
elatório
técnico

echnic
report

alt
r

IPP-HURRAY! Research Group

Polytechnic Institute of Porto
School of Engineering (ISEP-IPP)

Programming Atomic Multicasts in
CAN

Luís Miguel PINHO
Francisco VASQUES (FEUP)

Luís FERREIRA

HURRAY-TR-0014

May 2000

THIS WORK IS PARTIALLY SUPPORTED BY FCT UNDER PROJECT DEAR-COTS (Praxis/P/EEI/14187/1998) AND BY FLAD UNDER PROJECT SISTER (Proj.471/97)

Programming Atomic Multicasts in CAN

Luís Miguel PINHO, Luís FERREIRA

IPP-HURRAY! Research Group
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340502, Fax: +351.22.8340529
E-mail: {lpinho, llf}@dei.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Francisco VASQUES

University of Porto (FEUP)
Rua Dr. Roberto Frias
4050-123 Porto
Portugal
Tel.: +351.22.5081702, Fax:
E-mail: vasques@fe.up.pt
http://www.fe.up.pt/~vasques

Abstract:

In Distributed Computer-Controlled Systems (DCCS), a special emphasis must be given to
the communication infrastructure, which must provide timely and reliable communication
services. CAN networks are usually suitable to support small-scale DCCS. However, they are
known to present some reliability problems, which can lead to an unreliable behaviour of the
supported applications.
In this paper, an atomic multicast protocol for CAN networks is proposed. This protocol
explores the CAN synchronous properties, providing a timely and reliable service to the
supported applications.
The implementation of such protocol in Ada, on top of the Ada version of Real-Time Linux is
presented, which is used to demonstrate the advantages and disadvantages of the platform to
support reliable communications in DCCS.

Programming Atomic Multicasts in CAN

Luís Miguel Pinho 1, Francisco Vasques 2, Luis Ferreira 1

1 Department of Computer Engineering,
ISEP, Polytechnic Institute of Porto

Rua São Tomé, 4200-072 Porto, Portugal
E-mail: {lpinho, llf}@dei.isep.ipp.pt

2 Department of Mechanical Engineering
FEUP, University of Porto

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
E-mail: vasques@fe.up.pt

Abstract
In Distributed Computer-Controlled Systems (DCCS), a
special emphasis must be given to the communication
infrastructure, which must provide timely and reliable
communication services. CAN networks are usually
suitable to support small-scale DCCS. However, they are
known to present some reliability problems, which can
lead to an unreliable behaviour of the supported
applications.
In this paper, an atomic multicast protocol for CAN
networks is proposed. This protocol explores the CAN
synchronous properties, providing a timely and reliable
service to the supported applications.
The implementation of such protocol in Ada, on top of the
Ada version of Real-Time Linux is presented, which is
used to demonstrate the advantages and disadvantages of
the platform to support reliable communications in DCCS.

1. Introduction

Distributed Computer-Controlled Systems (DCCS) are
increasingly used in the industrial environment, where
computer systems are expected to perform correctly, even
in the presence of faults. It is obvious that the reliability of
a DCCS lies, in a great extent, in its communication
infrastructure. Thus, in DCCS, there is the need for
reliable and time-bounded communication services.
Messages must be correctly and orderly delivered
according to their timing requirements. It is therefore
important to assess the real-time and reliability
characteristics of the communication system.

The traditional approach to guarantee the reliability
requirements of DCCS is to replicate some of its
components, in order to tolerate individual faults.
However, when replicated components are used, there
must be a guarantee that replicas have the same set of
input messages in the same order. That is, communication

mechanisms must support atomic multicast
communication.

Controller Area Network (CAN) [1] is a fieldbus
network suitable for small-scale DCCS, being
appropriated for sending and receiving short messages at
speeds up to 1Mbit/sec. It provides time-bounded
transmission services [2] with a minimum level of
dependability. However, CAN networks are also known to
present some reliability problems, which can lead to an
unreliable behaviour. Therefore, reliable multicast
protocols are needed to guarantee the reliability
requirements of the supported applications.

