
elatório
técnico

echnic
report

alt
r

IPP-HURRAY! Research Group

Polytechnic Institute of Porto
School of Engineering (ISEP-IPP)

Multi-µ: an Ada 95 Based
Architecture for Fault Tolerance

Support of Real-Time Systems

Luís Miguel PINHO
Francisco VASQUES (FEUP)

HURRAY-TR-9812

August 1998

THIS WORK IS PARTIALLY SUPPORTED BY FLAD UNDER PROJECT SISTER (Proj.471/97)

Multi-µ: an Ada 95 Based Architecture for Fault
Tolerance Support of Real-Time Systems

Luís Miguel PINHO

IPP-HURRAY! Research Group
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340502, Fax: +351.22.8340529
E-mail: lpinho@dei.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Francisco VASQUES

University of Porto (FEUP)
Rua Dr. Roberto Frias
4050-123 Porto
Portugal
Tel.: +351.22.5081702, Fax:
E-mail: vasques@fe.up.pt
http://www.fe.up.pt/~vasques

Abstract:
This paper presents an architecture (Multi-µ) being implemented to study and develop
software based fault tolerant mechanisms for Real-Time Systems, using the Ada language
(Ada 95) and Commercial Off-The-Shelf (COTS) components. Several issues regarding fault
tolerance are presented and mechanisms to achieve fault tolerance by software active
replication in Ada 95 are discussed. The Multi-µ architecture, based on a specifically
proposed Fault Tolerance Manager (FTManager), is then described. Finally, some
considerations are made about the work being done and essential future developments.

Multi-µ: an Ada 95 Based Architecture for Fault Tolerance
Support of Real-Time Systems

Luís Miguel Pinho
Department of Computer Engineering

School of Engineering
Polytechnic Institute of Porto

Rua de São Tomé, 4200 Porto, Portugal
Tel.: +351.2.8340500 Fax.: +351.2.821159

e-mail: lpinho@dei.isep.ipp.pt

Francisco Vasques
Department of Mechanical Engineering

School of Engineering
University of Porto,

Rua dos Bragas, 4099 Porto CODEX, Portugal
Tel: +351.2.2041774

e-mail: vasques@fe.up.pt

1. ABSTRACT

This paper presents an architecture (Multi-µ)
being implemented to study and develop
software based fault tolerant mechanisms for
Real-Time Systems, using the Ada language
(Ada 95) and Commercial Off-The-Shelf
(COTS) components. Several issues regarding
fault tolerance are presented and mechanisms
to achieve fault tolerance by software active
replication in Ada 95 are discussed. The
Multi-µ architecture, based on a specifically
proposed Fault Tolerance Manager
(FTManager), is then described. Finally, some
considerations are made about the work being
done and essential future developments.

1.1 Keywords

Ada 95, Real-Time Systems, Software Based Fault
Tolerance, Off-The-Shelf Components.

2. INTRODUCTION

Dependability is an important topic in real-time systems
supporting industrial applications, since reliability and
availability are important issues for these applications. One

of the means to achieve dependability is fault tolerance,
i. e., how to provide a service complying with the
specification even in the presence of faults.
In real-time applications, unexpected failures of the system
are not acceptable, since value or timing requirements
would not be met, consequently leading to money and/or
human losses. It is clear that a real-time system must
provide mechanisms to tolerate faults, in order to respect its
requirements. Optionally it can gracefully degrade its
behaviour into a safe-state, guaranteeing that a task subset
still respects its requirements.

A usual approach to achieve fault tolerance is by
distributing the system elements, i. e. by means of
structural redundancy. However there is a difference
between distribution motivated fault tolerance
(implementing fault tolerance in a distributed environment)
and fault tolerance motivated distribution (implementing
distribution to achieve fault tolerance) [11]. The latter has
different requirements and the system specification must be
made considering fault tolerance assumptions.

