
  

 

 

 

 

Multivariate time series clustering and 
forecasting for building energy analysis: 
Application to weather data quality  
In Press, Journal Pre-proof 

 

 
 

 

Journal Paper 

*CISTER Research Centre  

CISTER-TR-201105 

 

2020/11/09 

Ênio Filho* 

Luís Sanhudo 

João Manuel Coelho Rodrigues  
 



Journal Paper CISTER-TR-201105 Multivariate time series clustering and forecasting for  ... 

© 2020 CISTER Research Center 
www.cister-labs.pt   

1 
 

Multivariate time series clustering and forecasting for building energy analysis: 
Application to weather data quality 

Ênio Filho*, Luís Sanhudo, João Manuel Coelho Rodrigues 

*CISTER Research Centre 

Polytechnic Institute of Porto (ISEP P.Porto) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail: enpvf@isep.ipp.pt, lpnsanhudo@fe.up.pt, jmcr@fe.up.pt 

https://www.cister-labs.pt 

 

Abstract 

In recent years, several tools for building energy performance simulation and analysis have been developed to 
assist in increasing building energy performance, harvesting its computing capabilities for a reliable and accurate 
energy performance prediction. To perform this analysis, energy tools typically require crucial data regarding the 
building 19s surrounding environment, which is acquired from neighbouring weather stations. However, these 
stations often experience hardware malfunctions, resulting in either erroneous or missing data. Traditionally, 
these values are rectified through empirical and geostatistical methods, which, while reflecting several decades of 
practice, may prove to be inadequate when considering a purely data-driven approach. To this end, the present 
study introduces a machine learning methodology proposing the application of regression algorithms to rectify the 
erroneous values in datasets, and the clustering of weather stations, based on their recorded climatic conditions, 
to enhance the regression models. A shape-based approach for clustering time series of different climatic 
parameters and weather stations is pursued, using the k-medoids algorithm alongside dynamic time warping as 
the similarity measure. Both Artificial Neural Networks (ANN) and Support Vector Regression (SVR) models are 
evaluated as exemplary regression algorithms, with different sets of predictors. Mean Squared Error is used as the 
performance metric. A data set of different climatic parameters from southeastern Brazil was used, with air 
temperature being chosen as the response variable, given its importance in energy consumption. Results indicate 
that a machine learning approach to the problem is indeed viable. ANN slightly outperforms SVR in the prediction 
of the studied weather variable. 
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A B S T R A C T   

In recent years, several tools for building energy analysis and simulation have been developed to assist in 
increasing building energy performance, harvesting its computing capabilities for a reliable and accurate energy 
performance prediction. To perform this analysis, energy tools typically require crucial data regarding the 
building’s surrounding environment, which is acquired from neighbouring weather stations. However, these 
stations often experience hardware malfunctions, resulting in either erroneous or missing data. Traditionally, 
these values are rectified through empirical and geostatistical methods, which, while reflecting several decades 
of practice, may prove to be inadequate when considering a purely data-driven approach. To this end, the present 
study introduces a machine learning methodology proposing the application of regression algorithms to rectify 
the erroneous values in datasets, and the clustering of weather stations, based on their recorded climatic con-
ditions, to enhance the regression models. A shape-based approach for clustering time series of different climatic 
parameters and weather stations is pursued, using the k-medoids algorithm alongside dynamic time warping as 
the similarity measure. Both Artificial Neural Networks (ANN) and Support Vector Regression (SVR) models are 
evaluated as exemplary regression algorithms, with different sets of predictors. Mean Squared Error is used as the 
performance metric. A data set of different climatic parameters from southeastern Brazil was used, with air 
temperature being chosen as the response variable, given its importance in energy consumption. Results indicate 
that a machine learning approach to the problem is indeed viable. ANN slightly outperforms SVR in the pre-
diction of the studied weather variable.   