Ada is a very interesting language for programming of
DCCS, due to its capabilities for device representation and
real-time programming. On the other hand, the concept of
using a real-time version of Linux as the platform for
DCCS is gaining increasing attention. Hence, it is
important to consider the viability of using Ada and Real-
Time Linux together for the programming of reliable
DCCS.

The Ada version of Real-Time Linux [3] provides a
tasking kernel beneath the Linux kernel. It implements the
low-level tasking mechanisms used to support the high-
level Ada multitasking constructs. However, as there is no
compiler available for this platform, the higher-level Ada
tasking constructs cannot still be used. Furthermore, the
full set of low-level mechanisms is still not implemented,
lacking, for instance, the capability for interrupt handling.

The remainder of this Section describes the CAN
protocol and the impairments to its use as a reliable
communication infrastructure. The 2M protocol for CAN
is specified in Section 2, where its behaviour (both in
error-free and error situations) is also described. Section 3
discusses issues in the programming of the protocol in
Ada, on top of the Ada version of Real-Time Linux,
drawing some conclusions on the suitability of this
platform for DCCS.

1.1. CAN networks

The CAN protocol implements a priority-based bus,
where any station can access the bus when it becomes idle
and the highest priority message being transmitted will
succeed (collision avoidance mechanism).

Bus signals can take two different states: recessive bits
(idle bus), and dominant bits (which always overwrite
recessive bits). The collision resolution works as follows:
when the bus becomes idle, every station with pending
messages will start to transmit. During the transmission of
the identifier field (leading 29 bits), if a station
transmitting a recessive bit reads a dominant one, it means
that there was a collision with at least one higher-priority
message, and consequently this station aborts its message
transmission. The highest-priority message (the one with
most leading dominant bits on the identifier) being
transmitted will not notice any collision, and thus will be
successfully transmitted. The station that lost the
arbitration phase will automatically retry the transmission
of its message.

In the CAN protocol, all the stations continuously
monitor every frame being transmitted on the bus, to
detect any transmission error (a full description of
possible errors is available in [4,5]). The station which
firstly detects an error, starts the transmission of an Error
Frame (which starts with 6 consecutive dominant bits).
Every station in the bus automatically detects this Error
Frame since it violates the stuff-bit rule of CAN, which
states that there can not be more than 5 consecutive bits of
the same polarity. Therefore, every station will know that
the frame currently being transmitted is erroneous and
must be rejected.

1.2. Inconsistent Message Delivery in CAN

Sending Error Frames is an efficient mechanism to
tolerate transient failures (e.g. due to electromagnetic
interference), and to synchronise multiple receivers, in
case of errors. However, there are some known reliability
problems (duplicate messages, or messages being
delivered only to a subset of stations), which can lead to
an inconsistent state of the supported applications. This
problem, which has been identified in [6], occurs since the
point of time at which a message is taken to be valid is
different for the transmitter and the receivers. The
message is valid for the transmitter if there is no error
until the end of the transmitted frame. If a message is
corrupted, retransmission will be automatically re-
scheduled. For the receiver side, the message is valid if
there is no error until the last but one bit of the received
frame (the last bit is treated as 'do not care').

In Fig. 1, the Sender station transmits a frame to
Receivers A and B. Receiver B detects a bit error (for
instance, due to electromagnetic interference) in the last

but one bit of the frame. Therefore, it rejects the frame
and sends an Error Frame (starting in the following bit
that is the last bit of the frame). As for receivers the last
bit of a frame is a ‘do not care’ bit, Receiver A will not
detect the error and will accept the frame. However, as in
the transmitter side the frame has been re-scheduled,
Receiver A will have an inconsistent message duplicate.

On the other hand, if the Sender fails before being able
to successfully retransmit the frame, Receiver B will
never receive the frame, which causes an inconsistent
message omission.