The proposed architecture (Multi-µ) targets applications
where fault tolerance is an important issue, mainly due to
availability and reliability requirements and not due to
safety requirements. It is implemented through the active
replication of processing nodes, based on the use of
commercial off-the-shelf (COTS) components. Fault
tolerance is achieved by means of a specially proposed
software architecture, based on a layer between the
application and the real-time kernel, responsible for the
fault tolerance management.

This paper starts discussing some generic issues related to
software based architectures for fault tolerant systems,
namely concerning the active replication requirements.
Afterwards, current work on Ada (from now on Ada will
be used to refer the 95 standard) support for fault tolerant
systems is presented and discussed. Finally, the Multi-µ
architecture is presented and a Fault Tolerance Manager,
which implements the fault tolerance mechanisms in Ada,
is discussed. Then, some conclusions are drawn, and
present and future work is described.

3. ACHIEVING FAULT TOLERANCE BY
SOFTWARE ACTIVE REPLICATION

Fault tolerance techniques must be used accordingly with
failure mode assumptions, so identification of which are
the faults that must be tolerated by the system is of most
importance for the system specification. From the Laprie
[9] classification of faults, we can identify those that must
be tolerated by the system:

§ internal physical faults (permanent and
temporary);

§ temporary external physical faults;
§ design faults (permanent and temporary).

Temporary external physical faults must be addressed but
these can be avoided with appropriate filtering and
shielding of the system. They will not be considered in the
development of the software architecture.

Internal physical faults are addressed through the
component replication. Permanent design faults must be
tolerated and this means that there must be a way to allow
for design diversity. Temporary design faults are a strange
concept, but they can be tolerated because of the
differences in the replicas execution environment [11], as
they were temporary internal physical faults.

The mechanisms that support fault tolerance are usually
implemented by replication: temporal replication, redoing
the calculations; or structural replication, replicating
physical (and/or logical) resources. In a real-time system,
as the time resource is scarce, structural replication is the
preferred one.

Replication management can be achieved using specialised
hardware, which consequently increases the overall cost of
the system. Another problem with hardware replication
management is that as hardware evolves, specialised
hardware must be re-designed. Conversely, the
software-based replication allows the use of off-the-shelf
hardware, decreasing the cost of the system, and at the
same time increasing its portability and upgradability.

COTS components can be assumed to be fail-silent or
fail-uncontrolled [11]. A fail-silent component is one that
only fails by crashing while fail-uncontrolled means a
component that can fail in an arbitrary mode. The
assumption of fail-silent components simplifies the fault
tolerance mechanisms implementation, since failures can
be detected just by time-out mechanisms. However using
COTS components, achieving fail-silent behaviour is only
possible with the use of self-checking techniques,
increasing the system cost and complexity. So, fault
tolerant mechanisms must also address the components
with fail-uncontrolled behaviour.

Two main replication approaches are addressed in the
literature [3]: active replication and primary-backup
(passive) replication. In active replication, all replicas
process the same inputs, keeping their internal state

synchronised and voting all on the same outputs. In the
primary-backup approach only one replica (the primary) is
responsible for the inputs processing, being the replicas
kept up to date by the primary, to take-over in case of its
failure.

Using the primary-backup approach, backup replicas can
only detect the primary failure through the absence of
service delivery, not being able to reason about the service
correctness. This approach can be used only if we assume
fail-silent replicas. Otherwise, in the absence of the
fail-silent assumption, wrong service delivery can only be
detected by active replication. As a consequence, in the
absence of the fail-silent approach active replication is the
most adequate technique [10].

The use of COTS implies generally fail-uncontrolled
replicas, so it becomes necessary the use of active
replication techniques. This approach implies, usually, the
need of replica determinism, otherwise the overhead due to
replica synchronisation may largely increase.

The group abstraction can be used to implement a
framework for the replica management [3]. Two problems
are identified [2]: consensus, where there must be a
decision despite the presence of failures, and membership,
where there must be an agreement on who belongs to the
group.

