

JamLab: Augmenting Sensornet Testbeds
with Realistic and Controlled Interference
Generation

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110708

Version:

Date: 07-03-2011

Carlo Alberto Boano

Thiemo Voigt

Claro Noda

Kay Römer

and Marco Zúñiga

Technical Report HURRAY-TR-110708 JamLab: Augmenting Sensornet Testbeds with Realistic and

 Controlled Interference Generation

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

JamLab: Augmenting Sensornet Testbeds with Realistic and Controlled
Interference Generation
Carlo Alberto Boano, Thiemo Voigt, Claro Noda, Kay Römer, and Marco Zúñiga

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Radio interference drastically affects the performance of sensornet communications, leading to packet loss and reduced
energy efficiency.As an increasing number of wireless devices operates on the same ISM frequencies, there is a strong
need for understanding and debugging the performance of existing sensornet protocols under interference. Doing so
requires a low-cost flexible testbed infrastructure that allows the repeatable generation of a wide range of interference
patterns. Unfortunately, to date, existing sensornet testbeds lack such capabilities, and do not permit to study easily the
coexistence problems between devices sharing the same frequencies.This paper addresses the current lack of such an
infrastructure by using off-the-shelf sensor motes to record and playback interference patterns as well as to generate
customizable and repeatable interference in real-time. We propose and develop JamLab: a low-cost infrastructure to
augment existing sensornet testbeds with accurate interference generation while limiting the overhead to a simple
upload of the appropriate software. We explain how wetackle the hardware limitations and get an accurate measurement
and regeneration of interference, and we experimentally evaluate the accuracy of JamLab with respect to time, space,
and intensity. We further use JamLab to characterize the impact of interference on sensornet MAC protocols.

JamLab: Augmenting Sensornet Testbeds with
Realistic and Controlled Interference Generation

Carlo Alberto Boano†, Thiemo Voigt‡, Claro Noda¶, Kay Römer†, and Marco Zúñiga§

†Institute of Computer Engineering
University of Lübeck, Germany

{cboano, roemer}@iti.uni-luebeck.de

‡Swedish Institute of Computer Science
Kista, Sweden

thiemo@sics.se
¶CISTER Research Unit

Polytechnic Institute of Porto, Portugal
cand@isep.ipp.pt

§Networked Embedded Systems Group
University of Duisburg-Essen, Germany

marco.zuniga@uni-due.de

ABSTRACT

Radio interference drastically affects the performance of sensor-
net communications, leading to packet loss and reduced energy-
efficiency. As an increasing number of wireless devices operates
on the same ISM frequencies, there is a strong need for understand-
ing and debugging the performance of existing sensornet protocols
under interference. Doing so requires a low-cost flexible testbed
infrastructure that allows the repeatable generation of a wide range
of interference patterns. Unfortunately, to date, existing sensornet
testbeds lack such capabilities, and do not permit to study easily the
coexistence problems between devices sharing the same frequen-
cies. This paper addresses the current lack of such an infrastructure
by using off-the-shelf sensor motes to record and playback inter-
ference patterns as well as to generate customizable and repeat-
able interference in real-time. We propose and develop JamLab: a
low-cost infrastructure to augment existing sensornet testbeds with
accurate interference generation while limiting the overhead to a
simple upload of the appropriate software. We explain how we
tackle the hardware limitations and get an accurate measurement
and regeneration of interference, and we experimentally evaluate
the accuracy of JamLab with respect to time, space, and intensity.
We further use JamLab to characterize the impact of interference
on sensornet MAC protocols.

Categories and Subject Descriptors

B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids.

General Terms

Design, Experimentation, Measurement, Performance, Reliability.

Keywords

JamLab, HandyMote, Interference Generation, Wireless Sensor Net-
works, Augmenting Sensornet Testbeds.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’11, April 12–14, 2011, Chicago, Illinois.
Copyright 2011 ACM 978-1-4503-0512-9/11/04 ...$10.00.

1. INTRODUCTION
The reliability and robustness of sensornet communications are

affected by radio interference. As an increasing number of stan-
dardized communication technologies operate in ISM bands, the
congestion in the radio spectrum is inflating, and the quality of
communications decreases. In safety-critical sensornet applications
such as industrial automation and health care, in which the reliabil-
ity and stability of communications are vital, radio interference rep-
resents a major challenge, as it leads to packet loss, high latencies,
and reduced energy-efficiency due to retransmissions.

This issue is especially serious in the 2.4 GHz ISM band, as wire-
less sensor networks that operate at such frequencies must compete
with the ongoing communications of WLAN, Bluetooth, and other
IEEE 802.15.4 devices. Furthermore, sensornet communications
in these frequencies can also be affected by several domestic appli-
ances that are source of electromagnetic noise, such as microwave
ovens, video-capture devices or baby monitors. This high num-
ber of different wireless devices sharing the same frequencies and
space, raises the need for coexistence and interference mitigation
techniques in 802.15.4-based sensor networks, as highlighted by
previous studies [1, 2].

In particular, there is a strong need for understanding the perfor-
mance of existing sensornet protocols under interference, as well
as designing novel protocols that can deliver high and stable per-
formance despite changing interference patterns. This, however,
requires a proper testbed infrastructure where realistic interference
patterns can be easily created in a precise and repeatable way. Un-
fortunately, existing sensornet testbeds lack such capabilities for
interference generation, or they are limited to static WiFi access
points randomly placed in the testbed [3], which does not enable
the creation of a wide range of interference patterns in a repeatable
way. Upgrading existing testbeds with additional heterogeneous
devices in order to introduce interference sources is a costly, in-
flexible, labor-intensive, placement-dependent operation.

We therefore propose to augment existing sensornet testbeds with
JamLab, a low-cost infrastructure for the creation of realistic and
repeatable interference patterns. Such an infrastructure should sup-
port the recording and playback of interference traces in sensornet
testbeds, as well as the customizable generation of typical interfer-
ence patterns resulting from WiFi, Bluetooth, microwave ovens, or
any other device operating in the frequency of interest.

To ensure a low-cost and hence widely applicable solution, we
propose to use off-the-shelf motes. In this way, a fraction of the
already deployed nodes of a testbed could be used for interference
generation with the overhead limited to the simple uploading of the

175

appropriate software. However, building such a low-cost solution
is challenging due to the limitations of the available hardware. In
order to obtain an accurate playback, the interference-pattern levels
need to be measured precisely at a high sampling rate, so that also
short interference patterns (e.g., resulting from WiFi traffic) can be
recognized. We show in the paper how to obtain accurate readings
of the RSSI noise floor while achieving a sampling frequency at up
to 60 kHz. We show how at such high frequencies, many erroneous
RSSI readings occur, and we correct such wrong readings by prop-
erly configuring the internal automatic gain control of the CC2420
radio. As a side effect, this technique also increases significantly
the efficiency of Clear Channel Assessment (CCA) under interfer-
ence. We exploit this approach to study the spectro-temporal char-
acteristics of the most common interference sources such as WiFi,
Bluetooth, and microwave ovens.

We further analyze and tackle the problem of (re)generating in-
terference: the patterns have to be reproduced accurately in both
frequency and time domains. This turned out to be hard to ob-
tain, given the coarse output power levels available from the radio
transceiver and the limited memory available on the motes. We
show that to achieve an accurate regeneration, voluminous records
of interference patterns need to be stored on the mote in real-time
and later played back accordingly. Moreover, we provide precise
and lightweight models of common interference sources in the 2.4
GHz ISM band to generate (emulate) realistic patterns.

Finally, the placement of the nodes inside the testbed is also cri-
tical. We study the implications in the spatial domain when mea-
suring and generating interference in an indoor testbed and propose
an optimal placement of the sensor nodes.

Our paper proceeds as follows: Section 2 describes the archi-
tecture of JamLab. Section 3 describes how we can use common
sensor motes to accurately measure interference at high sampling
rates avoiding erroneous RSSI readings. In Section 4 we show how
to reproduce customized and repeatable interference patterns using
sensor motes. In Section 5, we model several interference sources
and show how we emulate specific interference patterns. We then
discuss in Section 6 how to configure the testbed and the placement
of nodes. We evaluate JamLab’s accuracy in Section 7, and show
how to practically augment an existing sensornet infrastructure. We
further exploit JamLab to characterize the performance of sensor-
net protocols under emulated, but realistic interference. We review
related work in Section 8 and conclude our paper in Section 9.

2. JAMLAB OVERVIEW
In sensor networks – especially in safety-critical applications

with stringent quality-of-service requirements – robustness against
interference is crucial. Interference may not only increase packet
loss, the number of retransmissions, and therefore also power con-
sumption, but timing constraints of the application may be violated
and lead to failures. The observation that the environment has a
profound impact on radio propagation has led to the excessive use
of testbeds by the sensornet community, as simplified simulation
models of radio propagation do not capture the complexity of the
real world. The same holds true for interference: testbed infras-
tructures need to be augmented with means to generate realistic
interference patterns in a repeatable manner to develop, test, and
evaluate sensornet protocols and applications under interference.

