority
tasks are waiting on a suspend, block or delay operation. It may
be interrupted while it is doing its work, but cannot interrupt any
ATi(3..P) except when calling a protected object to communicate
with some ATi. Without loss of generality, in the example, AT2 can
be interrupted when scheduling work for WT2(1..3) because
WMPO2 has priority 2, and can be interrupted by all higher
priority tasks.

When AT2 has dispensed all of its work, and WT2(1..3) interacts
with WMPO2, all interactions occur within the processor of each
WT2 task and therefore do not impact ATi, i>2. Even when the
work has completed and ATi must do some computation in
WMPO2, the priority is such that higher priority tasks always get
service.

The argument made above for AT2 applies also to AT1, except that
AT2 is now added to the set of application tasks that cannot be
blocked by AT1 or its WT1(1..4). Now however, we must also
consider interactions between WT2(1..3) and WT1(1..4). There is
none, because each belongs on independent dispatching domains,
there is no sharing of data between parallel opportunities in the
ATi and ATj, and even the execution of WMPO code called by
worker tasks is independent because of the independent domains.

5.2 Mapping 2 – Shared Worker Domain
The second mapping (Figure 3) considers the case where we only
create a single worker domain of M cores and map all WT task
pools to this WD domain. We further permit any AT requiring

tasklets to be somewhere in the range of tasks, not necessarily
only the lowest.

In order to accomplish their work, application tasks make liberal
use of tasklets implemented by pools of worker tasks executing in
the single dispatching domain (WD) that contains all remaining
processors. For this example we change the previous scenario by
placing worker tasks into a single worker task domain, but here
we permit the notion that application tasks at any priority can use
tasklets. We continue to show for the example only AT1 and AT2
using worker tasks but the analysis and verification is generalized
for all combinations.

In this case, when 2 or more application tasks compete for
resources and they are at different priorities then all worker tasks
for each task will compete on the multi-core domain with the
same priority rules, meaning that all tasks for the highest priority
work will receive computing resources, and lower priority worker
tasks will only proceed when there are more available cores in
WD than there are higher priority tasks left to execute.

Figure 3 - Accelerator Example - Single Worker Domain

For this model, we assume that there are N cores and M=N-1
cores in WD. Without loss of generality we consider 2 arbitrary
application tasks, ATi and ATj. We further assume that
priority(ATi) > priority(ATj). Each ATi (and ATj) has a set of
dedicated worker tasks WTi(1..Q<N-1) and WTj(1..R<N-1) and
each communicates through its dedicated work manager protected
object WMPOi and WMPOj. We further assume that

priority(WMPOi) = priority(ATi) = priority(WTi),

and similarly for ATj, WTj and WMPOj. We assume that ATi and
ATj spin-wait on completion of worker tasks. We also discuss
implications when ATi,j are free to block.

We claim that this scenario does not introduce priority inversions
(i.e. it never happens that ATi or any worker task WTi(q) is ready
to execute but cannot because either ATj or WTj(r) occupies a
processor) 7.

7 The notion of priority inversion can only be applied on a

single dispatching domain. If a task Ti, i>j is ready to run in
domain D1 and Tj is executing domain D2, this is a design
decision, not a priority inversion.

5.3 Verification
Assumptions

• All tasks, by the nature of Ada protected objects when
supported by the Ada real-time annex, and configured to use
the ceiling priority protocol, follow the ceiling priority rules.
This means that all communication between application tasks
happens through protected operations at a priority higher than
the highest priority task that uses them. This also means that
all nested interactions occur at increasing levels of priority.
Priority rules guarantee deadlock freedom and absence of
unbounded priority inversion, in a single core [4].

• All real-time application tasks (AT) have a unique CPU
priority and we label each ATi by its priority i and the lowest
priority real-time task has priority greater than the highest
priority non-real-time task. This is to guarantee that they
complete their task in bounded time, which accounts for the
total time taken by higher priority tasks.

• All real-time ATi execute in a dispatching domain that consists
of a single core, relying upon priority to give the most urgent
task the processor, and relying upon tasklets to perform CPU-
intensive calculations while application tasks spin-wait for
results. We nevertheless present a case (8a) where this is
relaxed and application tasks may suspend.