Active replication can be implemented using static groups,
simplifying the necessary techniques. There is no need to
consider the case of leaving or joining the group
(membership), but there is still the need of agreement
between the processes in the group (consensus).

Even assuming replica determinism (replicas being state
machines [13]) there are some mechanisms that must be
implemented to support consensus between replicas. They
must guarantee that all replicas work with the same input
values and that they all vote on the final output. Three
problems are identified:

§ achieving interactive consistency on replicated
sensor data;

§ achieving Byzantine agreement on single-source
data;

§ achieving consensus on output values.

With replica non-determinism there is still a remaining
problem:

§ the need of replica synchronisation in every point
that can lead to execution divergence.

From a real-time system perspective, fault tolerance can be
defined as the ability of a system to deliver the expected
service in a timely manner, even in the presence of faults
[5]. An important issue in real-time systems is that such
fault tolerance mechanisms must be time bounded, in order
to achieve timing predictability.

4. ADA SUPPORT FOR FAULT
TOLERANT SYSTEMS

The Ada language doesn’t provide direct support for fault
tolerance mechanisms, apart from the exception
mechanism, which can provide forward error recovery.
However, exceptions can’t provide tolerance to anticipated
faults, or to design faults [6]. The solution is to burden the
application programmer by explicit programming fault
tolerance mechanisms.

Work has (and is) being done in the integration of fault
tolerance and Ada. Two approaches coexist: incorporating
explicit programmer support for fault tolerance
mechanisms, or providing transparent support for software
replication.

Kermarrec et al present their implementation of recovery
blocks (providing backward error recovery) in GNAT [6]
and recovery blocks for distributed fault tolerance using
their implementation of the Ada Distributed Systems
Annex, GLADE [7]. Their approach is to provide compiler
extensions through a pragma, so as the programmer can
explicitly use recovery blocks in the application to build a
fault tolerant system.

Wellings and Burns [15] evaluate Ada capabilities to
support fault tolerant applications. They use those
capabilities to program Atomic Actions, which can be used
to build fault tolerant applications. Later [1], they discuss
replication, either active or passive, on the Distributed
Systems Annex of Ada, providing replication mechanisms,
which must be explicitly used by the application
programmer.

Wolf [16] presents some issues regarding replica
implementation within the partition model of Ada
Distributed Systems Annex. He initially assumes replica
determinism, but then extends the discussion to
non-deterministic replicas. This approach is based on
extending the run-time support to implement transparent
replication of partitions. However, this approach is
intended for fail-silent components, not being appropriate
for COTS components (as discussed in the previous
section).

ReplicAda [4] presents another fault tolerant
implementation using Ada Distributed Systems Annex. It is
based on a layer under the Partition Communication
Subsystem that presents a transparent view to the
programmer, hiding all the replication issues. This
approach assumes replica determinism, mainly through
programmer supported use of Ada mechanisms (like
pragma Restrictions).

The replication work being done in Ada is for fault
tolerance in distributed systems (distribution motivated
fault tolerance), where the goal is to replicate application
partitions. Conversely, the architecture here presented
doesn’t pretend to replicate application partitions, but the

application as a whole. It is not intended for distributed
systems, but it distributes the system to achieve fault
tolerance.

The active replication model to achieve fault tolerance can
be implemented in Ada either imposing replica
determinism or keeping replica consistency at critical
points, by means of consensus mechanisms.

However, guaranteeing deterministic replicas imposes
several restrictions on the application programmer,
excluding constructs that may cause non-deterministic
replicas evolution. As each node has different execution
environments, interleaving tasks, calls to protected objects
or time dependencies may cause divergence between
replicas.

A transparent approach to fault tolerance must provide
consensus in every replica’s point that can lead to
non-deterministic behaviour. However, it simplifies the
application programmer burden, if the fault tolerance
manager can transparently implement such points.
Mechanisms like recovery blocks [6] [7] and atomic
actions [15], which must be explicitly supported by the
application, are not appropriated in a fault tolerant
transparent approach.