1. Introduction 

Increasing energy efficiency and reducing energy consumption are 
some of the leading research objectives in the Architecture, Engineering 
and Construction (AEC) industry [1–3]. In recent years, these goals have 
even been backed by international strategies, such as the European 
Union’s (EU) 2030 Climate & Energy Framework. This framework aims 
for a 32.5% improvement in energy efficiency, as well as a 40% reduc-
tion in greenhouse gas emissions (based on 1990 levels), with values 
expected to be revised upwards in 2023 [4]. Considering that buildings 
are responsible for approximately 40% of EU’s energy consumption, as 
well as 36% of the Carbon Dioxide (CO2) emissions, the successful 
achievement of these strategies is tightly linked with the existing 
building stock [5], namely, its energy retrofitting. In fact, previous 
studies indicate that the energy retrofitting of the current building stock 
has not only to be considered if the above-mentioned goals are to be 

accomplished, but also presents itself has one of the most efficient so-
lutions to do so [3,6,7]. 

However, there are multiple challenges faced by AEC professionals 
when tackling energy retrofitting [8–11]. To this end, in the last few 
years, several tools for building energy analysis and simulation have 
been developed to assist in examining a building and swiftly exploring, 
comparing, and optimizing retrofitting solutions. In fact, in the “Build-
ing Energy Software Tools Directory” [12], provided by the United 
States Department of Energy, over 200 tools are listed, being proposed as 
suitable solutions to manage and assess a building’s energy performance 
[13–16]. These tools incorporate features such as whole-building energy 
analysis, solar radiation study, artificial lighting and daylight exami-
nation, thermal performance, HVAC system comparison, water usage or 
acoustic examination [3,12,17–19]. 

To properly perform this analysis, energy tools require high-quality, 
long-term, accurate meteorological data, as it constitutes a critical 
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aspect in characterizing the boundary conditions of the building 
[20–23]. This weather data is typically acquired from neighbouring 
weather stations, as measuring weather data at the building location is 
generally considered cost-prohibitive [24]. However, as seen in Refs. 
[25,26], these stations often present malfunctions that result in erro-
neous or missing data. These malfunctions can be originated from simple 
hardware breaks, to software malfunction and data transmission errors. 
The resulting data of these malfunctions must then be estimated or 
corrected, for the dataset to be used in energy analysis. To this end, 
traditionally, these values are rectified through empirical and geo-
statistical methods [25–28], which, while reflecting several decades of 
practice, may prove to be inadequate when considering a purely 
data-driven approach. 

As an alternative to these methods, the present research proposes a 
novel strategy exploiting machine learning capabilities to rectify the 
incorrect or null values in datasets. In recent years, many algorithms 
have been applied in weather-related scenarios, but only in the fore-
casting of different climatic parameters, as temperature [29–31], pre-
cipitation [32–34], or wind speed [35,36]. This research aims at 
employing regression algorithms to rectify the erroneous values in 
datasets, and further proposes clustering weather stations based on their 
recorded climatic conditions, to enhance the regression models. A data 
set of different climatic parameters from southeastern Brazil was used, 
with air temperature being chosen as the response variable, given its 
importance in energy consumption. 

The outline of this paper is as follows: section 2 presents the meth-
odology applied in this article, as well as a formulation of the algorithms 
and a brief literature review on relevant applications. In section 3, the 
data set considered in this study is described, and some preparation steps 
are duly justified. The implementation of the algorithms is detailed in 
section 4, along with the discussion of pertinent results and the 
comparative evaluation of the performance of two distinct regression 
algorithms. Section 5 synthetizes main conclusions, pointing out some 
relevant observations for future work. 

2. Methodology 

The data set of this study encompasses time series of climatic pa-
rameters registered in several weather stations, which are schematically 
represented by black dots in Fig. 1. In a context of erroneous or missing 
data at a given weather station, a natural option would be to consider 
the climate response recorded at other stations with similar behaviour. 
As such, in the first step of the proposed methodology, clusters of 
weather stations are obtained, after defining an appropriate similarity 
measure and implementing the k-medoids algorithm. Then, air tem-
perature estimates in one weather station are calculated through 
regression, considering as predictors the records from other stations 

belonging to the same cluster. These results are compared with the ones 
obtained from simpler models, trained exclusively in the historical data 
of a single weather station. In all of these problems, both Support Vector 
Regression (SVR) and Artificial Neural Networks (ANN) models are built 
up, in order to compare their performances and assess their suitability to 
provide accurate estimates when the recorded data is incorrect or null. 