With JamLab we propose a low-cost approach to augment ex-
isting testbeds with a way to generate realistic and repeatable in-
terference patterns. The key idea behind JamLab is to use off-the-
shelf motes to record and playback interference patterns instead of
bringing WiFi access points, microwave ovens, or other equipment
to the testbed. The latter approach is not only costly and hard to

reproduce exactly by other researchers, but it is even difficult to
exactly reproduce a given interference pattern with the same ap-
pliance. For example, the sequence and timing of the WiFi frames
generated by a file download may differ between repeated trials due
to TCP adaptation mechanisms (e.g., timeouts, window sizes). Fur-
thermore, every device used to generate interference in the testbed
needs to be programmed remotely. Programming several hetero-
geneous devices such as WiFi access points or microwave ovens
would create a significant overhead, whereas using JamLab the in-
stallation overhead is minimal.

Indeed, with JamLab, either a fraction of the existing nodes in a
testbed are used to record and playback interference patterns, or a
few additional motes are placed in the testbed area. We call those
motes used for interference generation HandyMotes. The Handy-
Motes support two modes of operation: emulation, where a simpli-
fied model is used to generate interference patterns that resemble
those generated by a specific appliance (such as a WiFi device or
a microwave oven); and regeneration, where each HandyMote au-
tonomously samples the actual interference, compresses and stores
it locally, and regenerates the recorded patterns later. The latter
mode is especially useful to record realistic interference patterns
in a crowded shopping center or on a lively street by placing a
few HandyMotes to record interference, and bringing them to the
testbed to playback the recorded traces there.

One fundamental challenge results from the fact that the maxi-
mum RF output power of motes (0 dBm) is typically much smaller
than the RF output of other typical interference sources (25 and 60
dBm for WiFi and microwave ovens, respectively). Therefore, a
WiFi transmitter or a microwave oven may disturb sensornet com-
munications over much larger distances than a HandyMote can. We
address this issue by subdividing the testbed area into cells as de-
picted in Figure 1, such that a HandyMote placed at the center of
the cell can interfere with all testbed motes contained in the cell,
but the interference with motes outsides of the cell is minimized.
This requires a careful placement or selection of HandyMotes and
control of their RF output power. We investigate this issue and pro-
pose a procedure for HandyMote placement and power control in
Section 6. Note that there is a tradeoff between the realism of the
generated interference patterns and the number of HandyMotes: the
more cells, the more accurate is the spatial distribution of interfer-
ence, but the more HandyMotes are required.

Another challenge is that many interference sources emit wide-
band signals, i.e., they interfere with many 802.15.4 communica-
tion channels at the same time. In contrast, a mote can only transmit
on a single channel at a time. Fortunately, most existing sensornet
protocols use only a single channel. However, there is a trend to
use multiple 802.15.4 channels at different nodes to increase ro-
bustness and bandwidth. Our approach to deal with this issue is
to place multiple HandyMotes in each cell, each one interfering on
one 802.15.4 channel as detailed in Section 4.3. The use of Soft-
ware Defined Radio (SDR) techniques using USRP devices would
provide more accurate jamming signals on a wider bandwidth, but
their high cost represents a sizeable limitation. To synchronize the
generation of interference patterns within the HandyMotes in one
cell and across cells, we need time synchronization, and we pro-
pose to use the testbed infrastructure (i.e., wired backchannels) to
send synchronization signals to the HandyMotes.

Due to the constrained resources of a mote, also the accurate
recording and playback of interference represent a challenge. To
capture short interference patterns such as those generated by WiFi
beacons, we need high sampling rates with low jitter, which re-
quires data compression due to the limited amount of available
memory. Our solutions to these problems are described in Sec-

176

Figure 1: Testbed augmented with JamLab. Nodes 6, 9, and
23 are selected as HandyMotes, and take care of interference
(re)generation in their cell.

tion 4.1. The accurate measurement of the interfering signal strength
turned out to be a challenge in itself due to the gain control in the
radio. Our solution to this problem is detailed in Section 3.

For the playback of recorded interference traces, normal packet
transmissions are not appropriate, as this would offer only limited
control over the exact timing of the transmitted signals. Therefore,
we use special test modes of 802.15.4 radios to generate modulated
or unmodulated carrier signals as detailed in Section 4.2. Those
radios offer only a small number of discrete output power levels.
While this can be exploited for compression of recorded traces,
it limits the control over the generated interfering signal strength.
However, we are primarily interested in binary interference gener-
ation, where a HandyMote either blocks the communication of the
motes in its cell by emitting a strong-enough interference signal, or
by not interfering at all. Nevertheless, HandyMote also supports
the generation of a small number of output power levels as sup-
ported by the radio hardware, as discussed in Section 4.1.

JamLab has been designed specifically for the Texas Instruments
CC2420 radio [4], and tested on several sensor motes such as Max-
for MTM-CM5000MSP, Crossbow TelosB, and Sentilla JCreate,
but the framework can be applied to any sensornet platform. Based
on the analysis of the datasheets, the Handymotes should be easily
ported to similar radios such as the Ember EM2420 transceiver, and
to newer radios such as the CC2520. We develop the HandyMotes
based on Contiki, a lightweight and flexible operating system for
tiny networked sensors [5].

3. MEASURING INTERFERENCE
ACCURATELY USING MOTES

Measuring interference accurately on a mote is a key functiona-
lity, both for recording and later playback of interference, as well as
for acquiring a deep understanding of common interference sources
such as WiFi or Bluetooth. We describe in this section the tech-
niques we used in order to let a common sensor mote measure the
interference accurately at a sufficiently high sampling rate.

3.1 Measuring at High Sampling Rates
Link quality indicators such as RSSI and LQI provide an indica-

tion of the signal strength and quality, but only upon the reception
of a packet. The only feasible way to assess the interference status
is hence the continuous measurement of the RSSI noise floor, i.e.,
the RSSI in absence of packet transmissions.

In order to retrieve the spectro-temporal characteristics of differ-
ent interference sources, we improve existing Contiki tools [6] and
develop two applications that scan the 2.4 GHz frequency spectrum
by reading the RSSI noise floor from the CC2420 radio transceiver:

• The time scanner scans a single predefined IEEE 802.15.4
channel at its middle frequency with a very high sampling
rate, and returns the RSSI noise floor readings over time;

• The frequency scanner scans sequentially the whole 2.4 GHz
spectrum by switching between all 802.15.4 channels.

A first requirement of both scanners is to achieve a high sampling
rate, given that we need to detect short transmissions periods. Af-
ter boosting the CPU speed, optimizing the SPI operations, as well
as buffering and compressing the RSSI noise floor readings using
Run-Length Encoding (RLE), we reached a maximum sampling
rate of approximately 60.5 kHz when sampling a single channel
with the time scanner. The highest sampling frequency reachable
by the frequency scanner is instead 3.4 kHz, since it is constrained
by the settling time of the radio when switching channels. Hence,
the limitations of low-power radios do not permit to achieve a sam-
pling rate sufficiently high to capture all WiFi transmissions, as the
maximum speed of 802.11b/g/n standards is 11, 54, and 150 Mbit/s,
respectively. The minimum size of a WiFi packet is 38 bytes (ACK
and CTS frames), which would make a resolution of 60 kHz suffi-
cient to detect all 802.11b frames, but not all 802.11g/n frames. As
most WiFi frames are data frames and typically contain higher layer
headers, one can sample at 60 kHz frames with TCP/IP headers
having a payload size higher than 27 and 227 bytes for 802.11g/n,
respectively. Despite the use of large PDUs to reduce preamble
overhead [7], this resolution does not guarantee to capture all the
VoIP traffic over 802.11g/n [8].

Another requirement for the scanners is to accurately measure
the strength of the ongoing interference in the radio spectrum by
means of precise RSSI noise floor readings. The CC2420 radio
specifies an accuracy of ±6 dBm, and a linearity of ±3 dB in the
dynamic range [−100, 0] dBm. Such accuracy and linearity has so
far been acknowledged by the research community as enough to
carry out operations such as Clear Channel Assessment (CCA) and
low-power channel sampling for activity recognition [9]. However,
our experiments show that the RSSI noise floor readings captured
at high sampling rate suffer of a systematic problem in three spe-
cific scenarios, namely: (i) when a narrow unmodulated carrier is
transmitted, (ii) when microwave ovens are switched on, and (iii)
in the presence of Bluetooth transmissions. In these scenarios, the
CC2420 radio often returns RSSI values that are significantly be-
low the supported range and the sensitivity threshold, e.g., -110
or -115 dBm. Figure 2 reports examples of such wrong readings,
which represent an important problem, since they also impact the
correct functioning of CCA in the presence of narrow-band signals,
as shown in Figure 2(c). Our investigation also shows that the same
problems applies to other sensornet platforms employing similar
versions of the chip, such as the Ember EM2420 transceiver. We
experimentally identified that the problem is due to the saturation
of the Intermediate Frequency (IF) amplifier chain: we have ob-
served that maximum gain is used in the Variable Gain Amplifier
(VGA) when the incorrect RSSI readings occur.