Considering a tightly-coupled architecture, based on
hardware buses like VME or PCI, the communication
overheads are small and time bounded. The necessary
consensus algorithms can be efficiently implemented, and
their use can be made transparent to the application
programmer. This approach hides the fault tolerance
mechanisms from the application programmer, not
imposing replica determinism.

5. MULTI-µ ARCHITECTURE

The Multi-µ architecture targets the development of fault
tolerance mechanisms for systems where reliability and
availability are of most importance, and where safety is not
addressed (non-critical systems). It is intended to
implement a fault tolerant architecture capable of being
expanded to cope with an increasing number of faults. It
implements this approach by node replication with
software based replica management, and fault tolerance
transparent algorithms.

Its architecture (figure 1) is based on replicated software
components on top of replicated nodes, which are built
with both COTS kernel and hardware. The fault tolerance
mechanisms are implemented below the application,
interacting with the real-time kernel. Being a tightly-
coupled system it can be implemented using hardware
buses like VME or PCI, and thus implementing a
synchronous distributed system. The advantage of a
synchronous system is that communication times are
bounded, simplifying algorithms to implement fault
tolerance mechanisms.

Being based in a COTS real-time kernel, we keep the
portability and upgradability of the system, allowing the
software to manage replication without too many layers,
and thus increasing the overall system performance. The
Fault Tolerance Manager (FTManager) is responsible for
the replica management and for the communication
algorithms implementation.

Each node (figure 2) has a real-time kernel, responsible for
the multitasking environment and for the communication
with other nodes. The application is built on top of the
compiler library, to ensure abstraction from kernel
implementation, and also on top of the FTManager,
providing the fault tolerance abstraction.

The selected kernel is the Real-Time Executive for
Multiprocessor Systems (RTEMS) [12], and the selected
Ada compiler is GNAT [14]. RTEMS is a real-time kernel
suitable for real-time applications as it implements the
needed features (multitasking, multiprocessing, preemptive
scheduling, intertask communication, priority inheritance,
etc). It has a modular architecture, and so it is possible for
non-used features not to be integrated in the application
code. The RTEMS tasking system will be used to support
the GNAT run-time system, which is a work currently
being done by RTEMS and GNAT people.

The RTEMS kernel provides communication links between
nodes making use of queues. This mechanism can be used

without knowledge of the physical distribution of the
sender and receiver tasks, being a good framework for
building replicated systems.

Both GNAT and RTEMS sources are freely available and
can be adapted and extended to implement the FTManager.

6. FAULT TOLERANCE MANAGER

The FTManager is responsible for the transparent
incorporation of the fault tolerance mechanisms into the
application. We don’t assume replica determinism,
allowing the programmer to use all the Ada constructs. The
FTManager has two layers:

§ the Communication Manager, which is
responsible for the implementation of the
communication algorithms;

§ the Replica Manager, which provides the
necessary mechanisms for replica management,
hiding its implementation from the application
programmer.

Information regarding replication (replica configuration) is
considered only at a final configuration phase. In such way,
real-time applications can be programmed disregarding
distribution and still use all the Ada powerful constructs.
This configuration phase scheme looks like the model of
the Distributed Systems Annex of Ada, but as already
referred, a different goal is intended.

Hardware

Real-Time
Kernel

Hardware

Real-Time
Kernel

Hardware

Real-Time
Kernel

Fault Tolerance Manager

Real-Time Application

Fig. 1 - Multi-µ Architecture

CPU board

RTEMS

Communication Manager

Replica Manager

GNAT library

Application

Fig. 2 – Multi-µ Node Architecture

To support consensus between replicas, communication
mechanisms must be provided to support the dissemination
of replica private values.