• Each ATi that requires additional computational power has a
bounded dedicated pool of worker tasks WT to implement the
tasklets. It also has a dedicated protected object (or set of
protected objects in the case of a Ravenscar implementation
of this model). We label WT for ATi as WTi(1..q) and they
have the same priority in WD as ATi has in AD.

• ATi and ATj do not share memory resources except via
protected objects. Also WTi(1..q) and WTj(1..r) do not share
memory resources.

• Spawning tasklets to worker tasks is not allowed in protected
objects and no potentially blocking operations are called from
any WTi. Note that this limits considerably the model and in
particular prevents the use of blocking mechanisms when
implementing nested or divide-and conquer parallelism. It
provides a safer model for analysis at the expense of
restricting parallelism. In domains where it is acceptable,
these restrictions may be relaxed to allow for instance
workers to spin-wait for the results of another worker, which
would allow more efficient and expressive parallelism.

• All WTi(1..q) execute in a single dispatching domain that
includes all of the remaining cores after the allocation of the
application task core. The model is independent of WTi being
allowed or not to migrate within the cores of the domain.
However, the analysis focuses on the case where WTi tasks are
statically assigned to cores.

• Non-real-time priority tasks may share the application task
domain, if already foreseen in the application, but will not
share the worker task dispatching domains. These tasks will
execute with priorities lower than those of the real-time
application tasks hence will not interfere with the progress of
work for these tasks. Any communication between real-time
and non-real-time tasks needs to be performed in a controlled
and correct way, as it would already need to be
(independently of the model here proposed), and cannot occur
while real-time tasks are in a parallelized region.

• The worker task domain manager (WTDM) for each
application task contains the protected object(s) WMPOi used
for communication between ATi and WTi(1..q). This protected
object has the same priority as does the ATi and WTi that
communicate through it.

• The blocking model for application tasks waiting for replies
from worker tasks is spin waiting at the priority of ATi.

• All WCET calculations for each application task and worker
tasks are determined as usual and include preemptions,
migration, communications time, cache misses, bus
contention.

Claim

No priority inversion is introduced by the model – i.e. there will
be no task ATi ready to run with work with no available core
while ATj, i>j and priority(i)>priority(j), is executing. Similarly
there will be no task WTi ready to run with no available core
while task WTj is executing.

Proof: Break into cases.

Case 1 – application task ATi is executing and has not initiated
any work for WTi(1..q). By priority rules on the single core,
task ATj cannot be executing.

Case 2 – application task ATi is calling the work management PO
(WMPOi), setting up the Q<N-1 work items for workers. Task
ATj is on the same core as ATi and cannot be executing by
priority rules.

Case 3 – task ATi is spin-waiting on the return of results. Task ATj
cannot commence execution.

Case 4 – Task ATj is executing but has not reached a Parallel
Opportunity and ATi is resumed. ATj is preempted and ATi
executes, spawns its worker tasks, collects results, and
finishes. ATj then completes execution, scheduling its worker
tasks, collecting results and completing.

Case 5 – ATi does not schedule to execute in this scenario and ATj
wakes up, calls WMPOj and schedules WTj(1..r) on WD. The
WTj complete, return values and ATj proceeds back to a
suspend state.

Case 6 – ATj executes, initiates worker tasks WTj(1..r), then spin-
waits for its workers to complete. While ATj is spinning, ATi
commences execution, preempts ATj, initiates WTi(1..q) and
spins waiting on results. In a shared domain, WTi(1..q) will
preempt some or all WTj(1..r) and all proceed to completion,
releasing ATi to finish its calculations. While ATi is finishing
its calculations, WTj(1..r) workers have resumed. Once ATi
completes, then ATj resumes spinning for its results, which
may or may not already be there.

Case 7 – ATi and ATj have initiated worker tasks and ATi is spin
waiting for a result with ATj preempted still in the protected
object WMPOj. WTi(1..q) complete, with the last one releasing
ATi. ATj continues to be preempted on WMPOj waiting for the
completion of WTj (1..r). WTj(1..r) execute while ATi executes
on the application domain core. If some or all WTj(1..r)
complete before ATi finishes, they try to access a protected
procedure of WMP0j to deposit their results, but cannot
acquire the protected object, since ATj has not released it.
After ATi finishes execution, then ATj exits WMP0j and spin-
waits on the results from WTj(1..r). WTj(1..r) acquire WMP0j

to deposit their results. Once all WTj (1..r) complete, then ATj
is released.

