

On#the#use#of#Work.Stealing#Strategies#in#Real.
Time#Systems#

#

Technical Report

CISTER-TR-130110

Version:

Date: 01-23-2013

Luis Miguel Nogueira

Luis Miguel Pinho

José Fonseca

Cláudio Maia

Technical Report CISTER-TR-130110 On the use of Work-Stealing Strategies in Real-Time Systems

© CISTER Research Unit
www.cister.isep.ipp.pt

1#
!

On the use of Work-Stealing Strategies in Real-Time Systems
Luis Miguel Nogueira, Luis Miguel Pinho, José Fonseca, Cláudio Maia

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: luis@dei.isep.ipp.pt, lmp@isep.ipp.pt, jaf@det.ua.pt, crrm@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Computers across all domains increasingly rely on multiple processors/cores, with processors starting to appear
with dozens of cores, and next generations of multicore processors expected to integrate hundreds to thousands
of simple processors into a single chip. The real-time and embedded systems domain is no exception to this trend.
Therefore, the problem of scheduling realtime tasks is no longer a problem of scheduling sequential tasks, but
increasingly one of scheduling job-level parallelism or intra-task parallelism as it is commonly known, i.e. the
possibility of having more than one core executing a single job at any given instant in time. The subject of
scheduling parallel execution is well-studied in the high-performance domain, being work-stealing strategies a
simple, yet best-performing, dynamic load-balancing scheme. Nevertheless, traditional work-stealing approaches
have inherent limitations for real-time systems. In this paper, we review current work by the authors being done to
integrate work-stealing with real-time systems scheduling.

On the use of Work-Stealing Strategies
in Real-Time Systems

Luís Nogueira, Luís Miguel Pinho, José Carlos Fonseca, Cláudio Maia

CISTER Research Centre/INESC-TEC
School of Engineering (ISEP), Polytechnic Institute of Porto (IPP), Portugal

{crrm,jcnfo,lmp,lmn}@isep.ipp.pt

Abstract. Computers across all domains increasingly rely on multiple proces-
sors/cores, with processors starting to appear with dozens of cores, and next
generations of multicore processors expected to integrate hundreds to thousands
of simple processors into a single chip. The real-time and embedded systems
domain is no exception to this trend. Therefore, the problem of scheduling real-
time tasks is no longer a problem of scheduling sequential tasks, but increas-
ingly one of scheduling job-level parallelism or intra-task parallelism as it is
commonly known, i.e. the possibility of having more than one core executing a
single job at any given instant in time. The subject of scheduling parallel execu-
tion is well-studied in the high-performance domain, being work-stealing
strategies a simple, yet best-performing, dynamic load-balancing scheme. Nev-
ertheless, traditional work-stealing approaches have inherent limitations for
real-time systems. In this paper, we review current work by the authors being
done to integrate work-stealing with real-time systems scheduling.

1 Introduction

The advent of multicore technologies has resulted in a renewed interest on parallel
programming and dynamic task parallelism is steadily gaining popularity as a pro-
gramming model for multicore processors. Intra-task parallelism is easily expressed
by spawning threads that the implementation is allowed, but not mandated, to execute
in parallel, using frameworks such as OpenMP [1], Cilk [2], Intel’s Parallel Building
Blocks [3], Java Fork-join Framework [4], Microsoft’s Task Parallel Library [5], or
StackThreads/MP [6].

The idea behind those frameworks is to allow application programmers to expose
the opportunities for parallelism by pointing out potentially parallel regions within
tasks, leaving the actual and dynamic scheduling of these regions onto processors to
be performed at runtime, exploiting the maximum amount of parallelism. However,
scalable performance is only one facet of the problem in multicore embedded real-
time platforms. Predictability and computational efficiency are often conflicting
goals, as many performance enhancement techniques aim at boosting the average
execution time, without considering potentially adverse consequences on worst-case
execution times.

Therefore, parallel programming models introduce a new dimension to real-time
multicore scheduling, with many open issues to be studied. Recent works on real-time
scheduling of parallel tasks define a task as a collection of several regions, both se-
quential and parallel [7], [8]. A task always starts with a sequential region, which then
forks into several parallel independent threads (the parallel region) that finally join in
another sequential region. However, these models require that each region of a task
contains threads of execution that are of equal length.