2.1. K-medoids 

Saeed Aghabozorgi et al. [37] defined time series clustering as an 
unsupervised process for partitioning n time series, D = {F1,F2,…,Fn}, 
into k clusters, C = {C1,C2,…,Ck}, where D = ∪k

i=1Ci and Ci ∩ Cj = ∅ for 
i ∕= j. This type of clustering is often challenging for several reasons, 
typically related to the high dimension of the data set, which expo-
nentially decreases the clustering speed [37–39]. This approach can be 
divided into six different groups of algorithms: partitioning, hierarchi-
cal, grid-based, model-based, density-based clustering and multi-step 
clustering. Saeed Aghabozorgi et al. [37] thoroughly analyses these 
different approaches, discussing each approach characteristics in detail 
while also reviewing multiple applications in current research. Addi-
tionally, there are three different ways to cluster time series: 
shape-based, feature-based and model-based. These are dependent on 
their interaction with the raw-data, respectively: work directly with raw 
data, indirectly through extracted features, or indirectly with models 
built from the raw data [37,40–42]. For more information on time series 
clustering see Refs. [37,40–43], and for its application in 
weather-related scenarios see Refs. [44,45]. In this study, we pursue a 
shape-based approach, using dynamic time warping (DTW) as the dis-
tance/similarity measure, Lower Bounding Keogh (LB Keogh) as DTW’s 
acceleration method, and k-medoids as the clustering algorithm. 

The k-medoids algorithm [46] is a popular clustering technique that 
clusters the data set D of n objects into k clusters, with k being provided 
by the user [47–50]. The algorithm operates on the principle of mini-
mizing the sum of dissimilarities between each object and its corre-
sponding medoid, the most centrally located point in a cluster. As such, a 
medoid can be defined as the object of a cluster whose average 
dissimilarity to all the remaining objects in the cluster is minimal [51]. 
To be initialized, the algorithm randomly selects k objects in the dataset 
D as initial medoids to represent the k clusters [52]. Then, each 
remaining object is clustered with the nearest medoid. After this initial 
random selection of k medoids, the algorithm iteratively tries to locate 
better medoids by minimizing the above-mentioned sum [53]. The 
iterative process is repeated until no medoids change its placement and 
the final k clusters are acquired [52]. As such, the k-medoids algorithm 
works as follows [54]:  

1. Input: k: number of clusters; D: data set containing n objects. 

Fig. 1. Outline of the proposed methodology.  
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2. Output: Set of k clusters that minimizes the sum of the dissimilarities 
of all objects to their nearest medoid.  

3. Algorithm:  
(a) Randomly select k objects from D as the initial medoids;  
(b) Assign each remaining object o in D to the closest medoid m using 

the similarity measure;  
(c) For each medoid m and object o associated, compute the total 

cost of swapping old medoid m with the currently selected non- 
medoid object o – select the medoids that result in the lowest cost 
of the configuration;  

(d) Repeat steps b and c until no change in the medoids. 

As seen in Ref. [51], k-medoids is not without its limitations. One 
major limitation is that it can be heavily influenced by the random initial 
medoids, possibly generating distinct clusters with each initialization. 
Additionally, as with several other clustering methods, a proper value 
for the number of clusters k may be hard to determine. 

Regarding the chosen similarity measure, DTW is a well-known 
technique to find an optimal alignment between two given time- 
dependent sequences under certain restrictions [55]. Intuitively, DTW 
(Fig. 2) allows time series to be locally stretched or shrunk before 
applying the base distance measure [56]. DTW has been applied in 
several disciplines, such as bioinformatics [57], chemical engineering 
[58], robotics [59], speech recognition [60,61] and human motion 
[62–64], among others. 

Formally [56,66], given two time series Q and P, where Q = q1, q2,… 

, qi,…, qn and P = p1,p2,…,pj,…,pm, DTW can be used to align these two 
sequences by computing an n × m matrix where the (ith, jth) element is 
given by the squared distance between points qi and pj. 

d
(

qi, pj

)

=
(

qi − pj

)2 (1) 
By finding the warping path W of the matrix that minimizes the total 

cumulative distances between Q and P, DTW is found: 

DTW(Q,P)=min

⎧

⎨

⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

K

k=1

wk

√

√

√

√ (2)  

where wk is defined as the kth element in the warping path W that 
characterizes the mapping between Q and P. The path W is acquired by 
evaluating Equation (3) using dynamic programming, where γ(qi, pj)
defines the cumulative distance as the distance d(qi, pj) in the current 
cell and the minimum of the cumulative distances of the adjacent 
elements. 

