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Abstract 
Reliability of communications is key to expand application domains for sensor networks. Since Wireless Sensor 
Networks (WSN) operate in the license-free Industrial Scientific and Medical (ISM) bands and hence share the 
spectrum with other wireless technologies, addressing interference is an important challenge. In order to minimize its 
effect, nodes can dynamically adapt radio resourcesprovided information about current spectrum usage is available. 

We present a new channel quality metric, based on availability of the channel over time, which meaningfully quantifies 
spectrum usage. We discuss the optimum scanning time for capturing the channel condition while maintaining energy-
efficiency. Using data collected from a number of Wi-Fi networks operating in a library building, we show that our 
metric has strong correlation with thePacket Reception Rate (PRR). This suggests that quantifying interference in the 
channel can help in adapting resources for better reliability. We present a discussion of the usage of our metric for 
various resource allocation and adaptation strategies. 
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ABSTRACT

Reliability of communications is key to expand application do-
mains for sensor networks. Since Wireless Sensor Networks (WSN)
operate in the license-free Industrial Scientific and Medical (ISM)
bands and hence share the spectrum with other wireless technolo-
gies, addressing interference is an important challenge. In order to
minimize its effect, nodes can dynamically adapt radio resources
provided information about current spectrum usage is available.

We present a new channel quality metric, based on availability
of the channel over time, which meaningfully quantifies spectrum
usage. We discuss the optimum scanning time for capturing the
channel condition while maintaining energy-efficiency. Using data
collected from a number of Wi-Fi networks operating in a library
building, we show that our metric has strong correlation with the
Packet Reception Rate (PRR). This suggests that quantifying in-
terference in the channel can help in adapting resources for better
reliability. We present a discussion of the usage of our metric for
various resource allocation and adaptation strategies.

Categories and Subject Descriptors

C.4.3 [Performance of Systems]: Measurements Techniques. Re-
liability, Availability, and Serviceability

General Terms

Experimentation, Measurement, Performance, and Reliability.

Keywords

Channel Quality, Interference, ISM Bands, Dynamic Resource Adap-
tation, Wireless Sensor Networks.

1. INTRODUCTION
Wireless technologies have grown exponentially during the last

decade and are progressively cast around for more applications.
Many standardized technologies operate in crowded license-free
Industrial Scientific and Medical (ISM) frequency bands. Wireless
networks in these bands are now ubiquitous in residential and office
buildings as they offer great flexibility and cost benefits. However,
despite the extensive research, the issue of reliability of wireless
networks remains a challenge. Medium access techniques such as
TDMA and FDMA cannot be readily applied in the context of ISM

bands [1], as they are not designed to tolerate inter-network inter-
ference. Instead, distributed multiple access schemes based on car-
rier sense, such as CSMA, are widely employed along with Spread
Spectrum modulation techniques which provide some robustness as
well as generate lower levels of interference. Although this bottom-
up approach to unlicensed spectrum usage exacerbates the chal-
lenges to achieve reliability and predictability in low-cost wireless
solutions, there are many gains for end users [2] and extensive op-
portunities for innovation [3]. It has also incubated new research
directions, such as dynamic spectrum allocation for future wireless
systems [4]. Inspired by this paradigm, we investigate mechanisms
for interference avoidance within ISM bands for low-power radios.

Wireless Sensor Networks (WSN) are seen as a viable alterna-
tive for monitoring, control and automation applications, provided
they are made appropriately reliable and delays are bounded. To
this end, interference and coexistence pose a major challenge. In
this paper, we present the Channel Quality (CQ) metric that pro-
vides a quick and accurate estimate of interference by capturing a
channel’s availability over time at a very high resolution. This met-
ric is useful towards achieving better reliability and lower latency
through dynamic radio resources allocation.

Interference from coexisting networks in ISM Bands is typically
referred as Cross Technology Interference (CTI). Even though CTI
represents a well known problem [5–8] it has not been adequately
addressed in WSN. This problem is hard to resolve for two reasons:
a) efficient cooperative schemes for spectrum access are not possi-
ble with currently deployed technologies and b) there are large RF
power and spectrum footprint asymmetries. CTI could be avoided
by sophisticated communication protocols that are sensitive to in-
stantaneous spectrum occupation. However, low-cost hardware and
limited energy-budget of the nodes make the typical spectrum sens-
ing techniques as proposed for non resource constrained systems [9]
unsuitable for WSN.