Error detected
Receiver rejects

the frame

r dReceiver A

Error detected
Sender schedules frame for
retransmission

‘Do not care’ bit
Receiver accepts

 the frame

At this moment, Receiver A has accepted the
frame, while Receiver B has rejected it

- If the sender retransmits the frame, then
Receiver B will have it, while Receiver A
will have a duplicate frame (inconsistent
message duplicate)

- If the sender fails before the retransmission,
then Receiver B will never have the frame
(inconsistent message omission)

r dSender

d dReceiver B

Fig. 1 – Message Inconsistency in CAN

In [6], the probability of message omission and/or
duplication is evaluated, in a reference period of one hour,
for a 32 station CAN network, with a network load of
approximately 90%, bit error rates ranging from 10-4 to
10-6, and station failures from 10-3 to 10-4 per hour. It
resulted in 2.87 x 101 to 2.84 x 103 inconsistent message
duplicates per hour and 3.98 x 10-9 to 2.94 x 10-6

inconsistent message omissions also per hour. These
values clearly demonstrate that CAN built-in mechanisms
are not sufficient to support reliable real-time
communication.

Thus, appropriate mechanisms must be devised to
guarantee reliable CAN communications. In [6], a set of
fault-tolerant broadcast protocols is proposed, which solve
the message omission and/or duplicate problems.
However, such protocols do not take advantage of the
CAN synchronous properties, resulting in an increased
run-time overhead. In this paper, a multicast protocol is
proposed, which explores these CAN properties to
minimise its run-time overhead, and thus to provide also a
timely service to the supported applications.

2. Atomic multicast in CAN: 2M Protocol

In DCCS, it must be guaranteed that messages sent by
correct stations are delivered to all its recipients.
However, there must also be an all-or-none guarantee for
the case of a message sent by an incorrect station: either
all correct stations deliver that message, or none of them

deliver it. Furthermore, there is also the need to orderly
deliver the broadcasts: Such mechanism is defined as an
atomic broadcast [7].

CAN error detection and recovery mechanisms ensure
that, when the sender is correct, all stations will receive
the same message. Such mechanisms ensure the fail-
consistent property [8], since there is no possibility for
different stations to receive the same message with
different values. However, it is possible for a correct
station to receive a message that some other correct
station did not received (inconsistent message omission),
and it is also possible that some station receives more than
once the same message (inconsistent message duplicate).
An ordered delivery is also not ensured, since new
messages can be interleaved with the retransmission of
failed messages.

2.1. 2M protocol

The 2M protocol addresses inconsistency errors
presented in Section 1.2, assuming that there are no
permanent medium faults, such as the partitioning of the
network. Application faults are not considered since they
are tolerated through component replication. It is also
considered that, during a period of time T (necessary to
correctly handle the inconsistent omission error) no other
similar error occurs within the participants of the
previously failed multicast.

The 2M protocol is based on the transmission of a
confirmation for every multicast sent in the bus, and, only
when needed, the transmission of a related abort.
Therefore, under error-free operation, it sends two
messages (2M) per multicast. The two less significant bits
of the frame identifier are used to carry protocol
information (fig. 2), identifying the message type.

Identifier Field

Protocol Infromation
2 bits

LSB

Protocol Bits Message Type
0 0 Data Msg.
0 1 Confirmation Msg.
1 0 Abort Msg.

Atomic
Multicast

1 1 Unreliable Multicast

Fig. 2 – Identifier Field and Protocol Information

A station wanting to send an atomic multicast transmits
the data message followed by a confirmation message,
which carries no data. Every station, before delivering the
message, must receive both the message and its

confirmation. An abort frame will be sent if the
confirmation is not received before a specific
time_to_confirm. This implies that several aborts can be
simultaneously sent (at most one from each receiving
station). The message will be delivered if the station does
not receive any abort frame, until after a specific
time_to_deliver.

