

Integrating dataflow and non-dataflow real-
time application models on multi-core
platforms

PhD Thesis

CISTER-TR-170512

2017/05/23

Hazem Ali

PhD Thesis CISTER-TR-170512 Integrating dataflow and non-dataflow real-time application ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Integrating dataflow and non-dataflow real-time application models on multi-core
platforms

Hazem Ali

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: haali@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Integrating Dataflow and Non-Dataflow

Real-time Application Models on

Multi-core Platforms

Hazem Ismail Abdelaziz Ali

Programa Doutoral em Engenharia Eletrotécnica e de Computadores

Supervisor: Prof. Dr. Luís Miguel Rosário da Silva Pinho

Co-Supervisor: Dr. Kjell Benny Åkesson

June 13, 2017

© Hazem Ismail Abdelaziz Ali, 2016

Integrating Dataflow and Non-Dataflow Real-time
Application Models on Multi-core Platforms

Hazem Ismail Abdelaziz Ali

Programa Doutoral em Engenharia Eletrotécnica e de Computadores

Approved by :

President : Dr. José Alfredo Ribeiro da Silva Matos
External Referee : Dr. Sander Stuijk

External Referee : Dr. Johan Eker
Internal Referee : Dr. Luís Miguel Pinho de Almeida

Internal Referee : Dr. Mário Jorge Rodrigues de Sousa

Supervisor : Dr. Luís Miguel Rosário da Silva Pinho

June 13, 2017

Abstract

Day by day, gradually and steadily, applications in all segments of computing, including embedded
systems, are getting more complex, because of the increased range of functionality they offer. This
complexity requires platforms with increased performance that satisfies such growing computa-
tional demands. This need has driven the adoption of multi-core processors in embedded systems,
since they allow performance to be increased at a reasonable energy consumption.

Future real-time embedded systems will increasingly incorporate mixed application models
with timing constraints running on the same multi-core platform. These application models are
dataflow applications with timing constraints and traditional real-time applications modelled as in-
dependent arbitrary-deadline tasks. Examples of such mixed embedded systems are Autonomous
Driving Systems and Unmanned Ariel Vehicles. These systems require guarantees that all running
applications execute satisfying their timing constraints. Also, to be cost-efficient in terms of de-
sign, they require efficient mapping strategies that maximize the use of system resources to reduce
the overall cost.

This work proposes a complete approach with a main goal to integrate mixed application
models (dataflow and traditional real-time applications) with timing requirements on the same
multi-core platform. This approach guarantees that the mapped applications satisfy their timing
constraints and maximize utilization of the platform resources. Three main algorithms to achieve
the main goal. The first algorithm is called slack-based merging, which is an offline dataflow graph
reduction technique that aims to decrease the complexity of dataflow applications, and thereby
their analysis time. The algorithm reduces the run-time of our approach with 82% to 90%, com-
pared to when it is not used. The experimental evaluation with real application models from the
SDF3 benchmark shows that the reduced graph: 1) respects the timing constraints, i.e. throughput

and latency, of the original application graph and 2) when the throughput constraint is relaxed
with respect to the maximal throughput of the graph, the merging algorithm is able to achieve a
larger reduction in graph size.

The second algorithm is called Timing Parameter Extraction, which extracts timing param-
eters, i.e. offsets, periods and deadlines, of dataflow applications with timing constraints, i.e.
throughput and latency, converting them into periodic arbitrary-deadline tasks. These tasks exe-
cute in a way that preserve the dependencies of the original dataflow application using the offset

parameter, while satisfying its timing constraints using the period and deadline parameters. This
algorithm is a means to unify the two mixed application models into a single real-time task set. The
main advantage of this algorithm is that the extraction of the timing parameters is independent of
the specific scheduler being used, of other applications running in the system and the details of the
particular platform. In addition, the experimental evaluation shows that the reduced-size dataflow
graphs generated by the slack-based merging algorithm, in particular for applications that do not
need to execute at maximum throughput, help speeding up the extraction of the timing parameters.

The third algorithm is called communication-aware mapping, which allocates the mixed ap-
plication models on a 2D-Mesh multi-core platform after unifying them. The mapping process is

i

ii

done considering the timing constraints of the applications and maximizing resource utilization
of the platform, while accounting for the communication cost of the dataflow applications. The
algorithm is based on a novel mapping heuristic called Sensitive-Path-First, which surpasses the
well-known First Fit bin-packing heuristic in terms of number of allocated applications and run-
time by up to 28% and 22%, respectively. The experimental evaluation reveals a direct relation
between the number of allocated applications and the availability of communication resources,
which demonstrates the importance of considering communication cost. We also show that ignor-
ing communication cost, as frequently done in existing work, allows 76% more applications to be
mapped, although the applications in the system are no longer guaranteed to satisfy their timing
constraints.

Together, these three important algorithms successfully achieve the main goal of this thesis and
play a part in allowing embedded real-time systems to map and schedule mixed application mod-
els. The complete approach and the three algorithms presented in this thesis have been validated
through proofs and experimental evaluation.

Resumo

À semelhança do que acontece noutros domínios da computação, os sistemas embebidos estão
cada vez mais complexos, devido ao aumento e diversidade das funcionalidades que fornecem, o
que tem levado à necessidade de plataformas com maior desempenho. Esta exigência tem levado
à cada vez maior adoção de plataformas multi-núcleo de processamento (multi-core) neste tipo de
sistemas, permitindo o aumento de desempenho com custos razoáveis de energia.

Os sistemas embebidos do futuro integrarão na mesma plataforma multi-núcleo aplicações
com diferentes modelos de computação, e com requisitos temporais. Entre estas é expectável
a necessidade de integrar aplicações tradicionais de tempo-real (modelizadas por tarefas inde-
pendentes) com aplicações modelizadas por fluxos de dados (dataflow). Exemplos podem ser
encontrados em sistemas de condução autónoma ou veículos aéreos sem piloto, sistemas que re-
querem a garantia de cumprimentos dos prazos temporais de todas as aplicações. Para além disso,
são sistemas em que é fundamental a existência de estratégias automatizadas de mapeamento da
computação que maximizem a utilização dos recursos disponibilizados pela plataforma.

Esta dissertação propõe uma metodologia completa para a integração numa só plataforma
multi-núcleo de aplicações com modelos computacionais distintos (fluxo de dados e tradicionais
tempo-real) e com requisitos temporais. Esta metodologia permite garantir que as aplicações
cumprem com os seus requisitos temporais, ao mesmo tempo que maximiza a utilização dos re-
cursos do sistema. Para este efeito, a metodologia inclui três algoritmos diferentes.

Num primeiro passo, é utilizado um algoritmo, slack-based merging, para reduzir a complex-
idade dos grafos de fluxo de dados com que são modelizadas as aplicações que utilizam este
modelo computacional, o que permite reduzir o tempo de análise das mesmas. Este algoritmo
permite reduzir o tempo de processamento do processo de 82% a 90%. A avaliação experimental
com modelos de aplicações reais, do benchmark SDF3 demonstra que o grafo reduzido: 1) respeita
os requisites temporais do grafo original, i.e., o desempenho (throughput) e a latência (latency),
e 2) quando se relaxa o requisito de desempenho em relação ao máximo permitido pelo grafo, o
algoritmo permite uma maior redução do tamanho do grafo.

O segundo algoritmo, Timing Parameter Extraction, permite extrair as características tempo-
rais tradicionais de uma aplicação de tempo-real, i.e., períodos (periods), prazos (deadlines) e
deslocamentos (offsets), a partir dos modelos de fluxo de dados com requisitos de desempenho
(throughput) e latência (latency), convertendo assim estes fluxos em tarefas periódicas indepen-
dentes. Estas tarefas executam de forma a preservar as dependências do modelo de fluxo de dados
original através do deslocamento da ativação de tarefas consequentes, satisfazendo os requisitos
de processamento e latência através dos períodos de ativação e prazos temporais. Este algoritmo
permite assim unificar os dois modelos distintos de computação, num só conjunto de tarefas de
tempo-real. A vantagem principal deste algoritmo é que esta extração de parâmetros é indepen-
dente do escalonador utilizado, de outras aplicações que executam no sistema, e dos detalhes da
plataforma. A avaliação experimental também demonstra que o tempo de processamento desta
extração é reduzido pela redução dos grafos obtida pelo algoritmo anterior, particularmente para

iii

iv

aplicações que não necessitam executar com o máximo desempenho.
O terceiro algoritmo, communication-aware mapping, mapeia as tarefas das aplicações que

usam os dois modelos de computação, após unificação, em plataforma multi-núcleo com co-
municação em 2 dimensões entre núcleos (2D-Mesh). O mapeamento é efetuado considerando
os requisites temporais das aplicações, e maximiza a utilização dos recursos computacionais da
plataforma, tendo em consideração os potenciais custos de comunicação. Este algoritmo é baseado
numa noval heurística, Sensitive-Path-First, a qual obtém melhores resultados que a heurística
First-Fit, tanto em termos de número de aplicações mapeadas como em tempo de processamento
(28% e 22% melhor, respetivamente). A avaliação experimental mostra uma relação direta entre o
número de aplicações mapeadas e a disponibilizada de recursos de Comunicação, o que demonstra
a importância da consideração destes custos durante o mapeamento. Também mostramos que, ig-
norando os custos de comunicação, como é habitualmente feito em trabalhos semelhantes, permite
mapear até 76% mais aplicações, embora sem conseguir garantir a satisfação dos seus requisitos
temporais.

Em conjunto, estes três algoritmos importantes permitem atingir com sucesso o objetivo prin-
cipal desta dissertação, potenciando o mapeamento e integração em sistemas embebidos de tempo-
real de aplicações com modelos computacionais distintos. A metodologia complete e os três algo-
ritmos apresentados na dissertação foram validados por provas e avaliação experimental.

Acknowledgements

Undertaking this PhD has been a truly life-changing experience. Like most research work, this
PhD is the result of a curious and inquisitive spirit, coupled with plenty of hard work and per-
sistence. Naturally, it was difficult at times, but overall, the fulfilling moments far exceeded the
hardship ones. This research would not be possible to do it without the support and guidance that
I received from a lot of people, to whom I will always be grateful.

First, I would like to express my sincere gratitude to my supervisor Prof. Luís Miguel Pinho
for believing in me and giving me the chance to work with him. His continuous guidance, pa-
tience, motivation, and support through my entire PhD studies helped me in all time of research.
Also, I wish to extend a sincere and heartfelt thanks to my co-supervisor Dr. Benny Akesson on
both professional and personal level. On professional level, for his dedication and comprehensive
assistance through my entire research journey. His sharp insights, valuable feedback and detailed
discussions with him, helped in shaping up my research till this final outcome. On the personal
level, Benny is one of the friendliest persons that you forget that he is actually your supervisor.
He always maintains a personal relation with his students where he socialize and involve in dif-
ferent activities. I will never forget our interesting long runs, where we had fun and enjoyable
discussions.

Second, a huge thank goes to Dr. Stefan Markus Petters. Although we did not work directly
together, he was one of the main reasons to join CISTER research group. He was kind enough to
listen to my counter argument, after he sent an email not accepting me for the PhD position. This
normally does not happen in applying for PhD positions. I am really grateful for him.

Third and most important, none of this achievements would have been possible without the
love and patience of my family. My parents, Ismail Abdelaziz Ali and Somaia Mohamed Elsayad,
have been a constant source of love, concern, support and strength all these years. Especially
my mother, Somaia Mohamed Elsayad, for the long hours she invested teaching me mathematics,
algerbra and geometry that made me like engineering. I owe her what I am right now. Also, I would
like to express my heartfelt gratitude to my brothers and sister, Mohamed Abdelaziz, Ahmed and
Reham, for their continuous encouragement during my long research journey that started in 2008,
going to sweden for doing my masters degree.

Fourth, my dear friend and CISTER companion Borislav Nikolić. We have spent more than
six years together at CISTER, where we shared a very memorable moments of happiness, success
and lifetime achievements. His valuable advice along with his cheerful and funny spirit made my
PhD life easier. I deeply thank him very much. I will never forget such times and I wish you all
the best in your life and career.

Fifth, Prof. Eduardo Tovar for creating an outstanding work environment in CISTER Re-
search Center. I have always enjoyed the working environment in our office, with great office
mates. Especially Muhammad Ali Awan and Claudio Maia for being good friends and colleagues.
During these six years, we have had all the interesting discussions covering a variety of topics,
such as technology, sports, culture etc. I would like to add that I feel fortunate to have known

v

vi

Ricardo Garibay, Hossein Fotouhi, Maryam Vahabi, Artem Burmyakov, Kostiantyn Berezovskyi,
Gurulingesh Raravi, Dakshina Dasari, António Barros, Paulo Baltarejo, Syed Aftab Rashid and
Harrison Kurunathan during these years. Last but not the least, I extend my gratitude to all the
staff members at CISTER Research Center, who have made these years more enjoyable.

This work was partially supported by FCT (Fundação para a Ciência e Tecnologia) under the

individual doctoral grant SFRH/BD/79872/2011.

Hazem Ismail Ali

List of Publications

Articles Included in this Thesis

• Hazem Ismail Ali, Luís Miguel Pinho and Benny Akesson, "Critical-Path-First based

allocation of real-time streaming applications on 2D mesh-type multi-cores," in IEEE

19th International Conference on Embedded and Real-Time Computing Systems and

Applications, Taipei, 2013, pp. 201-208. doi: 10.1109/RTCSA.2013.6732220, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

6732220&isnumber=6732192

• Hazem Ismail Ali, Benny Akesson and Luís Miguel Pinho, "Generalized Extraction of

Real-Time Parameters for Homogeneous Synchronous Dataflow Graphs," in 23rd

Euromicro International Conference on Parallel, Distributed, and Network-Based

Processing, Turku, 2015, pp. 701-710. doi: 10.1109/PDP.2015.57, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

7092796&isnumber=7092002

• Hazem Ismail Ali, Sander Stuijk, Benny Akesson, and Luís Miguel Pinho. "Reducing the

complexity of dataflow graphs using slack-based merging,". in ACM Transactions on

Design Automation of Electronic Systems, 22, 2, Article 24 (January 2017), 22 pages.
ISSN 1084-4309. doi: 10.1145/2956232. URL:
http://dx.doi.org/10.1145/2956232

• Hazem Ismail Ali, Benny Akesson and Luís Miguel Pinho. Combining dataflow

applications and real-time task sets on multi-core platforms. In Proceedings of the 20th

International Workshop on Software and Compilers for Embedded Systems

(SCOPES ’17), Sander Stuijk (Ed.). ACM, New York, NY, USA, 60-63. doi:
10.1145/3078659.3078671 URL: https://doi.org/10.1145/3078659.3078671

Other Articles

• Hazem Ismail Ali and Luís Miguel Pinho. 2011. "A parallel programming model for ada".
In Proceedings of the 2011 ACM annual international conference on Special interest

group on the ada programming language (SIGAda ’11). ACM, New York, NY, USA,
19-26. DOI=http://dx.doi.org/10.1145/2070337.2070350

• Borislav Nikolić, Hazem Ismail Ali, Stefan M. Petters, and Luís Miguel Pinho. 2013. "Are

virtual channels the bottleneck of priority-aware wormhole-switched NoC-based

many-cores?". In Proceedings of the 21st International conference on Real-Time

Networks and Systems (RTNS ’13)". ACM, New York, NY, USA, 13-22.
DOI=http://dx.doi.org/10.1145/2516821.2516845

vii

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6732220&isnumber=6732192
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6732220&isnumber=6732192
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7092796&isnumber=7092002
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7092796&isnumber=7092002
http: //dx.doi.org/10.1145/2956232
https://doi.org/10.1145/3078659.3078671
http://dx.doi.org/10.1145/2070337.2070350
http://dx.doi.org/10.1145/2516821.2516845

viii

“Science is not going to yield anything unless you devote yourself completely.

But even if you do devote yourself entirely, it remains uncertain whether you will get anything

from it.”