γ
(

qi, pj

)

= d
(

qi, pj

)

+ min

⎧

⎨

⎩

γ
(

qi−1, pj

)

γ
(

qi, pj−1

)

γ
(

qi−1, pj−1

)

⎫

⎬

⎭

(3) 

As seen in Ref. [66], several constraints are used to restrict the 
possible warping paths in order to not only prevent pathological warp-
ing, but also slightly speed the calculations. In fact, although DTW tends 
to offer a greater accuracy than other distance measures in time series 

analysis, it may also drastically increase the computation time because 
of its quadratic time complexity [67]. As such, to minimize the 
computation time of DTW, three distinct method categories exist [68]:  

• Constraints – Restricts the cells that are assessed in the cost matrix;  
• Data Abstraction – Applies DTW to a lower-resolution representation 

of the data and maps the acquired result on the full resolution cost 
matrix;  

• Indexing – Decreases the number of times that DTW is performed by 
application of lower bounding functions. 

Constraints is the most popular method. In fact, in Ref. [66] the 
authors state that virtually all practitioners constrain the warping path 
in a global sense by limiting its reach r from the diagonal, so that i and j 
in wk = (i, j) are constrained to j− r ≤ i ≤ j+ r. The resulting matrix 
subset, also called warping window or band, defines the cells that the 
warping path can take [69,70]. As seen in Fig. 3, which depicts two 
popular global constraints – the Sakoe-Chiba Band [71] and the Itakura 
Parallelogram [72] – the reach r is dependent on the constraint type. 

However, in this article the lower bounding measure LB Keogh [69] 
was applied. LB Keogh builds upon the constraints methods, using the 
defined reach r to create two new sequences (U for upper and L for 
lower) that encapsulate any input time series Q: 
Ui =max(qi−r : qi+r) (4)  

Li =min(qi−r : qi+r) (5) 
Using U and L, LB Keogh can be defined as follows: 

LB Keogh(Q,P)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

n

i=1

⎧

⎨

⎩

(pi − Ui)
2
, if ci > Li

(pi − Li)
2
, if ci < Li

0, otherwise

√

√

√

√

√ (6) 

Regarding the size of the warping window attained from the r value, 
Ratanamahatana and Keogh [41] identify that most practitioners create 
a warping window of 10% width. However, the authors demonstrate 
that this value is too large, indicating maximum accuracies to smaller 
percentages. Through experimentation, in this study the authors decided 
to use a window size of 1%. 

2.2. Artificial Neural Networks 

ANNs are a well-known technique in machine learning, which have 
been used since their development in the years of 1960. Nowadays, as 
other machine learning algorithms, they are applied in many fields, such 
as medicine [73], weather forecast [74,75], meteorological pollution 
[76] and finance [77,78], leveraging their capacity to learn about 
different systems using an intuitive approach. The idea behind the al-
gorithm is to simulate the neurons of the animal brain, creating a 
network. Each neuron is a mathematical model (or function) that rep-
resents the real world. The network between these neurons is composed 
by a weighted sum, followed or not by an activation function [79]. ANNs 

Fig. 2. Sample series alignment using the Euclidean distance (left) and DTW 
(right). Adapted from Ref. [65]. Fig. 3. Constraints: Sakoe-chiba band (left) and itakura parallelogram (right).  
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work like a black box, not requiring detailed information about the in-
puts and being able to obtain the relationships between the input pa-
rameters [34]. Another critical aspect about ANNs is their ability to 
handle large and complex amounts of data, with interrelated features 
[80]. 