Case 8 – same as case 6, except that WTi(1..q) do not use all
cores, or as WTi(1..q) complete, cores are released and all
WTj(1..r) complete before all WTi(1..q) complete. At this point
ATj is freed the next time that it checks for completed work,
but the spinning of ATi does not let this happen until all
WTi(1..q) complete and ATi completes and blocks for the next
release. ATj then continues.

If we permit blocking by ATi (i.e. self-suspend waiting for
WTi(1..q) to complete instead of spin-waiting), then the following
additional cases exist (Note that the system will not be ICPP
compliant but some real-time systems analysis permits blocking
by tasks in more than one place):

Case 8a – same as Case 8 except that ATj is free to execute upon
release as ATi is blocked waiting on the WTi to complete. ATj
may or may not finish its iteration before ATi is released.
Spawning tasklets inside a protected object is not allowed,
thus we are guaranteed that ATi is not using any resources
when suspending.

The discussion and analysis above only shows that there is no
structural contention that could cause deadlock or introduce
priority inversions. It does not address platform-specific issues
such as bus contention, DMA contention, cache-flush/cache-miss
issues, or local memory/global memory access times: all of which
are critical issues for real-time systems. Such analysis is the
subject of several current (and future) research works.

The discussion also does not discuss the role of high priority real-
time tasks that share the application domain but do not use
tasklets. These tasks are the highest priority tasks that interact
with the external environment but consume few processor cycles
(e.g. Interrupt handlers). If such a task ATi preempts an executing
application task that has not yet called its WMPOi, processing
happens normally. If it is preempted while a call to WMPOi is in
progress, the priority rules mean that the call waits until the
preempting operation completes, as would happen in a single
CPU system. If the higher priority task executes in the application
domain while WTi are executing, ATi is preempted so no
interruption occurs, and the processing of any returned values
waits until the higher priority task completes.

The model above was chosen specifically to closely match the
existing knowledge base and verification approaches for real-time
programs based on single CPUs and priority to control
scheduling. The extension of the single core to a worker domain
that matches the main single core extends the priority model to
the worker tasks. The choice of a dedicated worker task protected
object for each application task, and setting its priority to be
identical to that of its application task guarantee that higher
priority tasks will always get the computing resource upon
demand, even at the expense of blocking possible execution
cycles of worker tasks on different domains. We note that the goal
in real-time systems is not to use the algorithm that extracts the
most available work from the cores, but to use algorithms that can
be verified to satisfy the time bounds as well as generate correct
calculations. Furthermore, this approach allows not breaking the
Ravenscar model in the application tasks single core, whilst
allowing accelerating computation in worker cores.

Other systems exist that can take advantage of the simple model
presented here (e.g. for runtime simplicity) but that may not have

the same strict requirements on static analysis. For those systems
we may want to remove some of the assumptions presented in
section 5.3, which may lead to a more efficient and balanced
utilization of the system resources. This is outside of the scope of
this paper, and subject of future research.

Other mappings are clearly possible and supported by the
mechanisms that we propose. We have already shown a mapping
that dedicates a worker domain for each worker task needing such
a resource and one sharing a domain. In particular, where it is
known that processor layouts give preference to certain couplings
of cores, then these cores can be combined into dispatching
domains with work allocation managers defined that optimize
such couplings in the configuration portion of the program, and
invoked using the straightforward, analyzable methods shown
here.

The question naturally arises as to the applicability to other
languages. There are real-time operating systems and kernels, as
there are other languages and add-ons that permit some level of
fine-grained parallelism. The challenge is in pulling them together
so that the integration of the combination satisfies the tough
requirements of real-time and of converting/dispatching work into
multi-core domains. Certainly it is possible, but clearly Ada has a
level of integration in the way that it combines real-time tasking
with all of the paradigms of a modern programming language
necessary to do this today.

6. CONCLUSIONS AND FUTURE WORK
This paper builds on recent work to introduce a model for parallel
real-time programming in Ada. We develop and analyze a model
where all cores but one are used to provide extra computational
power to the application tasks executing in a single core. Because
it is rooted in the real-time methodologies prevalent today it
leverages those models and techniques to extend the traditional
real-time approaches on single core systems to a variety of multi-
core possibilities.