This paper has the following contributions:

• A novel channel quality metric that is based on channel avail-
ability and is agnostic to the interference source.

• An analysis of the parameter space and validation of the met-
ric’s performance with real-world interference traces.

The rest of this paper is organized as follows. Section 2 provides
further motivation for this work and in Section 3 we derive the ex-
pression for our CQ metric. Section 4 describes how we use the
energy detection (ED) feature in IEEE-802.15.4 compliant radios
to measure evolution of signal (interference) strength in 802.15.4
channels, our experimental setup and our data collection experi-



ments. We then discuss results of our evaluations and conclude the
paper in Section 5.

2. MOTIVATION
Any given network configuration at deployment phase, like chan-

nel selection, is typically not enough as the network may experi-
ence communication interruptions or simply fails at some point.
We need WSN that seamlessly adapt resources and self-organize
to maintain their integrity in a changing environment. Several re-
cent studies have addressed burstiness and interference in wireless
links. Srinivasan et al. proposed a metric to quantify link burstiness
and show impact on protocol performance and achievable improve-
ments in transmission cost [10]. Also, Munir et al. investigated
scheduling algorithms to improve reliability and provide latency
bounds [11]. However, these solutions can not react to instanta-
neous changes in the channel condition. They rather select routes
and channels using long-term observations.

There are aggressive techniques to deal with interference in wire-
less systems. Successive Interference Cancellation (SIC) has been
partially demonstrated for 802.15.4 in Software Defined Radios
[12]. Nevertheless, there are practical limitations to advance with
it. For example, it is known that SIC requires highly linear am-
plifiers in the receiver (large dynamic range) and also excellent
adjacent channel suppression, because residual energy put in the
front-end causes it to underperform and desensitizes the radio. Both
of these requirements lead to expensive solutions. Furthermore, it
is questionable whether SIC’s demand for signal processing could
outweigh its benefits compared to other approaches, in view of
available technology, inexpensive hardware and energy budget con-
strains. Finally, these ideas are not trivially applied to CTI because
a large heterogeneous set of possible signals to disentangle further
complicate SIC-based solutions.

Alternatively, we advocate modest improvements in low-power
receiver architecture can enable energy efficient spectrum sensing,
which is necessary for nodes to form smart reactive networks that
eliminate the need for highly complex radios. Spectrum occupa-
tion can change rapidly in time and space, yet under unfavourable
channel conditions nodes adapt resources or find better channels to
maintain communications. Dynamic resource adaptation can lower
latency bounds and boost reliability but in order to encompass this
information into protocols one needs accurate spectrum sensing. In
this paper we show that sufficiently accurate spectrum sensing is
feasible with sensor nodes.

Currently, the radio transceivers in WSN nodes are mostly based
on the IEEE-802.15.4 standard that is intended for low-power op-
eration. On reception, off-the-shelf radios require around 50 mW
and consume 200 – 2000 µJ per packet received. This power is
drawn by the PLL synthesizer, digital demodulator, symbol de-
coder and RF analog blocks for signal filtering, amplification and
down-conversion among other functions, typically in this order.
Recent incursions in 0.18 µm CMOS process of PLL realizations
[13–16], targeted for these systems, report fairly appealing figures:
power consumptions below 3 mW and lock-in times less than 30
µs. Since the PLL synthesizer is known to be by far the most
power-hungry block in the receiver, these results suggest that the
next generations of WSN radios would require, at least, one order
of magnitude less chip energy per bit received.

Now, in order to support ED spectrum sensing only the PLL syn-
thesizer, analog RF blocks plus AGC are necessary, while the de-
modulator can be turned off. Interestingly, among other optimiza-
tions, this further reduces energy consumption while the receiver is
used exclusively to detect the RF energy in the channel, but we have
not yet found any 802.15.4 radio chip providing this flexibility.
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Figure 1: Channel vacancies: two scenarios with the same
Channel Availability (CA).