A neural network contains three types of layers: input, hidden and 
output layer. The first one receives the features values, which are used to 
“teach” the system. Usually, the number of input nodes in an input layer 
is equal to the number of features in the system. The hidden layer applies 
some transformations to the input values inside the network. In the 
hidden layer, the actual processing is done via a system of weighted 
connections; there may be one or more hidden layers. The last one is the 
output layer, which is connected to the previous hidden layer: it returns 
an output value that corresponds to the response variable’s prediction. 
Fig. 4 shows the structure of a generic artificial neural network. Details 
of the mathematical formulation are explained in Ref. [81]. Each hidden 
layer has several neurons related to the previous and/or to the next 
layer. The number of layers and neurons defines the hyperparameters of 
the ANN [81]. An ANN with more than one hidden layer is called a 
multilayer network. 

In the last few decades, many architectures and training algorithms 
have been proposed for ANNs. This paper will focus on the multilayer 
perceptron (MLP) with back-propagation [82]. The perceptron model 
was introduced in Ref. [83] and its algorithm is detailed in Ref. [84]. The 
MLP model presents one or more layers as hidden. According to 
Ref. [85], the utilization of one hidden layer can represent any contin-
uous function, while the usage of two allows the approximation of any 
function. The typical implementation of the MLP algorithm uses a fully 
connected network, with all the neurons connected to those in the 
previous and next layers. The training algorithm is known as 
back-propagation and consists of a two-step iteration, forward and 
backward. In the first step, each input object is presented to the network. 
Then, each neuron calculates its own output and uses the result in the 
next layer. In the end, the output is determined. This value is then 
back-propagated in the network, adjusting the weights in each layer. 
The speed of this adjustment is determined by a momentum [86]. 

There are several ways to optimize the hyperparameters of an ANN; 
however, in complex systems, these optimizations are not easy or 
feasible to determine because of the high number of parameters or data. 
In Ref. [84], some approaches are described, such as the empirical, 
meta-heuristics, pruning and constructive. Bishop [81] also proposes a 
Bayesian approach to determine these parameters, introducing a 
Gaussian approximation. 

ANN capacity for time series forecasting is studied in Ref. [87], with 
the differentiation between some models and their characteristics, 
including techniques to achieve the best choice of the network 
parameters. 

2.3. Support Vector Regression 

SVR algorithms represent an extension of support vector machines 
(SVM) to regression problems, thus preserving the property of sparse-
ness [81,88]. Unlike conventional approaches to regression, they ac-
count for not only the approximation error to the data, but also the 
generalization of the model [30]. Therefore, these algorithms are ex-
pected to present a better performance than other techniques that are 
more prone to overfitting [29]. 

In this paper, ε-insensitive SVR is implemented: the goal is to find a 
function f of the predictor variables x that deviates from the observed 
responses y by a value no greater than ε [88]. As such a function might 
not be defined, slack variables ξn and ξ∗n are introduced, allowing 
regression errors to exist up to the values of ε + ξn and ε+ ξ∗n, at each 
point n of the training set. A constant C > 0 controls the penalty imposed 
on observations lying outside the ε-margin, thus determining the regu-
larization of the model, i.e. the trade-off between the smoothness of f 
(given by the norm of the vector of weights, w) and the extent to which 
deviations larger than ε are tolerated [88]. The optimization problem is 
then formulated as follows: 

Minimize
1

2
w2 + C

∑

N

n=1

(

ξn + ξ∗n
)

Subject ​ to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yn − 〈w, xn〉 − b ≤ ε + ξn

〈w, xn〉 − yn + b ≤ ε + ξ∗n

ξn, ξ∗n ≥ 0

(7) 

Nonlinear regression models are addressed by introducing a kernel 
function that maps the input vectors into a high-dimensional space. This 
operation requires the dual formulation of the problem, which is 
detailed, for instance, in Ref. [88]. 

In the context of time series and climate models, several applications 
of SVR were already found in the literature, either in the prediction of 
daily maximum temperatures [29,30], wind speed [35] and meteoro-
logical pollution [76], or in the development of precipitation models 
[32,33]. Regarding the predictors, two major approaches can be iden-
tified. In Ref. [30,32], they consist on records of climatic parameters 
that are simultaneous with the ones being estimated, thus presuming 
independence between observations. In the selection of the predictors, 
some prior knowledge about the potentially explanatory variables was 
involved, and statistical tests were also performed. On the contrary, in 
Ref. [29,35] the prediction of a climatic parameter is based on n pre-
vious records of that feature, n representing the order of the model, 
defined through experimentation. 