In contrast, we consider a more general model of parallel real-time tasks where
threads can take arbitrarily different amounts of time to execute. That is, in this paper,
different regions of the same parallel task can contain different numbers of threads,
regions can contain more threads than the number of cores, and threads can have arbi-
trarily different execution needs. And these execution needs may also vary between
instances (jobs) of the same task. Therefore, this model is more portable. Indeed, there
are many applications for which these conditions hold, and it is this kind of irregular
parallelism that is of primary interest for us. The distribution of work and data in such
applications cannot be characterised a priori because those quantities are input-
dependent and evolve with the computation itself. In practice, such real-time applica-
tions span a wide spectrum, including radar tracking, autonomous driving, and video
surveillance.

Applications with these properties pose significant challenges for high-
performance parallel implementations, where equal distribution of work over proces-
sors and locality of reference are desired within each processor. Nevertheless, as the
problem sizes scale and processor speeds saturate, the only way to meet deadlines in
such systems is to parallelize the computation.

At the same time, implicit threading languages encourage the programmer to di-
vide the program into short-living threads because doing so increases the flexibility to
distribute work evenly across processors. The downside of such fine-grained parallel-
ism is that the total scheduling cost can be significant. The best way to reduce the
total scheduling cost is to find the sub-costs that matter most and focus on reducing
them.

One of the simplest, yet best-performing, dynamic load-balancing algorithms for
shared-memory architectures is work-stealing [9]. The principle of work-stealing is
that idle cores, which have no useful work to do, should bear most of the scheduling
costs, and busy cores, which have useful work to do, should focus on finishing that
work. Blumofe and Leiserson have theoretically proven that the work-stealing algo-
rithm is optimal for scheduling fully-strict computations, i.e. computations in which
all join edges from a thread go to its parent thread in the spawn tree [9]. Under this
assumption, an application running on P processors achieves P-fold speedup in its
parallel part, using at most P times more space than when running on one CPU. These
results are also supported by experiments [10].

Motivated by these observations, this paper presents a review of the work which is
currently being performed to integrate work-stealing strategies with real-time systems
scheduling to allow parallel real-time tasks to be dynamically executed in more than
one processor at a given time, whilst guaranteeing deterministic behaviour. To the
best of our knowledge, those works are the first research to focus on this subject. And

while several have previously considered work-stealing as a load balancing mecha-
nism for parallel computations, those works are the first to do so considering different
tasks’ priorities and deadlines.

2 Task-level parallelism in real-time systems

Many real-time applications have a lot of potential parallelism which is not regular in
nature and which varies with the data being processed. Parallelism in these applica-
tions is often expressed in the form of dynamically generated threads of work that can
be executed in parallel. The goal is to allow the programmer to express all the avail-
able parallelism and let the runtime system execute the program efficiently. The most
difficult task for the programmer is partitioning the program across the multiprocessor
system so that the computational load is balanced among the cores. Thus, it is impor-
tant for the underlying architecture to provide help to the programmer in order to ease
this burden.

At the same time, implicit threading encourages the programmer to divide the pro-
gram into threads that are as small as possible, increasing the scheduler’s flexibility
when distributing work evenly across processors. The downside of such fine-grained
parallelism is that if the total scheduling cost is too large, then parallelism is not
worthwhile. Therefore, having many short-lived threads requires a simple and fast
scheduling mechanism to keep the overall overhead low.

However, most results in multiprocessor real-time scheduling concentrate on se-
quential tasks running on multiple processors or cores [11]. While these works allow
several tasks to execute on the same multicore host and meet their deadlines, they do
not allow individual tasks to take advantage of a multicore machine. It is essential to
develop new approaches for intra-task parallelism, where real-time tasks themselves
are parallel tasks which can run on multiple cores at the same time instant.