3. CHANNEL QUALITY METRIC
The sources of interference in wireless networks are typically

very diverse. Interference causes a decrease in the Signal-to-Noise
plus Interference Ratio (SNIR) which can result in packet losses.
Any device that produces RF signals with spectral components within
or near the receiver passband is a potential interferer. Average en-
ergy in a channel has been used as an indicator of channel usage
in the previous literature [17–20]. Unfortunately, this metric is un-
able to distinguish between a channel where the traffic is bursty
with large inactive periods and a channel that has very high fre-
quency periodic traffic with the same energy profile. Clearly, the
first scenario is preferable. It may well be the case that the traffic
in the second case consists entirely of short-duration peaks result-
ing in much lower average energy but unusable channel. Motivated
by this observation, we propose a metric that is based on the fine-
grained availability of the channel over time and ranks in a more
favourable way channels with larger inactive periods or vacancies.

Consider the energy levels (or RSSI) in some channel are mea-
sured periodically with period P . Suppose, the acceptable noise
level and interference threshold is RTHR. Therefore, the chan-
nel can be considered idle when RSSI < RTHR. For example,
Figure 1 shows RSSI samples over time along with idle intervals,
which we refer to as channel vacancies (CV). Let mj denote the
number of CV consisting of j consecutive idle samples and n the
total number of samples. Then m1 +m2 + . . . +mn = m is the
total number of observed CV. Notice that j consecutive clear chan-
nel samples imply that the channel was idle for at least (j − 1)P
time units. We define the average Channel Availability (CA) as:

CA(τ) =
1

n− 1

∑

j|(j−1)P>τ

jmj (1)

where τ > 2P is the time window of interest, which could be
the duration of packets. As we argued earlier, a channel where
m2j = k is more desirable than a channel where mj = 2k, al-
though jmj is the same for both cases. Therefore, we want to rank
a channel with larger vacancies higher even though the sum of the
idle durations might be the same. Hence, we define the Channel
Quality metric as:

CQ(τ) =
1

(n− 1)

∑

j|(j−1)P>τ

j(1+β)mj (2)

where β > 0 is the bias. CQ in equation (2) take values between 0
and nβ , where the larger values indicate better channels. Observe
that this expression is agnostic to the interference source.

Figure 1 shows the amount of channel vacancies in two scenarios
with a similar channel availability (CAa = 0.88 and CAb = 0.83)
computed with a RTHR = −44 dBm. Due to collisions, the prob-
ability of correct reception is higher in the scenario shown in Fig-



(a) (b)

Figure 2: The experimental setup used to collect energy level
traces on IEEE-802.15.4 channels deployed at the Library of
the Faculty of Engineering at the University of Porto (a) and
detail of TelosB motes arranged in a USB hub (b).

ure 1(a) than in the one depicted in Figure 1(b).

4. EVALUATION
In this section, we first describe our experimental set-up used for

data collection followed by an analysis of our metric when applied
to the data. We devise off-line experiments and implement them in
Python [21] scripts to be run over the traces. This has the advan-
tage of producing a naturally controlled environment, e.g. isolating
channel effects that are present in an online experiment. We show
that our metric is highly correlated with PRR.

4.1 Experimental Setup
In order to experimentally investigate our proposal we need traces

of interference signals that help understand channel degradation in
real-world settings. More specifically, we want to find out how
our metric can help identifying a usable channel and eventually es-
tablish which alternative techniques can be applied to employ it
effectively. Therefore, we have designed an experimental setup to
study interference in the 2.4 GHz ISM band. This band is avail-
able globally; there are thousands of certified devices on the mar-
ket that operate in it and coexistence problems are well known [5,
6], which ultimately facilitates the task of collecting interference
traces. Our setup has no limitations to study any kind of interfer-
ence, but given that Wi-Fi has been identified as the most critical in-
terference source to affect WSN [6] and it is also widely available,
in this paper we report experiments with traces where interference
stems solely from Wi-Fi networks.