In the domain of non-uniform multi-core applications, further
exploration of the effects that localized protected object calls have
viz-a-viz spin-locks, fair-locks and message-exchanging systems
would be useful. On systems where CPU architecture is
heterogeneous, the interaction of Ada partitions, shared passive
partitions, protected objects and tasklets may permit real-time
behaviour across such systems, but further exploration is required.

7. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their
valuable comments. This work was partially supported by
Portuguese Funds through FCT (Portuguese Foundation for
Science and Technology) and by ERDF (European Regional
Development Fund) through COMPETE (Operational Programme
’Thematic Factors of Competitiveness’), within VipCore (ref.
FCOMP-01-0124-FEDER-015006) project and FCT and the EU
ARTEMIS JU funding, within project ref. ARTEMIS/0003/2012,
JU grant nr. 333053 (CONCERTO).

8. REFERENCES
[1] H. Ali and L. M. Pinho. A parallel programming model for

Ada. In Proceedings of the 2011 ACM SIGAda International
Conference. ACM, November 2011.

[2] S. K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L.
Stougie and A. Wiese. A Generalized Parallel Task Model
for Recurrent Real-time Processes. In Proceedings of the
33rd IEEE Real-Time Systems Symposium, pp. 63-72, 2012.

[3] G. Bosch. Synchronization cannot be implemented as a
library. In Proceedings of the High Integrity Language
Technology Conference 2012, ACM, 2012.

[4] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages: Ada, Real-Time Java and C/Real-
Time POSIX. 4th Edition, Pearson Education Ltd, Edinburg,
UK, 2009.

[5] A. Burns and A. Wellings. Locking Policies for
Multiprocessor Ada. In Proceedings 16th International Real-
Time Ada Workshop IRTAW 2013, York, UK, ACM Ada
Letters (to be published).

[6] S. Collette, L. Cucu and J. Goossens. Integrating job
parallelism in real-time scheduling theory. Information
Processing Letters, vol. 106, pp. 180–187, May 2008.

[7] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM Computing
Survey, 43(4):35:1–35:44, October 2011.

[8] M. Frigo, C. E. Leiserson and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
SIGPLAN Not., 33:212-223, May 1998.

[9] ISO IEC 8652:2012. Programming Languages and their
Environments – Programming Language Ada. International
Standards Organization, Geneva, Switzerland, 2012.

[10] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Springer, 2011.

[11] K. Lakshmanan, S. Kato and R. Rajkumar. Scheduling
parallel realtime tasks on multi-core processors. In
Proceedings of the 31st IEEE Real-Time Systems
Symposium, pp. 259 –268, December 2010.

[12] A. Marowka. Parallel computing on any desktop.
Communications of the ACM. 50:74-78, ACM, September
2007.

[13] S. Michell, B. Moore and L. M. Pinho. Tasklettes – a Fine
Grained Parallelism for Ada on Multicores. In International
Conference on Reliable Software Technologies - Ada-Europe
2013, LNCS 7896, Springer, 2013.

[14] B. Moore. Parallelism generics for Ada 2005 and beyond. In
Proceedings of the ACM SIGAda Annual International
Conference. ACM, 2010.

[15] B. Moore. A comparison of work-sharing, work-seeking, and
work-stealing parallelism strategies using Paraffin with Ada
2005. Ada User Journal, Volume 32 Number 1, published by
Ada Europe, March 2011.

[16] B. Moore, S. Michell and L. M. Pinho. Parallelism in Ada:
General Model and Ravenscar. In Proceedings 16th
International Real-Time Ada Workshop IRTAW 2013, York,
UK, ACM Ada Letters (to be published).

[17] A. Saifullah, K. Agrawal, C. Lu and C. Gill. Multi-core real-
time scheduling for generalized parallel task models. In
Proceedings of the 32nd IEEE Real-Time Systems
Symposium, Vienna, Austria, December 2011.

APPENDIX – EXAMPLE
This appendix provides an example with the application
structured in a one-core system domain and two worker domains.
We assume 5 tasks (P = 5) all in the application domain. Tasks 3
to 5 read sensors, then update actuators. The devices that
manipulate the sensor data and process actuator outputs are
assumed to be external to this application. Tasks 1 and 2 perform
computations which are amenable to parallelization. These tasks
parallelize to worker domains D1 and D2 respectively.

