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Abstract 

Superimposed training (ST) technique can be used at primary users 19 transmitters to improve parameter 
estimation tasks (e.g. channel estimation) at primary users 19 receivers at the time the total available bandwidth 
is used for data transmission. The exploitation of the ST sequence in the context of cognitive radio networks leads 
to a signiï¬�cant increase in the detection performance of secondary users operating in the very low signal-to-
noise ratio region. Hence, a smaller number of samples are required for sensing. In this paper, the performance of 
ST-based spectrum sensing in a cooperative centralized cognitive radio network with soft-decision fusion is 
studied. Furthermore a throughput analysis is carried out to quantify the beneï¬�ts of using ST in the context of 
cognitive radio for both primary and secondary users.  
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Abstract—Superimposed training (ST) technique can be used
at primary users’ transmitters to improve parameter estimation
tasks (e.g. channel estimation) at primary users’ receivers at the
time the total available bandwidth is used for data transmission.
The exploitation of the ST sequence in the context of cognitive
radio networks leads to a significant increase in the detection
performance of secondary users operating in the very low signal-
to-noise ratio region. Hence, a smaller number of samples are
required for sensing. In this paper, the performance of ST-
based spectrum sensing in a cooperative centralized cognitive
radio network with soft-decision fusion is studied. Furthermore
a throughput analysis is carried out to quantify the benefits of
using ST in the context of cognitive radio for both primary and
secondary users.

Index Terms—Spectrum sensing, cooperative, cognitive radio,
superimposed training.

I. INTRODUCTION

Future wireless networks and communications will demand

more bandwidth available to support the increasing number

of users and their high throughput requirements. For primary

users (PUs), i.e. those users with access to a licensed frequency

band, extra bandwidth can be obtained based on the fact

that wireless digital communications systems employ pilot

symbols for parameter estimation tasks. Traditionally, these

pilots are inserted in different time slots than data symbols,

thus reducing the available bandwidth for data transmission.

This is known in the literature as time domain multiplexed

training (TDMT). An alternative technique to improve the

spectral efficiency, is to superimpose (i.e. add) pilot symbols

to data symbols prior transmissions of PUs. This is known in

the literature as superimposed training (ST) technique [1]. ST

has the advantage of increasing bandwidth of PUs at the time

better performance of parameter estimation tasks (e.g. channel

estimation or synchronization) are attained at PU’s receivers,

which is a feature of great interest in future wireless commu-

nications systems. Therefore, ST has been actively studied in

recent years in this context [2], along with the associated cost

that using ST at PUs’ transmitters implies an increase in signal

processing and infrastructure complexity. Additionally to the

bandwidth a PU can gain with the use of ST transmitters, more

radio spectrum can be obtained based on the fact that some

PUs do not use their allocated frequency band at some time or

geographic location. Hence, cognitive radio (CR) technology

is envisioned as a solution to improve the radio spectrum usage

in an opportunistic manner [3]. In interweave CR networks,

unlicensed radio spectrum users (i.e. secondary users) must

sense one or more frequency bands to determine if they are

being used or not by the primary user to whom were allocated.

If a frequency band is free, then a secondary user (SU) can

transmit data opportunistically. This process is called spectrum

sensing [4] and it is considered the most important task in

interweave CR networks. Reducing the spectrum sensing time

is a major concern in interweave CR, since more time will be

available for opportunistic transmission of a secondary user

and therefore higher throughput. Indeed, in [5] the trade-off

between sensing time and achievable throughput is studied

in the context of CR. It is shown that an optimum sensing

time that maximizes the secondary user’s throughput exist.

Thus, results are shown for energy detection (ED) based

spectrum sensing technique, which is the simplest technique

to perform spectrum sensing. However, ED does not exploit

the fact that many wireless communications systems might

include pilot symbols in their signals for parameter estimation

purposes, which can be used to improve the performance

of spectrum sensing in terms of probabilities of false alarm

and detection. In [6] and [7] spectrum sensing algorithms are

proposed considering TDMT PUs’ signals. Results quantify

the detection gain that can be achieved if SUs exploit the

knowledge of pilot symbols in the received signal. Thus, in [8]

the trade-off problem between sensing and training is analyzed

for TDMT-based spectrum sensing in CR. Furthermore, in [9]

a PU’s signal that adds a pilot symbol to the data symbol

is considered in the context of detection of digital television

(DTV) signals. Moreover, ST-based spectrum sensing for

cognitive radio is considered in [10] for a single SU over noisy

channels. It is shown the significant reduction in number of

samples needed in the spectrum sensing stage if PUs employ

ST transmitters and the high probability of false alarm that

can be achieved by SUs. Thus showing that ST is a benefit

for both PUs and SUs. In this paper, however, a cooperative

centralized cognitive radio network is considered with soft-

decision fusion for SUs operating in the very low signal-to-

noise ratio (SNR) that employ ST-based spectrum sensing.