Ibrahim Al-Nazzam

ix

x

Contents

List of Abbreviations xxi

List of Symbols xxiii

1 Introduction 1

1.1 Real-time Computational Model . 2
1.1.1 Real-time Applications . 3
1.1.2 Worst-Case Execution Time . 4

1.2 Dataflow Computational Model . 5
1.2.1 Dataflow Applications . 5
1.2.2 Streaming Applications . 7

1.3 Processing Platform . 8
1.4 Problem Statement . 12
1.5 Solution Overview . 13
1.6 Thesis Contributions . 15
1.7 Thesis Organization . 16

2 State of the Art 19

2.1 Dataflow Graph Analysis . 19
2.2 Timing Parameter Extraction . 21
2.3 Efficient Mapping . 23

3 Background 27

3.1 Real-time Systems . 27
3.1.1 Multi-core Scheduling . 29
3.1.2 Feasibility Tests . 29

3.2 Dataflow Computational Model . 32
3.2.1 Synchronous Dataflow . 32
3.2.2 Homogenous Synchronous Dataflow . 34
3.2.3 Buffer Modelling in Dataflow Graphs 35

3.3 Multi-/Many-Core Platforms . 35
3.4 System Model . 39

4 Reducing Complexity of Dataflow Graphs 41

4.1 Definitions . 42
4.2 Safe Merge . 44

4.2.1 Definition and Function . 44
4.2.2 A Safe Merge is Deadlock-Free . 45

4.3 Slack-Based Merging Algorithm . 47

xi

xii CONTENTS

4.3.1 Merging Strategy . 47
4.3.2 Valid Merge . 48
4.3.3 The Algorithm . 49
4.3.4 Complexity Analysis . 51
4.3.5 Example . 51

4.4 Experiments . 52
4.5 Summary . 54

5 Timing Parameter Extraction 55

5.1 Preliminaries . 55
5.2 Deadline Assignment Strategies for Pipelines 56

5.2.1 The NORM Method . 56
5.2.2 The PURE Method . 57

5.3 Path Sensitivity . 57
5.4 Deriving Latency Constraints . 58

5.4.1 Deriving Constraints for Cyclic Paths 59
5.4.2 Deriving End-to-End Latency Constraint 59

5.5 Timing Parameters Extraction Algorithm . 60
5.5.1 First phase: Finding All Time-Constrained Paths 60
5.5.2 Second phase: Extracting Timing Parameters 62
5.5.3 Complexity Analysis . 64
5.5.4 Example . 65

5.6 Validation of the TPE algorithm . 66
5.7 Experiments . 69

5.7.1 Experimental Setup . 70
5.7.2 Experimental Results . 71

5.8 Summary . 74

6 Communication-Aware Mapping 75

6.1 Modelling Communication Cost . 76
6.2 Core Selection Methodology . 79
6.3 Communication-Aware Mapping . 80

6.3.1 General Functionality . 82
6.3.2 Sensitive-Path-First Algorithm . 83

6.4 Limitations . 85
6.5 Complexity Analysis . 86

6.5.1 Communication-Aware Mapping . 86
6.5.2 Complete Approach . 87

6.6 Experiments . 87
6.6.1 General Experimental Setup . 87
6.6.2 Evaluation of the Communication Cost 88
6.6.3 Evaluation of the Mapping Heuristic . 90
6.6.4 Evaluation of Slack-based Merging . 91

6.7 Summary . 93

CONTENTS xiii

7 Conclusion and Future Directions 95

7.1 Conclusions . 95
7.1.1 Slack-Based Merging . 96
7.1.2 Timing Parameter Extraction . 96
7.1.3 Communication-Aware Mapping . 97

7.2 Future Work . 98
7.2.1 Timing Parameter Extraction (TPE) . 98
7.2.2 Communication-Aware Mapping . 98

References 101

xiv CONTENTS

List of Figures

1.1 Dataflow application. 5
1.1(a) . 5
1.1(b) . 5

1.2 Example of SDF and HSDF graphs. 6
1.2(a) SDF graph . 6
1.2(b) HSDF graph . 6

1.3 Examples of embedded systems running streaming applications. 8
1.3(a) Smartphones [Kenya Tech News, 2015]. 8
1.3(b) Autonomous driving systems [Daily Autonomous Car News, 2015] 8

1.4 Examples of Interconnection Networks (IN) [Sanchez et al., 2010]. 10
1.4(a) 2D Mesh . 10
1.4(b) Fat Tree . 10
1.4(c) Flattened Butterfly . 10

1.5 Problem to be addressed . 12
1.6 Solution outline. 13

3.1 Real-time task parameters. 28
3.2 An SDF graph and its HSDF representation. 32

3.2(a) SDF graph. 32
3.2(b) HSDF graph. 32

3.3 An SDF graph and its HSDF representation with finite-size buffers. 35
3.3(a) SDF graph . 35
3.3(b) HSDF graph . 35

3.4 TILE64™ block diagram [Bell et al., 2008]. 36
3.5 A TDM frame with frame size F of 6 where 2 allocated slots κ1 to application A1

for continous slot assignment policy [Akesson et al., 2015]. 38

4.1 An SDF graph and its HSDF representation. 42
4.1(a) SDF graph . 42
4.1(b) HSDF graph . 42

4.2 An SDF graph and its HSDF representation with finite-size buffers. 43
4.2(a) SDF graph . 43
4.2(b) HSDF graph . 43

4.3 A safe merge operation of two independent firings (vi j
, vkl

) into a new cluster V . . 44
4.4 HSDF graph after adding s and t. 45
4.5 Example of slack-based merging. 51

4.5(a) Merging of vb0 and vb1 . 51
4.5(b) Merging of vc0 and vc1 . 51

xv

xvi LIST OF FIGURES

4.5(c) Final merged graph Gm . 51

5.1 HSDF graph after adding source s and sink t. 60
5.2 Enumeration of time-constrained paths. 61
5.3 Partial path classes for offsets setting . 62

5.3(a) Class Head partial path . 62
5.3(b) Class Tail partial path . 62
5.3(c) Class Middle partial path . 62

5.4 HSDF example. 65
5.4(a) HSDF application. 65
5.4(b) HSDF timing diagram. 65
5.4(c) Actors’ timing parameters. 65

5.5 h263encoder results. 70
5.5(a) Results in terms of number of actors . 70
5.5(b) Results in terms of run-time . 70
5.5(c) The percentage of change in the CP execution time of Gm compared to Gh 70

5.6 h263decoder results. 71
5.6(a) Results in terms of number of actors . 71
5.6(b) Results in terms of run-time . 71
5.6(c) The percentage of change in the CP execution time of Gm compared to Gh 71

5.7 satellite results. 72
5.7(a) Results in terms of number of actors . 72
5.7(b) Results in terms of run-time . 72
5.7(c) The percentage of change in the CP execution time of Gm compared to Gh 72

5.8 modem results. 73
5.8(a) Results in terms of number of actors . 73
5.8(b) Results in terms of run-time . 73
5.8(c) The percentage of change in the CP execution time of Gm compared to Gh 73

6.1 Initial modelling of communication. 76
6.1(a) HSDF graph . 76
6.1(b) HSDF graph with message actors Gcom 76

6.2 Core selection methodology . 80
6.2(a) spiral_move . 80
6.2(b) find_nearest_core . 80

6.3 Partial path classification used by SPF heuristic. 85
6.3(a) Class Head partial path . 85
6.3(b) Class Tail partial path . 85
6.3(c) Class Middle partial path . 85

6.4 Effect of reservation bandwidthR. 89
6.5 Evaluation of the mapping heuristic. 90

6.5(a) Results in terms of average number of mapped applications. 90
6.5(b) Results in terms of run-time. 90

6.6 Mapping results for merged and original HSDF graphs. 92
6.6(a) Results in terms of average number of mapped applications. 92
6.6(b) Results in terms of run-time. 92

List of Tables

4.1 SDF3 benchmark applications. 52
4.2 Run-time (seconds) of the algorithm. 53
4.3 Number of actors before and after merging. 54

6.1 General configuration of the experimental setup. 88
6.2 SDF3 benchmark applications. 88

xvii

xviii LIST OF TABLES

List of Algorithms

1 Quick convergence Processor-demand Analysis (QPA) [Zhang and Burns, 2009a]. 31

2 Slack-based merging . 50

3 Extracting timing parameters of HSDF . 63

4 Complete approach for integrating mixed application models on the same platform Π . . 79
5 Communication-aware mapping . 81
6 Sensitive-Path-First (SPF) . 84

xix

xx LIST OF ALGORITHMS

List of Abbreviations

ADF Affine Dataflow
BFS Breadth First Search
bps bits per second
CPF Critical-Path-First
CP Critical Path
CSDF Cyclo-Static Dataflow
DAG Directed Acyclic Graph
dbf demand bound function
DCG Directed Cyclic Graph
DF Dataflow
DM Deadline Monotonic
DSP Digital Signal Processing
DVFS Dynamic Voltage and Frequency Scaling
EDF Earliest Deadline First
FF First Fit
FIFO First In First Out
GEDF Global Earliest Deadline First
HSDF Homogeneous Synchronous Dataflow
ILP Integer Linear Programming
IN Interconnection Network
MCM Maximum Cycle Mean
MLLF Modified Least Laxity First
MPAG Max-Plus Automaton Graph
NDF Non-Dataflow
NoC Network on Chip
PEDF Partitioned Earliest Deadline First
P/C Production/Consumption
RM Rate Monotonic
SCC Strongly Connected Component
SDF Synchronous Dataflow
SDM Space Division Multiplexing
SADF Scenario-Aware Dataflow
SPF Sensitive-Path-First
SPP Static-Priority Preemptive
TGFF Task Graphs For Free
TDM Time Division Multiplexing
TDMA Time Division Multiple Access
TPE Timing Parameters Extraction

xxi

xxii List of Abbreviations

WCET Worst Case Execution Time
XML eXtensible Markup Language

List of Symbols

Task Parameters

τ A task set.
U A task set τ utilization.
τi The ith task.
ai The offset of τi (seconds).
Ci The WCET of τi (seconds).
Ti The period of τi.
Di The relative deadline of τi (seconds).
Di The absolute deadline of τi (seconds).
Si The arrival time of τi (seconds).
Fi The finish time of τi (seconds).
Ui The utilization of τi (seconds).
ρi The density of τi.
Ji The job of τi.
Ri The response time of τi (seconds).

Feasibility Analysis

dbf (t0, t1) The demand bound function within the time interval [t0, t1].
H Hyperperiod (seconds).
ta The upper bound on schedulability (seconds).
tb The synchronous busy period of the processor (seconds).
h(t) The processor demand at time t (seconds).

Dataflow Applications

G A Synchronous Dataflow graph (SDF).
V Set of nodes (actors) in an SDF graph.
E Set of edges (channels) in an SDF graph.
Gh A Homogeneous Synchronous Dataflow graph (HSDF).
Vh Set of nodes (actors) in an HSDF graph.
Eh Set of edges (channels) in an HSDF graph.
Gp A graph representing a pipeline application.
Vp Set of nodes in a pipeline graph.
Ep Set of edges in a pipeline graph.
Gm A merged HSDF graph.
Gcom An HSDF graph with message actors.
d Set of initial tokens in a dataflow (SDF/HSDF) graph.
Γ Topology matrix of an SDF graph.
~q Repetition vector of an SDF graph.

xxiii

xxiv List of Symbols

vi The ith actor of an SDF graph.
vi j

The jth firing of the ith actor of an SDF graph.
ei j A channel starting from actor vi to actor v j.
ζ Throughput requirement.
Pi The ith time-constrained path in an HSDF graph.
P

p
i Partial path of the time-constrained path Pi.

LP
p
i List of partial paths in Pi.

γi The sensitivity of path Pi.
D End-to-end deadline constraint (seconds).
Dxy Latency constraint of a time-constrained path from vx to vy (seconds).
ε laxity on a time-constrained path P (seconds).
δ Task slack (seconds).
Ω(vi j

) Set of predecessor firings of the firing vi j
.

Φ(vi j
) Set of successor firings of the firing vi j

.
ϑi j

Earliest start time of a firing vi j
(seconds).

θi j
Latest finish time of a firing vi j

(seconds).
V̂ Topologically ordered set of actors.
V Merged cluster of HSDF actors.
P Path cover for a DAG component of a Gh.
O The set of cycles in Gh.
σi j

The slack of a firing vi j
(seconds).

Ck The execution time of a cycle k (seconds).
β A constant has a value with range [1,∞).
P The set of all time-constrained paths between actors with latency constraints in an HSDF

graph.
Succ(vx) The list of successor actors for the actor vx.

System Model

Ψ The system.
Π The multi-core platform.
πi The ith core in the platform Π.
n One of the dimensions of the multi-core platform Π.
lsw The router switching latency of a single flit (seconds).
lt The transfer latency of a single flit (seconds).
L The link capacity of IN of the platform Π (Gbps).
Ri The fraction of the link capacity L reserved for an application Ai (percentage).
h The number of hops of a packet p.
ĥ The maximum number of hops on IN of any packet on the platform Π.
F The TDM frame size (slots).
κi Number of allocated slots for application Ai (slots).
p The packet size (bits).
f The flit size (bits).
A The application set.
Ai The ith application of the application set A.
Ap A pipeline application.
m The size of the application set A.
Ci,p The time spent by a packet p of application Ai traversing the IN (seconds).
Ciso

i,p The isolation time of a packet p of application Ai traversing the IN (seconds).

List of Symbols xxv

Ĉi,p The initial value of the WCET of a message actor (seconds).
IT DM
i The TDM interference time of any packet from application Ai traversing the IN (sec-

onds).
IT DM.co
i The TDM interference time of any packet from application Ai traversing the IN, assum-

ing continuous slot assignment policy (slots).
G The IN frequency.

Chapter 1

Introduction

We are living the golden age of ubiquitous computing. If we look around, we will find ourselves

surrounded by computing devices embedded in systems that help or serve us in our daily life.

These systems ranges from simple portable gadgets, e.g. smartphones, cameras, gaming consoles,

to large complex systems, e.g. airplanes, cars, industrial automation. These systems are called

embedded systems.

An embedded system can be broadly defined as a computing system that performs a dedicated

function within a larger system [Jiménez et al., 2014]. This dedicated function is not designed to

be programmed by the end user as functions in general purpose computing [Heath, 2002]. The

concept of computing systems performing dedicated functions is old going back in time preceding

the concept of a general-purpose computer [Jiménez et al., 2014]. If we look at the earliest forms

of computing devices, they adhere better to the definition of an embedded system (in terms of

performing a dedicated function) than to that of a general-purpose computer. An example of

these devices is the Colossus computer [Copeland, 2006], which refers to a series of computers

developed by British code-breakers in 1943-1945. Colossus dedicated function was to help in the

cryptanalysis of the German teleprinter messages during World War II.

At early stages, embedded system designs used microcontrollers as a main processing unit,

since the application demands were simple. Following the rise in application demands and growing

complexity, many embedded systems incorporate multi-core processor architectures for satisfying

the increasing demands of its applications, since the need for high processing power at a low

power budget is a great concern for such systems [Kim et al., 2010]. A real life example of this

trend is the cellular phone. At the beginning, the first generation of cellular phones incorporated

a single core digital signal processor chip [PratapSingh and Kumar Jain, 2014], since its main

dedicated function was making phone calls. However, the latest generations feature at least a quad-

core multi-processor at least, e.g. Samsung Galaxy S7 smartphone incorporating Qualcomm®

Snapdragon™ 820 processor [Qualcomm, 2016]. This is because the cellular phone has become

a portable computer, multimedia and connectivity device.

The trend of the growing functionality of embedded systems can be demonstrated by the vari-

ous types of applications that run simultaneously on the system [Jiménez et al., 2014]. These ap-

1

2 Introduction

plications may have different requirements, such as computational demands or timing constraints.

For example, the cellular phone runs a time-constrained application, which is the phone call, along

with computationally intensive ones, such as multimedia and gaming applications. The fact that

embedded systems run various applications with different requirements can mean different ap-

plications may be represented using different computational models. In such systems running

mixed computational models, guarantees are required to assure stratifying requirements (compu-

tational demands or timing constraints) and the correct execution of the system, especially in case

of safety-critical applications. A current example of such systems is high-end cars, which may run

an advanced multimedia entertainment system (that requires huge computational resources) along

with the autonomous driving function (safety-critical application) that allow self-driving on the

highways, i.e. Tesla Model S, X and 3 [TESLA, 2016].

Embedded system running mixed computational models is an increasing futuristic trend, since

embedded systems are included in almost every device. In this thesis, we are concerned with

embedded systems that incorporate mixed computational models with timing constraints running

on the same multi-core platform. These computational models are dataflow with timing constraints

and traditional real-time task sets, since they represent a wide range of applications running on top

of embedded systems. The dataflow computational model represents Digital Signal Processing

(DSP), Streaming and multimedia applications, while traditional real-time computational model

covers a wide range of time-constrained applications with different levels of criticality. Example

of future embedded systems that run these two computational modes are Autonomous Driving

Systems [Elliott et al., 2014] and Unmanned Air Vehicles [Zhou and Wu, 2006]. These kind

of systems require real-time guarantees that all running applications will execute safely without

missing their deadlines. Also, they require efficient use of system resources to minimize the overall

cost of the system.

We begin this thesis by briefly introducing the two computational models considered in this

thesis. They are the real-time computational model (Section 1.1) and the dataflow computational

model (Section 1.2), where we detail the parameters and the properties of each model. Then we

follow by presenting an overview of processing platforms and architectures in Section 1.3. After

these introductory sections, we introduce our problem statement in Section 1.4, followed by a

detailed proposed solution explaining its functionality in Section 1.5. Finally, we end this chapter

by summarising our thesis contributions and providing the thesis organisation in Sections 1.6

and 1.7, respectively.

1.1 Real-time Computational Model

A real-time computational model is a computing paradigm used to define a certain set of ap-

plications that have to respond to externally generated input stimuli within a finite and specified

period of time [Buttazzo, 2004, Krishna, 1996]. The main characteristic that distinguishes real-

time computing from other types of computation is time, because the correct execution of the

applications of such computational model depends not only on the logical result but also on the

1.1 Real-time Computational Model 3

time it is delivered. The instant when a result must be produced is called a deadline. Failure to

respond within the specified timing interval or a delayed response could be useless or even have

fatal consequences. Based on these consequences, the real-time computational model classifies its

applications into three categories [Buttazzo, 2004, Krishna, 1996]:

Hard real-time: An application is considered hard real-time if missing its deadline during exe-

cution may cause catastrophic consequences on the system under control, surrounding en-

vironment or people.

Firm real-time: An application is considered firm real-time if missing its deadline during exe-

cution is useless for the system, but does not cause any damage.

Soft real-time: An application is considered soft real-time if missing its deadline during execu-

tion has still some utility for the system, although causing performance degradation.

These are the three basic categories of applications according to the real-time computational

model. There exist other classifications that branch from these basic categories. Whatever their

category, all the applications in this computational model are called real-time applications. In

the following section, we will shed more light on real-time applications and its different criteria

classifications.

1.1.1 Real-time Applications

Real-time applications are wide-spread in daily life systems, e.g. telecommunications, aviation,

nuclear reactors, autonomous driving systems , industrial automation. A real-time application can

be modelled as a finite set of simple, highly repetitive entities that are recurrent in nature called

real-time tasks [Baruah and Goossens, 2004]. Each instance of a task is a basic unit of work that

executes on the processing platform and is called a job [Liu, 2000]. A real-time task has different

classifications based on its timing parameters. In the following section we discuss that in details.