A generic interface for a Parallel Manager is provided in the back-
end. A Parallel Manager implementation may utilize a task pool,
and interfaces to sharable task pools are also provided in the
backend. The restrictions associated with the Ravenscar Profile,
however necessitate a different task pool interface than for the
general case. Since task pools only interface with Parallel
Managers and not with user code, the backend design allows
flexibility in supporting multiple task pool interfaces. This
interface contains a set of routines that a pool of Ada tasks call to
obtain work to be done, and to return the results of work. A task
pool interface which follows the code restrictions of Ravenscar
(but not fully the Ravenscar model) is shown here, since it is more
relevant to real-time.

pragma Profile (Ravenscar);

package Ada.Parallel.Ravenscar_Task_Pools is

 -- A Pool_Index uniquely identifies a worker
 -- within the Task Pool
 type Pool_Worker_Count is new
 Worker_Count_Type;

 subtype Pool_Index is Pool_Worker_Count;

 -- A Plan_Index uniquely identifies a worker
 -- within the work plan and Parallel Manager
 type Plan_Worker_Count is new
 Worker_Count_Type;

 subtype Plan_Index is Plan_Worker_Count;

 -- A Work Plan gives the task pool client (the
 -- Parallel Manager) the full control on
 -- how the worker manages and approaches its
 -- work. The task pool only provides
 -- the workers, the work plan defines the work
 -- to be done.

 type Work_Plan is limited interface;

 procedure Engage (Plan : in out Work_Plan;
 Worker : Pool_Index;
 Item : Plan_Index)
 is abstract;
 -- When a worker starts executing, it engages
 -- the work plan. The parallelism manager
 -- client decides how to execute the work
 -- (tasklets). Engage is called once per
 -- tasklet and executes the plan.
 -- Upon returning, the Worker is once again
 -- idle and returns to the task pool

 procedure Starting (Plan : in out
 Work_Plan;
 Requester : Plan_Index;
 Item : out Plan_Index)
 is null;
 -- Routine that gets called before a work plan

 -- is engaged, to allow the plan to initialize
 -- any internal state. This routine is meant
 -- to be called from within a protected object
 -- associated with the pool, and therefore
 -- must not be potentially blocking

 procedure Completing (Plan : in out Work_Plan;
 Item : Plan_Index)
 is null;
 -- Routine that gets called immediately after
 -- the work plan executed the tasklet,
 -- to allow the plan to update any internal
 -- state. This routine is intended to be
 -- called from within a protected object
 -- associated with the pool, and therefore
 -- must not be potentially blocking.

 type Task_Pool_Interface is limited interface;

 procedure Reserve (Pool : in out
 Task_Pool_Interface;
 Worker_Count :
 Positive_Worker_Count)
 is abstract
 with Pre'Class =>
 Pool.Available_Workers >= Worker_Count;
 -- Allows a POP to request and reserve a number
 -- of workers from the pool.

 procedure Release (Pool : in out
 Task_Pool_Interface;
 Worker_Count :
 Positive_Worker_Count)
 is abstract
 with Pre'Class =>
 Pool.Total_Workers – Pool.Available_Workers
 >= Worker_Count;
 -- Allows a POP to release the workers it had
 -- reserved back to the pool

 function Available_Workers (Pool :
 Task_Pool_Interface)
 return Worker_Count_Type is abstract;
 -- Returns the number of workers that may be
 -- reserved in the pool.

 function Idle_Workers (Pool :
 Task_Pool_Interface)
 return Worker_Count_Type is abstract;
 -- Returns the number of workers that are idle
 -- in the pool

 function Total_Workers (Pool :
 Task_Pool_Interface)
 return Positive_Worker_Count is abstract;
 -- Returns the total number of workers in the
 -- pool

 procedure Offer_Work (Pool : in out
 Task_Pool_Interface;
 Plan : aliased in out
 Work_Plan'Class;
 Item : Plan_Index)
 is abstract
 with Pre'Class => Pool.Available_Workers > 0;
 -- Allows a Parallel Manager to request a
 -- worker from the task pool. The Work plan is
 -- offered to the task pool, which is then
 -- engaged by an available worker. Note: This
 -- routine is intended to be invoked by the
 -- parallelism manager, and not exposed to the
 -- user client code.