Early work in real-time scheduling of parallel tasks [12], [13], [14], [15], [16]
makes simplifying assumptions about task models, such as knowing beforehand the
parallelism degree of jobs and using this information when making scheduling deci-
sions. In practice, this information is not easily discernible, and in some cases can be
inherently misleading. Since many details of execution, such as the number of itera-
tions in a loop and the number of threads that will be created in a parallel region are
often not known in advance, much of the actual work of assigning parallel tasks to
cores must be performed dynamically. Unlike static policies, dynamic processor-
allocation policies allow the system to respond to load changes, whether they are
caused by the arrival of new jobs, the departure of completed jobs, or changes in the
parallelism of running jobs - the last case is of particular importance to us in this pa-
per.

Recently, Lakshmanan et al. [7] proposed a scheduling technique for synchronous
parallel tasks where every task is an alternate sequence of parallel and sequential re-
gions with each parallel region consisting of multiple threads of equal length that
synchronise at the end of the region. In their model, all parallel regions are assumed to
have the same number of parallel threads, which must be no greater than the number

of processors. In [8], Saifullah et al. considered a more general task model, allowing
different regions of the same parallel task to contain different numbers of threads and
regions to contain more threads than the number of processor cores. It still requires,
however, that each region of a task contains threads of execution that are of equal
length.

In contrast, this paper considers a more general model of parallel real-time tasks
where threads can take arbitrarily different amounts of time to execute. Furthermore,
both works handle scheduling parallel tasks by decomposing them into sequential
subtasks. In [7], this technique requires a resource augmentation bound of 3.42 under
partitioned Deadline Monotonic (DM) scheduling. For the synchronous model with
arbitrary numbers of threads in parallel regions, the work in [8] proves a resource
augmentation bound of 4 and 5 for global Earliest Deadline First (EDF) and parti-
tioned DM scheduling, respectively. Instead, we try to minimise the scheduling over-
head by generating parallelism only when required, i.e. when a processor becomes
idle.

We believe that achieving predictable good performance for fine-grained task-level
parallelism in embedded real-time systems is important for several reasons: (i) an
efficient implementation of fine-grained parallelism allows more parallelism to be
exploited, which is especially important with the expected increase in core counts in
future processors; (ii) the programming model is simplified if programmers do not
need to avoid spawning small tasks, which is very difficult when task execution times
cannot be predicted in advance; and (iii) many real-time systems have periodic seri-
alisation points when input is consumed and output is produced. A natural way to
program such a system is to parallelise each interval, which then becomes a parallel
region.

3 A work-stealing global EDF scheduling approach

In the first approach [17], we consider the scheduling of implicit-deadline periodic
independent real-time tasks on m identical processors p1, p2, …, pm using global EDF.
With global EDF, each task ready to execute is placed in a system-wide queue, or-
dered by non-decreasing absolute deadline, from which the first m tasks are extracted
to execute on the available processors.

We primarily consider a synchronous task model, where each task Ĳ1, …, Ĳn can
generate a virtually infinite number of multithreaded jobs. A multithreaded job is a
sequence of several regions, and each region may contain an arbitrary number of par-
allel threads which synchronise at the end of the region (see Fig. 1). For any region
with more than one thread, the threads on that region can be executed in parallel on
different cores. All parallel regions in a task share the same number of processors and
threads inherit the parent’s deadline. For now, our work is focused on systems where
all parallel threads are fully independent, i.e. except for the m-cores there are no other
shared resources, no critical sections, nor precedence constraints.

Fig. 1. A multithreaded job with 5 regions

The jth job of task Ĳi arrives at time ai,j, is released to the global EDF queue at time ri,j,
starts to be executed at time si,j with deadline di,j = ri,j + Ti, with Ti being the period of
Ĳi, and finishes its execution at time fi,j. These times are characterised by the relations
ai,j < ri,j < si,j < fi,j. Successive jobs of the same task are required to execute in se-
quence.

During the course of its execution the jth job of task Ĳi can enter in a parallel region
and dynamically generate an arbitrary number of parallel threads which synchronise
at the end of that region. A thread is denoted wk

i,j , 1 ≤ k ≤ ni,j, where ni,j is the total
number of threads belonging to the jth job of task Ĳi. We assume ni,j > 1 holds for at
least one task Ĳi in the system. Otherwise, the considered task set does not have intra-
task parallelism. As depicted in Figure 1, our work is currently limited to non-nested
parallel regions.