3.2 Avoiding Saturation in RSSI Readings
The reason of this saturation problem can be found in the radio

demodulation chain. The CC2420 chip implements part of the IF
filtering in analog domain and further filtering is later performed in
digital domain. It employs an Automatic Gain Control (AGC) loop
to maintain the signal amplitude close to a certain target value that
guarantees the correct operation of the Analog-to-Digital Converter

177

-120

-100

-80

-60

-40

 0 10 20 30 40 50

N
o
is

e
 [
d
B

m
]

Time [ms]

Wrong RSSI Readings

(a) Active Microwave Oven

-120

-100

-80

-60

-40

 0 15 30 45

N
o
is

e
 [
d
B

m
]

Time [ms]

Wrong RSSI Readings

(b) Bluetooth Transmission

-115

-100

-85

-70

-55

 2400 2420 2440 2460 2480

N
o
is

e
 [
d
B

m
]

Frequency [MHz]

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
IEEE 802.15.4 CHANNELS

(c) Unmodulated Carrier

Figure 2: Examples of wrong RSSI readings: several values are
significantly below the sensitivity threshold of -100 dBm due to
receiver saturation. This error is caused by an incorrect opera-
tion of the AGC loop in presence of narrow-band signals.

Figure 3: Simplified diagram of the CC2420 AGC loop.

(ADC). More specifically, the signal is maintained within the ADC
dynamic range, despite large variations in the input signal from the
antenna. For this purpose, the AGC loop uses a digital sample of
the final IF signal amplitude and adjusts the gain of the VGA stage
accordingly (see Figure 3). If a narrowband signal is present near
the cut-off frequency of the combined IF chain, the resulting sam-
pled signal amplitude may be remarkably lower than the partially
unfiltered one at the ADC, as a consequence of the digital filtering.
Since the AGC uses the final value to set the gain of the amplifier
chain, there is no guarantee that the ADC is not saturating. In the
event of ADC saturation, the receiver is no longer linear and the
RSSI values are incorrect.

To linearize the radio response for an arbitrary noise signal and
hence avoid wrong RSSI readings, we activate the peak detectors
in-between the amplifier stages so that their output is used by the
AGC algorithm to compute the required gain. The latter is attained
with VGA stages and the system switches in and out fixed gain
stages as needed. In the CC2420, the peak detectors are controlled
by the AGCTST1 register, and can be configured as follows:

unsigned temp;

CC2420_READ_REG(CC2420_AGCTST1, temp);

CC2420_WRITE_REG(CC2420_AGCTST1,

(temp + (1 << 8) + (1 << 13)));

The register also includes flag bits to activate peak detectors among
fixed gain stages in the IF chain and at the ADC itself [4].

-100

-75

-50

-25

0

 2400 2420 2440 2460 2480

N
o
is

e
 [
d
B

m
]

Frequency [MHz]

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

IEEE 802.15.4 CHANNELS

(a) Sensor Mote (b) Anritsu MS2711D

Figure 4: Single tone excitation obtained running the frequency
scanner operating across the band (a), and in the Anritsu Spec-
trum Analyzer, with a frequency span of 2 MHz (b). Notice the
correct readings despite the very narrow pulse used, as com-
pared to Figure 2(c).

-100

-75

-50

-25

0

 0 150 300 450 600

N
o
is

e
 [
d
B

m
]

Time [us]

AGC Settling Time ~ 128 uS

(a) -25 dBm

-100

-75

-50

-25

0

 0 150 300 450 600

N
o
is

e
 [
d
B

m
]

Time [us]

AGC Settling Time ~ 128 uS

(b) 0 dBm

Figure 5: Evolution of RSSI readings over time to different RF
tone step signals. The accuracy of our RSSI scanner is high
enough to show the moving average used by the CC2420 to
compute the RSSI over the last 8 received symbols.

3.3 Validation of the Experimental Setup
We validate our RSSI noise floor measurements both in time and

frequency with the help of a professional Anritsu MS2711D spec-
trum analyzer [10]. In these experiments, we connect the RF ports
of the transceivers or the analyzer directly via a 50 Ohms matched
impedance RF pigtail. This isolates the signals of interest from ex-
ternal noise sources and eliminates the medium pathloss, so that the
amplitude of the tone and the spectral footprint can be compared.

Firstly, we verify the correctness of the frequency scanner read-
ings, using the unmodulated test signal available in the CC2420
radio. In order to do this, we program another mote to transmit an
unmodulated tone tuned at 2445 MHz, the center of IEEE-802.15.4
channel 19, at maximum power. Figure 4(a) shows the correct ope-
ration of the receiver and the linearized IF amplifier chain while
scanning the RSSI values across the band using the peak detec-
tors. The same test signal can be seen in the spectrum analyzer (Fi-
gure 4(b)). This worst case scenario shows that we have linearized
the receiver, thus avoiding wrong RSSI noise floor readings.

Secondly, we measure the evolution of the RSSI readings over
time to an RF tone step signal in order to evaluate the accuracy
with which we can effectively measure RSSI values. We use our
time scanner with two different power levels (-25 and 0 dBm), and
obtain the results shown in Figure 5. The frequency of the scanner
is sufficiently high to show how the CC2420 internally averages
the RSSI over the last 8 received symbols, or 128 µs, as defined
by the IEEE 802.15.4 standard. Such settling time is shown to be
independent of the height of the step signal.

Impact on Clear Channel Assessment (CCA). Activating the
peak detectors in-between the amplifier stages also improves the
reliability of the CCA operation commonly used in MAC proto-
cols [9]. Due to wrong RSSI readings, the CCA returns a clear
channel when a narrow unmodulated signal is transmitted. As a
result of this, the application would generate a transmission that is
very likely to fail, thus wasting some of the limited energy budget.

178

0

25

50

75

100

CCA Failures Packet Reception Rate

%
Oven OFF

Oven ON - RSSI without Peak Detectors
Oven ON - RSSI with Peak Detectors

(a) Channel 23

0

25

50

75

100

CCA Failures Packet Reception Rate

%

Oven OFF
Oven ON - RSSI without Peak Detectors

Oven ON - RSSI with Peak Detectors

(b) Channel 25

Figure 6: Avoiding wrong RSSI readings improves the CCA
accuracy and packet reception rate under interference.

A typical example of this would happen when transmitting packets
in presence of an active Bluetooth device or a microwave oven in
the neighborhood. Our approach significantly improves the CCA
accuracy, leading to a higher Packet Reception Rate (PRR).

Figure 6 shows the amount of ”channel busy” outcomes of CCA
before and after activating the peak detectors. The absolute gain
in terms of PRR depends on the microwave oven model, on the
channel of interest, and on the data rate. We experimentally collect
data at the receiver side of a couple of sensor nodes communicating
periodically at a rate of 128 packets/second in presence of an active
Lunik 200 microwave oven in the neighborhood. The nodes are
placed at 1 meter distance and use a transmission power of -25
dBm. As shown in Figure 6, the PRR increases by up to 12% when
activating the peak detectors and avoiding wrong RSSI readings.

4. (RE)GENERATING INTERFERENCE
With the techniques to accurately measure interference intro-

duced in the previous section, we can now proceed to record and
replay those patterns. We describe first how to compress and store
traces on motes and then how to playback those recordings.

4.1 Recording Interference Traces
When used in regeneration mode, HandyMote records interfer-

ence traces that are later played back accordingly. Those traces
can be either stored on the mote in RAM or Flash memory, or – if
the HandyMote is connected to a testbed during recording – can be
streamed over a wired backchannel to a base station. In any case,
the data rate of 480 kbps generated by sampling RSSI with a reso-
lution of 8 bits to hold values between 0 and -100 dBm at 60 kHz
is too high to store it directly in memory or to stream it over the
backchannel. The very efficient Coffee Flash file system supports
a peak write bandwidth of only 376 kbps [11], the MSP430 UART
supports a maximum data rate of 460 kbps for writing to the USB
backchannel, and the limited 4 kB RAM of the MSP430 could just
record a trace of less than 70 milliseconds duration.

While we need a high compression ratio, the compression method
has to be efficient enough to allow sampling of RSSI at 60 kHz.
Therefore, we use a simple Run-Length Encoding strategy and a
quantization of the samples to a few bits per sample. We store a
stream of pairs (v, o), where v is a sample and o is the number
of consecutive occurrences of this sample. This method is very
effective, as RSSI values typically change slowly over time. The
quantization is justified by the fact that the CC2420 only supports
11 distinct output power levels in the range [-55,0] dBm by setting
the PA_POWER register to the values we derived and listed in Ta-
ble 4.1. To obtain the highest possible output resolution, four bits
per sample with an appropriate non-linear quantization are hence
sufficient. For example, for two-bit resolution one can use thre-
sholds -55, -70, and -80 dBm (or register values 31, 7, and 3) with
a spacing of 15 and 10 dBm, respectively, for quantizing the RSSI
range into four regions.

 -100

-60

-20

N
o

is
e

 [
d

B
m

]

Real Interference CCA threshold

0

1

 0 10 20 30

B
it

M
a

p
p

in
g

Time [ms]

Current state

(a) 1-bit precision

 -100

-60

-20

N
o

is
e

 [
d

B
m

]

Real Interference Thresholds

0

1

2

3

 0 10 20 30

B
it

M
a

p
p

in
g

Time [ms]

Current state

(b) 2-bit precision

Figure 7: Encoding techniques to save memory resources.

Figure 7(b) shows how original RSSI readings (top) are mapped
into 2 bits (bottom): the two-bit quantization of a 35 ms interfer-
ence recording reduces the amount of data from 2076 Bytes to 84
bytes – a compression ratio of 1

25 . A single bit per sample is enough
to support binary interference regeneration. This corresponds to
the outcome of a continuous CCA operation, in which the outcome
busy/idle channel is mapped to a binary number [12]. Figure 7(a)
shows the outcome of a one-bit quantization of 35 ms of interfer-
ence. The amount of data is reduced from 2076 Bytes to 20 Bytes
– a compression ratio of less than 1

100 . This reduces the raw data
rate of 480 kbps to less than 5 kbps (depending of course on the
values of the raw samples), a data rate that can be handled by Flash
and USB, and allowing us to store several seconds of recording in
RAM. In our current implementation, we store traces in RAM.