When a confirmation is received, the station checks if
it has the related data message. If not (omission failure), a
related abort frame is immediately scheduled to be sent, in
order to abort the delivery of the message in the other
stations. As no station delivers the message before
time_to_deliver, then no correct station will deliver the
message. A station receiving a duplicate message discards
it, but updates the time_to_confirm and time_to_deliver.
This updating operation must be done since an
inconsistent message duplicate may have occurred and
thus some other stations will only receive the duplicate.
As the data message has a priority higher than the related
confirmation, then all duplicates will be received before
the confirmation.

atomic_multicast (id, data):
send (id, message, data)
send (id, confirmation)

when receive (id, type, data):

if id ∈ registered_id_set then -- filtering
if type = message then

if id ∉ received_messages_set then
received_messages_set := received_messages_set +

 msg(id,data)
state(id) := unstable
time_to_deliver(id) := current_time +

 interval_to_deliver(id)
time_to_confirm(id) := current_time +

 interval_to_confirm(id)
else
time_to_deliver(id) := current_time +

 interval_to_deliver(id)
time_to_confirm(id) := current_time +

 interval_to_confirm(id)
end if

elsif type = confirmation then

if id ∉ received_messages_set then
send (id, abort)

else
state(id) := confirmed

end if
elsif type = abort then

if id ∈ received_messages_set then
received_messages_set:= received_messages_set – msg(id)

end if
else -- unreliable message
received_messages_set := received_messages_set +

 msg(id, data)
state(id) := delivered

end if
end if

deliver_or_abort (id,data):
for every id in received_messages_set loop
if state(id) = confirmed and time_to_deliver(id) <

 current_time then
state(id) := delivered

elsif state(id) = unstable and time_to_confirm(id) <
 current_time then

send (id, abort)
received_messages_set := received_messages_set – msg(id)

end if
end loop

One of the advantages of this protocol is that, under
error-free operation, there is only one extra frame (without
data) sent per multicast. Extra protocol-related messages

are only sent in the case of an error (small probability of
occurrence).

2.2. Protocol Behaviour

Using the 2M protocol to send atomic multicasts, error
situations (Section 1.2) are handled as follows:
1. There is a fault while the transmitter is sending the

data message, and it does not send the confirmation. In
this case no receiver gets the confirmation, thus none
of them deliver the message.

2. There is a fault while the transmitter is sending the
data message, but it recovers and sends the
confirmation before the respective timeout. In this case
some of the receivers may receive the confirmation
without having receiving the related data message,
therefore they abort the message.

3. The transmitter correctly sends the data message, but it
crashes before sending the confirmation. In this case
no receiver gets the confirmation, thus none of them
deliver the message.

4. The transmitter correctly sends the data message, but a
fault causes an inconsistent confirmation. In this case
some of the receivers may not receive the
confirmation, thus they will abort the message,
including for the case of stations which received the
confirmation.

5. The transmitter correctly sends the data message, but a
bit error causes the confirmation to be duplicated in
some of the stations. As a duplicate confirmation will
always be sent before any related abort, thus before
delivering or aborting the related message, it will
confirm an already confirmed message.

6. There is a fault while the transmitter is sending the
data message, but it recovers and sends the
confirmation after the respective timeout. In this case,
there will be a confirmation for an already aborted
message. Thus, some of the receivers may receive the
confirmation without having receiving the data
message, therefore they abort the message.

As the transmission of an abort occurs only after a
transmitter failure, then, from the failure assumptions (no
inconsistent message omission while recovering from a
first one), this abort will be error-free.

3. Programming Atomic Multicasts with Ada

The proposed protocol has been implemented in a
platform of PCs connected through a CAN network.
These PCs were running the Ada version of Real-Time
Linux [3], which provides a low-level executive for Ada
multitasking applications, beneath the Linux kernel. The
used CAN boards provide a memory-mapped interface to
an Intel 82527 CAN controller.

The implementation is divided in two different kernel
modules. The first implements the driver package,
providing a set of services to access the CAN board.