The execution requirements of a thread wk
i,j of task Ĳi is denoted by ek

i,j. Therefore,
the worst-case execution time (WCET) Ci of task Ĳi on a multicore platform is the sum
of the execution requirements of all of its threads, if all threads are executed sequen-
tially in the same core.

Contrary to regular jobs of a task, dynamically generated parallel threads are not
pushed to the global EDF queue, but instead maintained in a local priority-based
work-stealing double-ended queue (deque) of the core where the job is currently be-
ing executed, thus reducing contention on the global queue. For any busy core, paral-
lel threads are pushed and popped from the bottom of the deque and these operations
are synchronisation-free.

A work-stealing scheduler employs a fixed number of worker threads, usually one
per core. Each of those workers has a local deque to store threads. Workers treat their
own deques as a stack, pushing and popping threads from the bottom, but treat the
deque of another busy worker as a queue, stealing threads only from the top, when-
ever they have no local threads to execute. This reduces contention, by having steal-

ing workers operating on the opposite end of the deque than the worker they are steal-
ing from, and also helps to increase locality, since stealing a thread also migrates its
future workload [2]. All deque manipulations run in constant-time O(1), independ-
ently of the number of threads in the deque. Furthermore, several papers [18], [19],
[20] explain how a non-blocking deque can be implemented to limit overheads.

However, the need to support tasks’ priorities fundamentally distinguishes the
problem at hand in this paper from other work-stealing choices previously proposed
in the literature [21], [22], [23]. With classical work-stealing, threads waiting for exe-
cution in a deque may be repressed by new threads, which are enqueued at the bottom
of the worker’s deque. As such, a thread at the top of a deque might never be executed
if all workers are busy. Consequently, there is no upper bound on the response time of
a multithreaded real-time job.

Therefore, considering threads’ priorities and using a single deque per core would
require, during stealing, that a worker iterate through the threads in all deques until
the highest priority thread to be stolen was found. This cannot be considered a valid
solution since it greatly increases the theft time and, subsequently, the contention on a
deque.

Using a single global concurrent priority-based deque is also not viable. While pri-
ority queues are often used in single core schedulers, when moving to a parallel con-
text, concurrent priority queues are hard to make both scalable and fast [24]. Further-
more, the semantics of priority queues naturally suggest an ordered insertion method,
which is against the work-stealing deque philosophy.

The RTWS algorithm [17] replaces the single per-core deque of classical work-
stealing with a per-core priority queue, each element of which is a deque. A deque
holds one or more threads of the same priority. At any time, a core picks the bottom
thread from the highest-priority non-empty deque. If it finds its queue empty, it steals
a thread from the top of the highest-priority non-empty deque of the chosen core’s
queue.

Two approaches are possible for selecting the victim processor: (i) a probabilistic
approach, where the victim is chosen randomly [9]; or a (ii) deterministic approach,
where the core is chosen by the priorities of the threads in the deques waiting to be
executed. Blumofe and Leiserson [9] demonstrate that a random choice of the stolen
core is fair and presents the advantage that the choice of the target does not require
more information than the total number of cores in the execution platform. However,
random selection, while fast and easy to implement, may not always select the best
victim to steal from. As core counts increase, the number of potential victims also
increases, and the probability of selecting the best victim decreases. This is particu-
larly true under severe cases of work imbalance, where a small number of cores may
have more work than others [25]. Moreover, when a thief cannot obtain tasks quickly,
the unsuccessful steals it performs waste computing resources, which could otherwise
be used to execute waiting threads. In fact, if unsuccessful steals are not well con-
trolled, applications can easily be slowed down by 15%–350% [9]. Therefore, we
follow a deterministic approach, following a strict priority schedule. In [26] we pro-
vide an initial work which considered a random based approach.