 procedure Offer_Work_To_Group (Pool :
 in out Task_Pool_Interface;
 Plan :
 aliased in out Work_Plan'Class;
 Worker_Count :
 Positive_Worker_Count)
 is abstract
 with Pre'Class =>
 Pool.Available_Workers >= Worker_Count;
 -- Allows a Parallel Manager to request a
 -- group of multiple workers from the task
 -- pool. The Work plan is then engaged by each
 -- worker up to the requested Worker_Count.
 -- Note: This routine is intended to be called
 -- by the parallelism manager, and not exposed
 -- to the user client code.

 function Priority (Pool : Task_Pool_Interface)
 return System.Priority is abstract;
 -- Get the priority of the task pool

 procedure Next_Worker_Id (Pool :
 in out Task_Pool_Interface;
 Plan :
 aliased in out Work_Plan'Class;
 Requester :
 Plan_Index;
 Item :
 out Plan_Index)
 is null;
 -- Returns the next Plan_Index which will be
 -- uniquely associated with a worker and
 -- corresponding tasklet while it executes the
 -- work plan.

 procedure Finished_Work (Pool :
 in out Task_Pool_Interface;
 Worker : Pool_Index;
 Plan :
 aliased in out Work_Plan'Class;
 Item : Plan_Index)
 is null;
 -- Allows a Parallel Manager to indicate to
 -- the task pool that a tasklet has completed
 -- execution. This provides the protected
 -- subprogram context for calling the work plan
 -- Completing primitive to allow the Parallel
 -- Manager to perform any final processing
 -- with synchronization and protection from
 -- other workers.

end Ada.Parallel.Ravenscar_Task_Pools;

The specification for a possible implementation of this interface
follows.

pragma Profile (Ravenscar);

with System.Storage_Elements;
with System.Multiprocessors; use System;
with Ada.Parallel.Ravenscar_Task_Pools; use
Ada.Parallel.Ravenscar_Task_Pools;

generic

 Storage_Size :
 System.Storage_Elements.Storage_Count :=
 Default_Worker_Storage_Size;
 Worker_Priority :
 System.Priority :=
 System.Default_Priority;
 Number_Of_Workers :
 Pool_Worker_Count := 100;

package Ravenscar_Pool_Implementation is

 type Worker (Core : Multiprocessors.CPU_Range)
 is limited private;

 type Worker_Array is array (1 ..
 Number_Of_Workers) of access Worker;
 -- The Ada tasks in the task pool

 type Task_Pool (Workers : access Worker_Array)
 is limited new Task_Pool_Interface
 with private;
 -- task pool object type that has a pool of
 -- real Ada tasks to process
 -- tasklets that are submitted to the pool for
 -- processing.

private
 ... Implementation Defined
end Ravenscar_Pools_Implementation;

The Application specification identifies and configures the
application tasks and associated task pools.

private with Ravenscar_Pools_Implementation;

package The_Ravens_Car_Application is

 -- We assume here that Sensors and Actuators
 -- are maintained by external devices. Sensors
 -- can be read by the Ada application, and
 -- actuators can be set by the Ada
 -- application.

 type External_Device is new Float with Atomic;

 subtype Sensor_Type is External_Device;
 subtype Actuator_Type is External_Device;

 type External_Data_Buffer
 is array (Integer range <>) of Integer
 with Atomic_Components;

 Camera_Data :
 External_Data_Buffer (1 .. 1_000_000) :=
 (others => 0);
 -- Video capture

 Brakes : Actuator_Type;
 -- Controls the brakes of the vehicle

 Audio_Data :
 External_Data_Buffer (1 .. 2**20) :=
 (others => 0);
 Voice_Command : Actuator_Type;
 -- Indicates current voice command to process

 Desired_Temperature : Sensor_Type;
 -- Monitors Desired temperature
 Thermostat : Actuator_Type;
 -- Controls the thermostat

 Desired_Direction : Sensor_Type;
 -- Monitors GPS direction
 Steering_Wheel : Actuator_Type;
 -- Controls direction of vehicle