Recording interference traces is energy demanding, as both CPU
and radio need to be constantly active while scanning the radio
medium. Using software-based on-line energy estimation [13], we
obtain an average power consumption of 65.4 mW for Tmote Sky
motes, which allows for a lifetime up to 4 days when powered using
primary AA batteries.

PA_POW. dBm PA_POW. dBm PA_POW. dBm
31 0 15 -7 2 -45
27 -1 11 -10 1 -50
23 -3 7 -15 0 -55
19 -5 3 -25 - -

Table 1: Discrete output power levels of the CC2420 radio.

4.2 Generating Interference Patterns
We have recently shown how the CC2420 test modes can be

used to generate controllable and repeatable interference [14, 15]
by transmitting a modulated or unmodulated carrier signal that is
stable over time. This approach is superior to common jamming
techniques based on packet transmissions, as the emitted carrier
signal is independent from packet sizes and inter-packet times.

In order to generate an interference pattern, the interferer has to
be enabled and disabled and its output power has to be set accord-
ing to the compressed recorded trace in regeneration mode or ac-
cording to the output of models in emulation mode, as described in
Section 5. When enabling the transmitter using the STXON com-
mand, the radio oscillator first has to stabilize before a transmission
is possible, resulting in a latency of 192µs or a maximum playback
frequency of only 5 kHz. Therefore, we leave the transmitter on
and just change the output power level to 0 (or -55 dBm) instead
of disabling the transmitter. At level 0 the RF output power is so
small that even a receiver at a distance of only few centimeters can
hardly notice the signal. The advantage of this approach is that the
latency for changing the output power is dominated by the SPI ac-
cess time. We optimized the SPI driver in Contiki, resulting in a
latency of only few microseconds – allowing us to to playback at
the same frequency of 60 kHz that was also used during recording.

179

-100

-75

-50

-25

 2400 2420 2440 2460 2480

N
o
is

e
 [
d
B

m
]

Frequency [MHz]

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

IEEE 802.15.4 CHANNELS

WiFi - Channel 7

(a) HandyMote (ch. 17,18,19)

-100

-75

-50

-25

 2400 2420 2440 2460 2480

N
o
is

e
 [
d
B

m
]

Frequency [MHz]

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

IEEE 802.15.4 CHANNELS

WiFi - Channel 7

(b) HandyMote (ch. 17,19 only)

Figure 8: Compared to wideband interferers, the HandyMotes
jam only selected channels, preserving connectivity in others.

Besides the sampling and playback rate, also the jitter during
playback of the individual samples needs to be minimized in order
to ensure an accurate reconstruction. At 60 kHz, the playback time
between two consecutive samples is just 17µs, hence the duration
of the execution of a sequence of microcontroller instructions is no
longer negligible. In particular, different execution paths in the pro-
gram to uncompress samples in regeneration mode lead to different
execution times and jitter. Therefore, we add NOP instructions to
make all execution paths equally long.

4.3 Multiple Channels
Sensor motes are designed to transmit in only one of the 16 IEEE

802.15.4 channels. As most of the existing sensornet protocols only
use a single channel, a single HandyMote is sufficient to interfere
with this channel. However, there is an increasing trend to use mul-
tiple channels in order to increase robustness and bandwidth. In this
case, we use multiple HandyMotes, each one interfering with one
channel, as depicted in Figure 8(a). Using this approach, the inter-
fered channels can be carefully selected as shown in Figure 8(b),
and one can therefore avoid to jam other sensor networks installed
in the same building. In contrast, a wideband interference source
such as WiFi always jams at least 4 adjacent 802.15.4 channels.

For the synchronization we assume that all HandyMotes are con-
nected to a basestation computer via USB cables and hubs as it is
common in existing testbeds, such as TWIST and MoteLab. The
synchronization algorithm is inspired by [16] and works as follows.
For every HandyMote, the basestation sends a stream of N packets
to the HandyMote. Just before sending the packet, the basesta-
tion reads its clock and includes the send timestamp in the mes-
sage. Upon reception, the HandyMote reads its local clock to ob-
tain the receive timestamp. It then computes the difference between
send and receive timestamps for each of the N messages, chooses
the message with the smallest difference (this is the message that
had the smallest latency), and corrects its local clock by this differ-
ence. The synchronization error then depends on the variability of
the observed minimum latencies across different HandyMotes. As
the minimum latency is rather stable across different HandyMotes,
the HandyMotes will be synchronized accurately among each other
(but not necessarily with the basestation).

To estimate the accuracy of synchronization, we measure the
clock offset between two HandyMotes synchronized in that way
by having them trigger one of their digital output pins when their
synchronized clock reaches a given time. By connecting the out-
put pins of the two HandyMotes to an oscilloscope we measure an
average offset of 8.44µs with a standard devitation of 6.94µs for a
stream of N=10 packets. Increasing N further does not substantially
reduce error. This accuracy is enough to ensure synchronization of
motes playing back interference at 60 kHz.

5. MODELING INTERFERENCE SOURCES
In this section, we describe how we can use an HandyMote to

emulate three major sources of external interference on the 2.4

-100

-75

-50

N
o

is
e

 [
d

B
m

]

Example of Real Interference

-100

-75

-50

N
o

is
e

 [
d

B
m

]

Emulated Interference (Fixed Power)

-100

-75

-50

 0 10 20 30 40 50 60 70

N
o

is
e

 [
d

B
m

]

Time [ms]

Emulated Interference (Random Power)

Figure 9: Emulation of microwave oven interference (top) with
fixed (middle) and random power (bottom).

GHz ISM band: WiFi and Bluetooth devices, as well as microwave
ovens. We present models that capture the temporal characteristics
of these interference sources. A key requirement is the simplicity
and efficiency of models, as they need to be executed in real-time
on the HandyMotes to generate interference. We are not concerned
about the intensity of the generated interference, since when run-
ning a HandyMote in Emulation Mode, we can decide to adjust the
output power of the CC2420 according to different schemes. For
example, the output power can be kept fixed or chosen randomly,
as shown in Figure 9 (emulation of the interference generated by a
Whirlpool M440 microwave oven).

5.1 WiFi Emulation
Modeling Wi-Fi traffic is challenging, as it depends on several

factors such as the number of active users, their activities, the pro-
tocols they use (UDP or TCP), the traffic conditions in the back-
bone, etc. Under some reasonable assumptions, several theoretical
studies have analyzed the performance of 802.11 [17, 18, 19, 20].
However, based on the empirical data we collected, we observed
that the models for saturated sources provide a better approxima-
tion than the models for non-saturated sources (saturated sources
always have data to send). Hence, in order to re-create a realistic
representation of interference patterns, we implement an analytical
model for saturated traffic sources, and for non-saturated traffic we
derive models from empirical data.

Non-Saturated Traffic: Empirical Model. The empirical mo-
del for non-saturated traffic is obtained in the following way. Let
us denote a random variable X as the clear time between two
consecutive busy times. We obtain the probability mass function
p(x) = Pr{X = x} from the empirical sampling of the channel,
where x is the time in number of slots (each slot is 1 ms). The
length of the busy times is represented by the transmission delay of
packets, which is a rather deterministic variable (for a fixed packet
size). Following the methodology described on the previous para-
graph, we obtained the p(x) for the scenarios presented on Table 2.
Figures 10(a) and 10(b) show the probability mass function p(x)
for two WiFi scenarios: an audio-stream application and the down-
load of a large file.

Scenario Users Scenario Users

Radio Str. 1 Video Str. 1
File Transfer 1 File + Radio 1

Table 2: Scenarios.

Saturated Traffic: Analytical Model. There exist several an-
alytical models for the Distributed Coordination Function (DCF)
mode of 802.11. Among them, the model proposed by Bianchi [18]
has been one the most influential. Bianchi modeled the DCF mode
of 802.11 as a discrete Markov process, where the back-off and re-
transmission mechanisms are represented as discrete states. Based
on this model, Garetto and Chiasserini [19] developed a simpler
Markov process by merging back-off states. For details, we re-

180

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

cd
f(

X
)

X (clear channel period in ms)

Empirical Model WiFi: Radio Streaming

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

cd
f(

X
)

X (clear channel period in ms)

Empirical Model WiFi: Large File Download

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

cd
f(

X
)

X (clear channel period in ms)

Empirical Model Bluetooth

(a) (b) (c)

Figure 10: Empirical Models for WiFi and Bluetooth.

fer the reader to their paper [19]. In our work, we use Garetto
and Chiasserini’s model to emulate WiFi interference for saturated
sources: whenever there are transmissions of frames in the model,
the HandyMote activates the carrier.