4 A work-stealing server-based scheduling approach

The second approach [27] targets more open environments, where there is little previ-
ous knowledge about real execution requirements, and processing capacities are then
typically allocated based on average-case execution times, with the result that the
expected (mean) tardiness of a task is bounded [28]. Nevertheless, as increasing real-
time applications mix different timing criticality in the same system, it is still neces-
sary to isolate and protect the temporal behaviour of one application from the others.

For this, two-level scheduling schemes, commonly known as bandwidth servers,
are often used. In [29], Mercer et al. propose a scheme based on capacity reserves to
remove the need of knowing the WCET of each task under the Rate Monotonic
scheduling policy. A reserve is a couple (Ci, Ti) indicating that a task Ĳi can execute
for at most Ci units of time in each period Ti. If a task job needs to execute for more
than Ci, the remaining portion of the job is scheduled in background.

Based on a similar idea of capacity reserves, Abeni and Buttazo [30] proposed the
Constant Bandwidth Server (CBS) scheduler to handle soft real-time requests with
variable or unknown execution behaviour under EDF scheduling policy. To avoid
unpredictable delays on hard real-time tasks, soft tasks are isolated through a band-
width reservation mechanism, according to which each soft task gets a fraction of the
CPU and it is scheduled in such a way that it will never demand more than its re-
served bandwidth, independently of its actual requests. This is achieved by assigning
each soft task a deadline, computed as a function of the reserved bandwidth and its
actual requests. If a task requires to execute more than its expected computation time,
its deadline is postponed so that its reserved bandwidth is not exceeded. As a conse-
quence, overruns occurring on a served task will only delay that task, without com-
promising the bandwidth assigned to other tasks.

Resource reservation approaches have been considerably extended, but of which
M-CBS [31], M-CASH [32], and EDF-HSB [33] specifically target multicore sys-
tems. However, while these resource reclaiming schemes allow tasks to efficiently
execute on the same multicore system, they do not allow an individual task to take
advantage simultaneously of several cores, preventing task-level parallelism.

The p-CSWS algorithm [27] extends M-CBS and combines a residual capacity re-
claiming scheme with a priority-aware work-stealing policy which, while ensuring
isolation among tasks, enables parallel tasks to be executed on more than one proces-
sor at a given time instant. This way, it is possible to have parallel and non-parallel
tasks with different levels of temporal criticality coexisting in the same system, while
achieving the goals of temporal isolation and real-time execution. Contrarily to the
RTWS algorithm in the previous section, this approach considers the scheduling of
multithreaded real-time jobs without any previous knowledge about their real execu-
tion requirements, number of parallel regions, and when and how many threads will
be generated at each parallel region.

This approach considers instead the scheduling of sporadic independent servers on
the m identical processors p1, p2, …, pm still using global EDF. A multithreaded job is
modelled as a dynamic Directed Acyclic Graph (DAG), defined as G = (V, E), where
V is a set of nodes and E is a set of directed edges, both created at runtime. A node

represents a thread, a set of instructions which must be executed sequentially. Jobs
may dynamically create an arbitrary number of threads, which may have different
execution requirements. Therefore, the worst case execution time (WCET) for the jth
job of task Ĳi is the sum of the execution requirements of all of its threads, if all
threads are executed sequentially in the same core.

A directed edge (a,b) ∈ E represents the constraint that b's computation depends on
results computed by a. Therefore, a living thread may either be ready or stalled due to
an unresolved dependency. Because multithreaded jobs with arbitrary dependencies
can be impossible to schedule efficiently, we limit our study to fully-strict computa-
tions. Any multithreaded computation that can be executed in a depth-first manner on
a single processor can be made fully-strict by altering the dependency structure, pos-
sibly affecting the achievable parallelism, but not affecting the semantics of the com-
putation [9].

All multithreaded jobs generated by a task Ĳi are dedicated to a p-CSWS server Si,
an extension for the parallel case of the M-CBS algorithm. Each p-CSWS server Si is
characterised by a pair (Qi, Ti), where Qi is the server's maximum reserved capacity
and Ti its period. The ratio Ui = Qi / Ti is known as the server's bandwidth and denotes
the fraction of the capacity of one processor that is assigned to the server.