The implemented fault tolerant communication algorithm is
the Signed Messages (SM(m)) algorithm of Lamport,
Shostak and Pease [8]. A node pretending to disseminate its
private value signs and broadcasts it to all other nodes.
Each node, when receiving another node’s value, co-signs
it and sends it to all other nodes. When receiving a value
that is already co-signed by a set of nodes it also co-signs it
and sends the value to the nodes not yet present in the set.
When a node knows that it will not receive any more
messages it finally selects and delivers the correct value.
As the system does not assume malicious replicas,
checksums can be used to provide the required
authentication.

With this algorithm each node may know another node’s
private value, even in the presence of, at the most, m faults
(considering that at least m+2 nodes are being used) [8].

6.1 Communication Manager

The Communication Manager supports the needed
communication abstractions in order to solve the earlier
presented problems. As the system is tightly-coupled,
communication algorithms can be made very efficient, thus
simplifying the replica management mechanisms.

6.1.1 Rtems_Interface.Queues package

The Communication Manager is built on top of a thin Ada
binding to RTEMS queues. This interface (package
Rtems_Interface.Queues) provides a mechanism to
exchange messages between nodes, without any knowledge
of its content.

--
-- Spec of package Rtems_Interface.Queues

package Rtems_Interface.Queues is

-- Definition of package types

-- Rtems queues exchange bytes,
-- encapsulated in a vector of C long
-- This Interface translates
-- them to and from bytes
type Serial_Byte is mod 2**8;
for Serial_Byte'Size use 8;
type Serial_Message is

array(Positive range<>) of Serial_Byte;

type Queue_Name is new String(1..4);
type Queue is limited private;

-- Public Subprograms

procedure Send(
Q: Queue;
Msg: Serial_Message;
Size: Positive);

procedure Receive(
Q: Queue;
Msg: out Serial_Message;
Size: out Positive;
Time: Integer;
Timeout: out Boolean);

procedure Blocking_Receive(
Q: Queue;
Msg: out Serial_Message;
Size: out Positive);

procedure Get_Queue(
Q: out Queue;
Name: Queue_Name);

private

-- Queue Data

type Queue is
record

Name: Queue_Name;
-- type unsigned32 is in
-- package Rtems_Interface
Id: unsigned32;

end record;
end Rtems_Interface.Queues;

-- End of Rtems_Interface.Queues Spec

6.1.2 Group_Communication package

The Group_Communication package provides group
abstraction to the higher layers, and also logical links
between nodes, on top of the Rtems_Interface.Queues
package. It is a generic package that can be instantiated
within each particular application. Its parameters are the
number of nodes in the system, the number of groups in
each node, the maximum number of messages that can be
received by a group, and the maximum size of data that can
be exchanged.

The communication between replicas is implemented using
two unidirectional queues (send and receive queues)
between each pair of nodes, providing full logical
connectivity. We envisage the use of queue redundancy in
order to cope with queue failures, providing redundant
paths between each pair of nodes.

The Send_Queue is implemented using a protected type,
giving exclusive access to the Send procedure. The
Receive_Queue is implemented using a task type, which is
blocked on the queue, waiting to receive, and re-routing the
message to the appropriated group.

Groups are implemented using a protected type (Send,
Received and Broadcast procedures), with only one entry
(Receive) where a task waiting on a message can be
blocked.

-- Spec of generic package
-- Group_Communication

with Rtems_Interface.Queues;
use Rtems_Interface;

generic
No_Nodes,
No_Groups,
Max_Data_Size,
Max_Messages: Positive;

package Group_Communication is

-- Definition of package types

type Group_Id is new
Integer range 1 .. No_Groups;

type Message_Type is
(Direct, Forward);

type Node_Id is new
Integer range 1 .. No_Nodes;

type Message is limited private;
type Message_Index is new

Integer range 1 .. Max_Messages;
type Message_Buffer is

array(Message_Index) of Message;

-- Protected type Group Spec

protected type Group(Ident: Group_Id) is

procedure Send(
Msg: Message;
Node: Node_Id);

procedure Broadcast(Msg: Message);
procedure Received(Msg: Message);
-- procedure Received is to
-- be called by task Receive_Queue
entry Receive(Msg: out Message);
-- tasks waiting for a message
-- will call Receive entry

private

Id: Group_Id := Ident;
Message_Has_Arrived:

Boolean := False;
Buffer: Message_Buffer;
Top, Bottom: Message_Index:=1;

end Group;

type Access_Group is access Group;

-- Public Subprograms

procedure Initialize(Node: Node_Id);

procedure Join_Group(
Id: Group_Id;
Grp: out Access_Group);

private

-- Private type definitions

subtype Data_Type is
 Queues.Serial_Message(1..Max_Data_Size);

type Message is
record

Source: Node_Id;
Msg_Type: Message_Type;
Data_Size: Positive;
Data: Data_Type;

end record;

protected type Send_Queue is
procedure Attach_Queue(

Name: Queues.Queue_Name);
procedure Send(Msg: Message);

private
My_Queue: Queues.Queue;

end Send_Queue;

task type Receive_Queue is
entry Attach_Queue(

Name: Queues.Queue_Name);
end Receive_Queue;

-- Private Information

This_Node: Node_Id;
Groups: array (Group_Id) of

Access_Group;

Send_Queues: array(1..No_Nodes-1)
of Send_Queue;

Receive_Queues: array(1..No_Nodes-1)
of Receive_Queue;

end Group_Communication;

-- End of Group_Communication Spec

6.1.3 SM_Algorithm package

The Package SM_Algorithm, a child of the
Group_Communication package, implements the Signed
Messages (SM(m)) algorithm [8]. It is a generic package,
which can be instantiated for each data type that must be
exchanged between the replicas. The only restriction is that
the data type must have a defined assignment and equality,

and it must be a definite type so that uninitialised objects
can be declared.

Two procedures are implemented. Procedure Provide
sends data to every other node on the system. Procedure
Agree_On is used to agree on data replicated across the
system, provided by any set of nodes.

-- Spec of package SM_Algorithm
-- Child of Group_Communication

with Ada.Real_Time;
use Ada.Real_Time;

generic
type Value_Type is private;
-- Assignement and Equality
-- must be defined for Value_Type
-- and it must be definite

package Group_Communication.SM_Algorithm is

-- Definition of package types

type Source_Nodes is
array(Node_Id range <>) of Node_Id;

-- Public Subprograms

procedure Provide(
Grp: Access_Group;
Data: Value_Type);

procedure Agree_On(
Data: in out Data_Type;
Grp: Access_Group;
Nodes: Source_Nodes;
Timeout: Time);

end Group_Communication.SM_Algorithm;

-- End of SM_Algorithm Spec

6.2 Replica Manager

Without assuming replica determinism, there is the need to
explicitly synchronise the different replicas. The Replica
Manager, besides hiding the communication algorithms
from the application, must also cope with the non-
deterministic behaviour of the replicas.

In an Ada application some problems can be identified that
may cause divergence between replicas:

§ Synchronous communication between tasks
(Rendezvous). When there are several client tasks
that can make a call on a server task entry,
different interleaving may cause divergence;

§ Asynchronous communication. When two tasks
communicate asynchronously using protected
objects, their different interleaving can cause
different replica behaviour, such as, in one replica

the reader executing after the writer, while in
some other these operations may be executed in
the opposite order;

§ Use of the Select construct can have different
results depending on the different interleaving of
tasks (it is not surprisingly that Ada Select
construct is often referred when there is the need
for an example of any non-deterministic language
construct).

To prevent these problems, the Replica Manager must
synchronise the replicas behaviour. It does so by delaying a
request until all nodes make the same request.

As protected objects are passive entities, when they need to
synchronise accesses, a monitor task is created to receive
the synchronisation requests in the same way as for
replicated tasks.

The configuration of the application is made through the
introduction of pragmas in the application code. Tools can
be used to automate that job. As not all tasks need to be
synchronised, off-line scheduling analysis can be used to
detect precedence constraints between them, which can be
captured by the scheduler.