In our setup, we employ a set of 17 TelosB sensor nodes to scan
all sixteen IEEE-802.15.4 channels simultaneously. In order to do
simultaneous channel readings, we use one of the motes to transmit
a scanning beacon on channel 26, which instructs all other nodes to
switch to their respectively assigned channels and begin scanning.
The motes are connected via USB hubs to a laptop as shown in
Figure 2. We sample the RSSI from the CC2420 transceiver at 40
kS/s [22], and store the data in a memory buffer. After completing
5600 samples in approximately 130 ms, i.e., the largest possible
amount of samples that can be stored in the constrained memory
of TelosB nodes, all nodes return to listen on channel 26 and wait
for the next scanning beacon. Scanning beacons are sent every 8
seconds, which guarantees enough time to dump all the RSSI read-
ings to a file. Having one node per channel enables us to increase
the pace at which data is collected and makes the logging operation
easier.

A large density of Access Points capable of producing notorious
spectrum occupation is mainstream in many metropolitan areas to-
day and particularly in university campus. However, it is the den-
sity of users and the overall volume of data been transferred that

actually produces congestion. Thus, we used our ensemble to col-
lect measurements in our laboratory, which has moderate traffic on
a few 802.15.4 channels. Then we conducted a measurement cam-
paign at the Library of the Faculty of Engineering of the University
of Porto, where we found very heavy traffic from 802.11 Wi-Fi net-
works. In our experiments, signals are well above the noise floor
(10 - 70 dB), but more relevant is the time distribution of burst pat-
terns that varies from a few microseconds to tens of milliseconds.
To examine our metric proposal we then perform off-line experi-
ments, upon a set of traces from a four hour capture.

4.2 Sampling Time
One of the questions we seek to answer is how long should we

sample a channel in order to have a meaningful CQ value. Sam-
pling too shortly leads to uncertainty about the near future state
of the channel. Notice that the clear channel assessment (CCA)
used in Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) mechanism would not help here given the asymmet-
ric scenario in transmission power and spectral footprint [see 8].
Basically, such asymmetries in the PHY layer among different ra-
dios, make the distributed coordination approach fail. WSN nodes
employ orders of magnitude less RF power than other channel con-
tenders, which makes them more vulnerable to packet corruption
since it is improbable that other nodes would detect an ongoing
transmission and thus defer theirs. For this reason, it is necessary
to sample for longer time, definitely larger than a CCA accounting
for 8 symbol periods or 128 µS, in order to capture a sequence of
events large enough to estimate the probability of successful packet
reception.

On the other extreme, sampling too long introduces a cumulative
effect that misses the dynamics of the channel availability and leads
to poor prediction of the next state of the channel. The more distant
in time the events are the more likely is that their probabilities are
independent and therefore does not help to estimate the channel
condition either. Furthermore, during the sampling period the radio
is turned on which consumes energy.

In practice, this means that we need to find a compromise for
the sampling time that is intrinsically dependent on the system ob-
served. In order to understand this compromise, we progressively
compute the CQ, up to 120 ms, over all traces. Figure 3 illustrates
the results. The RTHR threshold value is primarily chosen based
on the RSSI levels of packets from other nodes we are interested in
receiving.

Actually there is an SNIR margin, specific for each radio and
related to the Co-Channel Rejection Ratio (CoCRR), which needs
to be considered here. In the CC2420 radio, this value corresponds
to 3 dB for a target PER = 10−3, and must be accounted to fine-
tune RTHR.

Since we are not interested here in any specific packet duration,
we chose τ = 0.2 ms, small enough so that most CV contributions
count in Equation 2. Notice that the sum is computed over CV
larger than τ only. For practical reasons, we perform data binning
on all CV observations, i.e., all values which fall in a small interval,
bin = 0.5 ms, are represented by the same value. This quantiza-
tion affects the absolute values obtained in Equation 2. Suppose
an empty channel with one single vacancy of length j = n − 1.
As mentioned in Section 4.1, we are sampling at approximately 40
kS/s, i.e., we take one RSSI sample every 25 µS. Therefore, we di-
vide j by a factor k = 20 and thus, CQ < ( j

k
)β . This curve is the

upper bound for absolute values shown in all graphs in Figure 3.
Similarly, the values represented in the abscissas are divided by 40
to obtain the corresponding scanning time in milliseconds.