Hence, closed-form expressions for global probabilities of

false alarm and detection are obtained. Results quantify the

significant reduction in number of samples required in the

sensing stage and the higher achievable throughput attained

by ST-based spectrum sensing even for a single user, in

comparison to the ED. Moreover, it is shown that the SUs’



throughput gain depends not only in the number of samples

required in sensing but also in the training-to-information ratio

(TIR) in ST-based PU’s communications systems.

II. SYSTEM MODEL AND HYPOTHESIS TEST

Consider a centralized cognitive radio network (CRN) con-

sisting of K cooperative SUs and a fusion center (FC) as

shown in Fig. 1. In the first instance, it is considered that

all SUs sense a PU’s frequency band. Assume that the PU’s

transmitter implements the ST technique to provide the PU’s

receiver with a better channel estimation at the same time

the whole available bandwidth is used for data transmission.

Hence, the ST-based PU’s signal is given by the addition

of a low power periodic training sequence to the data se-

quence. Moreover, in order to reduce interferences from SU’s

transmissions, assume that the PU previously shares the ST

sequence with SUs, which are block synchronized with the

PU. Furthermore, assume that each SU individually performs

local sensing at the PU’s frequency band and sends its test

statistic to the FC through a control channel. Then, based

on soft-decision fusion the FC determines the presence (i.e.

hypothesis H1) or absence (i.e. hypothesis H0) of the PU’s

signal. Thus, individually, a SU must decide between the

following two hypothesis based on the received signal samples

at their receivers:

H0 : xk[n] = wk[n] ,

H1 : xk[n] = (d[n] + t[n]) + wk[n] ,
(1)

where 1 ≤ k ≤ K and 0 ≤ n ≤ N − 1, N represents the total

number of samples used in the sensing stage. Additionally,

each sample in both PU’s data sequence {d[n]}N−1

n=0
and noise

sequence {nk[n]}N−1

n=0
are zero-mean independent and identi-

cally distributed (i.i.d.) circularly symmetric complex random

variables with variance σ2

d and σ2, respectively. Moreover,

the periodic training sequence {t[n]}N−1

n=0
(with period P )

is deterministic and |t[n]|2 = 1 for n mod P = 0 and

|t[n]|2 = 0 otherwise. Furthermore, the TIR is defined as

α = σ2
t /σ

2

d, where σ2
t =

∑N−1

n=0
|t[n]|2 is the average power in

the training sequence and σ2

d =
∑N−1

n=0
|dk[n]|2 is the average

power in the data sequence, which without loss of generality

is assumed to be unitary.

III. SINGLE NODE ST-BASED SPECTRUM SENSING

Making the correct choice between hypotheses in (1) can

be a challenging task, especially in a very low signal-to-noise

ratio (SNR) operating scheme. Hence, two errors can be made:

i) Deciding H0 when H1 is true, thus causing interference

to PU’s transmissions. When this error occurs, it is said

that there is a false alarm.

ii) Deciding H1 when H0 is true, thus loosing opportunities

for data transmissions. When this error occurs, it is said

that there is a missed-detection.

Thus, the detection performance of a spectrum sensing tech-

nique can be characterized by the probability of false alarm

and the probability of missed-detection (or alternatively, the

probability of detection, which is the probability of correctly

decide H1). It is of great interest that the method used for

spectrum sensing performs with the higher probability of

detection and the lower probability of false alarm. This last

might not be totally possible given the trade-off between

theses probabilities: reducing the probability of false alarm

reduces the probability of detection, and vice versa. Therefore,

in order to improve the detection performance by exploiting

the known training sequence at SUs, it is used the Neyman-

Pearson detector for ST-based PU’s signals (called STD) [10].

Hence, the test statistic at each secondary user is given by

Tst,k(xk) =

N−1
∑

n=0

|xk[n]|2 +
2

γ
ℜ
{

N−1
∑

n=0

x∗

k[n]t[n]

}

, (2)

where γ = σ2

d/σ
2 is the received signal-to-noise ratio (SNR)

of the PU measured at the k-th SU’s receiver.