In order to configure the application, three pragmas will be
used:

§ pragma Replicated, to identify the tasks and
protected objects that must have replication
management;

§ pragma Synchronise, to identify the places in the
code where there is the need for replica
synchronisation;

§ pragma Agreement, to identify where there is the
need for agreement on replicated (or
single-source) values;

The Replica Manager is, at the moment, under
development.

7. APPLICATION EXAMPLE

To introduce some of Ada non-determinism problems, and
to show how referred pragmas may be used, an application
example is used. In this example, two client tasks read
some device data, make requests to a single server task
ensuring that it is ready for data processing, sending data to
the server through a protected object. The server task then
reads the data, and processes it.

The protected object Buffer procedures Write and Read can
be called from different tasks. As already stated, system
replication can induce non-deterministic access to objects.
The pragma Replicated applied to the object implies that
there must be a monitor task to prevent it. Tasks Server,
ClientA and ClientB are replicated among the system. The

pragma Replicated is used to achieve the needed
consensus.

Task Server uses a Select statement to accept calls on two
different entries. The pragma Synchronise is used to state
the need of synchronisation between that task group, in
which call is accepted. Every time that a task makes a call
on a protected object, or on a server task entry, the need for
synchronisation arises, so the pragma Synchronise is used.

The necessary agreement on Input and Output is provided
by pragma Agreement, when tasks read device data.

-- Small Controller
-- An example of Replica Manager use

procedure Controller is
type Some_Data is ...;

-- Replicated Protected Object
-- By stating that Object Buffer
-- is replicated we provide it with a
-- monitor task guaranteeing that all
-- requests are synchronised

pragma Replicated;
protected Buffer is

procedure Write(Data: Some_Data);
procedure Read(Data: Some_Data);

private
Data: Some_Data;

end Buffer;
protected body Buffer is separate;

-- Server task, with two entries,
-- use of select, and read access to the
-- protected object
-- By stating that the Task is replicated
-- it will implement a group so to
-- achieve consensous between replicas

pragma Replicated;
task Server is

entry RequestA;
entry RequestB;

end Server;

task body Server is
Data: Some_Data;

begin
loop

-- Ada select causes problems,
-- because it will choose the
-- first entry that is ready. So
-- it must have a synchronise
pragma Synchronise;
select

accept RequestA do
...

end RequestA;
or

accept RequestB do
...

end RequestB;
end select;

-- Reading from the Buffer must
-- be synchronised
pragma Synchronise;
Buffer.Read(Data);
...

end loop;
end Server;

-- Client task, calling two entries,
-- write access to the protected object,
-- and agreement on replicated values

pragma Replicated;
task ClientA;
task body ClientA is

Data: Some_Data;
begin

loop
-- Device1 is replicated in
-- all nodes. Its values must be
-- agreed upon.
pragma Agreement;
Request_Device1_Data(Data);

 ...
-- Requesting an entry must
-- be synchronised
pragma Synchronise;
Server.RequestA;
...
pragma Synchronise;
Buffer.Write(Data);

end loop;
end ClientA;

-- Client task, calling two entries,
-- write access to the protected object,
-- and providing sigle-source values

pragma Replicated;
task ClientB;
task body ClientB is

Data: Some_Data;
begin

loop
-- Device2 is not replicated.
-- Its values must be provided
-- from Node 1 to other nodes.
pragma Agreement(

Source_Node => 1);
Request_Device2_Data(Data);

 ...
pragma Synchronise;
Server.RequestB;
...
pragma Synchronise;
Server.RequestA;
...
pragma Synchronise;
Buffer.Write(Data);

end loop;
 end ClientB;

begin
...

end Controller;

8. CONCLUSIONS

This paper proposes an architecture to study and develop
software based fault tolerant mechanisms for Real-Time
Systems, using the Ada language. Issues regarding fault
tolerance were discussed and mechanisms to achieve fault
tolerance by software active replication in Ada were
presented.