 Desired_Velocity : Sensor_Type;
 -- Monitors the desired velocity

 Speed : Actuator_Type;
 -- Controls the speed

private
 -- Tasks T1 and T2 get the Camera and Audio
 -- data and calculate the actuator
 -- output. We assume that this can be
 -- parallelized. Create the application tasks

 task AT1 with Priority => 1, CPU => 1;
 -- Controls vehicles brakes via camera input

 task AT2 with Priority => 2, CPU => 1;
 -- Interprets voice data commands

 task AT3 with Priority => 3, CPU => 1;
 -- Controls vehicle direction via GPS input

 task AT4 with Priority => 4, CPU => 1;
 -- Controls vehicle speed

 task AT5 with Priority => 5, CPU => 1;
 -- Controls air temperature

 -- Create the task pools
 package D1_Task_Pool is new
 Ravenscar_Pools_Implementation
 (Storage_Size =>
 Parallel.Default_Worker_Storage_Size,
 Worker_Priority => 1,
 Number_Of_Workers => 4);

 Worker1 :
 aliased D1_Task_Pool.Worker (Core => 2);
 Worker2 :
 aliased D1_Task_Pool.Worker (Core => 3);
 Worker3 :
 aliased D1_Task_Pool.Worker (Core => 4);
 Worker4 :
 aliased D1_Task_Pool.Worker (Core => 5);

 D1_Workers :
 aliased D1_Task_Pool.Worker_Array :=
 (1 => Worker1'Access,
 2 => Worker2'Access,
 3 => Worker3'Access,
 4 => Worker4'Access);

 TP1 : aliased D1_Task_Pool.Task_Pool (
 Workers => D1_Workers'Access);
 -- Task Pool for AT1

 package D2_Task_Pool is new
 Ravenscar_Pools_Implementation
 (Storage_Size =>
 Parallel.Default_Worker_Storage_Size,
 Worker_Priority => 2,
 Number_Of_Workers => 2);

 Worker5 :
 aliased D2_Task_Pool.Worker (Core => 6);
 Worker6 :
 aliased D2_Task_Pool.Worker (Core => 7);

 D2_Workers :
 aliased D2_Task_Pool.Worker_Array :=
 (1 => Worker5'Access,
 2 => Worker6'Access);

 TP2 : aliased D2_Task_Pool.Task_Pool (
 Workers => D2_Workers'Access);
 -- Task pool for AT2

end The_Ravens_Car_Application;

-- Change Cores of Worker 5-6 to overlap cores of
-- Worker 1-4 to change to Mapping 2
-- Note that to switch to MAPPING 2, nothing
-- needs to be done in the tasks AT(1 or 2) or WT

The actual code of the applications can be based on existent
sequential code, with only adding parallelization information in
the loops in tasks T1 and T2. For completeness we show the code.

with Ada.Real_Time; use Ada;
with Parallel.Functional_Reducing_Loops.
 Ravenscar_Work_Seeking;
with Parallel.Functional_Reducing_Recursion_
 Ravenscar_Work_Sharing;
with Parallel.One_Shot_Wait_Free_
 Synchronous_Barriers;
use Parallel.One_Shot_Wait_Free_
 Synchronous_Barriers;

package body The_Ravens_Car_Application is

 Start_Time :
 constant Real_Time.Time := Real_Time.Clock;
 use type Real_Time.Time;

 task body AT1
 -- Suppose AT1 controls the brakes of the
 -- vehicle by monitoring camera views of
 -- the road
 is
 package Integer_Loops is
 new Parallel.Functional_Reducing_Loops
 (Result_Type => Integer,
 Reducer => Integer'Max,
 Identity_Value => Integer'First,
 Iteration_Index_Type => Integer);

 package Max_Loop is new
 Integer_Loops.Ravenscar_Work_Seeking;

 Max_Value : Integer := Integer'First;

 Next_Execution :
 Real_Time.Time := Start_Time;
 Period :
 constant Real_Time.Time_Span :=
 Real_Time.Milliseconds (1);

 begin -- AT1 body
 loop
 delay until Next_Execution;

 for I in Camera_Data'Range
 with Parallel,
 Task_Pool => TP1,
 Accumulator => Max_Value,
 Parallel_Manager =>
 Max_Loop.Work_Seeking_Manager
 loop
 Max := Integer'Max (
 Max, Camera_Data (I));
 end loop;

 -- Assume that the brake value is the
 -- maximum value found in the camera
 -- data. (Not at all realistic, a
 -- realistic computation would be too
 -- complex to show here)
 Brakes := Actuator_Type (Max_Value);
 Next_Execution := Next_Execution +Period;
 end loop;
 end AT1;

--
 task body AT2
 is
 -- Suppose AT2 processes voice command
 -- audio data, and acts on the interpreted
 -- commands

 -- The processing shown here is not
 -- realistic, but nevertheless shows
 -- parallel processing in two phases.