In all of these five applications, a radial basis function was used as a 
kernel [30,35,76], or identified as the one providing better results [29, 
32]. Methodologies for selecting the hyperparameters present slight 
variations; nevertheless, cross-validation [35] and grid search algo-
rithms [29,32] were considered and implemented. The generalization 
error of the models was evaluated in a test set corresponding to 10–33% 
of the available records. 

3. Data set 

The data set considered in this study is publicly available on the 
Internet [89]. It comprises hourly records of 17 climatic parameters, 
obtained from 122 weather stations in southeastern Brazil. The records 
refer to a period beginning on a variable date (between May 24, 2000 
and June 23, 2016) and ending on September 30, 2016 (Fig. 5). A 
starting point of January 1, 2008 was defined, with the subsequent stage 
of data preparation focused on only 96 weather stations. 

As stated in the introduction section of this article, weather data 
frequently presents incorrect or null information. As such, with the 
purpose of using the present dataset for training machine learning 

Fig. 4. Structure of a feedforward neural network.  
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algorithms, a cleaning stage was prepared. Initially, missing values or 
zero records without physical significance were identified. The “solar 
radiation” feature, for instance, presented missing values during the 
night period; they were then filled with zeros, since records at the end of 
each day and at the beginning of the following were also already zero. 
Furthermore, features with more than 10% of missing values were 
deleted from the data set; this led to the exclusion of “precipitation” 

(ratio of 87%) and “wind speed” (11%), along with “wind direction” and 
“wind gust”. 

The next step consisted on identifying hourly records in which all the 
climatic parameters were missing or zero; Figs. 6 and 7 represent their 
distribution in both space and time. Concerning the latter, it becomes 
apparent that these instants have a uniform distribution over the period 
of analysis; for some of them, almost all the stations are completely 
missing. Therefore, on the following stage of this study, the threshold in 
Fig. 6 was established, defining a subset of 34 weather stations in which 
the lack of data was less severe. In these stations, hourly records with 
only zero values were then excluded. Finally, the same procedure was 
adopted for hourly records with at least one missing value. 

The threshold in Fig. 6 allowed the maximization of the amount of 
available data. In fact, if a higher number of time instants without any 
record were considered as a limit, the number of weather stations in the 

resulting subset would have been larger, as the total of empty lines to 
delete. On the contrary, a more demanding criterion should have led to a 
reduced number of weather stations in the subset, albeit with more 
complete records. Fig. 8 reveals that 34 is the optimal number of 
weather stations for the sake of maximizing the amount of available 
data. 

As a result of this methodology, the data set considered in the 
following applications comprises 44,925 simultaneous hourly records in 
34 weather stations, without any missing values and referring to a 
period between January 1, 2008 and September 30, 2016. Thirteen 
climatic parameters are thus available: air pressure [hPa]; maximum 
and minimum air pressure for the last hour [hPa]; solar radiation [kJ/ 
m2]; air temperature [◦C]; dew point temperature [◦C]; maximum and 
minimum temperature for the last hour [◦C]; maximum and minimum 
dew point temperature for the last hour [◦C]; relative humidity [%] and 
maximum and minimum relative humidity for the last hour [%]. 

The resulting hourly records are representative of different time in-
stants along the day and each year, so the data set obtained is expected 
to be unbiased. All the data was then properly normalized. 

Fig. 5. Date of first record available for each weather station (the shaded area 
represents the period and weather stations considered in this study). 

Fig. 6. Total number of time instants with only missing or zero records per 
weather station. 

Fig. 7. Total number of weather stations with only missing or zero records per 
time instant. 

Fig. 8. Total number of lines in the matrix of the data set, for different subsets 
of weather stations. 

L. Sanhudo et al.                                                                                                                                                                                                                                



Journal of Building Engineering xxx (xxxx) xxx

6

4. Results and discussion 

4.1. Clustering 

Fig. 9 shows the distribution of the studied weather stations in 
southeastern Brazil, coloured in accordance to their respective cluster. 
These clusters were acquired through k-medoids, using DTW and LB 
Keogh. From the values considered reasonable for the number of clusters 
(k ∈ {2,3,…,12}), k = 5 was selected as the value that best describes the 
data set. This value was acquired by performing 40 random initialization 
of k-medoids for each k-value, computing the within-cluster sum of 
squares for each initialization [90,91] and applying the elbow method 
[92,93] (Fig. 10). 