Real-time task classification:

A real-time task has several classifications that vary based on the criteria used. In this thesis, we

are concerned with two criteria in real-time task classification. First, the frequency of which a task

instantiates its jobs (task periodicity) classifies a real-time task into three categories [Isović and

Fohler, 2000]:

Periodic tasks: A task that releases its jobs periodically after a fixed time interval is defined as

a periodic task. The fixed duration between the two consecutive jobs releases is called the

period of the task.

Sporadic tasks: A task that releases its jobs at some arbitrary time instant but two consecutive

jobs of a task are always separated by at least a predefined time interval called the minimum

inter-arrival time.

4 Introduction

Aperiodic tasks: Jobs of an aperiodic task are not constrained by a minimum interarrival time or

a period, the task can release jobs at any instant.

Periodic tasks are the most well-known model in real-time systems. Sporadic tasks can be con-

verted into periodic tasks with a predefined minimum interarrival time [Buttazzo, 2004]. Aperiodic

tasks can be handled using periodic server-based systems with budget. The server is modelled as

a periodic task. The server can serve aperiodic tasks until the budget expires. The budget can be

replenished every period [Sprunt, 1990].

Second, real-time tasks are always constrained with a timing requirement. A task should com-

plete its execution within a predefined time interval called the relative deadline. The relative

deadline of a task depends on the nature of an application. For example, the object recogni-

tion/detection application in an autonomous driving system has a relative deadline in terms of a

few microseconds, while a room temperature monitoring application in an air conditioning sys-

tem can have a relative deadline in terms of a few seconds. The relative deadline of a real-time

task, whether it is periodic, sporadic or aperiodic, can be categorized into three main categories

[Buttazzo, 2004, Krishna, 1996]:

Implicit-deadline task model: has a relative deadline equal to its period or minimum inter-arrival

time.

Constrained-deadline task model: may have a relative deadline less than or equal to its period

or minimum inter-arrival time.

Arbitrary-deadline task model: has a relative deadline that has no relation with the period or

minimum inter-arrival time of a task. This means that the relative deadline can be set to any

value regardless the value of the task’s period.

In this thesis, we are concerned with real-time systems running periodic arbitrary-deadline tasks.

1.1.2 Worst-Case Execution Time

The execution time of a real-time task is an important parameter that defines its temporal be-

haviour. Different jobs of a task exhibit variation in their execution time depending on the hard-

ware characteristics, structure of the software, input data and different behaviour of the environ-

ment with which the jobs are interacting. In order to guarantee the temporal correctness, the upper

bound on the execution time of a task, referred to as the Worst-Case Execution Time (WCET), is

specified. The WCET of a task is a safe upper bound greater than or equal to the longest execution

of any job released by the task, under worst-case input conditions without interference from other

tasks. Any miscalculation of WCET may cause a system failure depending on, whether or not,

the system is a hard real-time. There are several methodologies and techniques to determine the

WCET of a task detailed in [Puschner and Burns, 2000, Wilhelm et al., 2008] for further reading.

Real-time system designers consider the WCET of tasks while designing a system to guarantee

the timing properties. However, different jobs of a task may execute for less than their WCET

1.2 Dataflow Computational Model 5

(a) (b)

Figure 1.1: Dataflow application.

leaving behind unused computing resources. This bound is almost always pessimistic to be safe.

Jobs hence typically execute faster.

1.2 Dataflow Computational Model

The dataflow computational model [Chamberlin, 1971, Estrin and Turn, 1963, Rodrigues, 1969,

Shields, 1997] is a well-known, simple, and powerful model of parallel computation. In this

model, there is no notion of a single point or locus of control corresponding to the conventional

sequential computing. However, it models an application as a set of tasks with data dependencies.

It is a very useful specification mechanism for signal processing systems since it captures the

intuitive expressiveness of block diagrams, flow charts, and signal flow graphs, while providing

the formal semantics needed for system design and analysis tools.

1.2.1 Dataflow Applications

A dataflow application is a directed graph, where the vertices represent computation tasks and

edges represent First-In First-Out (FIFO) queues that direct data values from the output port of

one computation task to the input port of another. Hence, a dataflow application can be consid-

ered a set of computation tasks with dependencies. The graphs’ vertices (computation tasks) are

called actors, while its edges (FIFO queues) are called channels. Channels thus represent data

dependencies between actors.

A dataflow application executes by performing the functions defined by its actors. An actor

can be a single instruction, or a sequence of instructions, since the dataflow model does not imply a

limit on the size or complexity of actors. Initially, an actor is an idle task. Its execution is triggered

once the required amount of data arrives on its input ports. The amount of input data is specified

by each actor according to its functional requirements. Many actors may be ready to execute

simultaneously, and thus represent many asynchronous concurrent computation events. An actor

starts execution by consuming data from its corresponding input ports, performing computations,

and then produce a certain amount of data on its output ports. The execution process of an actor is

called a firing, while the data produced or consumed in the firing process are referred to as tokens.

Figure 1.1 shows an example of a dataflow graph, that consists of actors (a, b) and the channel

between them represented as a FIFO queue that direct tokens from the output port of actor a to

the input port of actor b. Initially, actors a and b are idle. Once the required tokens are available

6 Introduction

(a) SDF graph (b) HSDF graph

Figure 1.2: Example of SDF and HSDF graphs.

on the input port of actor a, it consumes them, starting the firing process, then produces tokens on

its output port. The tokens produced are transferred to the input port of actor b through the FIFO

channel, triggering its firing process that results in producing tokens on its output port similar to

actor a. The functions performed by the actors define the overall function of the dataflow graph.

For example, Figure 1.1 could represent a water level control system, where actor a is measuring

the current level of water in a tank and send signals to actor b that controls the operation of the

water pump.

A dataflow application has three important timing parameters, they are:

Execution time of its actors: an actor may have different values of execution time. This may be

due to different tokens consumed, which triggers different functions to be executed inside

the actor. Also, it may be due to the same reasons a real-time task faces that are mentioned

previously in Section 1.1.2. However, for predictable execution behaviour and analysis

purposes, the execution time determined for each actor represents an upper bound (WCET)

to all of its firing modes. The calculation of WCET is mentioned earlier in Section 1.1.2.

Throughput: is an important constraint and crucial indicator of performance for dataflow appli-

cations. The throughput of a dataflow application refers to how often an actor produces

an output token. To compute throughput, the WCET of the firing of each actor has to be

measured and an execution scheme must be defined. The execution scheme is the self-

timed execution of actors, where each actor fires as soon as all of its input data are available

[Sriram and Lee, 1997].

Latency: is a timing constraint that defines a time bounded interval between firings of two actors

in the dataflow application. It can be realised as a relative deadline for the firings that happen

between these specific two firings.

There exist several dataflow computational models, e.g. Synchronous Dataflow (SDF), Homo-

geneous Synchronous Dataflow (HSDF) [Lee and Messerschmitt, 1987b], Cyclo-static Dataflow

(CSDF) [Bilsen et al., 1995], Scenario-Aware Dataflow (SADF) [Theelen et al., 2006], where

each model have its own specifications and rules that enable capturing wide range of applications.

However, we focus on those that can be described by SDF and HSDF [Lee and Messerschmitt,

1987b].

SDF: is useful for modelling and analysis of Digital Signal Processing (DSP) and concurrent

multimedia applications [Lee and Messerschmitt, 1987b, Poplavko et al., 2003, Sriram and

1.2 Dataflow Computational Model 7

Bhattacharyya, 2000, Wiggers et al., 2007], where they represent computations on an in-

definitely long data sequence. This is because of the ability to obtain periodic schedules

for the SDF execution where actors fires a determined number of times with a specific or-

der, in a cyclic manner, where each cycle called an iteration. Every actor in an SDF graph

consumes/produces a fixed number of tokens every time it fires. The SDF graphs are accom-

panied with several timing analysis techniques, which are used for evaluating performance

metrics of such applications, most importantly throughput. Figure 1.2(a) shows an example

of an SDF graph that consists of two actors a and b. Actor a represents a source task that

produces two tokens every time it fires (denoted on its output port), while actor b represents

a sink task that consumes a single token every time it fires (denoted on its input port). The

periodic schedule for such SDF graph is (a,b,b), because actor a produces two tokens that

triggers actor b to fire twice consuming a single token each.

HSDF: is a more restricted model of SDF, where actors consume/produce a single token every

time they fire. Each actor in an HSDF graph fires once during an iteration of the graph.

This restriction allows HSDF graph to reveal the parallelism hidden in applications repre-

sented using more expressive models, e.g. SDF, CSDF. For example, Figure 1.2(b) shows

an HSDF graph representation of the SDF graph shown in Figure 1.2(a). As we notice,

the HSDF graph reveals the parallelism hidden in the SDF graph by showing actor b firing

twice simultaneously (b0, b1). Many dataflow graphs expressive models, e.g. SDF, CSDF,

can be converted to an equivalent HSDF graph by using a conversion algorithm, such as

the one presented in [Sriram and Bhattacharyya, 2000]. Although transformation to HSDF

allows revealing the parallelism in dataflow applications, it can lead to an exponential in-

crease in the size of the original dataflow graph [Lee and Messerschmitt, 1987a, Sriram and

Bhattacharyya, 2000], which may result in a significant increase in the run-time of many

dataflow analysis algorithms, e.g. throughput analysis, as described in the following chap-

ters. Further details on SDF and HSDF are given in Chapter 3.

1.2.2 Streaming Applications

Streaming applications constitute a huge application space for embedded systems. They are be-

coming increasingly important and widespread, since they run on many common devices and

systems that affect our daily life. A common well-known example of this in daily life is the

smartphone, as shown in Figure 1.3(a). It is a multi-purpose (i.e., communication, entertainment,

navigator, etc.) embedded system that runs several streaming applications with different purposes

that ranges from communication to entertainment. Another example considered as safety-critical

is Autonomous driving systems, shown in Figure 1.3(b), that have started to be integrated in many

car driving systems (e.g. Google, Tesla, Mercedes, etc.). These systems enable cars to sense their

environment, navigate without human input and stay connected to the Internet [Gehrig and Stein,

1999]. Both of these example systems process audio and video streams on which streaming ap-

plications perform functions like audio/video encoding and decoding, object recognition, object

8 Introduction

(a) Smartphones [Kenya Tech News, 2015].
(b) Autonomous driving systems [Daily Autonomous
Car News, 2015] .

Figure 1.3: Examples of embedded systems running streaming applications.

detection and image enhancement on the streams [Elliott et al., 2014, Salunkhe et al., 2014, Siy-

oum et al., 2011]. These kind of streaming applications have high processing requirements and

timing constraints that must be satisfied, especially in case of safety-critical applications.

The high processing requirements raises the need for a parallelization model to enable appli-

cations to use massive computational power [Pankratius et al., 2009], which the dataflow model of

computation is able to achieve for streaming applications [Lee and Messerschmitt, 1987a]. This

is because dataflow model is inherently parallel and can work well in decentralized systems. Fur-

thermore, since these applications are basically a series of transformations that are applied to a

data stream, the dataflow model is a natural paradigm for representing them for concurrent imple-

mentation on multi-/many-core processors [Lee and Messerschmitt, 1987a].

The streaming applications’ timing constraints require guarantees that they will be satisfied

during applications execution. Recently, several works applied real-time scheduling and analy-

sis techniques on dataflow applications [Bamakhrama and Stefanov, 2011, 2012, Di Natale and

Stankovic, 1994, Kao and Garcia-Molina, 1997, Lipari and Bini, 2011, Liu et al., 2014, Saifullah

et al., 2011]. However, they are limited to dataflow applications represented as Directed Acyclic

Graphs (DAG) or implicit-deadline task models, which discards a wide range of dataflow applica-

tions.

1.3 Processing Platform

This section aims to discuss different processing platform architectures and features of intercon-

nection network. The main goal is to explain the specifications of the processing platform assumed

in this thesis.

The processing platform refers to the hardware responsible for running applications in the

real-time embedded system. There is a paradigm shift towards multi-/many-cores in the design

process of processing platforms. Presently, increasing the number of cores is the current way to

1.3 Processing Platform 9

improve the performance for high-end processors rather than increasing the clock speed for single

processors. One of the reasons why the clock rate gains of the past cannot any more be continued

is the unsustainable level of power consumption [Vajda, 2011].

Architecture:

A multi-/many-core platform has more than one core or processor. These cores can be similar or

completely different in architecture. Consequently, multi-/many-core platforms can be categorised

into two main types based on the relation between the cores on a given platform:

Homogeneous Architecture: in this architecture type all cores in the platform are identical and

have exactly the same properties in terms of computation (e.g. instruction set, frequency

and cache size) and the cores are interchangeable. The execution time and energy con-

sumption of a task remains the same on all cores on such a platform. These platforms are

also sometimes called symmetric multi-processor platforms (SMP). Many platforms man-

ufactured and deployed today in embedded systems fall under this category. For example,

Cortex-A17 [Cor] from ARM (used in smart phones, tablets, smart TV’s, etc.) has four

identical cores on a same die.

Heterogeneous Architecture: this architecture type features at least two different kinds of cores

that may differ in both the instruction set architecture, frequency and cache size. The most

widespread example of a heterogeneous multi-core architecture is the Cell BE architecture,

jointly developed by IBM, Sony and Toshiba [Gschwind et al., 2006] and used in areas such

as gaming devices and computers targeting high performance computing.

Interconnection Networks (IN):

Since increasing the number of cores in multi-/many-core platforms is the current trend to increase

the performance, there should be an efficient communication network to connect them, called

Interconnection Networks (IN). The IN between multiple cores may be a performance bottleneck,

since it is responsible for transferring and routing of data between different cores. These data are

in the form of packets with headers that contain information about its destination. Data transfer

between distant cores can increase latency and consume extra power. In the following paragraphs,

we look at traditional IN topologies.

2D-Mesh: shown in Figure 1.4(a), is a common topology that uses routers that are connected to

other routers as well as a number of cores. Advantages include design simplicity and short

links. Disadvantages include a potentially high number of hops.

Fat Tree: shown in Figure 1.4(b), is a tree topology where the cores are located at leaves of a

tree and internal nodes are routers. Data travels upward in the tree until a common ancestor

is found between source and destination. The number of links increases towards the root

of the tree. Advantages include high bandwidth because of the increased number of links

10 Introduction

(a) 2D Mesh (b) Fat Tree (c) Flattened Butterfly

Figure 1.4: Examples of Interconnection Networks (IN) [Sanchez et al., 2010].

as data moves towards the root. Disadvantages include the need for more complex routers,

again because of the increased number of connections toward the root.

Flattened Butterfly: shown in Figure 1.4(c), is a modified butterfly network that is essentially a

mesh network with additional links. Advantages include a small number of hops. Disad-

vantages include complex routers and increased chip area due to the large number of links.

Routing:

In all IN topologies, except fully connected topology, not all the router-pairs are directly con-

nected. Therefore, in such cases, depending on the position of the sender and the receiver, packets

may need to travel across multiple intermediate links and routers. A set of traversed network ele-

ments (routers and links) is called the route, while the number of traversed links is usually referred

to as the number of hops.

The process of transferring packets from source to destination is called routing, which is the

responsibility of the routers. Once packets reach the router, it decides in which direction they will

be forwarded. The logic inside the router that is responsible for making this decision is called

the routing algorithm. There exist numerous criteria based on which the routing decisions can be

made. For example, the minimal routing class algorithms [Ni and McKinley, 1993] which aim to

minimise the route, and hence derive routing decisions such that the packets always traverses the

minimal possible number of hops. Moreover, the deterministic routing class algorithms, which

always routes packets between the same source and destination on the same path. Alternatively,

the adaptive routing class algorithms [Bolotin et al., 2004] makes routing decisions at runtime

based on the status and load of individual links. Adaptive routing can improve the performance of

the system (the average case behaviour) by reducing the average communication time, however, at

the expense of predictability. Conversely, deterministic routing is predictable and much easier to

implement, but may cause an inefficient utilisation of the NoC resources, where some links may

be heavily congested, and others may be completely idle.

The selection of the routing mechanism depends on the purpose of the system. As already

mentioned, in the real-time embedded domain the predictability of the system is essential, because

1.3 Processing Platform 11

it allows to analyse the temporal behaviour of the system with significantly less pessimism. Thus,

in the real-time domain, the deterministic routing techniques are a preferable option.

One class of popular minimal deterministic routing algorithms in 2D-mesh IN is the dimension-

ordered routing. Assuming these schemes, the packets are firstly routed along one dimension of

the IN, and after reaching the coordinate of the destination, if needed, continue the transfer along

the other dimension. One of the most popular routing algorithms of this class is X-Y routing,

where the horizontal axis of the platform is usually denoted with the letter X and the vertical axis

is denoted with the letter Y. The X-Y routing policy is deadlock free [Hu and Marculescu, 2003].

Switching:

Switching defines how packets are transmitted from source to destination. When the IN resources

are free, packets traverse routers and links on their route towards the destination. However, in the

presence of other traffic, it may happen that one of the links on its route is busy transferring other

packets. In such cases, switching mechanisms resolves the situation. One of these mechanisms is

the store-and-forward switching [Tanenbaum, 2002], where the router stores the full packet before

forwarding it to the next router on the route. In this mechanism, one must ensure that the buffer

size at each router is sufficient to store the whole packet, otherwise it will be stalled. Another well-

known mechanism is wormhole switching [Ni and McKinley, 1993], where the router makes the

routing decision and forwards the packet as soon as the header arrives. The subsequent payload is

split into smaller containers called flits. These flits follow the header as they arrive. This reduces

the latency within the router, but in case of packet stalling, many links risk to be locked at once.