Note that if the needed execution time (WCET) and the minimum inter-arrival time
of jobs are known beforehand, it is possible to guarantee the deadline of hard tasks by
assigning its server a proper pair (Qi, Ti). For soft real-time tasks, the timing con-
straints can be more relaxed. In this case, we do not require an a priori upper bound
on the value of ei,j and for soft real-time tasks the pair (Qi, Ti) can be set based on the
served tasks' expected average values. Recall that there is still the goal of providing
isolation among the servers and to guarantee a certain degree of service to each indi-
vidual server. If a job does not receive an allocation of ei,j time units before its im-
plicit deadline di,j, then it is tardy. If a job executes for ei,j < Qi time units, the resulting
unused capacity is referred to as dynamic residual capacity and is released to the
global queue to be reused in the system.

With global EDF, each server ready to execute is placed in a system-wide queue,
ordered by non-decreasing absolute deadline, from which the first m servers are ex-
tracted to execute on the available processors. Dynamically generated ready threads
are maintained in a local work-stealing double-ended queue (deque) of the server
where the job is currently being executed, thus reducing contention on the global
queue. For any busy server, parallel threads are pushed and popped from the bottom
of the deque and these operations are synchronisation free. Each p-CSWS server suc-
cessively dequeues a thread from the head of its deque, executes it, and continues
with the next thread unless the deque is empty.

At runtime, the performance of the system is enhanced through a novel redistribu-
tion of residual capacities that not only lessens tardiness for soft real-time tasks and
quickly adapts to load changes, but also enables parallel tasks to be executed on more
than one processor at a given time instant. For that, the p-CSWS scheduler considers a
second type of servers named residual capacity work-stealing servers. A residual ca-
pacity server is a p-CSWS server that applies a priority-based work-stealing policy
whenever its local deque is empty.

These servers are created whenever residual capacities greater than a lower bound
Qmin are released to the global queue. Whenever a residual capacity server Sr

j is en-
queued in the global queue it competes for processor time as if it were a regular active
server with pending work and deadline at time dr

j. If a residual capacity server is se-
lected for execution, then it may execute only prior to time dr

j and the processor time
it receives can be consumed by any eligible thread with a current deadline at least dr

j,
through work-stealing.

Due to work-stealing overheads, not every amount of residual capacity can be effi-
ciently released as a new residual capacity server. Thus, residual capacities smaller
than Qmin are assigned to the processor on which it was generated and will be con-
sumed by the next server with a later deadline that executes on that processor, in a
similar fashion of the residual capacity reclaiming scheme of M-CASH. This allows
small capacities to accumulate into usable chunks, avoiding excessive overheads.

If a processor ever idles and there is any residual capacity server in the global
queue, then it dequeues the earliest deadline residual capacity server and executes it
without donating the resulting execution to any job/thread. The processor continues to
execute the residual capacity server as long as it would otherwise be idle or the capac-
ity is neither exhausted nor expired.

In the server-based approach, the inherent limitations of the traditional stealing ap-
proach of work-stealing schedulers with only one deque per-core and random victim
selection are bridged with the concept of a virtual deque. A virtual deque of a p-
CSWS server Si is composed by its local deque and by all the deques of active resid-
ual capacity servers that have stolen some thread from Si at some time instant. Thus,
all parallel threads of job ji,k continue to be dedicated to the same server Si, ensuring
isolation among tasks.

As with any p-CSWS server, a residual capacity server dequeues a thread from the
head of its deque, executes it, and continues with the next thread unless the deque is
empty. Similarly, all dynamically generated ready threads are pushed to the bottom of
the residual server's deque. Therefore, a residual capacity server follow the same rules
of operation as a regular p-CSWS server, except when (i) it finds its local deque
empty, since it tries to work-steal; and (ii) when its capacity is exhausted or expired,
since it is not replenished. Thus, in order to efficiently manage the virtual deque of a
p-CSWS server, whenever a steal occurs, a pointer to the bottom of the residual ca-
pacity stealing server's deque is added to a thief list of the stolen server. This pointer
remains in the list until all work dedicated to the stolen server, currently in the resid-
ual capacity server's deque, has been executed (a residual capacity server only re-
mains active if there is some pending work, even if its capacity is exhausted or ex-
pired. Otherwise, the residual capacity server no longer exists.