By furthering the cluster analysis, it was possible to identify a linkage 
between the acquired clusters and the weather stations elevation. In fact, 
although the stations elevation variable was not used for clustering (as 
described in the data set preparation), it is reasonable to relate the 
clusters in Fig. 9 to the elevations seen in Fig. 11. 

4.2. Prediction 

The regression models for air temperature developed in this section 
concern the seven weather stations belonging to the cluster nearer the 
sea (identification numbers 303, 306, 307, 348, 372, 376 and 388). To 
investigate the utility of including information relative to the cluster in 
the model, three types of problems, which vary in the definition of the 
predictors, are considered here (Table 1); in all these problems, the 
predictors consist on records of climatic parameters that are simulta-
neous with the ones being estimated. Furthermore, both ANN and SVR 
models are built up, allowing the comparison of their performances. 

The generalization error of these models was evaluated in a test set 
corresponding to 25% of the records, the first 75% being used for 
training and validation. Throughout this study, the performance metric 
adopted was the Mean Squared Error (MSE); its definition can be found, 
for instance, in Ref. [35]. 

4.2.1. Artificial Neural Networks 
To build up the ANNs and improve its hyperparameters, a combi-

nation of empirical and constructive methods was used in this paper. 
Therefore, the system was trained with one, two and three intermediate 

layers in each problem. It was then possible to compare the influence of 
increasing the number of layers and the extent of overfitting promoted 
by the third layer. The number of neurons in the network started with 
the number of predictors in the dataset (n) and was increased until 2n+
1; this number was then repeated in the next intermediate layers. The 
activation function considered was the hyperbolic tangent. In summary, 
ANNs were built using six, seven, 13, 25, 91 or 181 neurons, with one, 
two or three hidden layers. The number of repetitions also varied be-
tween 100, 200 and 300. 

Besides MSE, the correlation coefficient R was also computed to 
evaluate the results of the predictions. These parameters were used to 
determine the optimal ANN model for solving the problems defined in 
Table 1. The network was trained through cross-validation, after 
dividing the first 75% of the data set in training (60%) and validation 
(15%). 

Weather station 303 was randomly selected to be used in the 
determination of the hyperparameters that would be extended to the 
remaining stations of the cluster. Varying these hyperparameters 
(number of layers, number of neurons by layer and number of repeti-
tions), Figs. 12–14 were obtained for problems 1 to 3, respectively; its 
analysis support the conclusion that an increase from two to three hid-
den layers did not provide a great improvement in the MSE of the ANN 
for problems 1 and 3. In the second problem, the best ANN was the one 
with three intermediate layers and 13 neurons in each one. 

Results obtained for the R-value are consistent with the ones pre-
sented for the MSE, revealing an average of 0.98 for the three time series 
and the optimal set of hyperparameters. 

Following these experiments, the best ANN model for problem 1 was 
considered to present two hidden layers with 13 neurons each, while 
problem 2 would be addressed by an ANN with three layers and 13 
neurons, and problem 3 with two layers and 25 neurons. These sets of 
hyperparameters were applied for the respective problems in the 
remaining weather stations of the cluster, with 500 repetitions, given the 
general increase in the accuracy with the number of repetitions. 
Resulting MSE in the test set are presented in Table 2. 

4.2.2. Support Vector Regression 
Twenty-one SVR models were developed, in accordance with the 

seven weather stations belonging to the cluster nearer the sea and the 
three types of problems previously discussed. For all of them, a radial 
basis function was used as a kernel. The computation of the hyper-
parameters (ε, C and the kernel scale γ) was performed through the 
Bayesian optimization algorithm, varying the values of these parameters 
within a predefined range and minimizing the cross-validation error. 

The performance of these models in the test set is synthetized in Fig. 9. Weather stations in southeastern Brazil, color-coded by their respective 
cluster for k = 5. 