One common trend in all graphs is that CQ stabilizes after some
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Figure 3: CQ computed over all traces for different sampling times. Curves represent the median, boxes represent the interquartile
range (IQR), and bars stand for the rest of the values.

time, provided there is sufficient interference. This indicates that
Equation 2 converges toward a value that is proportional to an av-
erage number of vacancies during the sampling period and, clearly,
also depends on β and the values of j.

Figure 3 shows that for lower RTHR values, which corresponds
to heavier interference, the median of CQ stabilizes faster. On the
contrary, if the channel is mostly idle, CQ grows with very high
probability (e.g., if RTHR = −55 dBm as in 3(a), CQ grows as
(2 · Ts)

0.2 and the IQR shrinks over the maximum). An interme-
diate case, as when CQ is computed for -65 dBm, see 3(b)-3(d),
demonstrates that the metric typically grows to a certain value until
it finally stabilizes. Hence, these sampling times are much smaller
than the timescale of the interference pattern present in the chan-
nel. Based on this behaviour, an optimum sampling time would be
as long as it is necessary to have the median of CQ stabilized.

In a system where this metric is computed online the sampling
time, represented by n in Equation 2, could be dynamically main-
tained at this turning point where the median of CQ stabilizes, or
below a certain maximum value. We defer the development of a
control algorithm for this purpose to future work. For the rest of
our experiments we use a hand-picked scanning time of 40 ms.

4.3 Correlation with PRR
Packet Reception Rate (PRR) is a well known reliability metric.

When PRR is high, the wireless channel and the link are optimum.
However, PRR reflects all forms of signal distortion in the wireless
channel, including interference. Thus, a medium or low PRR does
not provide enough information to identify factors responsible for
poor performance and yet intermediate quality links, that display
a medium PRR, may account for up to 50% of all links observed
in WSN testbeds [10]. Moreover, PRR and other useful metrics,
such as packet’s RSSI and LQI, require packet transmissions. In-
stead, our CQ metric specifically accounts for interference and has

no side effect on the channel, as it relies exclusively on the receiver
channel energy detection, and therefore scales with node density
and channel usage.

We now investigate how the channel availability as described by
our CQ metric is related to the probability of successful packet re-
ceptions. For this experiment we use a third of each RSSI trace,
lasting 130 ms, to compute the metric and the remaining to check
for the presence of interference that may lead to packet corruption.
If the energy levels in the channel remain 3 dB below the RSSI
of packets (CoCRR mentioned in 4.2), during the duration of each
packet, then the packet is considered successfully received.

Multiple packets are transmitted over each trace and the average
is computed to derive the PRR. Packets are transmitted periodically
and transmissions are separated by an Inter-Packet Interval time
(IPI) of 2 ms. In this way, we conduct an experiment with more
than 240.000 off-line packet verifications on traces obtained from
the deployment at the library.

As shown in the previous section, Equation 2 provides a range
for CQ values that depends on n and β. However, in order to com-
pare among CQ values computed with different parameter values
we rewrite CQ as:

CQ(τ) =
1

(n− 1)(1+β)

∑

j|(j−1)P>τ

j(1+β)mj , (3)

CQ in Equation (3) now take values between 0 and 1, regard-
less of n and β values. For example, if we compute Equation 3
with β = 0.3 for an IEEE-802.15.4 ACK frame lasting 352 µs,
in the scenarios shown in Figure 1, we obtain CQa = 0.65 and
CQb = 0.50. The difference between CQa and CQb is three
times higher than the difference between CAa and CAb (obtained
using Equation 1 in Section 3), and it therefore highlights the dif-
ference in quality between the two channels.
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Figure 4 shows the correlation between CQ and PRR. The curves
correspond to the CQ median and the error bars represent the in-
terquartile range computed over the entire set of traces, at RTHR =
−65 dBm. We compute CQ for bias (β) values 0, 0.3, and 0.7 to
highlight that β = 0.3 linearises the curves and better expand use-
ful range of CQ values.