5.2 Bluetooth Emulation
IEEE 802.15.1, better known as Bluetooth, specifies 79 chan-

nels, spaced 1 MHz, in the unlicensed 2.4 GHz ISM band. Blue-
tooth stack implementations apply an Adaptive Frequency Hopping
(AFH) mechanism to combat interference, which does not permit to
anticipate the frequency at which the interference will take place.
Bluetooth hops 1600 times/sec., which means that it remains in
a channel for at most 625µs. Note that Bluetooth channels are
1 MHz-spaced, while the resolution of our scanner is 2 MHz, which
implies that consecutive time slots may eventually coincide within
this frequency window and result in a larger interference period.
We model Bluetooth using the same method as for non-saturated
traffic in WiFi, that is, we obtain the probability density function
p(x) for the clear periods of the channel, and the transmission time
of Bluetooth packets for the busy periods. Figure 10(c) shows the
probability mass function p(x) for the Bluetooth scenario. The
Adaptive Frequency Hopping characteristic of Bluetooth leads to
a smoother cdf curve compared to WiFi, because the clear periods
are independent of the application run.

5.3 Microwave Oven Emulation
Microwave ovens are a kitchen appliance used to cook or warm

food by passing non-ionizing microwave radiations to heat water
and other polarized molecules within the food, usually at a fre-
quency of 2.45 GHz. Therefore, they are a potential source of in-
terference for sensornets operating in the 2.4 GHz spectrum.

The detailed characteristics of the interference patterns emitted
by domestic microwave ovens depend on the model; nevertheless
they all present the same basic properties. Firstly, on a spectral ba-
sis, our experiments show that microwave ovens tend to interfere all
the 802.15.4 channels, with a higher impact on channels 20-26. It
is not possible to state with certainty which channel will be mostly
affected, as our experiments confirm that the peak frequency of the
ovens depends on multiple factors, including the oven content, the
amount of water in the food, and the position within the oven, as
all these parameters affect the temperature of the magnetron [21].
Secondly, on a temporal basis, the generated noise is rigorously
periodic. Figure 11 shows the temporal pattern of the interference
caused by a Lunik 200 microwave oven retrieved experimentally.
In one period of approximately 20 ms, there is an ’on’ and ’off’
cycle, whose duration is roughly 10 ms each. This matches the
observations in [22], confirming the correctness of our results.

For all the above reasons, microwave oven interference is the
simplest dynamic to model, as it follows a deterministic on/off se-
quence. Defining the period of the signal τ , the duty cycle λ (frac-
tion of time the oven is ’on’), and hardcoding these two parameters
into the HandyMote, we can generate interference patterns such as
the ones shown in Figure 9.

-100

-80

-60

-40

-20

 0

 0 40 80 120 160 200

R
S

S
I
N

o
is

e
 F

lo
o
r

[d
B

m
]

Time [ms]

Distance 1.0 m
Distance 7.5 m

(a) Zoom out

-100

-80

-60

-40

-20

 0

 0 10 20 30 40 50

R
S

S
I
N

o
is

e
 F

lo
o
r

[d
B

m
]

Time [ms]

OFF
CYCLE

ON
CYCLE

Distance 1.0 m
Distance 7.5 m

(b) Zoom in

Figure 11: Temporal characteristics of the interference caused
by microwave ovens. The ovens emit frequencies with a perio-
dic pattern with period T ≈ 20 ms.

6. TESTBED CONFIGURATION
As outlined in Section 2, we partition the area of a testbed into

different cells to deal with the limited RF output power of the
HandyMotes compared to interference sources such as WiFi or mi-
crowave ovens. In this section we explain how to configure the
testbed, i.e., how to place the HandyMotes and how to control their
RF output power level such that the motes in the testbed are par-
titioned. This implies that every mote should be covered by a cell
and cross-talk between neighboring cells should be minimized (i.e.,
a HandyMote does not interfere with motes outside of its cell).

6.1 Coverage and Cross-Talk
A key issue we need to understand is under which conditions the

packet reception of a mote is actually affected by an interference
signal generated by a HandyMote. The impact of interference on
reception in the CC2420 radio is closely dependent on the mod-
ulation scheme used, namely OQPSK (Offset Quadrature Phase
Shift Keying) and DSSS (Direct Sequence Spread Spectrum). With
these modulation schemes, the interference signals generated by
two HandyMotes do not simply ”add up” at the receiver as it would
be the case for ASK (Amplitude Shift Keying) used in older radios,
but the receiver will pick the stronger of the two signals if their
strength differs by a certain minimum. This is called co-channel
rejection: according to [4], the CC2420 is able to receive a signal
at -82 dBm if the second signal is at least 3 dB weaker.

In order to enable a HandyMote to interfere with the motes in
its cell, we therefore need to make sure that a mote belonging to
the cell will receive interference signals from that HandyMote with
a signal strength at least 3 dB higher than the maximum strength
of other signals that mote may receive. To minimize cross-talk be-
tween neighboring cells, we need to make sure that motes outside
of the cell will receive that interference signal with a signal strength
that is at least 3 dB weaker than the minimum strength of other sig-
nals that this mote may receive. Finally, we need to make sure that
all testbed motes are covered by the cells.

In practice, an ideal configuration without cross-talk and with
complete coverage typically does not exist. Also, due to environ-
mental dynamics, the amount of cross-talk and coverage may vary
over time. We can only try to find a configuration that maximizes
coverage and minimizes cross-talk. Note that there is a tradeoff

181

(a) (b)

Figure 12: JamLab’s division in cells.

between the size of the cells and the accuracy of the spatial distri-
bution of generated interference: the smaller the cells, the higher is
the spatial sampling resolution and the smaller are the cross-talk re-
gions. However, smaller cells also implies that more HandyMotes
are needed to cover the testbed.

6.2 A Theoretical Model
In this section we develop a theoretical model that allows us to

estimate the radius of a cell such that a HandyMote can still inter-
fere with all nodes in the cell. We will also model the amount of
cross-talk between neighboring cells. Finally, we develop a mo-
del that allows us to estimate how many HandyMotes are at least
needed to cover a testbed deployed over a geographical area A.

In order to derive the models, we need to make a number of prac-
tical assumptions. Firstly, we assume that the minimum distance
between a pair of motes in the testbed equals Dmin with typical
values in the order of few meters. For example, it is common prac-
tice to place a mote in each room on an office floor. Secondly, we
assume that we can reduce the RF output power level of the testbed
motes to a value Pmote below the maximum of 0 dBm (e.g., -10
dBm) without loosing connectivity. In practice, this is often done to
obtain multi-hop topologies with a large diameter even on the con-
strained space of an office floor. Thirdly, we assume that a mote is
only able to receive a packet with a certain minimal signal strength
Pmin, with typical values in the order of -90 dBm. Finally, we as-
sume the signal propagation can be modeled with the widely used
log-normal model [23, 24, 25]:

P (d) = PT − PL(d0) − 10 · η · log10

d

d0
+ χσ (1)

where PL(d0) is the path loss measured at reference distance d0,
η is the path loss exponent, χσ is a zero-mean Gaussian random
variable with standard deviation σ that models the random varia-
tion of the RSSI value due to shadowing. We use the well-known
PL(2) = 46 dBm, and the typical path loss exponent for indoor
environments η = 6 without accounting for shadowing.

Consider the scenario in Figure 12(a) with a HandyMote β and
several motes αi. We are interested in computing the cell radius dβ

such that HandyMote β can block the reception of any message by
motes contained in its cell (i.e., α0 and α1 in the figure). Further,
we are interested in the radius ∆β of the cross-talk region. The
cross-talk region is defined as the region where the reception of
a message by a mote (i.e., α2 in the figure) may but need not be
blocked by HandyMote β.

Knowing output power Phandy of the HandyMote and Pmote of
the mote, as well as the minimum distance Dmin between motes,
we can compute the maximum RSSI Pmax a mote can receive from
another mote:

Pmax = Pmote − PL(d0) − 10 · η · log10

Dmin

d0
(2)

Using that value and the output power Phandy of the Handy-
Mote, we can compute the radius of the cell dβ as follows:

dβ = 10
−Pmax+Phandy−PL(d0)+10·η·log10(d0)

10·η (3)

Knowing the minimum RSSI Pmin at which a mote can still receive
a message, we can compute the radius of the cross-talk region ∆β

as follows:

∆β = 10
−Pmin+Phandy−PL(d0)+10·η·log10(d0)

10·η (4)

From that we can compute the difference between the cell radius
and the radius of the cross-talk region as Θ = dβ − ∆β .

Knowing the cell radius dβ , we now derive a simple model to
estimate the number of HandyMotes needed to cover a given area
A. As illustrated in Figure 12(b), we consider the sparsest-possible
coverage of an area with disks. Ignoring border effects, the area
covered by a single cell can be estimated with the area of the he-
xagon defined by the intersection points of one circle with the six
adjacent circles. Dividing A by the area of the hexagon, we can
estimate the number of HandyMotes N needed to cover area A:

N =
A

3∗
√

3
2 ∗ d2

β

(5)

We now illustrate those model with concrete examples. If we
have a sparse testbed with a distance between nodes of Dmin = 4
meters and transmission powers Pmote = −15 dBm, Phandy = 0
dBm, we derive Pmax ≈ −80 dBm and the radius of our cells
dβ = 8 meters. This configuration would imply that the size of the
cross-talk area Θ ≈ 4 meters when using Pmin = −90 dBm.

This cell size is obviously very large, and the consequence would
be that in theory only N = 6 HandyMotes would be needed to
cover a testbed area A = 750m2.