Arbitration:

The main responsibility of IN is to transfer and route communication data between different cores.

During the process of data transfer, significant contention may occur due to accessing the IN

shared medium, e.g. links and routers. Several approaches, called arbitration mechanisms, have

been proposed to manage such contention. These mechanisms are provided by the IN to allow the

multiplexing of several streams of data over the same physical medium (link). Common schemes

are Space Division Multiplexing (SDM) [Banerjee et al., 2009, Lusala and Legat, 2011, Marchal

et al., 2005, Modarressi et al., 2009], Time Division Multiplexing (TDM) [Goossens et al., 2005,

Liu et al., 2004, Wang et al., 2008, Zhang et al., 2010] either in the conventional slot allocation

approach or in an arbitrated (e.g. round-robin, priority) link time sharing scheme. TDM is a

commonly used arbiter for management of communication resources in multi-core platforms. The

reasons for its popularity is that it is conceptually easy to understand and analyze and has efficient

implementations both in hardware and software [Akesson et al., 2015]. Moreover, it provides

temporal isolation between clients when used in a non-work-conserving manner [Goossens et al.,

2013a]. Several platforms relying extensively on TDM for a variety of resources management are

PRET [Edwards and Lee, 2007] and CompSOC [Akesson et al., 2015].

12 Introduction

Figure 1.5: Problem to be addressed

In this thesis, we are concerned with homogeneous architecture processing multi-core plat-

forms that incorporates a 2D Mesh IN operated using X-Y routing, wormhole switching and using

TDM as arbitration mechanism.

1.4 Problem Statement

In this thesis, we address the problem of real-time embedded systems incorporating mixed ap-

plication models with timing constraints running on the same multi-core platform. These mixed

application models are dataflow applications with timing constraints (latency and throughput) and

traditional real-time applications, as shown in Figure 1.5. The design of such systems require

guarantees that all running applications mapped on the platform will execute safely satisfying

their timing constraints.

As shown in Figure 1.5, the traditional real-time applications are modelled as independent

tasks. Each task is characterised with specific parameters, e.g. WCET, deadline and period. In

contrast, dataflow applications are basically graphs of communicating tasks, which are actors.

These actors are defined by a different set of parameters, e.g. WCET, Production/Consumption

rate (P/C) of tokens. A dataflow application has timing constraints, i.e. latency and throughput

requirements (Section 1.2.1), that must be satisfied. This leads to the main question of the thesis:

How can future real-time embedded systems safely incorporate mixed application models, data-

flow and traditional real-time tasks, with timing constraints onto multi-core platforms, such that

their timing constraints are satisfied?

1.5 Solution Overview 13

Figure 1.6: Solution outline.

1.5 Solution Overview

In this section, we present an outline of our proposed solution to the stated problem outlined in

Section 1.4. The main goal of this solution is to provide guarantees for the mixed application

model executing on the multi-core platform, such that timing constraints are satisfied.

To implement this kind of systems, we have to address how to map and schedule such mixed

application model on the multi-core platform. Different solutions in mapping and scheduling have

been proposed for each application model independently. The mapping problem has previously

been tackled in several works from a high-performance point-of-view [Ennals et al., 2005, Evans

and Kessler, 1992, Liu et al., 2007, Lo, 1988, Ma et al., 1982], where all applications are repre-

sented either as graphs or independent tasks. However, using these approaches in the mapping

of real-time applications does not guarantee satisfying their timing constraints. Another map-

14 Introduction

ping approach uses the First Fit (FF) bin-packing heuristic, since it has been shown to outperform

other bin-packing heuristics in terms of achieved throughput [Guo and Bhuyan, 2006]. However,

applying approaches that satisfy timing constraints and use FF, such as [Bamakhrama and Ste-

fanov, 2011], results in over-dimensioned systems, as our experimental evaluation shows in [Ali

et al., 2013] and Chapter 6. Moreover, such work [Guo and Bhuyan, 2006] does not consider the

communication cost and its effect on the schedulability of the system.

The scheduling problem has been studied extensively for traditional real-time applications

through introducing several real-time scheduling algorithms either onto uniprocessors, e.g. Fixed

Priority (FP) [Liu and Layland, 1973], Earliest Deadline First (EDF) [Liu and Layland, 1973], or

multi-processor Partitioned EDF (PEDF) [López et al., 2004] and Hierarchical scheduling [Ca-

landrino et al., 2007, Easwaran et al., 2009, Leontyev and Anderson, 2008, Zhu et al., 2011].

However, dataflow applications mostly use static scheduling, i.e. TDMA. Static scheduling works

well in case of systems that only run dataflow applications. In contrast, in case of systems that run

mixed real-time applications, a dynamic real-time scheduling algorithm may have a higher schedu-

lability success rate than static scheduling, but it is not currently available for mixed systems.

Furthermore, real-time scheduling algorithms can enable efficient real-time analysis techniques

for such mixed systems. Recently, several works scheduled dataflow applications using real-time

scheduling algorithms [Bamakhrama and Stefanov, 2011, 2012, Di Natale and Stankovic, 1994,

Kao and Garcia-Molina, 1997, Lipari and Bini, 2011, Liu et al., 2014, Saifullah et al., 2011].

However, they are either limited to dataflow applications represented as Directed Acyclic Graphs

(DAG), or they are represented as implicit-deadline tasks.

The proposed system runs two types of application models, traditional real-time and dataflow

applications. The traditional real-time applications are a set of independent periodic arbitrary-

deadline real-time tasks. These tasks are characterised by timing parameters that define their

temporal behaviour in execution, e.g. WCET, period and relative deadline. Independent real-time

tasks have a set of well-established real-time scheduling and analysis techniques in the literature

that allow satisfying their timing constraints. The main idea is to use these techniques and methods

and apply them on dataflow applications to get the same guarantees. However, these techniques

cannot be applied directly on dataflow applications, because they miss the appropriate task model

parameters to allow using them. Therefore, a unified model for both types of application models

is needed to apply traditional real-time scheduling and analysis techniques on the system, thereby

guaranteeing that timing constraints are satisfied.

The unified modelling is a process that transforms the dataflow applications into traditional

real-time tasks. This transformation is done using the timing parameter extraction algorithm

shown in Figure 1.6 and detailed in Chapter 5. However, before sending the dataflow graph to

the timing parameter extraction algorithm, it has to go through two processes. First, is the graph

reduction process, discussed in Chapter 4. It generates a reduced-size HSDF graph from the orig-

inal HSDF graph. This is because transformation to HSDF graphs can result in an exponential

explosion in the graph size, which slows down the timing parameter extraction algorithm when

applied on them. Therefore, the graph reduction process speeds up the overall design process, as

1.6 Thesis Contributions 15

the experiments show in Chapter 5. Second, is the communication modelling process, where it

models the communication in the reduced-size HSDF graph, generating an extended HSDF graph

that accounts for the communication cost. The extended communication-aware graph is then used

as input to the mapping algorithm, as explained in Chapter 6. Following these two steps, the timing

parameter extraction algorithm takes the HSDF graph with modelled communication as an input,

transforming it into a set of independent arbitrary-deadline tasks.

Now, we reached the stage where we have a unified set of arbitrary-deadline real-time tasks.

This enables applying traditional real-time scheduling and analysis techniques while mapping

them on the platform. The mapping algorithm, shown in Figure 1.6, allocates the task set on the

platform guaranteeing that all applications satisfy their timing constraints. Also, the proposed

mapping algorithm is communication-aware, which means that it considers the communication

overhead resulting from the token exchange between different actors in the dataflow applications.

The communication-aware mapping algorithm, detailed in Chapter 6, is able to do that because of

the communication modelling of the HSDF graph that happened in the early stages in the solution.

1.6 Thesis Contributions

As highlighted in the problem statement (Section 1.4), the main goal of this thesis is to allow

future real-time embedded systems to map and schedule mixed application models with timing

constraints on the same multi-core platform guaranteeing that timing constraints are satisfied.

To achieve this goal we proposed the solution outline, discussed in Section 1.5 and shown in

Figure 1.6, that consists of three main contributions. They are:

1. An offline dataflow graph reduction algorithm, called slack-based merging, that aims to

speed-up the process of timing parameter extraction and finding a feasible real-time sched-

ule, thereby reducing the overall design time of the real-time system. To achieve this goal,

the algorithm combines two main concepts:

(a) The slack, which is the difference between the WCET of the SDF graph’s firings and

its timing constraints.

(b) The safe merge, which is a novel merging concept that we prove cannot cause a live

HSDF graph to deadlock.

The output is a reduced-size HSDF graph that satisfies the throughput and latency con-

straints of the original application graph.

2. A timing parameter extraction algorithm that extracts timing parameters of HSDF graphs

with timing constraints, converting them into periodic arbitrary-deadline tasks. This algo-

rithm provides a method to unify mixed application models into a single real-time task set.

A main advantage of our proposal is that the extraction of the timing parameters is indepen-

dent of the specific scheduler being used, of other applications running in the system and

the details of the particular platform. The proposed algorithm:

16 Introduction

(a) Enables applying traditional real-time schedulers and analysis techniques on cyclic or

acyclic HSDF applications with periodic sources.

(b) Captures overlapping iterations, which is a main characteristic of the execution of

dataflow applications, by modelling actors as tasks with arbitrary-deadlines.

3. A mapping algorithm, called communication-aware mapping, dedicated for allocating

HSDF graphs on 2D-Mesh multi-core platforms. The algorithm is based on a novel map-

ping heuristic called Sensitive-Path-First. This heuristic allocates first, for each HSDF, the

most critical paths (a path consists of a set of tasks) in terms of schedulability, maximizing

path parallelism when possible. The mapping process is done taking into account satisfy-

ing applications time constraints and maximizing resource utilization of the platform, while

accounting for the communication cost.

Together, these three important contributions successfully achieve the main goal of this thesis

and play a part in allowing embedded real-time systems to map and schedule mixed application

models.

1.7 Thesis Organization

This thesis addresses the problem of mapping and scheduling mixed application models with tim-

ing constraints running on the same multi-core platform in real-time embedded systems. The

thesis is organized as follows:

• Chapter 2 discusses the state of the art in three main topics that represent the three main

contributions of this thesis. These three main topics are dataflow graph analysis, timing

parameter extraction techniques and mapping methodologies.

• Chapter 3 provides a background on topics and terminology essential for understanding the

research problem and the system model.

• Chapter 4 introduces the proposed graph reduction technique for dataflow applications called

slack-based merging. It provides a detailed explanation of the algorithm assisted with

proofs, examples and experiments that show its validity and functionality.

• Chapter 5 presents the timing parameter extraction algorithm that transforms dataflow ap-

plications into independent real-time tasks. The chapter starts by discussing similar mecha-

nisms for timing parameter extraction for pipelines. Then, it shows how these mechanisms

are incorporated in the proposed algorithm to extended its functionality to cover dataflow

graphs. We present proofs, examples and experiments that shows the validity and function-

ality of our proposed algorithm. Moreover, the experiments show the speed-up effect of the

graph reduction technique on the timing parameter extraction process.

• Chapter 6 describes the proposed mapping algorithm called communication-aware mapping.

It begins by presenting the mechanism for communication modelling in dataflow graphs.

1.7 Thesis Organization 17

Then, it lists and describes the components of the communication-aware mapping algorithm.

Especially, its main mapping heuristic called Sensitive-Path-First, which is inspired from the

Critical-Path-First (CPF) mapping heuristic proposed in [Ali et al., 2013]. In addition, the

chapter provides a full view of our proposed solution by integrating the three algorithms

together. This allows experimenting both communication-aware mapping algorithm and the

whole system.

• Chapter 7 finishes the thesis with conclusions and future directions of research.

18 Introduction

Chapter 2

State of the Art

This chapter gives an overview on the state of the art related to this thesis. It positions our work

with respect to the state of the art in three aspects that comprise our proposed solution (previ-

ously shown in Figure 1.6). These three aspects are: 1) graph reduction techniques explained in

the context of dataflow analysis (Section 2.1), 2) extraction of timing parameters that transforms

actors of dataflow graphs into traditional real-time tasks that enable applying traditional real-time

scheduling and analysis techniques (Section 2.2) and 3) mapping of dataflow graphs onto multi-

/many-core platforms (Section 2.3).

2.1 Dataflow Graph Analysis

The dataflow model of computation is popular for modelling the timing behaviour of real-time

embedded hardware and software systems and applications. It is an essential ingredient of several

automated design-flows and design-space exploration tools. In this section, we will present the

state of the art in dataflow graph analysis techniques concerning certain properties essential for

our work, throughput, latency and graph size.

Various analysis techniques have been proposed to determine throughput and latency proper-

ties of this computational model. For throughput analysis, there are several methods and tools, e.g.

[Damavandpeyma et al., 2012, Ghamarian et al., 2008, Stuijk et al., 2006]. In [Ghamarian et al.,

2008], the authors propose three methods to compute throughput of an SDF graph where actor

execution times can be parameters. The throughput of these graphs is obtained in the form of a

function of these parameters, which can be evaluated for specific parameter values. The three pro-

posed methods are based on different algorithms. The first two algorithms, called HSDF graph and

State-Space methods, are variants of the standard throughput analysis algorithms for SDF graphs

for parametric actor execution times. The third algorithm, called Divide-and-Conquer Method, is

based on a divide-and-conquer strategy. Experimental results show that the divide-and-conquer

algorithm performs best. In [Damavandpeyma et al., 2012], the authors propose a new method

to determine a tighter throughput bound for applications modelled as Scenario-Aware Dataflow

(SADF) Graphs [Theelen et al., 2006]. This method is based on Max-Plus automata that finds

19

20 State of the Art

throughput expressions for a parametrized SADF graph. The approach extracts a Max-Plus Au-

tomaton Graph (MPAG) from an SADF graph and then uses a maximum cycle mean algorithm to

determine the critical timing cycle of the extracted MPAG. The timing behaviour of an application

depends on several dynamic aspects, e.g. its scheduling, Dynamic Voltage and Frequency Scaling

(DVFS), etc. The new technique is able to capture this dynamic timing behaviour by generating

throughput expressions for dynamic applications. Experimental results show that the proposed

technique outperforms others in terms of run-time, e.g. [Ghamarian et al., 2008].

Throughput analysis can also be obtained through the HSDF graph method by getting the in-

verse of the Maximum Cycle Mean (MCM) of the equivalent HSDF graph [Karp and Miller, 1966,

Sriram and Bhattacharyya, 2000]. The cycle mean of a cycle of an HSDF graph is defined as the

total execution time of the cycle over the number of initial tokens in that cycle. There are efficient

algorithms for calculating the MCM of an HSDF graph [Dasdan and Gupta, 1998]. However,

the HSDF conversion process may lead to an exponential growth in the size of the HSDF graph,

which leads to longer throughput analysis time. Another method for throughput analysis called

state-space analysis based on the periodic phase of execution of self-timed execution of an SDF,

CSDF, etc. graph, where a sequence of actor firings occur in a periodic pattern. The throughput

of an actor can be calculated by dividing the length of the period by the number of firings of the

actor in one period. An experimental comparison in [Ghamarian et al., 2008] showed that the

state-space method outperforms the HSDF graph method in terms of analysis time.

Similar to throughput analysis methods, there are several works on latency analysis [Ba-

makhrama and Stefanov, 2012, Ghamarian et al., 2007]. In [Ghamarian et al., 2007], the authors

propose an algorithm to determine the minimal achievable latency between the execution of any

two actors in an SDF graph. Also, they present a heuristic that defines a class of static order sched-

ules that provide minimal latency, while satisfying the throughput constraint. Experimental results

show that latency computations are efficient despite the theoretical complexity of the problem.

In [Bamakhrama and Stefanov, 2012], the authors proposed an algorithm that transforms acyclic

CSDF graphs into constrained-deadline periodic tasks to achieve both minimum application la-

tency and maximum throughput.

Away from methods for throughput and latency analysis, [Stuijk et al., 2006] presents a tool,

inspired by Task Graphs For Free (TGFF) [Dick et al., 1998], called SDF For Free (SDF3). SDF3

is a tool that implements an SDF graph generation algorithm that constructs graphs that are con-

nected, consistent, and deadlock-free, with support for analysing and visualising these graphs and

calculating their throughput. Also, it can take dataflow applications as an input in the form of

eXtensible Markup Language (XML) files and perform analysis and conversion to HSDF graphs.

The dataflow computational model can be used to analyse and derive different parameters that

define a dataflow application. Examples of these parameters are throughput and latency. More-

over, it can be used to derive real-time parameters, e.g. offsets, deadlines and periods, as presented

in [Ali et al., 2015, Bamakhrama and Stefanov, 2011, Bekooij et al., 2005, Hausmans et al., 2013,

Liu et al., 2014, Saifullah et al., 2011]. These works are the main concern of this thesis and de-

tailed in Section 2.2. Some of these analysis algorithms operate directly on SDF graphs, while

2.2 Timing Parameter Extraction 21

many others require transformation to Homogeneous Synchronous Dataflow (HSDF) graphs prior

to the analysis, using conversion algorithms proposed for such kind of transformations, i.e. [Lee

and Messerschmitt, 1987a, Sriram and Bhattacharyya, 2000]. This transformation can lead to an

exponential increase in the size of the original SDF graph, which significantly increases the run-

time of the analysis algorithm.

To avoid the increase in graph size problem, dataflow graph reduction techniques are needed

to decrease the size of HSDF graphs, and hence speed-up the analysis run-time. The following is

a quick review to the state of the art related to reduction techniques for dataflow graphs.