Whenever a server Si finds its local deque empty, it verifies its thief list. If not
empty, Si follows the first pointer in the thief list, iteratively removing and executing
the parallel threads from the top of the pointed residual capacity server's deque.
Whenever a pointed deque has no more parallel threads dedicated to Si, the pointer is
removed from the server's thief list, and the next pointer is followed, until no more
pointers exist.

5 Conclusions

The real-time and embedded systems domain is increasingly considering the problem
of scheduling job-level parallelism / intra-task parallelism, i.e. the possibility of hav-
ing more than one core executing a single job at any given instant in time. This paper
presented two approaches which have been recently proposed to integrate work-
stealing with real-time systems scheduling.

The first approach considers global EDF based scheduling where jobs can be exe-
cuted in parallel with work-stealing, whilst the second applies a similar concept to
server-based scheduling approaches.

This latter approach already supports nested parallel regions, a problem which is
still being analysed for the former, where dequeues are per core, thus introducing
extra complexity for handling priorities correctly.

Acknowledgements

This work was partially supported by National Funds through FCT (Portuguese Foun-
dation for Science and Technology) and by ERDF (European Regional Development
Fund) through COMPETE (Operational Programme 'Thematic Factors of Competi-
tiveness'), within REGAIN and VipCore projects, refs. FCOMP-01-0124-FEDER-
020447 and FCOMP-01-0124-FEDER-015006.

References

1. O. ARB, “Openmp,” Available at http://www.openmp.org/.
2. M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the cilk-5 multi-

threaded language,” ACM SIGPLAN Notices, vol. 33, no. 5, pp. 212–223, 1998.
3. I. Corporation, “Parallel building blocks,” Available at http://software.intel.com/en-

us/articles/intel-parallel-building-blocks/.
4. D. Lea, “A java fork/join framework,” in Proceedings of the ACM 2000 conference on

Java Grande, 2000, pp. 36–43.
5. M. Corporation, “Task parallel library,” Available at http://msdn.microsoft.com/en-

us/library/dd460717.aspx.
6. K. Taura, K. Tabata, and A. Yonezawa, “Stackthreads/mp: integrating futures into calling

standards,” ACM SIGPLAN Notices, vol. 34, no. 8, pp. 60–71, 1999.
7. K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel realtime tasks on multi-

core processors,” in Proceedings of the 31st IEEE Real-Time Systems Symposium, De-
cember 2010, pp. 259 –268.

8. A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time scheduling for general-
ized parallel task models,” in Proceedings of the 32nd IEEE Real-Time Systems Sympo-
sium, Vienna, Austria, December 2011, pp. 217 –226.

9. R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by work
stealing,” Journal of the ACM, vol. 46, no. 5, pp. 720–748, September 1999.

10. B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum, M. Rajagopalan, R. L. Hudson, L. Petersen,
V. Menon, B. Murphy, T. Shpeisman, E. Sprangle, A. Rohillah, D. Carmean, and J. Fang,
“Enabling scalability and performance in a large scale cmp environment,” ACM SIGOPS
Operating Systems Review, vol. 41, no. 3, pp. 73–86, June 2007.

11. R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor sys-
tems,” ACM Computing Surveys, vol. 43, no. 4, pp. 35:1–35:44, October 2011.

12. G. Manimaran, C. S. R. Murthy, and K. Ramamritham, “A new approach for scheduling of
parallelizable tasks inreal-time multiprocessor systems,” Real-Time Systems Journal, vol.
15, pp. 39–60, July 1998.

13. O.-H. Kwon and K.-Y. Chwa, “Scheduling parallel tasks with individual deadlines,” in
Algorithms and Computations, ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 1995, vol. 1004, pp. 198–207.

14. W. Y. Lee and H. Lee, “Optimal scheduling for real-time parallel tasks,” Transactions on
Information and Systems, vol. E89-D, pp. 1962–1966, June 2006.