However, with this configuration the cross-talk area Θ is quite
large. The accuracy of the regenerated interference may therefore
be low as all nodes contained in cross-talk areas are potentially in-
terfered by multiple HandyMotes in neighboring cells with differ-
ent interference traces. To gain more accuracy, we need to decrease
the size of the cross-talk area Θ. This can be achieved by redu-
cing the radius of the cells by means of reducing Phandy , which
requires more cells and HandyMotes to cover the testbed area. To
obtain Θ ≈ 2 meters, using the same parameters as above, one
would need to use a cell radius of dβ ≈ 4 meters, which would
imply that to cover the same testbed area A = 750m2, we would
need at least N = 19 HandyMotes.

6.3 Practical Testbed Configuration
In this section we describe in a practical procedure how to con-

figure the testbed, i.e., how to select the HandyMotes and how to
set their power levels such that mote coverage is maximized and
cross-talk between cells is minimized.

1. In a first step, we empirically obtain Dmin, Pmin, and Pmax

from the testbed as introduced in the previous section. Dmin

can be obtained directly from the layout of the testbed. Pmin

and Pmax are measured by having the motes in the testbed
sequentially broadcast a message and all others nodes record
the maximum and minimum RSSI value.

2. Knowing these parameters, we can compute the maximum
cell radius according to Equation 3. We overlay a hexagonal
grid as depicted in Fig. 12(b) with cells of the computed ra-
dius over the testbed layout, place HandyMotes at the center
of the overlay cells (or select testbed motes close to the cen-
ter of the cells to become HandyMotes), and allocate motes
to the HandyMotes based on the cell overlay.

3. Next, we sequentially trigger the selected HandyMotes to
generate an interference signal at maximum output power

182

and check if every mote in the cell of a HandyMote is cov-
ered. For this, the motes measure the RSSI noise floor and
check if it is larger than (Pmax + 3) dB.

4. If there are any uncovered motes, we select additional Handy-
Motes in the vicinity of those motes and return to step 3.

5. In order to reduce cell cross-talk, we reduce the output power
levels of the HandyMotes to the minimum value that still
guarantees coverage using the same approach as in step 3.
If the selected power level is not the maximum power lev-
els, then the power levels higher than the selected one can
be used to realized different levels of interference strength.
Otherwise, only binary interference can be generated.

6. Finally, one may estimate the quality of the generated config-
uration by counting the number of motes contained in cross-
talk region as follows. The HandyMotes sequentially gener-
ate an interference signal at the selected output power. All
motes outside of the cell of that HandyMote measure RSSI.
If the measured value is larger than Pmin+ 3 dB, then the
mote is contained in a cross-talk region. If the number of
motes in cross-talk regions is too high, one may start over
with a different initial selection of cells.

This procedure is supported by a program running on the testbed
motes during the setup phase. After the configuration is completed,
the motes may be programmed with the test application. As part of
future work, we plan to further automate this procedure.

7. EVALUATION
In this section, we first evaluate the accuracy with which a Handy-

Mote can regenerate a previously recorded interference trace in the
time domain. We then augment an existing sensornet testbed in-
frastructure with JamLab, and evaluate the accuracy with which
the augmented testbed can regenerate a previously recorded inter-
ference trace in the spatial domain. Finally, we use JamLab to char-
acterize the performance of MAC protocols under interference.

7.1 Temporal Accuracy
We evaluate the accuracy with which a HandyMote can regen-

erate a previously recorded interference in the time domain. We
run a HandyMote in regeneration mode in proximity of an active
Lunik 200 microwave oven warming a bowl of tea. The Handy-
Mote is placed at 1 meter distance from the oven, and records a
trace of channel 24 at a sampling rate of 60 kHz. Figure 13(a) (top)
shows the interference generated by the microwave as measured by
the HandyMote. Next, the trace is quantized to single-bit resolu-
tion (middle). Finally, once the microwave oven stopped operating,
the HandyMote plays back the recorded binary interference (bot-
tom) using transmission power 0 dBm. As we can notice from the
figure, the regeneration is quite accurate in the time domain.

We quantify the accuracy of the regenerated signal with respect
to the originally recorded signal using the the cross-correlation co-
efficient (c). We represent original and regenerated signals by the
series x(i) and y(i), respectively, where i = 1, . . . , N . These
series are binary, and take 0 (clear channel) or 1 (busy channel)
values. Considering this representation, c is given by:

c =

∞
X

i=−∞

x(i)y(k − i)

rms(x)rms(y)
(6)

where rms() denotes the root mean square value of a signal. We
tested eight pairs of original and regenerated samples and the ma-
ximum value of c was selected for each pair:

cxy = max
k∈[−(N−1),(N−1)]

{c} (7)

-100

-60

-20

N
o
is

e
 [
d
B

m
]

Real Interference Threshold

 0

 1

M
a
p
p
in

g Current state

-100

-70

-40

 0 10 20 30

N
o
is

e
 [
d
B

m
]

Time [ms]

Regenerated Interference (1-bit)

(a) 1-bit Mapping

-100

-60

-20

N
o
is

e
 [
d
B

m
]

Real Interference Thresholds

 0
 1
 2
 3

M
a
p
p
in

g Current state

-100

-70

-40

 0 10 20 30

N
o
is

e
 [
d
B

m
]

Time [ms]

Regenerated Interference (2-bits)

(b) 2-bit Mapping

Figure 13: Regenerated interference of a microwave oven.

The average correlation cxy is 0.93 with a standard deviation of
0.065. Hence, our implementation does a commendable job with
respect to the cancellation of the jitter between sampled and regen-
erated interference and hence regenerates interference with a fairly
high accuracy.

We carry out the same experiment using 2-bit quantization with
thresholds -55, -70, and -80 dBm, and we then regenerate the inter-
ference using transmission power register levels 31, 7, and 3 (i.e., 0,
-10, -25 dBm), respectively. The results match the above ones with
binary interference. Figure 13(b) shows the regeneration process
when using a two-bit quantization.

7.2 Impact on Packet Reception Rate
In this section we experimentally study the impact of interfer-

ence on Packet Reception Rate (PRR), comparing the PRR for ori-
ginal, emulated, and regenerated interference signals. We use the
same Lunik 200 microwave oven as in the previous experiment, and
collect data at the receiver side of a pair of sensor nodes at about
1 meter distance, with the sender transmitting packets at a rate of
128 packets/sec. The sensor just transmits the packet without any
clear channel assessments or duty cycling. We place an Handy-
Mote between the two nodes and we run it both in emulation and
regeneration mode, once the microwave oven stopped being active.

We carry out different experiments with different payload sizes,
and we run the HandyMote using transmission power 0 dBm in
both emulation and regeneration mode, such that the generated in-
terference signal blocks communication between the sensor nodes.

Figure 14(a) shows the results. The PRR collected when the mi-
crowave oven is active decreases when the payload size increases as
the probability of periodic microwave interference hitting a packet
increases with increasing payload size. The PRR obtained for re-
generated interference differs by 5.6% from the original one, hence
showing a reasonable accuracy. For emulated interference, the PRR
differs from the original one by 12.83%, the reason for that being
the noisy amplitude of the original interference signal as depicted
in Figure 9, such that occasionally the interference is too weak to
block the transmission. In contrast, the emulated interference sig-
nal is binary and always blocks communication. Accuracy could be
improved in this case by randomly varying the transmission power
of the HandyMote as discussed in Section 5.3.

We repeat the experiments in presence of Bluetooth interference.
We first measure PRR during a Bluetooth file transfer between a
laptop and a mobile phone. We place the HandyMote between the 2
communicating motes and we measure the PRR obtained with ori-
ginal, emulated, and regenerated interference. We run the Handy-
Mote in emulation mode using the models derived in Section 5.2.

Figure 14(b) shows that the packet reception rate obtained under
regenerated interference differs by 5.02% from the the original one,
while in emulation mode it differs by only 1.31%.

Finally, we repeat the experiment with WiFi interference. Using
the same setup as above, we run the HandyMote in emulation mode
using the models derived in Section 5.1 while generating WiFi traf-
fic from a laptop according to the scenarios presented on Table 2.

183

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Real Regenerated Emulated
P

R
R

 [
%

]

5 bytes payload
30 bytes payload
55 bytes payload

 0

 0.2

 0.4

 0.6

 0.8

 1

Real Regenerated Emulated

P
R

R
 [
%

]

 0

 25

 50

 75

 100

Radio
streaming

Video
streaming

File
transfer

File +
 Radio

P
R

R
 [
%

]

Real Interference
Emulated Interference

(a) Microwave Oven (b) Bluetooth (c) WiFi

Figure 14: Impact of real, emulated, and regenerated interference on packet reception rate.

Figure 15: Map of the testbed used for our experiments.

Figure 14(c) shows the results. Also in this case the HandyMote
generates interference quite accurately, and the difference between
the PRR obtained under real interference and the one obtained un-
der emulation varies between 0.25% and 8.56%. The reason for
this difference is that emulation repeats the same pattern over and
over, while actual WiFi interference might change in time, due, for
example, to TCP adaptation mechanisms.

7.3 Testbed Configuration
Next we want to study the accuracy of the spatial distribution of

interference generated by a testbed that has been augmented with
JamLab, and therefore configured as described in Section 6.3. Fi-
gure 15 shows the topology of the testbed we use, which contains
25 Tmote Sky nodes deployed in an office environment.