A. Performance metrics

For a single SU, the probability of false alarm, Pfa, of the

STD is given by [10]

Pfa(λ, α,N) = Q
(

λ−Nσ2

σ2
√

N [(2α/γ) + 1]

)

, (3)

where Q(·) is the complementary cumulative distribution

function of a standard Gaussian distribution [11] and λ is the

detection threshold. Moreover, the probability of detection is

given by [10]

Pd(λ, α,N) = Q









λ−N
[

2σ2α+ υ
]

√

N
[

υ2 + 2ασ2

γ
υ
]









. (4)

where υ = σ2

d+σ2. Note that besides both Pfa and Pd depend

on the threshold and the number of samples used in the sensing

stage they also depend on the TIR used by the PU in the ST

transmitter. Thus, for a target probability of detection, P̄d, the

detection threshold is found from (4), i.e.

λ = Q−1(P̄d)

√

N

[

υ2 +
2ασ2

γ
υ

]

+N
[

2σ2α+ υ
]

. (5)

Therefore, for a target probability of detection, P̄d, the prob-

ability of false alarm is:

Pfa(α,N) = Q
(

N
[

2σ2α+ υ
]

−Nσ2

σ2
√

N [(2α/γ) + 1]

+

Q−1(P̄d)

√

N
[

υ2 + 2ασ2

γ
υ
]

σ2
√

N [(2α/γ) + 1]









. (6)



Fig. 1. Centralized cooperative spectrum sensing scenario with one primary
user (PU) implementing ST technique, K secondary users (SUs) and one
fusion center (FC).

IV. COOPERATIVE ST-BASED SPECTRUM SENSING

ST-based spectrum sensing is analyzed next in a centralized

cooperative CRN with soft decision fusion. Hence, after each

SU performs ST-based spectrum sensing and makes a decision

on the absence/presence of a PU in a frequency band of

interest, all SUs report their test statistic, TST,k(xk) given by

(2), to the FC, which combines them to make a global decision.

Hence, the FC decides H1 if

TST =
K
∑

k=1

Tst,k(xk) > Λ, (7)

where Λ is the global detection threshold. For large N , the

detection performance of (7) can be obtained by invoking

the CLT. Hence, when H0 is true TST is approximated by

a Gaussian distributed random variable (r.v.) with mean, µ0,

given by

µ0 =

K
∑

k=1

E [Tst,k(xk)|H0] = KNσ2 (8)

and variance, σ2
0 , given by

σ2

0 =

K
∑

k=1

var [Tst,k(xk)|H0]

=KNσ4

(

2α

γ
+ 1

)

. (9)

Hence, the global probability of false alarm, PFA can be

expressed as:

PFA(Λ, α,N) = Q









Λ−KNσ2

σ2

√

KN
[

2α
γ

+ 1
]









. (10)

On the other hand, when H1 is true, TST is approximated to

a Gaussian distribution with mean, µ1, given as follows:

µ1 =

K
∑

k=1

E [Tst,k(xk)|H1]

=KN
[

2σ2α+ υ
]

(11)

and variance, σ2
1 , given as follows:

σ2

1 =

K
∑

k=1

var [Tst,k(xk)|H1]

=KN

[

υ2 +
2ασ2

γ
υ

]

. (12)

Hence, the global probability of detection, PD, can be ex-

pressed as:

PD(Λ, α,N) = Q









Λ−KN
[

2σ2α+ υ
]

√

KN
[

υ2 + 2ασ2

γ
υ
]









. (13)

It is worth noting that PFA and PD are also functions of the

TIR α. Thus, for a target global probability of detection, P̄D,

the detection threshold is given by

Λ =Q−1(P̄D)

√

KN

[

υ2 +
2ασ2

γ
υ

]

+KN
[

2σ2α+ υ
]

. (14)

Hence, for a target probability of detection P̄D, the probability

of false alarm is

PFA(α,N) =Q





Q−1(P̄D)
√

υ2 + 2ασ2

γ
υ

σ2

√

2α
γ

+ 1

+
√
KN

σ2 (2α− 1) + υ

σ2

√

2α
γ

+ 1



 . (15)

Thus, from (15) it can be seen that for a given value of P̄D,

the global probability of false alarm depends on the value of

α and N .