In [Geilen, 2009], the authors propose a SDF graph reduction technique based on Max-Plus

algebra. It transforms an SDF graph into a smaller HSDF graph with equivalent maximal through-

put and latency, which is faster to analyse. Each actor in the smaller HSDF graph may comprise of

single or multiple firings of different SDF actors. Due to this reason, the output HSDF graph of this

technique hides the actual execution behaviour of the original SDF graph, because a single firing

of an SDF actor can exist in multiple actors of the output HSDF graph. This means that a single

firing in the SDF graph is executed multiple times in the output HSDF graph, which complicates

extracting timing parameters and finding a feasible schedule. In contrast, we propose a reduction

algorithm that generates a reduced-size HSDF graph called slack-based merging, as detailed in

Chapter 4. This reduction algorithm speeds up, at relaxed throughput and latency constraints, the

processes of extracting timing parameters and finding a feasible mapping and schedule for the

application, as the experimental results show in Chapters 5 and 6, respectively. This is due to the

generated reduced-size graph have a small number of tasks compared to the original HSDF graph.

Also, the generated graph represents the actual execution behaviour of the original graph, avoiding

the problem with the approach in [Geilen, 2009]. It also ensures that the throughput and latency

constraints are met, although with a possibility of having a lower maximum throughput compared

to the original graph. However, this is not a problem, because the main goal for real-time systems

is satisfying timing constraints.

2.2 Timing Parameter Extraction

There is a trend towards embedded systems allowing mixed application models with timing con-

straints (dataflow and traditional real-time tasks) to run on the same multi-core platform. There-

fore, a unified model is needed to represent dataflow with timing constraints and traditional

real-time applications. This section reviews techniques for extracting timing parameters (unified

model) of task graphs to enable applying real-time schedulers and analysis techniques.

In [Bamakhrama and Stefanov, 2011, 2012, Liu et al., 2014], the authors provide an analytical

framework for computing timing parameters for actors of acyclic Cyclo-Static Dataflow (CSDF)

applications with a single input. The actors are considered as implicit-deadline and constrained-

deadline periodic tasks in [Bamakhrama and Stefanov, 2011] and [Bamakhrama and Stefanov,

2012, Liu et al., 2014], respectively. In contrast, this work is more general and can deal with any

HSDF graph (CSDF can be converted to an HSDF), single/multiple input, and actors are modelled

22 State of the Art

as arbitrary-deadline tasks. Modelling the application actors as arbitrary-deadline tasks allows

capturing overlapping iterations, a main characteristic of dataflow applications that increases the

throughput.

Another solution is presented in [Lipari and Bini, 2011]. The authors presented a deadline

assignment approach called ORDER for dependent tasks composing real-time pipeline applica-

tions executing on a multi-core system. The proposed approach was considering the problem of

scheduling a pipeline such that the end-to-end deadline is met and the amount of required resource

capacity was minimal. Contrarily, this work considers the general problem of deadline assignment

for dependent tasks comprising real-time application graphs, such as DAG and Directed Cyclic

Graphs (DCG), which are not supported by [Di Natale and Stankovic, 1994, Kao and Garcia-

Molina, 1997, Lipari and Bini, 2011].

In [Saifullah et al., 2011], the authors also address the problem of scheduling periodic DAG

tasks, each consisting of subtasks. They extract their timing parameters, i.e., individual deadlines,

and scheduled using global Earliest Deadline First (EDF) and partitioned deadline monotonic

scheduling. Another approach presented in [Qamhieh et al., 2013] extracts timing parameters for

subtasks in a DAG task based on computing the interference between each subtask and the higher-

priority subtasks of all DAG tasks running on the system. In contrast, we consider a more general

problem where applications are represented as DCG and the extraction of the timing parameters is

independent of the scheduling algorithm being used.

Another technique is presented in [Spuri and Stankovic, 1994]. The authors propose an exact

characterization of EDF-like schedulers that can be used to correctly schedule dependent tasks,

and show how preemptive algorithms, even those that deal with shared resources, can be easily

extended to deal with dependencies. This was done by modifying deadlines in a consistent manner

so that a run-time algorithm, such as EDF, could be used without violating the dependencies. Also,

[Chetto et al., 1990] propose a similar approach by modifying the timing parameters of the tasks.

This parameter modification is not only for the deadline of the tasks, but also include modification

of the task start time. However, both works consider task parameters as already defined, which is

not the case in our problem. Moreover, they are only concerned with uniprocessor platforms.

Also in [Moreira et al., 2007], the authors present a method to calculate individual deadlines of

HSDF actors. The method is based on an Integer Linear Programming (ILP) optimization problem

that finds the amount of slack for each actor that makes it able to extend its execution without vio-

lating the HSDF throughput and timing constraints. However, their proposed method is restricted

to strongly connected HSDF graphs and the actor’s offsets (release times) are calculated based on

the static-order schedule of the application. In contrast, this work is neither restricted to strongly

connected graphs nor does the offset calculation require static-order scheduling.

In [Hausmans et al., 2013], the authors propose a temporal analysis for dataflow applications

modelled as cyclic HSDF graphs under a non-starvation-free scheduler i.e. Static-Priority Pre-

emptive scheduler (SPP). To apply the analysis they extract timing properties like jitter (difference

between best-case and worst-case offsets), periods, and execution times, but not deadlines, since

SPP schedulers depend on periods not deadlines. The calculated jitter is based on the interference

2.3 Efficient Mapping 23

from the set of high-priority tasks with the task being analysed running on the same platform. This

means that the timing parameters calculated are dependent on the set of applications running on

the platform. Contrarily, this work is independent of the scheduler being used and other appli-

cations running on the same platform, since our proposed algorithm transforms the HSDF actors

into a set of independent tasks that enables any bin-packing heuristic to be applied for mapping

them on the platform.

In [Bouakaz et al., 2012], the authors present a new dataflow computational model that is

a superset of SDF/CSDF application graphs called Affine Dataflow (ADF). The ADF is a time-

triggered dataflow model that explicitly represents each firing of each actor in a complete iteration

of the graph as a so-called clock tick. These clock ticks are related to each other using firing

relations called affine relations. These relations maintain precedence constraints between differ-

ent firings of actors in the graph, since it ensures the correct execution order of different clock

ticks. Based on this framework, they present an algorithm that computes affine schedules for these

clock ticks, which enables applying real-time scheduling algorithms, e.g. earliest-deadline first or

rate-monotonic. However, the use of clock tick representation and affine relations to represent the

firing behaviour of actors does not speed up the process of finding a feasible schedule, because it

indirectly transforms the ADF to an HSDF graph (using the clock tick representation) to be able to

find a feasible schedule. In addition, the presented algorithm does not support end-to-end latency

constraints, since it assumes an implicit-deadline task model. In contrast, this thesis work sup-

ports end-to-end latency constraints and uses the arbitrary-deadline task model, which adds more

generality to the work.

2.3 Efficient Mapping

The problem of task mapping in dataflow applications and task graphs has been the subject of

quite some previous research.

In [Ramamritham, 1995], the author discusses a static algorithm for allocating and scheduling

components of periodic tasks (SDF graphs) that consist of subtasks (actors) with precedence con-

strains across sites in distributed systems and multi-processor systems. This algorithm consists of

two parts; the first part decides whether a group of communicating subtasks of a task should be

assigned to the same site as a cluster, while the second part allocates the clusters of subtasks to the

sites in a system (or cores of multiprocessor) based on the ability to find a feasible schedule for

the subtasks as well as the communication between them. Compared to the work we propose in

this thesis, the approach in [Ramamritham, 1995] tries to find a feasible static schedule for tasks

inside the cluster. In contrast, we are aiming to use existing real-time scheduling methods, i.e.

EDF, inside the clusters. Furthermore, this thesis takes into account the communication cost while

satisfying the timing constraints.

In [Peng and Shin, 1989], the authors propose a similar approach to [Ramamritham, 1995].

They propose an optimal solution for the allocation of periodic tasks onto a heterogeneous dis-

tributed real-time system using a Branch and Bound (BB) algorithm. The periodic tasks are mod-

24 State of the Art

elled as a graph, which describes computation and communication modules as well as the prece-

dence constraints among them. However, they do not allow subtasks (nodes) of a task (graph) to

execute on different sites (cores) and they use BB search for finding a feasible schedule, while in

[Ramamritham, 1995] it is a heuristics-directed search.

The work presented in [Liu et al., 2007] proposes a task-allocation model for multi-core pro-

cessors. Applications are represented as Task Interaction Graphs (TIG), where an iteration-based

heuristic tries to allocate the graph’s nodes based on a set of rules that includes: reducing commu-

nication overhead, reducing context switching and maintaining load balancing among cores. Eval-

uation results show that the algorithm can find near-optimal solutions in reasonable time compared

to genetic algorithms when the number of threads increases (it can find solutions in much less time

than Genetic Algorithm (GA) and Ant Colony Optimization (ACO) [Li et al., 2003]). Also [Ennals

et al., 2005, Evans and Kessler, 1992, Lo, 1988, Ma et al., 1982] address the problem of tasks allo-

cation to multi-processors, taking into account the sizes of the tasks, the communication between

them and load balancing. However, these works does not take into account the timing constraints

required by real-time applications, which is the main focus of the work presented in this thesis.

Stuijk et. al [Stuijk et al., 2007] presented a resource allocation strategy that can allocate mul-

tiple SDF graphs onto a heterogeneous multi-core platform with throughput guarantees to each

individual application. The proposed method can deal with multi-rate graphs and cyclic depen-

dencies without conversion to HSDF graphs. The allocation strategy consists of three main steps:

1) an actor binding, where every actor from the SDF graph is assigned to a core on the multi-

core platform to achieve the application throughput constraint. This is done by considering first

the actors whose execution times have large impact on the application throughput. Then, 2) a

static order schedule for each core containing actors of the SDF graph is done. Finally, 3) time

slices are allocated for cores based on a binary search algorithm which guarantees satisfying the

throughput constraint. The experiments show that this enables a balanced resource allocation of

time-constrained applications bound to a heterogeneous multi-core platform. Despite this alloca-

tion strategy being similar to the mapping technique in this work, explained in Chapter 6, in the

sense of giving priority to allocation of actors whose execution have a large impact on application

throughput (in our solution priority is given to actors in the sensitive path of the application), the

use of static scheduling may not be able to satisfy the timing constraints of traditional real-time

applications in the addressed research problem. Furthermore, the proposed mapping algorithm is

restricted to SDF graphs only and cannot be applied on other types of dataflow graphs, e.g. CSDF.

In [Bamakhrama and Stefanov, 2011], the authors provide an approach where actors (nodes)

of streaming applications are considered as implicit-deadline periodic tasks. They provide results

of tests on real streaming applications from the SDF3 Benchmark [Stuijk et al., 2006], and also use

PEDF as the scheduling algorithm for periodic tasks. They use the FF algorithm for the allocation

of nodes on the cores, and show that in more than 80% of the cases the throughput resulting from

the approach is equal to the maximum achievable throughput.

In summary, the mapping problem has been tackled in several works either from a high-

performance point-of-view ignoring timing constraints [Ennals et al., 2005, Evans and Kessler,

2.3 Efficient Mapping 25

1992, Liu et al., 2007, Lo, 1988, Ma et al., 1982] or, applying FF taking into account timing

constraints [Bamakhrama and Stefanov, 2011]. Applying the first approaches on the allocation

of real-time applications will not guarantee satisfying its timing constraints, while applying the

second approach will likely result in over-dimensioned systems.

26 State of the Art

Chapter 3

Background

In this chapter, we present relevant background information and mathematical formulation that

is essential for understanding the computational model, the system model and the proposed so-

lution. The presented background consists of three main sections: 1) real-time systems, 2) the

dataflow computational model and 3) multi-/many-core platforms. For real-time systems, detailed

in Section 3.1, we discuss basic concepts and definitions, followed by multi-core scheduling al-

gorithms, and feasibility tests. For the dataflow computational model, detailed in Section 3.2, we

formalize the Synchronous Dataflow (SDF) and the Homogeneous Synchronous Dataflow (HSDF)

models. In multi-/many-core platforms, detailed in Section 3.3, we give a quick overview on multi-

/many-core platform architectures. After this detailed background, we present our system model

in Section 3.4.

3.1 Real-time Systems

A real-time system is one in which the correctness of the computations not only depends on their

logical correctness, but also on the time at which the result is produced. In other words, a late

answer is a wrong answer. As we mentioned before, a real-time system runs several real-time

processes called tasks. A real-time task τi generates periodic instances, called Jobs Ji. A real-

time task τi is defined by several parameters. A job Ji inherits the same parameters of the task τi

that generates it. These parameters are the period of execution Ti, the WCET Ci, the arrival time

(offset) ai, the start time Si, the finishing time Fi and the deadline Di, as illustrated in Figure 3.1.

The period Ti determines the rate of execution of a task τi, which specifies the frequency of jobs

Ji generation. The WCET Ci is the time necessary for the processor to execute a job Ji of a task τi

without interruption. The arrival time (offset) ai is the time at which a job Ji of a task τi becomes

ready for execution, relative to its period Ti. The start time Si is the time at which a job Ji of a task

τi starts its execution. The finishing time Fi is the time at which a job Ji of a task τi finishes its exe-

cution. The deadline Di is the time before which a job Ji of a task τi should be completed, relative

to ai, to avoid damage to the system or degradation in its performance according to its real-time

system category classification. In this thesis, we refer to Di as the relative deadline. The Di is

27

28 Background

Figure 3.1: Real-time task parameters.

called the absolute deadline, which represents the absolute value of a deadline of a job Ji. In this

research, our system model defines the real-time task τi by (ai,Ci,Ti,Di) parameters, neglecting Si

and Fi since they are not significant to our model.

A given set of jobs Ji must be ordered for the jobs to be executed such that the deadline

constraints are satisfied. The execution of a job Ji may or may not be interrupted (preemptive or

non-preemptive scheduling) by other jobs. Over the set of jobs, there is a precedence relation, in

case of dependent tasks, which constrains the order of execution. The platform on which the jobs

are to be executed is characterized by the amounts of resources available [Buttazzo, 2004, Joseph,

1996, Krishna, 1996, Stankovic and Ramamritham, 1989]. A real-time scheduling algorithm must

achieve a main goal which is meeting the timing constraints of the system [Joseph, 1996, Krishna,

1996]. There are also other goals that a real-time scheduling algorithm should achieve, however,

they are not a primary driver for the algorithm. Example of these side goals are:

1. Attaining a high degree of utilization.

2. Preventing simultaneous access to shared resources and devices.

3. Reducing the cost of context switches caused by preemption.

4. Reducing the communication cost in real-time distributed and multi-/many-core systems.

Basically, the scheduling problem is to determine a schedule for the execution of the jobs so

that they are all completed before their deadline [Buttazzo, 2004, Joseph, 1996, Krishna, 1996,

Stankovic and Ramamritham, 1989]. Given a set of real-time tasks, the appropriate scheduling ap-

proach should be designed based on the properties and category of the tasks, previously discussed

in Section 1.1.1. In this work, we are considering hard real-time task sets.

The response time Ri of the job Ji is the difference between the time the job finishes executing

that invocation Fi and the time it arrived ai, which is the time it takes the job to complete its execu-

tion, as shown in Figure 3.1. A critical instant of a task, under a given scheduling algorithm, is a

release that yields the longest possible response time of that task for the given task set. A schedule

is said to be valid iff all deadlines of all tasks are met. The processor is said to be fully utilized,

under a given scheduling algorithm and task set, if the algorithm produces a valid schedule for

the given task set, but an increase in the execution time of any task in the task set would yield an

overflow. A scheduling algorithm is considered optimal if it produces a valid schedule for every

3.1 Real-time Systems 29

task set that is schedulable.

Scheduling can be classified according to the type of the platform that tasks runs on, which are

uniprocessor or multi-core. Uniprocessor scheduling may be considered as priority driven in the

sense that the task with the highest priority that has execution remaining should be scheduled. In

that regard, there are two main types of priority-based scheduling algorithms:

1. Fixed priorities, where static priorities are assigned to tasks. These priorities are inherited

by the instances of the tasks (jobs). The priority of a job remains static throughout the ex-

ecution time. There are various fixed-priority assignment algorithms, e.g. Rate Monotonic

(RM) [Lehoczky et al., 1989, Liu and Layland, 1973], and Deadline Monotonic (DM) [Le-

ung and Whitehead, 1982]. Usually, the priority is assigned based on certain properties of

a task. In case of the DM priority assignment algorithm, the task with the shortest deadline

is assigned the highest priority. Similarly, in the RM priority assignment algorithm, the task

with smallest period is assigned the highest priority.

2. Dynamic priorities, where priorities are calculated and assigned to tasks during the run-

time of the system. A task can carry more than one priority during its execution, because

priorities are assigned to jobs rather than their tasks. It means that different jobs of the

same task may execute on a processor with different priorities. There are many scheduling

algorithms that falls in this category , e.g. Earliest Deadline First (EDF) [Baruah et al., 1990,

1993, Leung and Merrill, 1980, Liu and Layland, 1973], and Modified Least Laxity First

(MLLF) [Oh and Yang, 1998]. The priority of a job in this class of algorithms is usually

assigned based on the fixed property of a job. For example, in case of EDF, the absolute

deadline of a job is the fixed property that does not change throughout its active time.

3.1.1 Multi-core Scheduling

Multi-core scheduling can be classified into two categories: partitioned and global scheduling

[Davis and Burns, 2011]. Partitioned scheduling statically assigns each task to a single processor,

where uniprocessor scheduling algorithms can be applied afterwards to schedule tasks, e.g. Parti-

tioned Earliest Deadline First (PEDF) [López et al., 2004]. In contrast, global scheduling allows

tasks to migrate across cores of a multi-core platform and algorithms that simultaneously schedule

on all the processors are used, e.g. Global Earliest Deadline First (GEDF) [Baruah and Baker,

2008a,b]. Many partitioning algorithms and their analysis [Baruah and Fisher, 2006, Fisher et al.,

2006, Oh and Baker, 1998], and global scheduling algorithms and their analysis [Andersson et al.,

2001, Baruah et al., 1996, Davis and Burns, 2011], have been proposed. In this thesis, we use a

partitioned scheduling technique called Partitioned Earliest Deadline First (PEDF).