Higher values of β increase the weight of larger CV in the def-
inition of the CQ. Therefore, having β = 0.7 will promote the
selection of channels with larger CV. On the other hand, observe
how for β = 0, which is equivalent to compute the average chan-
nel availability as described by Equation 1, CQ values increase up
to 0.4 but almost no packets are received, since vacancies are not
large enough. In this case, CQ values grow faster than PRR which
indicates that average channel availability does not capture well-
enough the complexity of the channel, as we discussed in Section 3.
Being able to tune β, as shown in the graph in Figure 4, helps us
in maximizing the correlation among PRR and CQ. This makes
our metric an accurate indicator of the channel condition, which
is an interesting result. In our experiments, we find the β value
that maximises the correlation among CQ and PRR to be approxi-
mately β = 0.3. Similar to the scanning time, finding the optimum
β value, for an arbitrary interference scenario, is outside the scope
of this paper.

4.4 Discussion
In this section we revisit some resource adaptation techniques

and discuss how they could be dynamically applied to leverage our
CQ metric for interference-aware communication protocols.

Lin et al. demonstrated a novel pairwise transmission power con-
trol for WSN that performs significantly better than node-level or
network-level power control methods [23]. They improve PRR and
energy consumption by dynamically adapting the RF transmission
power to maintain the minimum level required to guarantee a good
link. This is a clever approach to compensate for the non-linear
pathloss. However, it does not account for two important aspects:
a) the irreducible error floor [24, Ch. 6] produced by fading can not
be removed by increasing transmission power and b) it does not
address external interference. A solution to both these problems is
dynamic frequency and power adaptation, simultaneously.

In this regard, one can augment such pairwise power control
mechanism with CQ, directly establishing a dynamic lower bound
for the RF power to use in the transmitter, previous to actual trans-
missions. Besides, since a maximum transmission power can not

be exceeded, an alternative such as a moving to a different chan-
nel may be inferred immediately. Starting from the RSSI samples
in memory, we could ask the question: which signal level would
result in a CQ value that satisfies a given requirement for channel
usage under the current interference level?

In general, protocols designed for multichannel operation can
maintain good links by using well ranked channels by distributed
CQ computations among neighbour nodes, provided a control chan-
nel among them is stable. Additionally, these CQ values could aid
route changes when an interferer’s spectral footprint is very large,
as in 802.11n, to take advantage of the irregular coverage, common
in some indoor environments.

Successful transmissions in the scenarios in Figure 1 also depend
on the packet size. Certain packet size would maximize throughput
or minimize the time to deliver a data object over the channel, for
a given interference level. Observe that shorter packets have better
chances of avoiding collisions (and hence retransmissions) but also
result in higher overhead due to fixed packet headers and delays due
to acknowledgement timeout. One could look into the relationship
between these optimum packet sizes and the CQ values computed
on the channel. Based on observed CQ values protocols can then
tune packet size to save energy or transfer data in a minimum time.

FEC techniques pose a trade-off between data recovery capac-
ity and its inherent payload and computation overhead. Recently,
Liang et al. demonstrated the Reed-Solomon (RS) correcting codes
performs well while recovering packets affected by 802.11 interfer-
ing signals [8]. Since interference levels may vary extensively it is
interesting to see if this solution can benefit from simple CQ based
optimizations.

On the other hand, energy cost to compute the CQ metric must
be further explored in view of overall energy balance in dynamic
link adaptation. In future work we plan to extend our experiments
and later implement the metric on WSN hardware.

5. CONCLUSIONS
We introduced a new channel quality metric that is based on the

availability of the channel over time. The metric is useful for inter-
ference aware protocols in WSN. We described our experimental
setup for collecting real-world interference traces in the 2.4 GHz
ISM band. Using this data, we showed that our metric has strong
correlation with PRR. Thus, our metric’s characterization of a chan-
nel is reliable and applicable in practice. We also discussed dy-
namic resource allocation techniques for interference-aware proto-
cols in WSN for which our metric can prove to be useful. We are
currently working on a software implementation of CQ for WSN
hardware to further validate its performance in online experiments.
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