As discussed in Section 6.2, there is a tradeoff between the ac-
curacy of regeneration and the cell size, as larger cell size leads to
larger cross-talk regions, where motes may be interfered by multi-
ple HandyMotes in neighboring cells. We therefore want to inves-
tigate a worst-case scenario with respect to accuracy, where only a
few large cells with large cross-talk regions are used. Contrary to
the procedure outlined in Section 6.3 to compute the cell size, we
therefore start with a cell radius of dβ = 8 meters, which equals
the values in the first example in Section 6.3, where Pmax = −80
dBm. With this cell size, we can cover the testbed with just three
cells. We select nodes 6, 10, and 22 as HandyMotes. Next we se-
quentially trigger the selected HandyMotes to generate interference
at maximum output power, and check that the RSSI at every mote
is at least Pmax + 3dB = −77 dBm.

Figure 16(a) shows that, with this configuration, node 14 would
not be covered as RSSI is smaller than -77 dBm due to the re-
mote location of the node. We therefore change the selection of the
HandyMotes (instead of adding more cells) to motes 6, 9, and 23 as
shown in Figure 1). With this configuration node 14 is covered, but
node 10 is not covered by HandyMote 9 (Figure 16(b)), while in
the original configuration node 10 covered node 9 (Figure 16(a)).

-100

-75

-50

-25

0

2 3 4 5 7 8 9 11 12 13 14 15 16 17 18 19 20 21 23

R
S

S
I

N
o

is
e

 F
lo

o
r

[d
B

m
]

Node Number

No HandyMotes
HandyMotes 6, 10, and 22 (0 dBm)

Pmax

(a) HandyMotes 6, 10, and 22

-100

-75

-50

-25

2 3 4 5 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22

R
S

S
I

N
o

is
e

 F
lo

o
r

[d
B

m
]

Node Number

No HandyMotes
HandyMotes 6, 9, and 23 (0 dBm)

Pmax

(b) HandyMotes 6, 9, and 23

Figure 16: Testbed augmented with JamLab. In the first config-
uration, nodes 6, 10, and 22 are selected as HandyMotes. In the
second configuration, nodes 6, 9, and 23 are selected instead.

-100

-90

-80

-70

-60

-50

-40

-30

2 3 4 5 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23

R
S

S
I

N
o

is
e

 F
lo

o
r

[d
B

m
]

Node Number

No HandyMotes
HandyMote 6 (power -10 dBm)

HandyMote 6 (power 0 dBm)
Pmax

Figure 17: Impact of TX power of HandyMote 6.

This is an example of an asymmetric link – something our simple
model in Section 6.2 does not capture. Figure 16 shows also an-
other practical problem. Node 17 is apparently broken as it always
returns RSSI readings higher than −67 dBm. We therefore ignore
this node in the remainder of the experiments.

Finally, we need to reduce the output power of the HandyMotes
to minimize the cross-talk area while still maintaining coverage.
The cell controlled by HandyMote 6 is quite small and therefore
it is possible to reduce its output power. We show the outcome
of varying the transmission power of HandyMote 6 in Figure 17:
power level 11 (-10 dBm) is the smallest that provides full cell
coverage. Similarly, we obtain output power levels 31 and 7 for
HandyMotes 9 and 23, respectively. Figure 18 shows that with such
configuration, only the HandyMote controlling a cell can generate
an interfering signal at the other motes in the cell exceeding Pmax.

7.4 Spatial Accuracy
Using the testbed configuration obtained in the previous section,

we now study how accurately we can regenerate the spatial distri-
bution of interference. For this, we place a Whirlpool M440 mi-
crowave oven in the position marked as M in Figure 1, within the
cell controlled by HandyMote 6. This case represents a worst-case
scenario, as the oven can interfere over long distances due to its
high (60 dBm) and highly varying output power.

Our goal is to record the spatial distribution of the interference
patterns generated by the microwave oven in one of the most af-
fected channels (23) all over the testbed. We then let the Handy-
Motes regenerate the recorded traces while the remaining nodes

184

-100

-80

-60

-40

-20

0

2 3 4 22 5 7 20 21 8 11 12 13 14 15 16 18 19

R
S

S
I

N
o

is
e

 F
lo

o
r

[d
B

m
]

Node Number

CELL 1:
HandyMote 23

CELL 2:
HandyMote 6

CELL 3:
HandyMote 9

HandyMote 9 power 31
HandyMote 23 power 7
HandyMote 6 power 11

Pmax

Figure 18: JamLab configuration with independent cells.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

2 3 4 5 6 7 8 9 11 12 13 14 15 16 18 19 20 21

In
te

rf
e

re
n

ce
 R

a
tio

 [
%

]

Node Number

Environmental Noise
Active Microwave Oven

(a) Impact of microwave oven

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2 3 4 5 7 8 11 12 13 14 15 16 18 19 20 21

In
te

rf
e

re
n

ce
 R

a
tio

 [
%

]

Node Number

Active Microwave Oven
Regeneration by HandyMotes 6,9,23

(b) Impact of regeneration

Figure 19: Comparison between the interference generated by
an active microwave oven and the one regenerated by JamLab
in regeneration mode throughout the whole testbed.

record the regenerated interference and compare it with the origi-
nal interference recorded while the microwave oven was active.

As we have already investigated the temporal accuracy of re-
generation in Section 7.1, we now focus on the distribution of the
intensity of interference. Instead of recording raw traces, every
mote computes the interference ratio as the percentage of time in
which interference is present (i.e., the percentage of RSSI noise
floor readings higher than Pmax). Figures 19(a) and 19(b) show the
comparison of the interference ratio during the activity of the mi-
crowave oven, and during the regeneration using JamLab (Handy-
Motes 6, 9, and 23). Due to their different distances from the mi-
crowave oven, node 7 recorded the highest interference ratio when
the oven was active, followed by nodes 6, 21, 20, and 5, respec-
tively (Figure 19(a)). The regeneration within this cell is based on
the trace recorded by HandyMote 6, therefore nodes 21, 20, and
5 will perceive a higher interference ratio, node 7 a lower one (Fi-
gure 19(b)). A similar reasoning can be applied to all other nodes in
the testbed: node 14, for example, perceives a higher interference
ratio, as recorded by HandyMote 9, which is closer to the oven. If
a better spatial accuracy is required, a higher number of (smaller)
cells needs to be configured, as discussed in Section 6.

It is important to remark that the environmental noise may play
an important role in the quality of the (re)generation, as it will add-
up to the interference (re)generated by the HandyMotes. Observing
Figures 19(a) and 19(b), we can see how the interference received
by node 8 is higher than the one recorded by HandyMote 9 due to a
high environmental noise. In order to reduce the non-determinism
caused by differences in ambient interference between recording
and regeneration, the experiments should be run when the back-
ground noise is low, for example in the evening or during the night.

We finally investigate the accuracy of the regeneration with re-
spect to PRR. We repeat the above experiment while nodes pairs
(2,3), (5,21), and (18,19) transmit and receive packets with a pay-
load of 5 bytes at a rate of 64 packets/second on channel 23. Fi-
gure 20 shows that PRR values are similar between original and
regenerated interference for the first two pairs of nodes, while there
is a larger error (31.6%) for pair (18,19). This is due to nodes 18
and 19 being much closer to the microwave oven than HandyMote
9, following the discussion made for Figure 19.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

(2,3) (5,21) (18,19)

P
R

R
 [
%

]

Pair of Nodes

Environmental Noise
Active Microwave Oven

Regeneration by HandyMotes 6,9,23

Figure 20: Comparison of the PRR obtained generating inter-
ference using a microwave oven and using JamLab.

7.5 Characterization of Protocol Performance
In this section we demonstrate the usability of JamLab by char-

acterising the impact of interference on low-power MAC protocols.
We show that using JamLab we can get important insights regar-
ding protocol behaviour under emulated but realistic interference.

We perform our experiments in the testbed shown in Figure 15.
Our setup consists of a sender (node 7), a receiver (node 5) and one
(node 6) or two (nodes 6 and 21) HandyMotes, whose position and
transmission power is carefully chosen to jam the communications
between sender and receiver. The sender transmits 400 packets to
the receiver at a rate of 1 packet/sec. We use 3 different MAC
layers: NULLMAC, a simple layer that just forwards packets be-
tween the radio driver and the network layer, X-MAC [26], and
X-MACQ [27], an enhanced X-MAC with a queue and the ability
to rapidly drain the queue in absence of interference. A first Handy-
Mote generates interference using the implementation of Garetto’s
802.11 model presented in Section 5.1. We use the model with the
RTS/CTS access mechanism and set the minimum and maximum
contention window size to 32 and 1032, respectively, as these seem
to be the most widely used parameter settings. We emulate satu-
rated traffic from 20 stations (this amount was chosen to have an
interference time similar to the one of an active microwave oven),
where each station sends packets with a size of 1000 Bytes. A se-
cond HandyMote emulates a microwave oven, as in Section 5.1.

Table 3 shows our results. We depict the average results of
three runs. With NULLMAC and microwave oven interference,
the PRR is slightly lower than 50%, which confirms the results in
Figure 14(a). The table also shows that under microwave oven in-
terference, X-MAC performs better than NULLMAC with smaller
payloads. As explained in [27], the reason for this is X-MAC send-
ing strobes for a longer time than its off-time and hence the receiver
has on average more than one chance to complete the handshake.