3.1.2 Feasibility Tests

Real-time scheduling is the theoretical basis of real-time systems engineering. Feasibility tests can

be sufficient or exact (necessary and sufficient). Sufficient tests are usually efficient but they are

30 Background

not powerful; many schedulable task sets are not judged to be schedulable. The simplest sufficient

tests for real-time systems are utilization-based and they have polynomial complexity. However,

they are not suitable for all types of task sets. In the following sections, we give an overview of

two feasibility tests for EDF scheduling algorithm that are used in this work. They are the demand

bound function and Quick convergence Processor-demand Analysis.

3.1.2.1 The Demand Bound Function

The demand bound function (dbf) [Baruah et al., 1990] represents the computational requirement

for the system resources of a set of tasks τ . It is mainly used as a feasibility test to check the

schedulability of τ within a certain interval by checking its demand against the available computa-

tional resources. If the demand exceeds the available computational resources, τ is not schedulable

in this specific interval and vice versa. The dbf is the summation of computation time of all the

instances of a set of tasks having their release and deadline within a certain interval [t0, t1]. The

dbf calculation differs according to the scheduling algorithm and the task model used. In case of

the asynchronous (ai ≥ 0) constrained-deadline task model (Di ≤ Ti) under an EDF scheduler, the

dbf is defined as follows [Baruah et al., 1990]:

dbf(t0, t1) = ∑
∀τi∈τ

max
{

0,
(⌊

t1−Di

Ti

⌋

−

⌈
t0−ai

Ti

⌉)}

·Ci (3.1)

However, to check that τ is schedulable at any point in time, an exact, necessary and sufficient

feasibility test is to calculate the demand of τ over the hyperperiod interval H of all tasks’ periods,

because it forms the cycle over which the system repeats its behaviour. The hyperperiod interval

H is denoted by Leung and Merrill in [Leung and Merrill, 1980] as :

H = [0,2 · lcm∀τi∈τ{Ti}+max
∀τi∈τ
{ai}] (3.2)

where, t0 = 0 and t1 = 2 · lcm∀τi∈τ{Ti}+max∀τi∈τ{ai}. Therefore, by substitution of t0 in Equa-

tion (3.1) the dbf becomes as follows :

dbf(0, t1) = ∑
∀τi∈τ

max
{

0,
(⌊

t1−Di

Ti

⌋

−

⌈
- ai

Ti

⌉)}

·Ci (3.3)

3.1.2.2 Quick Convergence Processor-Demand Analysis

Quick convergence Processor-demand Analysis (QPA) [Zhang and Burns, 2009a,b] is a necessary

and sufficient feasibility test for the schedulability of synchronous arbitrary-deadline model task

sets scheduled using EDF. This means that any task τi arrives at time zero (ai = 0) and its relative

deadline Di could be larger than its period Ti. The QPA builds on the traditional processor de-

mand analysis (dbf), previously detailed in Section 3.1.2.1. However, it provides fast and simple

schedulability test, because QPA has a tight interval [t0, t1] compared to dbf. This decreases the

number of absolute deadlines that need to be checked in the interval [t0, t1], and hence reduces the

3.1 Real-time Systems 31

Algorithm 1: Quick convergence Processor-demand Analysis (QPA) [Zhang and Burns,
2009a].

τττ: Task set.
h(t)h(t)h(t): Processor demand.

1 begin

2 t←max∀τi∈τ {Di|Di < t1}
3 while (h(t)≤ t)∧ (h(t)> min∀τi∈τ {Di}) do

4 if (h(t)< t) then

5 t← h(t)
6 else

7 t←max∀τi∈τ {Di|Di < t}
8 end

9 end

10 if (h(t)≤min∀τi∈τ {Di}) then

11 – The task set is schedulable.
12 else

13 – The task set is not schedulable.
14 end

15 end

calculation effort exponentially in most situations.

The QPA checking interval starts by t0 = 0 and ends by t1, which is the minimum value of

the upper bound for the schedulability test ta and the synchronous busy period of a processor tb.

Considering that the upper bound ta is not well defined (divide by 0) when the utilization of the

task set U is equal to 1, let t1 be defined as follows [Zhang and Burns, 2009a]:

t1 =

min(ta, tb) U < 1

tb U = 1
(3.4)

The upper bound for the schedulability test ta is defined as follows [Zhang and Burns, 2009a]:

ta = max
{

D1, . . . ,Dn,
∑

n
i=1(Ti−Di) ·Ui

1−U

}

(3.5)

The synchronous busy period of a processor tb is the period in which all tasks are released simul-

taneously at the beginning of the processor busy period at their maximum rate, and ended by the

first processor idle period (the length of such a period can be zero). The length of the synchronous

busy period tb can be computed by the following process [Ripoll et al., 1996, Spuri, 1996]:

w0 =
n

∑
i=1

Ci (3.6)

wm+1 =
n

∑
i=1

⌈
wm

Ti

⌉

·Ci (3.7)

32 Background

(a) SDF graph. (b) HSDF graph.

Figure 3.2: An SDF graph and its HSDF representation.

where the recurrence stops when wm+1 = wm, and then tb = wm+1.

The QPA is an iterative algorithm that starts with a value of t close to t1, and then, iterates back

through a simple expression toward 0. The value of this t sequence converges for an unschedu-

lable system to min∀τi∈τ {Di}, and converges for a schedulable system to 0. A general task set is

schedulable iff U ≤ 1 and the result of the iterative Algorithm 1 is h(t) ≤ min∀τi∈τ {Di}, where

h(t) is the processor demand defined as follows:

h(t) = ∑
∀τi∈τ

max
{

0,
(

1+
⌊

t−Di

Ti

⌋)}

·Ci (3.8)

3.2 Dataflow Computational Model

Dataflow is a natural paradigm for describing DSP and streaming applications for concurrent im-

plementation on parallel hardware. Dataflow programs are directed graphs where each node repre-

sents a function and each edge represents a signal path with a dependency. In this section, we give

a quick overview of Synchronous Dataflow [Lee and Messerschmitt, 1987a] and Homogeneous

Synchronous Dataflow models of computation, which are widely used in modelling and analysis

of streaming applications.

3.2.1 Synchronous Dataflow

The Synchronous Dataflow (SDF) [Lee and Messerschmitt, 1987a] model of computation is widely

used in modeling and analyzing streaming and concurrent multimedia applications [Bhattacharyya

et al., 1999, Sriram and Bhattacharyya, 2000]. Its use has been increasingly considered for design-

ing applications for multi-/many-core platforms [Poplavko et al., 2003]. Synchronous Dataflow

(SDF) is a special case of dataflow; an actor is considered synchronous if the number of input to-

kens that are consumed on each input (consumption rate) and the number of output tokens that are

produced on each output (production rate) can be specified a priori. An SDF application is a set

of synchronous nodes connected to each other with channels, where the same behaviour repeats

3.2 Dataflow Computational Model 33

in each actor every time it is fired. These channels can have initial tokens. Every initial token

represents a delay between the token produced and the token consumed at the other end of the

channel. Tokens are always consumed in a First In First Out (FIFO) order.

From this definition, any SDF application can be formally represented by a Directed Cyclic

Graph (DCG) G = 〈V,E,d〉, where V is the set of nodes, E is the edges connecting them and d is

the set of delays (initial tokens) on the edges of the graph. Each node in this graph is an actor vi

and each edge is a communication channel. Figure 3.2(a) shows an example of an SDF graph that

represents a streaming application. It consists of four actors (nodes) (va, vb, vc, vd) connected to

each other by channels (edges). Each actor’s production and consumption rate is written next to

its ports. However, in case not indicated it is equal to 1. For example, actor vc has input and output

ports with production and consumption rates of (1, 1), respectively. Initial tokens are indicated

on the channel by a black dot and a number indicating the amount of initial tokens, as shown in

Figure 3.2(a).

An SDF graph G can be described by a topology matrix Γ, where the element Γi j is defined as

the number of tokens produced on the ith channel (edge) by the jth actor (node) [Lee and Messer-

schmitt, 1987b]. There is one row in this matrix for each channel in the graph, with a positive

element for the actor that produces tokens on the channel and a negative element for the actor that

consumes. All the other elements in the row are zero. Equation (3.9) shows the topology matrix Γ

of the SDF graph in Figure 3.2(a).

Γ =

3 −1 0 0

0 1 −1 0

0 0 1 −3

 (3.9)

An SDF graph has two main properties, they are liveness and consistency. For an SDF graph to be

live, all its actors must be firing indefinitely. If its actors have a maximal execution (firing) of finite

length, the SDF graph has a deadlock. For an SDF graph to be consistent, a shortest non-empty

sequence of actor firings should exist called a repetition vector ~q. The repetition vector ~q must

satisfy the balance equations

Γ.~q =~0 (3.10)

, where each element ~q j of the repetition vector specifies the number of firings of the jth actor.

Applying Equation (3.10) on the example of Figure 3.2(a), the repetition vector~q will be:

~q =
[

1 3 3 1
]T

(3.11)

When each actor is fired the number of times specified by ~q, the distribution of tokens on all

channels return to their initial state. This is referred to as a complete cycle or graph iteration.

Each actor vi ∈V has a computation time denoted by Ci. The jth firing of an SDF actor vi in V is

denoted by vi j
and executes for Ci time units.

Every SDF application has a throughput requirement and a latency constraint that must be

34 Background

satisfied for correct execution of the application. The throughput requirement ζ is a performance

measure that determines the minimum output data rate of the application (iterations per time unit).

In contrast, the latency requirement D is an end-to-end timing constraint that defines the latest

possible time a complete graph iteration of G could finish its execution relative to the iteration

start time. In this work, the end-to-end deadline constraint D value must be greater than or equal

to the execution time of the critical path (CP) in G, defined as follows:

D ≥ ∑
∀vi j
∈CP

Ci (3.12)

Intuitively, the CP is the longest path of firings vi j
, in terms of execution time Ci, from the input to

the output of G.

3.2.2 Homogenous Synchronous Dataflow

Homogeneous Synchronous Dataflow (HSDF) [Lee and Messerschmitt, 1987a] is a special case

of SDF graphs in which all production and consumption rates associated with actor ports are equal

to one. Therefore, when each actor is fired once, the distribution of tokens on all channels return

to their initial state completing a graph iteration. Applying this definition, the repetition vector

for an HSDF graph is one for all actors. Just like SDF, any HSDF application can be formally

represented by a Directed Cyclic Graph (DCG) Gh = 〈Vh,Eh,d〉 , where Vh is the set of nodes, Eh

is the edges connecting them and d is the set of delays (initial tokens) on the edges of the graph.

Similarly to SDF, an HSDF application has a throughput requirement and a latency constraint

that must be satisfied for correct execution of the application. The throughput requirement ζ is a

performance measure that determines the minimum output data rate of the application (iterations

per time unit). In contrast, the latency requirementD is an end-to-end timing constraint that defines

the latest possible time a complete graph iteration of G could finish its execution, as defined in

Equation (3.12). The end-to-end timing constraint D is a deadline between the firings of the input

and output actor(s) in the same iteration. The input and output actor(s) of an HSDF graph may have

multiple route(s) between them, each referred to as a time-constrained path P. Fundamentally, the

requirement D must be greater than or equal to the sum of execution times Ci of all actors on the

critical path (CP) for the application to be schedulable. Formally, a time-constrained path P is

defined as follows:

P = {〈vx, . . . ,vy〉 : v⊆Vh} (3.13)

where, vx refers to the input actor, vy refers to the output actor, and its end-to-end latency constraint

D ≥
y

∑
i=x,
∀vi∈CP

Ci (3.14)

If P is cyclic, it terminates in the last node before reaching an already visited node. This means,

in case of cyclic path, vx refers to the first visited actor and vy refers to the last visited actor

before reaching an already visited one. For example, in the HSDF graph shown in Figure 3.2(b)

3.3 Multi-/Many-Core Platforms 35

(a) SDF graph (b) HSDF graph

Figure 3.3: An SDF graph and its HSDF representation with finite-size buffers.

(va0 ,vb0 ,vc0 ,vd0) is not cyclic, because it starts at actor va0 and ends at actor vd0 , while (vb0 ,vb1 ,vb2)

is cyclic because it terminates at actor vb2 before repeating itself again. Each time-constrained path

P starts at one of the input actors and ends at one of the output actors and its latency constraint isD.

For example, assume the HSDF application in Figure 3.2(b) has an end-to-end latency constraint

D. Then, all time-constrained paths must start with actor va0 and end with actor vd0 , unless P is

cyclic.

3.2.3 Buffer Modelling in Dataflow Graphs

In theory, SDF channels have infinite buffer sizes. However, in practice SDF channel buffer sizes

must be finite. Finite buffer sizes for channels can be modelled by adding back-edges carry-

ing a number of initial tokens. These initial tokens on each back-edge represent the buffer size

(in tokens) available to the corresponding channel. Figure 3.3(a) shows the example application

from Figure 3.2(a), considering finite buffer sizes. As we can see, the channels (eab,ebc,ecd)

have buffer sizes of (3,1,3) tokens, respectively. These buffer sizes are modelled as back-edges

(eba,ecb,edc) carrying initial tokens equivalent to the corresponding channel buffer size, as shown

in Figure 3.3(a). Modelling buffers in an SDF graph affects its execution behaviour, because it

adds extra dependencies between firings of different actors, limiting the set of possible firing se-

quences of the graph. Figure 3.3(b) shows an HSDF graph representation of the SDF graph shown

in Figure 3.3(a). As we can see, firing vb1 is dependent on the three firings va0 , vb0 and vc0 . How-

ever, in the infinite buffer case shown in Figure 3.2(b) the same firing vb1 is only dependent on

firings va0 and vb0 , which gives the application the freedom to fire vb1 and vc0 in parallel.

3.3 Multi-/Many-Core Platforms

Multi-core platforms increasingly provide higher performance by increasing the number of cores

in a chip, as a result of the consequences of Moore’s Law and power dissipation. This widespread

trend, usually referred as the "the multi-core revolution", is now even more challenging, as chips

36 Background

Figure 3.4: TILE64™ block diagram [Bell et al., 2008].

start to become many-core, that is multi-core chips with an even higher number of cores (tens

to hundreds), interconnected by Networks-on-Chip (NoC). Examples of this trend include the

Tilera Tile CPUs [Wentzlaff et al., 2007] (TILE64™ features 64 cores), Intel’s Single-Chip Cloud

Computer (SCC) [Mattson et al., 2010] (an experimental processor with 48 cores), Intel Many In-

tegrated Core (MIC) [Seiler et al., 2008] (Xeon Phi features 60 cores), STMicroelectronics P2012

[Benini et al., 2012] (prototypes are available with 69 cores), Kalray’s Multi Purpose Processing

Array (MPPA) [de Dinechin et al., 2013] (up to 1024 cores – current version is 256 cores) or the

Adapteva Epiphany with up to 4096 cores (available now with 1024 cores) [Ada].

These many-core architectures allow both to concentrate multiple applications into the same

processor, maximizing the hardware utilization, and reducing cost, size, weight, and power re-

quirements, and to improve application performance by exploiting parallelism at the application

level.

This thesis considers multi-core platforms with identical cores (Homogeneous architecture),

such as TILE64™ [Wentzlaff et al., 2007]. The processor model Π incorporates a number of iden-

tical cores πn interconnected by a 2D-mesh IN, Π = {π1,π2, . . . ,πn}. Each core is a full-featured

processor that includes a non-blocking switch that connects the tile to the 2D mesh IN. The IN

uses X-Y routing algorithm accompanied by wormhole switching and TDM arbitration for trans-

ferring data and managing traffic between different cores πn. The speed of transferring data on the

IN is determined by the link capacity L of the IN, which is measured in bits per second (bps). It is

defined as in [Nikolić et al., 2013, Shi and Burns, 2008]:

L=
f

lsw + lt
(3.15)

where f represents the flit size in bits, lsw and lt represent the switch latency and transfer latency

of one flit in seconds, respectively. An application Ai running on the platform Π can reserve a

dedicated bandwidth on the IN to assure a required performance called reservation bandwidthRi,

3.3 Multi-/Many-Core Platforms 37

which is a fraction of L. According to this specification, the time required for a packet p of an

application Ai traversing the IN from source to destination Ci,p is defined as:

Ci,p =Ciso
i,p + IT DM

i (3.16)

where Ciso
i,p is the isolation time that represents the time required by the packet to reach its des-

tination without suffering interference, and IT DM
i is the interference caused by the TDM arbiter.

The isolation time Ciso
i,p , also known in the literature as basic network latency, is equal to the delay

of the first flit (header) to reach the destination router, augmented by the processing delay of all

remaining flits (payload) at the destination router.

The isolation time Ciso
i,p of packet p from an application Ai is defined as:

Ciso
i,p =

Ciso.L
i,p

Ri

(3.17)

where Ciso.L
i,p is the packet isolation time assuming full link capacity L. The Ciso.L

i,p is defined as in

[Nikolić et al., 2013, Shi and Burns, 2008]:

Ciso.L
i,p = hp · (lsw + lt)

︸ ︷︷ ︸

header

+

⌈
p j

f

⌉

· lt
︸ ︷︷ ︸

payload

(3.18)

where hp represents the number of hops of the packet p, and p j represents the packet size in bits.