The capabilities of Ada to interface with low-level
devices through memory mapping makes this interface
ease to program. The following code snapshot presents the
mapping of the controller’s Control Register. This
mapping, together with the mapping of all other controller
registers is then used to create a record with a complete
mapping of the CAN controller.

type Bit is (Reset, Set);
for Bit use (Reset => 0, Set => 1);

type Control_Register is record
 Init : Bit;
 IE: Bit;
 SIE: Bit;
 EIE: Bit;
 CCE: Bit;
end record;
for Control_Register use record
 Init at 0 range 0..0;
 IE at 0 range 1..1;
 SIE at 0 range 2..2;
 EIE at 0 range 3..3;
 CCE at 0 range 6..6;
end record;
for Control_register'Size use Unsigned_8'Size;
for Control_Register'Bit_Order use System.Low_Order_First;

type Configuration_Registers is record
 Control: Control_Register;
 Status: Status_Register;
 -- other registers
end record;
for Configuration_Registers use record
 Control at 0 range 0..7;
 Status at 1 range 0..7;
 -- other registers
end record;
type Configuration_Registers_Access is access all
Configuration_Registers;
for Configuration_Registers_Access'Size use
 Standard'Address_Size;
Conf: Configuration_Registers_Access :=
 To_Configuration_Access(Board_Addr);

Afterwards, accessing the CAN controller is simply
done through reading and writing the Conf variable.
For instance the following code is used to stop the
CAN controller:

function Stop return Driver_Error is
begin
 if Conf /= null then
 Conf.Control.Init := Set;
 return No_Error;
 else
 return Not_Attached;
 end if;
end Stop;

The second kernel module implements the Atomic
Multicast protocol. The package Can_FTBroadcasts
provides subprograms to register the identifiers that are to
be received by a station (for filtering of unwanted
messages) and to send/receive atomic/unreliable
multicasts. The protocol identifier type is used to transmit,
together with the message identifier, the protocol
information bits. Thus, applications are restricted to 27
bits identifiers. Unchecked conversion is used to convert
to and from the CAN identifiers to this
Protocol_Identifier.

type Protocol_Message_Type is (Data_Msg, Confirmation_Msg,
 Abort_Msg, Unreliable_Msg);
for Protocol_Message_Type use (Data_Msg => 0,
Confirmation_Msg =>1, Abort_Msg =>2, Unreliable_Msg =>3);

for Protocol_Message_Type'Size use 2;

type Protocol_Identifier is record
 Msg_Type: Protocol_Message_Type;
 Id: Identifier;
end record;
for Protocol_Identifier use record
 Msg_Type at 0 range 0..1;
 Id at 0 range 2..28;
end record;
for Protocol_Identifier'Size use 29;
for Protocol_Identifier'Bit_Order use System.Low_Order_First;

In order to implement the 2M protocol, different
subprograms are used. When sending an atomic
multicast, function Atomic_Multicast sends the
message, and afterwards the confirmation. It uses
functions Send_Message and Send_Confirmation,
which mark appropriately the Protocol_Identifier.
Function Unreliable_Multicast just sends the message,
marking it as Unreliable. Procedure Deliver_Or_Abort
is periodically executed, and is used to deliver or abort
a message, considering the state of the message and the
time to confirm and deliver.

function Atomic_Multicast(Id: Identifier; Msg: Data;
Length: Data_Length)

return Boolean is Ret: Boolean := True;
begin
 Lock_FTB;
 Ret := Send_Message(Id, Msg, Length);
 if Ret = True then
 Ret := Send_Confirmation(Id);
 end if;
 Unlock_FTB;
 return Ret;
end Atomic_Multicast;

function Unreliable_Multicast(Id: Identifier; Msg: Data;
 Length: Data_Length)
return Boolean is
 Prot_Id: Protocol_Identifier;
 Ret: Boolean:=True;
begin
 Prot_Id.Id := Id;
 Prot_Id.Msg_Type := Unreliable_Msg;
 Lock_FTB;
 Ret := Send(Prot_Id, Msg, Length);
 Unlock_FTB;
 return Ret;
end Unreliable_Multicast;

procedure Deliver_Or_Abort(Current_Time: Time) is
 Aux: Access_Received_Message := Received_Messages;
 Aux1: Access_Received_Message := null;
 Ok: Boolean;
begin
 while Aux /= null loop
 if Aux.Time_To_Confirm < Current_Time and