15. S. Collette, L. Cucu, and J. Goossens, “Integrating job parallelism in real-time scheduling
theory,” Information Processing Letters, vol. 106, pp. 180–187, May 2008.

16. S. Kato and Y. Ishikawa, “Gang edf scheduling of parallel task systems,” in Proceedings
of the 30th IEEE Real-Time Systems Symposium, December 2009, pp. 459 –468.

17. L. Nogueira, J. C. Fonseca, C. Maia, L. M. Pinho “Dynamic Global Scheduling of Parallel
Real-Time Tasks”, 10th IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, Cyprus, December 2012, to appear

18. N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for multiprogrammed
multiprocessors,” in Proceedings of the 10th annual ACM symposium on Parallel algo-
rithms and architectures. New York, NY, USA: ACM, 1998, pp. 119–129.

19. D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in Proceedings of the 17th
ACM Symposium on Parallelism in Algorithms and Architectures, 2005, pp. 21–28.

20. D. Hendler, Y. Lev, M. Moir, and N. Shavit, “A dynamic-sized nonblocking work stealing
deque,” Distributed Computing, vol. 18, pp. 189–207, February 2006.

21. Z. Vrba, P. Halvorsen, and C. Griwodz, “A simple improvement of the work-stealing
scheduling algorithm,” in Proceedings of the 4th International Conference on Complex, In-
telligent and Software Intensive Systems, February 2010, pp. 925–930.

22. Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “Slaw: a scalable locality-aware adaptive work-
stealing scheduler for multi-core systems,” in Proceedings of the 24th IEEE International
Symposium on Parallel and Distributed Processing, April 2010, pp. 1–12.

23. V. Vrba, H. Espeland, P. Halvorsen, and C. Griwodz, “Limits of workstealing scheduling,”
in Proceedings of the 14th International Workshop on Job Scheduling Strategies for Paral-
lel Processing, May 2009, pp. 280–299.

24. A. Lenharth, D. Nguyen, and K. Pingali, “Priority queues are not good concurrent priority
schedulers” The University of Texas at Austin, Department of Computer Sciences, Tech.
Rep. TR-11-39, November 2011.

25. A. Bhattacharjee, G. Contreras, and M. Martonosi, “Parallelization libraries: Characteriz-
ing and reducing overheads” ACM Transactions on Architecture and Code Optimization,
vol. 8, no. 1, pp. 5:1–5:29, February 2011.

26. J. C. Fonseca, L. Nogueira, C. Maia, L. M. Pinho “Real-Time Scheduling of Parallel Tasks
in the Linux Kernel”, CISTER Technical Report, TR-120714, July 2012

27. L. Nogueira, L. M. Pinho, “Server-based Scheduling of Parallel Real-Time Tasks“, 12th In-
ternational Conference on Embedded Software (EMSOFT 2012) , Finland, October 2012

28. A. Mills and J. Anderson, “A stochastic framework for multiprocessor soft real-time
scheduling”, In Proceedings of the 16th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 311 -320, Stockholm, Sweden, April 2010.

29. C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: Operating system
support for multimedia applications. In Proceedings of the IEEE International Conference
on Multimedia Computing and Systems, pages 90-99, May 1994.

30. L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-time systems”,
In Proceedings of the 19th IEEE Real-Time Systems Symposium, page 4, Madrid, Spain,
December 1998.

31. S. Baruah, J. Goossens, and G. Lipari, “Implementing constant-bandwidth servers upon
multiprocessor platforms”, In Proceedings of the 8th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 154-163, September 2002.

32. R. Pellizzoni and M. Caccamo, “M-cash: A real-time resource reclaiming algorithm for
multiprocessor platforms”, Real-Time Systems, 40:117-147, 2008.

33. B. Brandenburg and J. Anderson. Integrating hard/soft real-time tasks and best-effort jobs
on multiprocessors. In Proceedings of the 19th Euromicro Conference on Real-Time Sys-
tems, pages 61 -70, Pisa, Italy, July 2007.