 -- The simplistic algorithm shown here
 -- calculates the average of the array
 -- segment, then adds 1 to all values
 -- above the average, and then substracts
 -- 1 from all values below the average.

 -- eg: An array of 8 elements with values
 -- from 1 .. 8
 -- there are only two worker tasks in the
 -- task pool, therefore we indicate a
 -- chunk_Size of 4 and the compiler will
 -- divide the work in two

 -- data: 1, 2, 3, 4, 5, 6, 7, 8
 --
 -- pass 1 (two workers in parallel):
 ------------- -------------
 -- Sum: 10, 26
 -- Reduced Sum: 36

 -- Average calculated by AT2: 4.5

 -- pass 2 (two workers in parallel):
 ------------- -------------
 -- data: 0, 1, 2, 3, 6, 7, 8, 9

 package Integer_Loops is
 new Parallel.Functional_Reducing_Loops
 (Result_Type => Integer,
 Reducer => “+”,
 Identity_Value => 0,
 Iteration_Index_Type => Integer);

 package Avg_Loop is new
 Integer_Loops.Ravenscar_Work_Sharing;

 Sum_Value : Integer := 0;
 Avg_Value : Float;

 Next_Execution :
 Real_Time.Time := Start_Time;
 Period :
 constant Real_Time.Time_Span :=
 Real_Time.Milliseconds (5);

 begin -- AT2 body

 loop
 delay until Next_Execution;

 for I in 1 .. 8
 with Parallel,
 Task_Pool => TP2,
 Accumulator => Sum_Value,

 Parallel_Manager =>
 Avg_Loop.Work_Sharing_Manager,
 Chunk_Size => 4
 loop
 Sum_Value := Audio_Data(I) +Sum_Value;
 end loop;
 -- Parallel first phase calculating
 -- aggregated sum

 Avg_Value := Float(Sum_Value) / 8.0;
 -- Sequential phase calculating the
 -- average

 for I in 1 .. 8
 with Parallel,
 Task_Pool => TP2,
 Chunk_Size => 4
 loop
 if (Float(Audio_Data(I)) >
 Avg_Value) then
 Audio_Data(I) := Audio_Data(I) + 1;
 elsif (Float(Audio_Data(I)) <

 Avg_Value) then
 Audio_Data(I) := Audio_Data(I) - 1;
 end if;
 end loop;
 -- Parallel second phase updating values

 Next_Execution := Next_Execution +Period;
 end loop;
 end AT2;

--
 task body AT3 is
 -- Suppose AT3 maintains the direction of
 -- the vehicle according to
 -- current route instructions from a
 -- GPS device
 Next_Execution :
 Real_Time.Time := Start_Time;
 Period :
 constant Real_Time.Time_Span :=
 Real_Time.Milliseconds (10);
 begin
 loop
 delay until Next_Execution;
 Steering_Wheel := Desired_Direction;
 Next_Execution := Next_Execution +Period;
 end loop;
 end AT3;

--
 task body AT4 is
 -- Suppose AT4 maintains the
 -- cruise control speed
 Next_Execution :
 Real_Time.Time := Start_Time;
 Period :
 constant Real_Time.Time_Span :=
 Real_Time.Milliseconds (100);
 begin
 loop
 delay until Next_Execution;
 Speed := Desired_Velocity;
 Next_Execution := Next_Execution +Period;
 end loop;
 end AT4;

--
 task body AT5 is
 -- Suppose AT5 maintains the cabin
 -- temperature by controlling heating/AC
 Next_Execution :
 Real_Time.Time := Start_Time;
 Period :
 constant Real_Time.Time_Span :=
 Real_Time.Minutes (1);
 begin
 loop
 delay until Next_Execution;
 Thermostat := Desired_Temperature;
 Next_Execution := Next_Execution +Period;
 end loop;
 end AT5;

end The_Ravens_Car_Application;