Fig. 10. Elbow method.  
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Table 2; it is noted that, as for weather station 372 and problem 3, the 
procedure presented here failed to converge. 

4.3. Performance evaluation 

The analysis of Table 2 reveals that the best estimates for air tem-
perature in a weather station are obtained with regression models that 
include the information of simultaneous climatic parameters in that 
station (problem 2). Incorporating data relative to the cluster largely 
increases the computational effort, without any improvement in the 
generalization error. Models of type 1 present the most significant MSE. 

Additionally, ANN models seem to outperform SVR in the prediction 
of air temperatures, as the MSE obtained by implementing the first al-
gorithm are typically smaller, considering all problems and weather 
stations. 

As an illustrative example, Fig. 15 represents the air temperatures 
registered in the weather station 303 during the month of September 
2016, along with the ones estimated in problem 2 by ANN and SVR 

algorithms. 

5. Conclusions 

Building energy analysis and simulation tools are an important 
component in achieving current international energy consumption and 
efficiency goals. To perform properly, these tools require a building’s 
envelop environment information, which is typically acquired from 
neighbouring weather stations. Given the frequent malfunctions to 
which these stations are subject, the current study presented an inte-
grated, machine learning approach, comprised of clustering algorithms 
and regression models, to rectify incorrect or null values in weather data 
sets. From the obtained results, the following conclusions are drawn:  

• Both ANN and SVR provided accurate air temperature estimates for 
the sets of predictors in models of type 2 and 3, presenting them-
selves as effective alternatives when the recorded data is erroneous 
or missing. The first algorithm slightly outperformed the latter, and 

Fig. 11. Weather stations in southeastern Brazil, color-coded by their respective elevation.  

Fig. 12. MSE of ANN models with different hyperparameters, for problem 1 of 
weather station 303. 

Fig. 13. MSE of ANN models with different hyperparameters, for problem 2 of 
weather station 303. 
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its hyperparameter optimization process was also faster and more 
efficient. 

• Including data relative to the cluster largely increased the compu-
tational effort involved in the regression models, without any 
improvement of the generalization error. In fact, MSE values for 
models of type 3 are higher than those of type 2, for all the weather 
stations considered.  

• Nevertheless, the methodology proposed in this research and the 
attained results demonstrate that the k-medoids algorithm, alongside 
the DTW similarity measure, is suitable for the automatic mapping of 
distinct climatic conditions, as evidenced by the five clusters in Fig. 9 
and the elevation and proximity to the sea illustrated in Fig. 11. 
Moreover, the two-step approach of this paper may prove adequate 
in other weather data sets, which should be assessed in the future. 

A natural extension of this work would comprise the development 
and validation of an online, real-time framework, in which machine 
learning algorithms classify, identify and correct inconsistent or missing 
values in continuously recorded weather data. 
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Table 2 
Generalization error of the ANN and SVR models developed for each weather station and evaluated in the test set (MSE).  

Weather Station Problem 1 Problem 2 Problem 3 
ANN SVR ANN SVR ANN SVR 

303 1.2009 1.3269 0.0115 0.0368 0.0388 0.0694 
306 2.0133 2.1106 0.0162 0.0672 0.0622 0.2535 
307 1.2856 1.3643 0.0094 0.0073 0.0485 0.0260 
348 2.6974 2.7700 0.0117 0.0099 0.0465 0.3805 
372 3.5221 3.5572 0.0898 0.0611 0.2199 - 
376 1.5738 1.5895 0.0445 0.0744 0.0531 0.1023 
388 2.4753 2.5776 0.0089 0.0087 0.0998 0.0574  

Fig. 15. Air temperatures registered in weather station 303 during September 
2016, and corresponding values predicted through ANN and SVR models 
(problem 2). 

Table 1 
Types of regression models developed for the response variable air temperature and each of the weather stations in the cluster nearer the sea.  

Problem Predictors Number of Predictors 
1 air temperature in the remaining weather stations of the cluster 6 
2 remaining climatic parameters in the weather station 12 
3 remaining climatic parameters in the weather station and all of the climatic parameters in the remaining weather stations of the cluster 90  

Fig. 14. MSE of ANN models with different hyperparameters, for problem 3 of 
weather station 303. 
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