V. ANALYSIS OF THROUGHPUT

In a cooperative cognitive radio scenario in which SUs

perform ST-based spectrum sensing periodically, the SU’s

throughput depends on the number of samples used in the

sensing stage and the TIR selected by the PU (i.e. N and α).

The average SU’s throughput is defined in [5] as follows:

B(N,α) =

(

1− N

M

)

C0 (1− PFA(Λ, α,N,K))P (H0)

+

(

1− N

M

)

C1 (1− PD(Λ, α,N,K))P (H1),

(16)

where M is the total length of the cognitive radio frame,

P (H0) is the prior probability that the PU is inactive, P (H1)
is the prior probability that the PU is active. Moreover, C0 is

SU’s throughput when the SU operates under H0 defined as:

C0 = log2(1 +
Ps

σ2
r

) (17)



where Ps is the received power of the SU and σ2
r is the

noise power at the SU’s receiver. Additionally, C1 is the SU’s

throughput when it operates under H0, given by:

C1 = log2(1 + Ps/(Pp + σ2

r)) (18)

where Pp is the interference power of the PU at the SU’s

receiver. From (16) it can be seen that increasing N decreases

the available time for SU’s data transmission. Thus, decreases

the throughput. On the other hand, increasing N decreases also

the probability of false alarm, which increases the throughput.

Therefore, there is an optimal number of samples that max-

imizes the SU’s throughput. Given that C0 > C1, the first

term in (16) contributes more to the threshold. Thus, the SU’s

throughput can be approximated as [5]:

B̃(N,α) =

(

1− N

M

)

C0 (1− PFA(Λ, α,N,K))P (H0).

This approximation is used for the results shown in next

section.

VI. RESULTS

It is considered a centralized cooperative spectrum sensing

scenario with the soft-decision rule given by (7), implemented

in the FC. Additionally, it is considered that the PU utilizes

the ST technique and the SU have prior knowledge of the

training sequence. Moreover, it is assumed that Ps/σ
2
r is the

same at each SU. The target global probability of detection

is set to P̄D = 0.9, γ = −20dB and the total length of the

cognitive radio frame is M = 600000. Firstly, Fig. 2 shows

a comparison of the global probability of false alarm against

number of samples N , obtained via Monte Carlo simulations

with 10000 trials and the theoretical results from (15). The

total number of SU is equal to K = 6 and results are shown

for different values of TIR, α. Furthermore in this figure,

theoretical results for the energy detector are displayed to

show the gain in PFA when ST-based spectrum sensing is used

with small values of TIR. Thus, it is shown that the number

of samples required for sensing significantly decreases with

the increase of α. However, it is worth noting that even for

small values of α much less samples are needed in the sensing

stage when compared to the ED and also much lower values

of PFA are attained. In Fig. 3 it is displayed the achievable

throughput against number of samples N for different numbers

of SUs and a TIR value of α = 0.1. As expected, the SU’s

throughput increases with the increase of K and in comparison

to the ED the SU achieve higher levels of throughput. Next,

Fig. 4 shows the SU’s throughput against number of samples

N for different values of TIR and it is compared with the

SU’s throughput achieved by the energy detector. It can be

observed that there is an optimal number of samples, which is

significantly smaller than that of the ED for greater values of

TIR. Thus, there is a gain in throughput when exploiting the

ST sequence at SUs in comparison to the ED. Finally, Fig. 5

shows the optimal number of samples N that maximizes the

SU’s throughput against different number of cooperating SUs

K and for different values of TIR α. It can be observed in this
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graphic that the optimal number of samples that maximizes

the throughput is considerable reduced when exploiting the

ST technique. For example, for K = 6, and α = 0.05, the

optimal N for the STD is 2000, approximately, whereas for

the energy detector the optimal N is approximately 15000,

which is a significant difference.

VII. CONCLUSIONS

The performance of ST-based spectrum sensing was an-

alyzed in a centralized cognitive radio network with soft-

decision fusion in a noisy environment. Hence, closed-form
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expressions were obtained for the global probabilities of false

alarm and detection. Furthermore, the optimal number of

samples in the ST-based sensing stage that maximizes the

secondary user’s throughput was found. Simulation results

quantified the significant detection gained by the ST-based

spectrum sensing algorithm in comparison to the energy

detector when SUs cooperate in a cognitive radio network.

Moreover, it was shown that the maximum achievable through-

put is also a function of the TIR value at the PU’s transmitter,

which is selected by the PU. Further studies are needed to

evaluate the performance of ST-based spectrum sensing over

fading channels.
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