The proposed architecture targets applications where fault
tolerance is an important issue, mainly due to availability
and reliability requirements and not due to safety
requirements. It is implemented through the active
replication of processing nodes, with fault tolerance being
achieved by means of a specially proposed software layer,
the Fault Tolerance Manager (FTManager).

The proposed FTManager is based on a Communication
Manager, which is responsible for the implementation of a
Group Communication framework, and a Replica Manager,
which provides the necessary mechanisms for replica
management, hiding its implementation from the
application programmer.

9. ACKNOWLEDGMENTS

The Authors would like to thank the anonymous reviewers
for their helpful comments and suggestions.

10. REFERENCES

[1] Burns, A. and Wellings, A. Concurrency in Ada.
2nd Ed. Cambridge University Press, 1998.

[2] Galleni, A. and Powell, D. Consensus and
Membership in Synchronous and Asynchronous
Distributed Systems. LAAS Report 96104, April
1996.

[3] Guerraoui, R. and Schiper, A. Software-Based
replication for Fault Tolerance. IEEE Computer,
April 1997, 68-74.

[4] Heras-Quirós, P., González-Barahona, J.,
Centeno-González, J. Programming Distributed
Fault Tolerant Systems: The ReplicAda Approach.
In Proceedings of Tri-Ada’97 (St. Louis, Missouri,
November 1997), ACM Press, 21-29.

[5] Jahanian, F. Fault Tolerance in Embedded Real-
Time Systems. In Hardware and Software
Architectures for Fault Tolerance. Experiences and
Perspectives. Banatre, M. and Lee P. A. (eds.).

Lecture Notes in Computer Science 774, Springer-
Verlag, 1994, 237-249.

[6] Kermarrec, Y., Nana, L. and Pautet, L.
Implementing an efficient fault tolerance
mechanism in Ada 9X: an early experiment with
GNAT. In Proceedings of Ada Belgium Conference
(Brussels, Belgium, Nov 1994).

[7] Kermarrec, Y., Nana, L. and Pautet, L. Providing
fault tolerant services to distributed Ada95
applications. In Proceedings of Tri-Ada’96
(Philadelphia, PA, December 1996), ACM Press,
39-47.

[8] Lamport, L., Shostak, R. and Pease, M. The
Byzantine Generals Problem. ACM Trans. on
Programming Languages and Systems, 4, 3 (July
1982), 382-401.

[9] Laprie, J. L. (ed.). Dependability: Basic Concepts
and Terminology. Dependable Computing and
Fault-Tolerant Systems, Vol. 5, Springer-Verlag,
1992.

[10] Powell, D. (ed.). Delta-4: A Generic Architecture
for Dependable Distributed Computing.
Springer-Verlag, 1991.

[11] Powell, D. Distributed Fault Tolerance – Lessons
Learnt from Delta-4. In Hardware and Software
Architectures for Fault Tolerance. Experiences and
Perspectives. Banatre, M. and Lee P. A. (eds.).
Lecture Notes in Computer Science 774, Springer-
Verlag, 1994, 199-217.

[12] RTEMS/C Applications User’s Guide. On-Line
Applications Research Corporation (Sep. 1997).
http://www.oarcorp.com

[13] Schneider, F. Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial.
ACM Computing Surveys, 22, 4 (Dec. 1990),
299-319

[14] Schonberg, E. and Banner, B. The GNAT project: a
GNU-Ada 9X compiler. In Proceedings of
Tri-Ada’94 (Baltimore, USA, Nov 1994), ACM
Press, 48-57.

[15] Wellings, A. and Burns, A. Implementing Atomic
Actions in Ada 95. IEEE Transactions on Software
Engineering, 23, 2 (Feb 1997), 107-123.

[16] Wolf, T. Fault Tolerance in Distributed Ada 95. In
Proceedings of IRTAW8, Ada Letters, Vol. XVII, 5
(Sep/Oct 1997), 106-110.