The first flit (header) establishes the path, which means it experiences the switch latency lsw of

the routers and the transfer latency lt of the communication links on its path to destination, as

demonstrated in the first term of Equation (3.18). However, the rest (payload) follows the header

in a pipelined manner, i.e. when the first flit progresses from one router to the next, the rest of the

flits follow, each separated by the transfer latency. This means, the payload only experiences the

transfer latency lt of the communication links, since the path has been already established by the

header. As we are using X-Y routing algorithm for directing traffic on the IN, the number of hops

hp of a packet p is defined as:

hp = |x1− x2|+ |y1− y2| (3.19)

where (x1,y1) and (x2,y2) are the locations of the source and destination cores in the platform Π,

respectively. Substituting Equation (3.15) in Equation (3.18) results in:

Ciso.L
i,p = hp ·

f

L
︸ ︷︷ ︸

header

+

⌈
p j

f

⌉

·

(
f

L
− lsw

)

︸ ︷︷ ︸

payload

(3.20)

38 Background

Figure 3.5: A TDM frame with frame size F of 6 where 2 allocated slots κ1 to application A1 for
continous slot assignment policy [Akesson et al., 2015].

By substituting Equation (3.20) in Equation (3.17)

Ciso
i,p = hp ·

f

L·Ri
︸ ︷︷ ︸

header

+

⌈
p j

f

⌉

·

(
f

L·Ri

−
lsw

Ri

)

︸ ︷︷ ︸

payload

(3.21)

Before defining the equation that computes the TDM interference, we have to understand

the mechanism of a TDM arbiter. A TDM arbiter operates by periodically repeating a schedule,

referred to as a frame, that determines which application(s) that may be injected into the IN at a

particular time to as a frame. The frame comprises a number of slots F , each corresponding to a

single IN access with bounded execution time of lsw + lt . Every application is allocated a number

of slots κi in the frame at design time. The percentage of bandwidth allocated to an application Ai

(reservation bandwidth Ri) is determined by the number of allocated slots κi in the frame and is

computed according to Equation (3.22), defined in [Akesson et al., 2015].

Ri =
κi

F
(3.22)

The TDM interference IT DM, on the other hand, depends on the slot assignment policy that

determines how the allocated slots are distributed in the frame. A commonly used slot assignment

policy is to use a continuous allocation [Foroutan et al., 2013, Gomony et al., 2013, Goossens

et al., 2013b,c, Vink et al., 2008], where slots allocated to an application appear consecutively in

the frame, as shown in Figure 3.5. For this policy, the TDM interference of an application (in

slots) can simply be computed according to Equation (3.23), as defined in [Akesson et al., 2015].

IT DM.co
i = F −κi (3.23)

For example, the TDM interference of an application A1 (in slots) that has been assigned two slots

(κ1 = 2) in a TDM frame of size six (F = 6) using continuous slot assignment policy is equal to

four (IT DM.co
i = 4), as shown in Figure 3.5. The advantage of the continuous slot assignment policy

is that it is simple to understand and implement, and that both the interference and the bandwidth

are straight-forward to compute. By substitution Equation (3.22) in Equation (3.23), IT DM.co
i is

equal to:

IT DM.co
i =

κi

Ri

−κi (3.24)

3.4 System Model 39

In this thesis, we adopt the continuous slot assignment policy. Therefore, IT DM
i (in seconds) is

defined as:

IT DM
i =

(
κi

Ri

−κi

)

·
f

L·Ri

(3.25)

where f
L·Ri

represents the duration of a single interfering slot in seconds. Equation (3.25) assumes

that TDM slots are atomic, which means that the worst-case arrival of a packet p is just after its

own slot has finished. However, the real worst-case arrival of a packet p is one clock cycle after

its own slot has started, because TDM slots are not atomic, while clock cycles are atomic though.

This means the packet p has missed the start of its own slot and it will either be empty, or used by

the packets of another application depending on, whether or not, the resource is work-conserving.

In this case, the IT DM
i (in seconds) is defined as:

IT DM
i =

(
κi

Ri

−κi

)

·
f

L·Ri

+

(
f

L·Ri

−
1

IN f req

)

=

(
κi

Ri

−κi +1
)

·
f

L·Ri

−
1
G

(3.26)

where G is the IN frequency and 1
G

is the duration of one cycle in seconds. By substituting

Equations (3.21) and (3.26) in Equation (3.16), the WCET of a packet is defined as:

Cp = hp ·
f

L·Ri
︸ ︷︷ ︸

header

+

⌈
pp

f

⌉

·

(
f

L·Ri

−
lsw

Ri

)

︸ ︷︷ ︸

payload

+

(
κi

Ri

−κi +1
)

·
f

L·Ri

−
1
G

︸ ︷︷ ︸

interference

(3.27)

Equation (3.27) shows that execution time of a packet comprises three terms. The first term is the

time spent by the packet’s header (a single flit) to traverse the IN. The second term is the time taken

by the packet’s payload to traverse the IN, following the header’s established path in a pipelined

manner. The third term is the interference suffered by the packet during traversing the IN.

3.4 System Model

Formally, we consider a system Ψ = 〈Π,A〉 based on a homogeneous symmetrical multi-core

platform Π of size n× n. Each core πn is a full-featured processor that includes a non-blocking

switch that connects the tile to the 2D-mesh IN. The IN uses X-Y routing algorithm accompanied

by wormhole switching and TDM arbitration for transferring data and managing traffic between

different cores πn. The speed of transferring data on the IN is determined by the link capacity L

of the IN, which is measured in bits per second (bps). The platform Π runs the set of periodic

applications A that comprises independent real-time tasks and equivalent HSDF representation of

SDF applications. Any SDF graph G can be converted to an equivalent HSDF graph Gh by using

a conversion algorithm, such as the one presented in [Sriram and Bhattacharyya, 2000]. Each

HSDF graph Gh running on the platform Π has a dedicated percentage of the link capacity L

called reservation bandwidth R. This reserved bandwidth (L·Ri) per application Ai guarantees a

dedicated link capacity for the tokens exchanged by the HSDF graph Gh across the IN, preventing

racing between applications on the medium. The actors of the Gh represents the firings of the

40 Background

actors of the SDF graph G. Therefore, the set of actors of the HSDF graph Vh represents the firings

of the set of actors of the SDF graph V and the number of initial tokens d for both of them is

exactly the same. In this model, we assume that all the SDF applications in A have periodic input

sources. Therefore, each actor vi in the HSDF graph Gh can be considered a periodic task. All Gh

actors can be scheduled on Π using traditional real-time schedulers.

A periodic task τi ∈V is represented by the 4-tuple τi = (ai,Ci,Ti,Di), where ai is the relative

offset that specifies the start instant of an actor, Ci is the worst-case execution time, Ti is the relative

period and Di is the relative deadline of the task. The utilization of task τi is denoted by Ui and is

defined as Ui =Ci/Ti, where Ui ∈ (0,1]. Additionally, the density of task τi is denoted by ρi and is

defined as ρi =Ci/Di, where ρi ∈ (0,1]. All tasks are modelled as arbitrary-deadline tasks.

In this model, we assume that all actors computation time Ci are equal to the Worst Case

Execution Time (WCET), which can be determined using methods and tools detailed in [Wilhelm

et al., 2008]. Therefore, each firing vi j
of an actor vi in any SDF application can be considered

a periodic task with an execution time Ci equal to WCET. The choice of WCET is safe, because

the dataflow model of computation is monotonic, which means faster execution of actors does not

result in a worse performance.

Chapter 4

Reducing Complexity of Dataflow

Graphs

As explained Chapter 1, future real-time embedded systems integrate mixed application models

with timing constraints on the same multi-core platform. Extraction of timing parameters (offsets,

deadlines, periods) from these applications enables the use of real-time scheduling and analysis

techniques, allowing to provide guarantees on satisfying timing constraints. However, existing ex-

traction techniques require the transformation of the dataflow application from highly expressive

dataflow computational models, e.g., Synchronous Dataflow (SDF) and Cyclo-Static Dataflow

(CSDF) to Homogeneous Synchronous Dataflow (HSDF). This transformation can lead to an ex-

ponential increase in the size of the application graph that significantly increases the run-time of

the analysis [Geilen, 2009].

In this chapter, we address this problem by proposing an offline heuristic algorithm called

slack-based merging [Ali et al., 2017]. The algorithm is a novel graph reduction technique that

helps speeding up the process of timing parameter extraction and finding a feasible real-time

schedule, thereby reducing the overall design time of the real-time system, as we later show in

Chapters 5 and 6. It uses two main concepts: a) the difference between the timing constraints of

the SDF graph and the WCET of its firings (slack) to merge firings and generate a reduced-size

HSDF graph, and b) the novel concept of merging called a safe merge, which is a merge operation

that we prove cannot cause a live HSDF graph to deadlock.

We begin our journey through this chapter by defining parameters and concepts that help in

understanding the slack-based merging algorithm in Section 4.1. Then, we explain the novel safe

merge concept in Section 4.2. After this essential overview, we present the slack-based merging

algorithm in Section 4.3, followed by the experimental evaluation of the proposed algorithm in

Section 4.4. Finally, we conclude the chapter with a summary in Section 4.5.

41

42 Reducing Complexity of Dataflow Graphs

(a) SDF graph (b) HSDF graph

Figure 4.1: An SDF graph and its HSDF representation.

4.1 Definitions

In this section, we define parameters and concepts essential to the specification of our algorithm.

They are: 1) the set of predecessor firings Ω(vi j
), 2) the set of successor firings Φ(vi j

), 3) the

earliest start time of a firing ϑi j
, 4) the latest finish time of a firing θi j

, 5) the topologically ordered

set of actors V̂ and 6) the concept of dependent/independent firings.

First, the set of predecessor firings Ω(vi j
), is defined as follows:

Definition 4.1 (Set of predecessor firings Ω(vi j
)). In an SDF application G, a set of predeces-

sor firings Ω(vi j
) defines the collection of firings that must execute to enable firing vi j

. Ω(vi j
)

represents the set of precedence constraints that must be satisfied before firing vi j
.

Second, the set of successor firings Φ(vi j
), is defined as follows:

Definition 4.2 (Set of successor firings Φ(vi j
)). In an SDF application G, a set of successor

firings Φ(vi j
) defines the collection of firings that cannot execute before vi j

. Φ(vi j
) represents the

set of firings dependent on firing vi j
.

Third, the earliest start time of a firing defines the earliest possible time instance a firing vi j

can start its execution. It is defined as follows:

Definition 4.3 (Earliest start time of a firing). In an SDF application G, the earliest start time of

the jth firing vi j
of an actor vi occurs once all of its input ports have the required input tokens. The

required input tokens are available when the latest firing in the set of predecessor firings Ω(vi j
)

occur. Therefore, the earliest start time ϑi j
of a firing vi j

is expressed as follows:

ϑi j
=

0 if Ω(vi j
) =∅

max∀vlk
∈Ω(vi j

) (ϑlk +Cl) if Ω(vi j
) 6=∅

(4.1)

where Cl is the WCET of actor vl and ∅ is the empty set.

4.1 Definitions 43

(a) SDF graph (b) HSDF graph

Figure 4.2: An SDF graph and its HSDF representation with finite-size buffers.

Fourth, the latest finish time of a firing parameter defines the latest possible time instance a

firing vi j
can finish its execution. It is defined as follows:

Definition 4.4 (Latest finish time of a firing). The latest finish time of the jth firing vi j
of an

actor vi in an SDF graph G defines the latest possible time it finishes its execution such that the

latency constraint D of the graph G is satisfied. Therefore, the latest finish time θi j
of a firing vi j

is expressed as follows:

θi j
=

D if Φ(vi j
) =∅

min∀vlk
∈Φ(vi j

) (θlk −Cl) if Φ(vi j
) 6=∅

(4.2)

Fifth, a topologically ordered set of actors defines the order in which firings are selected for a

merge. It is defined as follows:

Definition 4.5 (Topologically ordered set of actors). The topologically ordered set of actors V̂ is

a set in which the actor set V is sorted in a breadth-first traversal sequence, where the input actors

(parents) are in the beginning of the set followed by their successor actors (children). In case a

group of actors are on the same level in the graph, they are listed in V̂ in arbitrary order. The only

order considered in V̂ is parents followed by children. In case of cyclic graphs, all back edges

with initial tokens are ignored.

For example, in case of the graph shown in Figure 4.1(a), the topological ordered set of actors

V̂ is (va,vb,vc,vd).

Last, the dependent / independent firings is a term that describes the connectivity relation

between two firings, which helps in deciding whether a merge is safe or not. It is defined as

follows:

Definition 4.6 (Dependent / independent firings). Two firings are dependent iff there is a sequence

of edges (not a single edge) connecting them carrying zero initial tokens. Otherwise, they are

independent firings.

44 Reducing Complexity of Dataflow Graphs

Figure 4.3: A safe merge operation of two independent firings (vi j
, vkl

) into a new cluster V .

For example, the firings vb0 and vb1 of actor vb in the cases with infinite and finite buffers shown

in Figures 4.1(b) and 4.2(b), respectively. In case of infinite buffers, these firings are independent,

since there is no path between them other than the direct edge (eb0,b1), as shown in Figure 4.1(b).

However, in case of finite buffers, they are considered dependent firings due to the existence of

a path between the firings vb0 and vb1 that consists of the firings (vb0 ,vc0 ,vb1) connected by the

sequence of edges (eb0,c0 ,ec0,b1) that have zero initial tokens, as shown in Figure 4.2(b).

4.2 Safe Merge

In this section, we present the concept of safe merge, which is a cornerstone of the slack-based

merging algorithm presented in Section 4.3. First, we begin by defining a safe merge operation

and its function in Section 4.2.1. Then, we discuss the safety of such operation and its effect on

the liveness of HSDF graphs in Section 4.2.2.

4.2.1 Definition and Function

The safe merge concept is a novel idea for merging HSDF graphs. It is basically a merging

operation of any two firings that is defined as follows:

Definition 4.7 (Safe merge). A safe merge operation is an act of combining two independent

firings (vi j
, vkl

) creating a new cluster V with an execution time equal to the sum of execution time

of both firings. The new cluster V has the union of input/output ports and channels of both firings

except the ports and channels carrying zero initial tokens between both firings (vi j
, vkl

). A safe

merge operation keeps all the initial tokens in the graph distributed on the same edges without

change.

Figure 4.3 shows a merging operation between two independent firings (vi j
, vkl

) into a new

cluster V . The two firings are independent according to the Definition 4.6, because the only path

connecting them (other than the direct edge that carries the initial token d0) consists of a sequence

of edges that carry the initial token d1. As we can see, the safe merge operation kept the distribution

of the initial tokens (d0,d1,d2) the same after the merge.

4.2 Safe Merge 45

Figure 4.4: HSDF graph after adding s and t.

4.2.2 A Safe Merge is Deadlock-Free

Applying safe merge operations on the graph ensures that the resulting graph is deadlock free.

However, before going into the proof details of this statement, we provide necessary preliminaries

(definitions and theorems) that helps in understanding and constructing our proof.

Assume that Gh = 〈Vh,Eh,d〉 is a consistent and live (Section 3.2.1) HSDF graph, where Vh

is the set of firings of the SDF actors, Eh is the set of edges connecting them and d is the set of

initial tokens. Also, assume all the inputs/outputs of Gh are connected to dummy nodes source s

and sink t, respectively. Accordingly, in case of the HSDF graph Gh shown in Figure 4.2(b), the

dummy nodes s and t will be connected to va0 and vd0 , respectively, as shown in Figure 4.4. First,

we would like to define some terms:

Definition 4.8 (End-to-end path). An end-to-end path is a path P that consists of distinctive firings

that traverses the graph from source s to sink t. It is defined as follows:

P = 〈s,vi j
, . . . , t〉 (4.3)

Definition 4.9 (Path cover for a DAG). Given a Directed Acyclic Graph (DAG), a path cover P

is a set of end-to-end paths such that every firing in the DAG belongs to at least one end-to-end

path P ∈P .

Definition 4.10 (Minimal feedback edge set). Given a DCG, a minimal feedback edge set is the

minimum set of edges which, when removed from the DCG, leave a DAG. In other words, it is a

set containing one back-edge of every cycle in the DCG.

Definition 4.11 (Strongly Connected DCG). A DCG is strongly connected iff there exists a di-

rected path between each pair of firings.

46 Reducing Complexity of Dataflow Graphs

Definition 4.12 (Strongly Connected Component). A Strongly Connected Component (SCC) is

any strongly connected DCG or a subgraph of it that is strongly connected.

Definition 4.13 (Consistency in dataflow graphs [Lee, 1991]). A dataflow graph is consistent iff

on each edge, in the long run, the same number of tokens are consumed as produced.

From Definition 4.9, every DAG can be represented as a set of end-to-end paths, referred to as

the path cover P . From Definition 4.10, every DCG consists of a DAG and a set of back-edges

that creates the cycles. Therefore, from Definitions 4.9 and 4.10, a DCG can be defined as follows:

Gh = 〈P,O,d〉 (4.4)

where P is the path cover that represents the DAG component in Gh and O is the set of cycles in

Gh.

An essential theory regarding the liveness of an HSDF graph that has been proved and pre-

sented in [Ghamarian et al., 2006] (Theorem 24) states the following :

Theorem 4.1. An HSDF graph is live and bounded iff it is consistent and all its SCCs are

deadlock-free.

Theorem 4.1 along with Equation (4.4) construct the base for proving our theory that states:

Theorem 4.2. A safe merge operation on a consistent and live HSDF graph results in a new

consistent and live HSDF graph.

Proof. Let us assume that G′m is the output graph after applying a single safe merge operation on

Gh. It is defined as follows:

G′m = 〈P ′
m,O

′
m,d〉 (4.5)

This single safe merge operation results in a consistent graph G′m by Definition 4.7 and 4.13,

because all G′m ports have production/consumption rates equal to one and its initial tokens distri-

bution is the same as Gh.