While it is known that the PRR decreases with increasing packet
size, X-MAC’s PRR decreases significantly, namely from almost
60% to less than 40%, as the packet size increases from 30 to 100
Bytes. Also in presence of WiFi interference X-MAC performs
much worse for large packet sizes. The experimental results in Fi-
gure 14(a) are taken using NULLMAC. Combining the results in
this figure with the ones in Table 3, we see a very modest decrease
of NULLMAC’s PRR with increasing packet size.

The difference between NULLMAC and X-MAC is that in or-
der to receive a data packet, a receiver that employs NULLMAC
needs to successfully receive 1 packet only, whereas X-MAC re-
quires the completion of the handshake, i.e., the receiver needs to
receive the sender’s strobe and acknowledge it, before the sender
can send the data packet to the receiver. In our experiments, this
data exchange must happen within one time period without inter-
ference. This means that until the data packet itself is transmit-
ted, a substantial fraction of a time period without interference has
already been used for the handshake. Note that this time period
without interference is short due to the bursty interference patterns
created by both microwaves and Garetto’s WiFi model as the lat-
ter emulates saturated traffic. This explains why the packet size is

185

Payload Oven Oven WiFi Both Both
(Bytes) NULL X-MAC X-MAC X-MAC X-MACQ

30 45.3% 59.2% 41.6% 20.9% 39.7%
100 43.6% 39.5% 23.8% 9.2% 15.6%

Table 3: Performance of different MAC protocols under emu-
lated but realistic interference (average PRR in %)

more important for X-MAC than for NULLMAC. The table also
shows that X-MACQ is more robust than X-MAC against inter-
ference, hence confirming the results in [27] using more realistic
interference patterns generated using JamLab.

8. RELATED WORK
The study of interference sources in the ISM band has received

significant attention from the research community, especially in the
crowded 2.4 GHz band. Petrova et al. [1] perform measurements
using 802.11g/n devices and quantify their impact on 802.15.4 net-
works. Sikora reports the impact of microwave ovens, 802.11, and
Bluetooth on the packet reception rate of 802.15.4 networks [2].
Liang et al. present a careful analysis of the symmetric and asym-
metric IEEE 802.15.4 and 802.11 interference patterns [28]. The
high number of interference sources in the ISM band has moti-
vated the study of solutions to overcome interference, in particular
WiFi [17, 29]. While we evaluate the same sources of interference,
the distinctive and most important contribution of our work is that
we provide a low-cost tool to (re)create interference in sensornet
testbeds, which goes beyond a one-time-evaluation approach, and
enables a better study and debugging of communication protocols.

To the best of our knowledge, we are the first to develop such a
low-cost testbed framework for the generation of controlled and re-
alistic interference. Existing sensornet testbeds do not provide any
capability for interference generation, or they are limited to static
WiFi access points randomly placed in the testbed [3]. JamLab, in-
stead, can seamlessly augment existing sensornet testbeds to study
the robustness of protocols against interference.

We have recently discussed the idea of using the CC2420 test
modes to generate interference [14, 15] in conjunction with a di-
rectional antenna to direct the interference towards a selected set of
motes. Our present work goes significantly beyond this, by provid-
ing accurate RSSI readings, record-and-playback and emulation of
interference capabilities, as well as the integration of these func-
tions into a testbed for interference studies.

Several studies have evaluated the impact of interference on the
performance of MAC protocols [27, 30], and a set of fair trans-
mission schedules have been derived by synchronizing the trans-
mission of neighboring nodes in the presence of interference [31].
This type of studies would definitely benefit from the realistic in-
terference patterns that JamLab provides.

9. CONCLUSIONS AND FUTURE WORK
Interference has a strong impact on the performance of sensor

networks. Hence, protocols need to be tested under realistic and
controlled interference. We present JamLab, a tool to augment
existing sensornet testbeds with a low-cost infrastructure for the
creation of realistic and repeatable interference patterns. JamLab
provides simple models to emulate the interference patterns gen-
erated by several devices, and a playback capability to regenerate
recorded interference patterns. We demonstrate the utility of Jam-
Lab by showing its accuracy in both temporal and spatial domains.

Future work includes a further automation of the testbed con-
figuration procedure, and an accurate study and modeling of new
interference sources in the frequency bands used by sensornets.

Acknowledgments
We thank our Shepherd Dr. Yuvraj Agarwal for his constructive
comments. This work has been supported by the European Com-
mission with contracts FP7-ICT-224282 (GINSENG) and FP7-2007-
2-224053 (CONET), by VINNOVA, by SSF and by the DFG-funded
Cluster of Excellence 306/1 ”Inflammation at Interfaces”.

10. REFERENCES
[1] M. Petrova et al. Interference Measurements on Performance

Degradation between Colocated IEEE 802.11g/n and IEEE 802.15.4
Networks. In International Conference on Networking 2007.

[2] A. Sikora and V.F. Groza. Coexistence of IEEE 802.15.4 with other
systems in the 2.4 GHz-ISM-Band. In IEEE Instrumentation and
Measurement Technology, May 2005.

[3] Divya Sakamuri. NetEye: a Wireless Sensor Network Testbed.
Master’s thesis, Wayne State University, 2008.

[4] Texas Instruments. Smart RF CC2420 datasheet - 2.4 GHz IEEE
802.15.4 / ZigBee-Ready RF Transceiver, March 2007.

[5] A. Dunkels and B. Grönvall and T. Voigt. Contiki - a Lightweight and
Flexible OS for Tiny Networked Sensors. In EmNetS’04.

[6] The Contiki Projects Community.
http://sourceforge.net/projects/contikiprojects.

[7] Y. Liu et al. IEEE 802.11 WLANs WG Group Information doc. no.
802.11-10/1079r0, September 2010.

[8] P. Verkaik, Y. Agarwal, R. Gupta, and A. Snoeren. SoftSpeak:
Making VoIP Play Fair in Existing 802.11 Deployments. In NSDI’09.

[9] J. Polastre, J. Hill, and D. Culler. Versatile low power media access
for wireless sensor networks. In SenSys’04.

[10] Anritsu MS2711D Spectr. Analyzer. http://www.anritsu.com.
[11] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt. Enabling Large-Scale

Storage in Sensor Networks with the Coffee File System. In IPSN’09.
[12] Q. Wang and T. Zhang. Source Traffic Modeling in WSN for Target

Tracking. In Proc. of the 5th ACM PE-WASUN, 2008.
[13] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He. Software-based

on-line energy estimation for sensor nodes. In Proc. of EmNets’07.
[14] C.A. Boano et al. Controllable Radio Interference for Experimental

and Testing Purposes in WSN. In IEEE SenseApp 2009.
[15] C.A. Boano, K. Römer, Z. He, T. Voigt, M. Zuniga, and A. Willig.

Generation of Controllable Radio Interference for Protocol Testing in
Wireless Sensor Networks. In SenSys’09, demo session.

[16] Flaviu Cristian. Probabilistic clock synchronization. Distributed
Computing, 3(3):146 – 158, 1989.

[17] R. Musaloiu-E. and A. Terzis. Minimising the effect of WiFi
interference in 802.15.4 WSN. IJSNet’07, 3(1):43–54.

[18] G. Bianchi. Performance analysis of the IEEE 802.11 distributed
coordination function. IEEE Journal on selected areas in
communications, 18(3):535–547, 2000.

[19] M. Garetto and C.F. Chiasserini. Performance analysis of 802.11
WLANs under sporadic traffic. In Networking’05.

[20] P. Rathod et al. Characterizing the exit process of a non-saturated
IEEE 802.11 wireless network. In MobiHoc’09.

[21] M. Vollmer. Physics of the microwave oven. In Physics Education
39/1, pages 74–81. IOP Publishing Ltd, 2004.

[22] T. Taher, M. Misurac, J. LoCicero, and D. Ucci. Microwave oven
signal modelling. In WCNC’08.

[23] D. Lymberopoulos, Q. Lindsey, and A. Savvides. An Empirical
Characterization of Radio Signal Strength Variability in 3-D IEEE
802.15.4 Networks Using Monopole Antennas. In EWSN’06.

[24] M. Zuniga and B. Krishnamachari. Analyzing the Transitional
Region in Low-Power Wireless Links. In SECON’04.

[25] E. Miluzzo, X. Zheng, K. Fodor, and A. Campbell. Radio
characterization of 802.15.4 and its impact on the design of mobile
sensor networks. In Wireless Sensor Networks, volume 4913, 2008.

[26] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-MAC: a short
preamble MAC protocol for duty-cycled WSN. In SenSys’06.

[27] C.A. Boano, T. Voigt, N. Tsiftes, L. Mottola, K. Römer, and
M. Zuniga. Making Sensornet MAC Protocols Robust Against
Interference. In EWSN’10.

[28] C. Liang, N. Priyantha, J. Liu, and A. Terzis. Surviving Wi-Fi
Interference in Low Power ZigBee Networks. In SenSys’10.

[29] J. Hauer, V. Handziski, and A. Wolisz. Experimental Study of the
Impact of Wlan Interference on IEEE 802.15.4 BAN. In EWSN’09.

[30] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.M. Liang, and A. Terzis.
Design and Evaluation of a Versatile and Efficient Receiver-Initiated
Link Layer for Low-Power Wireless. In SenSys’10.

[31] Y. Yi, G. de Veciana, and S. Shakkottai. On optimal MAC scheduling
with physical interference. In INFOCOM’07.

186