Aux.State = Unstable then
 Ok := Send_Abort(Aux.Id);
 Aux.State := Failed;
 elsif Aux.Time_To_Deliver < Current_Time then
 Aux.State := Delivered;
 end if;
 Aux := Aux.Next;
 end loop;
end Deliver_Or_Abort;

When a message is received, the Receive_Handler is
responsible for filtering the message, in order to act
just on messages related to the station and, according to
the message type:
- if it is an unreliable message, it immediately delivers

the message placing it in the queue and marking it as
delivered;

- if it is an abort message, it aborts the message by
going to the received messages queue and marking it
as failed;

- if it is a confirmation message, it confirms the
message by going to the received messages queue and
marking it as confirmed. However, if the related
message is not present in the queue, then it triggers an
abort to be transmited;

- if it is a data message, it places it in the received
messages queue, together with the corresponding
time_to_confirm and time_to_deliver.

procedure Receive_Handler(B: Buffers_Range) is
-- local variable declaration

begin
 Lock_FTB;
 Can_Board_Driver.Receive(B, Board_Msg, Error);
 Current_Time := Clock;
 Msg_Id := Convert_To_Protocol_Identifier(Board_Msg.Id);
 if Error = No_Error then
 Check_If_Is_Registered(Msg_Id.Id, Interval_To_Confirm,
 Interval_To_Deliver, Ok);
 Time_To_Deliver := Current_Time + Interval_To_Deliver;
 Time_To_Confirm := Current_Time + Interval_To_Confirm;
 if Ok then
 if Msg_Id.Msg_Type = Unreliable_Msg then
 Ok:= Queue_Received_Message(Msg_Id.Id,
 Data(Board_Msg.Data),Data_Length(Board_Msg.DLC));
 elsif Msg_Id.Msg_Type = Abort_Msg then
 Ok:= Abort_Message(Msg_Id.Id);
 elsif Msg_Id.Msg_Type = Confirmation_Msg then
 Ok := Confirm_Message(Msg_Id.Id);
 else
 Ok := Queue_Received_Message(Msg_Id.Id,
 Data(Board_Msg.Data), Data_Length(Board_Msg.DLC),
 Time_To_Confirm, Time_To_Deliver);
 -- duplicates are processed inside

-- Queue_Receive_Message
 end if;
 end if;
 end if;
 Unlock_FTB;
end Receive_Handler;

When implementing these services, two important
issues came up. Firstly, communication with the CAN
controller extensively uses interrupts. Thus, appropriate
mechanisms for interrupt handling were built.
Secondly, as both the controller and the queues are
shared resources, appropriate mechanisms for mutual
exclusion needed to be used.

Concerning the mutual exclusion mechanisms, the
available implementation of the Ada executive does not
provide the high level mechanisms to control shared
resources (e. g. protected objects). It only provides the
low level locks that are used to program such
mechanisms. Thus, a lock was created for the
Can_FTBroadcasts service and private lock and unlock
subprograms were used throughout the code.

FTBroadcasts_Lock: aliased Lock;

procedure Lock_FTB is
 Ceil_Violation: Boolean;
begin
 Write_Lock(FTBroadcasts_Lock'Access, Ceil_Violation);
 if Ceil_Violation = True then

Printk("Ceiling Error!" & LF);
 end if;
end Lock_FTB;
procedure Unlock_FTB is
begin
 Unlock(FTBroadcasts_Lock'Access);
end Unlock_FTB;

Concerning the lack of interrupt handling services, an
interface to the Real-Time Linux interrupt services was
created. However, as the used Real-Time Linux kernel
(version 1.2) does not allow handlers to receive the
interrupt number, it is not possible to implement a generic
mechanism for interrupt handling. Therefore, the driver
maps directly the interrupt handler, which is only used to
wakeup a task, which is the communications handler. In
order to preclude interference between this task and the
presented lock, they are given the same priority.

Can_Task_Handler_Id: Task_Id;

procedure Can_Irq_Handler is
begin
 Conf.Control.IE := Reset;
 Wakeup(Can_Task_Handler_Id,Mysystem.Tasking.Runnable);
end Can_Irq_Handler;

procedure Can_Task_Handler_Body(Self_Id: Task_ID) is
 Int: Interrupt_Register;
 Buf: Buffers_Range;
begin
 loop
 Write_Lock(Self_Id);
 Sleep(Self_Id, Mysystem.Tasking.Entry_Caller_Sleep);
 Unlock(Self_Id);

 -- process interrupts

 Conf.Control.IE := Set;
 end loop;
end Can_Task_Handler_Body;

Although being possible to solve the above problems,
the lack of a proper set of tools for the selected platform is
a disadvantage for the use of Ada to program real-time
reliable DCCS. The main reason is that, for this case,
programming is as error prone as with other languages (e.
g. C), not taking advantage of Ada’s full programming
power.

It is the authors’ opinion that, in order to take
advantage of the increasing attention that Real-Time
Linux has been gaining as a suitable platform for
Distributed Computer-Controlled Systems, proper Ada
compilers and runtime systems must be built. It is well
known that the language itself is more than suitable, but
this quality is not enough if it can not be easily used.

4. Conclusions

This paper proposes an atomic multicast protocol for
CAN networks, which provides both a timely and reliable
service to the supported applications. The protocol
guarantees that a message that could potentially be
delivered by only a subset of replicas is not delivered at
all.

A prototype of the protocol programmed in Ada, on top
of Real-Time Linux, is described. This prototype is
currently being tested, but some already available results
emphasise the Ada appropriateness for DCCS.

However, the lack of sound programming tools (e. g.
compilers, runtime systems) difficult putting Ada to use,

since, currently programming is as error prone as with
other languages (e. g. C).

Two major drawbacks associated to the use of Ada on
top of Real-Time Linux were also identified. Firstly, the
Ada executive does not provide high level mechanisms for
concurrency and to control shared resources. It only
provides the low-level primitives for task and lock
managing, which are used to program such mechanisms.

Secondly, interrupt-handling services are also
unavailable in the used executive, imposing the
development of an interface to the Real-Time Linux
interrupt services.

Acknowledgements

The authors would like to thank the anonymous
referees for their helpful comments. This work was
partially supported by FLAD (project SISTER 471/97),
FCT (project DEAR-COTS 14187/98) and IDMEC.

References

[1] ISO 11898. (1993). Road Vehicle - Interchange of Digital
Information - Controller Area Network (CAN) for High-
Speed Communication. ISO.

[2] Tindell, K., Burns, A. and Wellings, A. (1995).
Calculating Controller Area Network (CAN) Message
Response Time. In Control Engineering Practice, Vol. 3,
No. 8, pp. 1163-1169.

[3] Shen, H. and Baker, T. (1999). A Linux Kernel Module
Implementation of Restricted Ada Tasking. In Proc. 9th

International Real-Time Ada Workshop, Ada Letters, Vol.
XIX, N. 2, June 1999.

[4] Rufino, J. and Veríssimo, P. (1995). A Study on the
Inaccessibility Characteristics of the Controller Area
Network. In Proc. 2nd International CAN Conference,
London, United Kingdom, October 1995.

[5] Pinho, L., Vasques, F. and Tovar, E. (2000). Integrating
inaccessibility in response time analysis of CAN networks.
In Proc. 3rd IEEE International Workshop on Factory
Communication Systems, pages 77–84, Porto, Portugal,
September 2000.

[6] Rufino, J., Veríssimo, P., Arroz, G., Almeida, C. and
Rodrigues, L. (1998). Fault-Tolerant Broadcasts in CAN.
In Proc. of the 28th Symposium on Fault-Tolerant
Computing, Munich, Germany, June 1998.

[7] Hadzilacos, V. and Toueg, S. (1993). Fault-Tolerant
Broadcasts and Related Problems. In Mullender (Ed.),
Distributed Systems, 2nd Ed., Addison-Wesley, 1993.

[8] Powell, D. (1992). Failure Mode Assumptions and
Assumption Coverage. In Proc. of the 22nd Symposium on
Fault-Tolerant Computing, Boston, USA, July 1992.