The single safe merge operation creates a new path cover and cycle sets, P ′
m and O ′m, respec-

tively. The new path cover P ′
m does not affect the liveness of G′m. This is due to its elements

(end-to-end paths) by Definitions 4.8 and 4.12 are not SCC. Therefore, according to Theorem 4.1

liveness is not affected.

Contrary to P ′
m, the cycles set O ′m consists of elements that are SCC by Definition 4.12. This

means that the elements of the O ′m impact the liveness of G′m. We proceed by distinguishing two

mutually exclusive and jointly exhaustive cases for the cycles in O ′m :

Case 1 The subset of cycles that does not share the two merged firings. This subset belongs to

the original graph Gh before the merge. Also, the safe merge does not affect the distribution

of the initial tokens in the graph by Definition 4.7. This means that every edge that carries

initial tokens in Gh remains as it is in the graph after the merge G′m. Therefore, this subset

is live because no change occurred on its elements.

4.3 Slack-Based Merging Algorithm 47

Case 2 The subset of cycles that share the two merged firings (newly created cluster V). This

subset is live as well, because all the firings, as well as V , in G′m have ports with produc-

tion/consumption rates equal to one. Also, from Definition 4.7 a safe merge is only applied

to independent firings. This means that a cycle can only be created iff there is a path, be-

tween the two firings to be merged, and at least one of its edges carries at least one initial

token. This means that the newly created cycles have at least a single token on the back

edge that keep them live. Therefore, a safe merge does not create a deadlock in G′m.

Therefore, G′m is consistent and live.

From the proof of Theorem 4.2, applying several safe merge operations on Gh results in a

consistent and live graph Gm.

4.3 Slack-Based Merging Algorithm

In this section, we present the slack-based merging algorithm intended to reduce the size of an

HSDF graph with timing constraints. In the following sections, we introduce the merging strategy

of our algorithm (Section 4.3.1), as well as the conditions for guaranteeing a valid merge (Sec-

tion 4.3.2). Finally, we present the slack-based merging algorithm (Section 4.3.3) followed by its

complexity analysis (Section 4.3.4) and an example illustrating how it works (Section 4.3.5).

4.3.1 Merging Strategy

The proposed algorithm combines two ideas: 1) slack-based merging and 2) merging firings of

the same actor. Before introducing the complete algorithm, we will first discuss the idea of slack-

based merging. For this purpose, we formalize the definition of slack.

Definition 4.14 (Slack). The slack of a firing j of actor i, vi j
, is the difference between its latest

finish time θi j
and its earliest start time ϑi j

minus its computation time Ci. It is defined as follows:

σi j
= θi j

−ϑi j
−Ci (4.6)

For example, consider two firings vi j
and vil of an actor vi. If vi j

has σi j
greater than or equal

to the computation time of vil (σi j
≥Ci) and the reverse (σil ≥Ci), the algorithm can merge both

firings together in one cluster. This strategy allows having a reduced-size graph without elongating

the critical path (CP), defined in Section 3.2.2, larger than D, satisfying the graphs end-to-end

latency constraint. However, this is not the only condition to have a valid merge. Section 4.3.2

lists all the conditions in details.

The second strategy aims to merge the firings vi j
of the same actor vi together in the minimum

number of clusters. This helps in generating a reduced-size graph that is suitable for mapping

on a message-passing multi-core architectures, because the firings vi j
of the same actor vi will

be mapped on the minimum number of cores. This results in a smaller memory footprint on the

platform and less communication overhead.

48 Reducing Complexity of Dataflow Graphs

However, safe merge operation may cause timing constraints to be violated. Therefore, the

slack-based merging algorithm has an additional method to ensure that timing constraints are

satisfied called a valid merge, which is detailed in Section 4.3.2.

4.3.2 Valid Merge

In this section, we present the concept of a valid merge that is used by the slack-based merging

algorithm (Section 4.3.3) to decide whether to accept or reject a merging operation. It is defined

as follows:

Definition 4.15 (Valid merge). A valid merge is a safe merge operation between two firings vi j

and vil of the same actor vi ∈ G, resulting in a new graph Gm that satisfies the following two

constraints:

(1) the throughput constraint ζ such that,

ζm ≥ ζ (4.7)

(2) the end-to-end latency constraint D such that,

D ≥ ∑
∀vi j
∈CP∈Gm

Ci (4.8)

To satisfy the throughput constraint, Gm must fulfil two conditions:

(a) Gm must be live, i.e. deadlock-free, defined as follows:

ζm 6= 0 (4.9)

(b) the execution time of each cycle Ck ∈ Gm and each merged cluster Vo ∈ Gm must not exceed

the period constraint T, which is equal to the inverse of the throughput constraint ζ , T = 1/ζ .

This is defined as follows:

(∀Ck ∈ Gm)∧ (∀V ∈ Gm), T≥ ∑
∀vi j
∈Ck

Ci, T≥ ∑
∀vi j
∈Vo

Ci (4.10)

The first condition is satisfied by the safe merge operation (Theorem 4.2). It ensures that the merge

operation does not create a cycle without an initial token in the generated graph Gm (a deadlock

situation). Therefore, we implemented a function that searches for a path between the two firings

about to be merged, other than the direct edge connecting them. The function searches for a path

that consists of firings connected by edges carrying zero initial tokens (dependent firings). If such

a path is found, then the merge is not valid, because the merging process will create an extra illegal

cycle that does not have an initial token and leads to deadlock in the application graph. Otherwise,

the graph Gm is live. Consider as an example the scenarios in which we would like to merge the

4.3 Slack-Based Merging Algorithm 49

firings vb1 and vb2 of actor vb in the cases with infinite and finite buffers shown in Figures 4.1(b)

and 4.2(b), respectively. In case of infinite buffers, merging the firings vb1 and vb2 satisfies the

first condition (independent firings), since there is no path between them other than the direct edge

(eb1,b2), as shown in Figure 4.1(b). Contrarily, in case of finite buffers, this merge does not sat-

isfy the first condition (dependent firings), because it will create an illegal cycle without an initial

token. This is due to the existence of a path between the firings vb1 and vb2 that consists of the

firings (vb1 ,vc1 ,vb2) connected by the edges (eb1,c1 ,ec1,b2) that have zero initial tokens, as shown in

Figure 4.2(b). In this case, the merge between (vb1 ,vb2) into a single cluster Vb1,b2 creates an illegal

cycle without an initial token between the cluster Vb1,b2 and the firing vc1 , which would result in

deadlock.

The second condition is ensured by implementing a function that checks that both the execu-

tion time of each cycle Ck and each merged cluster Vo (in case of Vo does not have self-cycles) is

not exceeding the application period constraint T. The algorithm identifies all cycles in the appli-

cation graph and saves them in a lookup table. Each entry in the lookup table contains the cycle

and its total execution time. When merging any actor involved in a cycle, the cycle is updated

by replacing the actors with the new cluster and calculating the new execution time of the cycle.

If the execution time of the cycle exceeds the period of the application the merge is not valid.

Otherwise, the merge is approved. In case of merged clusters, the algorithm checks the execution

time of every merged cluster and guarantees that it does not exceed the application period.

The slack-based merging algorithm merges as long as each firing vi j
of every actor vi ∈ G

has non-negative slack (σi j
≥ 0). This means that the execution time of the critical path of the

application cannot exceed the application end-to-end latency constraint D. This guarantees that

the second constraint is satisfied.

4.3.3 The Algorithm

The slack-based merging algorithm, shown in Algorithm 2, aims to generate a simpler, smaller size

graph Gm that reduces the run-time of its analysis. The proposed algorithm starts by calculating

the earliest start time ϑi j
and the latest finish time θi j

for each firing vi j
in the SDF graph G

using Equations (4.1) and (4.2), respectively. Then, it computes the slack σi j
for each firing using

Equation (4.6). If all the firings vi j
in G have slack σi j

greater than or equal to zero (∀vi j
∈G,σi j

≥

0), a merging operation can possibly be applied. Otherwise, the merging algorithm terminates.

When all firings have non-negative slack, the algorithm needs to determine which firings to merge.

An optimal algorithm would try all possible combinations of firings from the same actor, for

each actor, although this approach does not scale to applications of realistic complexity. Instead,

our heuristic algorithm picks the actors vi in sequence from the topologically ordered set V̂ to

begin merging different firings. This particular way of selection of firings to be merged is not

formally proven to be better than others, but we have experimentally determined that it works

rather well. For each actor vi, the algorithm tries each possible combination of two firings (vi j
, vil)

for merging, such that σi j
≥Ci and σil ≥Ci, and generates a new graph Gm. After merging them,

the algorithm checks the validity of the merging operation of (vi j
, vil) using the valid_merge()

50 Reducing Complexity of Dataflow Graphs

Algorithm 2: Slack-based merging
Input:

GGG: SDF application graph, G = 〈V,E,d〉.
Output:

GmGmGm: merged HSDF application graph.
Variables:

nnn: number of actors in G.
VVV : set of SDF actors, V = {v1,v2, . . . ,vn}.
V̂̂V̂V : breadth-first topologically ordered set of actors.
~q~q~q: repetition vector for G,~q = {q1,q2, . . . ,qn}, where qi is the corresponding number of

firings of vi.
vi j
vi jvi j

: is the jth firing of actor vi, where { j : j ∈ Z, j ∈ [1,qi]}.
GhGhGh: HSDF graph representation of G, where Gh = 〈Vh,Eh,d〉 and vi j

∈Vh.

1 begin

2 Convert G to Gh.
3 Calculate ϑi j

, {ϑi j
: ∀vi j

∈ G,Equation (4.1)}.
4 Calculate θi j

, {θi j
: ∀vi j

∈ G,Equation (4.2)}.
5 {σi j

: ∀vi j
∈ G,σi j

= θi j
−ϑi j

−Ci}.
6 Gm = Gh.
7 if (∀vi j

∈ Gm,σi j
≥ 0) then

8 foreach vi in V̂ do

9 {vi j
, vil : j 6= l,σi j

≥Ci and σil ≥Ci}.
10 if (valid_merge(vi j

, vil)) then

11 merge vi j
and vil in Gm.

12 Calculate ϑi j
, {ϑi j

: ∀vi j
∈ Gm,Equation (4.1)}.

13 Calculate θi j
, {θi j

: ∀vi j
∈ Gm,Equation (4.2)}.

14 {σi j
: ∀vi j

∈ Gm,σi j
= θi j

−ϑi j
−Ci}.

15 if (∀vi j
∈ Gm,σi j

≥ 0) then

16 Gh = Gm

17 else

18 Gm = Gh

19 end

20 else

// No Merge

21 end

22 end

23 else

// Stop Merge

24 end

25 end

function previously explained in Section 4.3.2. If all the conditions of a valid merge are satisfied,

the merge operation is valid. Otherwise, the algorithm will undo the last merging operation and

pick up two new candidate firings for merging.

When the merge operation is considered a valid merge, the algorithm recalculates the earliest

4.3 Slack-Based Merging Algorithm 51

(a) Merging of vb0 and vb1 (b) Merging of vc0 and vc1 (c) Final merged graph Gm

Figure 4.5: Example of slack-based merging.

start time ϑi j
, the latest finish time θi j

and the slack σi j
for each firing vi j

in the new output merged

graph Gm. If the slack of all firings in Gm are greater than or equal to zero (∀vi j
∈Gm,σi j

≥ 0), the

merge operation of (vi j
, vil) is approved and the algorithm continues to try merging different firings.

Otherwise, the algorithm will undo the last merging operation and move forward by picking up two

new firings for merging. The algorithm iterates until no possible merges can be done. Reaching

that stage, it generates a new small size compact HSDF graph Gm that reduces the analysis time,

as later shown experientially in Section 5.7.

4.3.4 Complexity Analysis

In this section, we provide a complexity analysis for the slack-based merging algorithm, previously

presented in Algorithm 2. The algorithm starts by calculating earliest start time ϑi j
and latest finish

time θi j
of all firings, each having a complexity of O(|Vh|+ |Eh|), since they are based on a Breadth

First Search (BFS) [Lynch, 1996]. Then, it continues with the calculation of the slack σi j
, which

has a complexity of O(|Vh|). The next part of the algorithm is a loop (foreach statement) that runs

|Vh| times (in the worst case) and contains earliest start time ϑi j
, latest finish time θi j

and slack

σi j
calculations, with the previously stated complexities. Therefore, the complexity of the loop is

equivalent to O(|Vh| · ((|Vh|+ |Eh|)+ (|Vh|+ |Eh|)+ (|Vh|))) = O(3|Vh|
2 + 2|Vh||Eh|). Hence, the

final complexity of the slack-based merging algorithm is O(|Vh|
2 + |Vh||Eh|), which is polynomial

and depends on both |Vh| and |Eh|.

4.3.5 Example

In this section, we present an example that illustrates how to apply the slack-based merging algo-

rithm on an SDF/HSDF graph, shown in Figure 4.1, until reaching the reduced-size HSDF graph

Gm, shown in Figure 4.5(c). Here, we demonstrate the algorithm for a single iteration for brevity,

as it is a repeated process that takes several iterations to reach the final output graph Gm. The

following paragraphs explains this in detail.

Consider the SDF graph and its HSDF representation shown in Figure 4.1. Let us assume all

52 Reducing Complexity of Dataflow Graphs

Table 4.1: SDF3 benchmark applications.

Application Number of actors
Number of channels

Infinite Buffer Finite buffer

h263decoder 1190 2378 4160
h263encoder 201 399 785
modem 48 109 170
samplerate 612 1633 2654
satellite 4515 11619 18723
mp3playback 10000 32237 32237

the execution times of all actors are equal to 1, the throughput requirement is ζ = 1/3, and the end-

to-end latency constraint is D = 8. The period T of this graph is equal to 3 and the total execution

time of its CP (va0 ,vb0 ,vb1 ,vb2 ,vc2 ,vd0) is equal to 6. Calculating 〈ϑi j
,θi j

,σi j
〉 for every firing vi j

in the graph results in va0 = 〈0,3,2〉, vb0 = 〈1,4,2〉, vb1 = 〈2,5,2〉, vb2 = 〈3,6,2〉, vc0 = 〈2,7,4〉,

vc1 = 〈3,7,3〉, vc2 = 〈4,7,2〉, vd0 = 〈5,8,2〉. As we see, every firing vi j
has non-negative slack σi j

,

which allows going forward with the merging process. From Figure 4.1(a), we can get the topo-

logically ordered set V̂ = {va,vb,vc,vd}. The algorithm will skip actor va and move on to actor vb,

because va consists of a single firing va0 . It picks up the two firings (vb0 , vb1), because they have

non-negative slack that satisfy the two conditions σb0 ≥ Cb and σb1 ≥ Cb. Then, it merges them

into a single cluster Vb0,b1 with execution time Cb0,b1 = 2, as shown in Figure 4.5(a). This merg-

ing operation is a valid merge, because it satisfies the throughput ζ and the end-to-end latency

D constraints defined by Equations (4.7) and (4.8), respectively. The throughput constraint ζ is

satisfied, because the total execution time of the maximum cycle in the graph (Vb0,b1 ,vb2) is equal

to 3, which means that ζm of the resulting graph, shown in Figure 4.5(a), did not change (ζm = 1/3).

Also, the end-to-end latencyD constraint is satisfied, because the total execution time of the CP of

the resulting graph did not change (equal to 6). Then, the algorithm recalculates 〈ϑi j
,θi j

,σi j
〉 for

every firing vi j
and repeats the process again. Figure 4.5(b) shows the output of an intermediate

step of the merging algorithm, while Figure 4.5(c) shows the final output HSDF graph Gm of the

merging algorithm.

The final output HSDF graph Gm consists of four actors (va0 ,Vb0,b1,b2 ,Vc0,c1,c2 ,vd0) with execu-

tion times (1,3,3,1), respectively. Its throughput ζm is equal to 1/3, while the total execution time

of its CP (va0 ,Vb0,b1,b2 ,Vc0,c1,c2 ,vd0) is equal to 8. Therefore, Gm satisfies the throughput ζ and

the end-to-end latency D constraints of the original SDF/HSDF graph. As we see, Gm has a sin-

gle path (va0 ,Vb0,b1,b2 ,Vc0,c1,c2 ,vd0) compared to the original HSDF graph, shown in Figure 4.1(b).

This speeds up the timing parameter extraction process since it depends on the number of paths

exists in the graph. We later demonstrate this experimentally in Section 5.7.

4.4 Experiments

In this section, we evaluate the slack-based merging algorithm using SDF applications from the

SDF3 benchmarks [Stuijk et al., 2006]. Table 4.1 shows the size of these benchmark applications

4.4 Experiments 53

Table 4.2: Run-time (seconds) of the algorithm.

Application

Run-time (sec)

Infinite Buffer Sizes
Minimum Buffer Sizes

ζmaxζmaxζmax ζζζ

h263decoder 264 495 11824
h263encoder 0.55 8.9 11.13
modem 0.215 0.47 0.65
samplerate 38 51 53
satellite 14390 20917 26334
mp3playback 5 (days) ∞ ∞

after transforming them into HSDF graphs. The main goal is to evaluate its run-time with SDF

graphs of different sizes, but also to show the impact of different buffer sizes on the performance

of the slack-based merging algorithm. To illustrate its impact, we consider three values of buffer

sizes. First, is the infinite buffer sizes, assuming the availability of infinite resources. Second and

third, are the minimum buffer sizes, but at two different execution throughputs of the SDF graph,

which are the maximum throughput ζmax and the throughput constraint ζ of the application. The

latency constraint D for the input applications is set to the inverse of their throughput constraint,

D = 1/ζ . This choice is made to provide enough slack for the applications while we study the

effect of changing other parameters, i.e., throughput and buffer sizes, as shown in the experiment.

Tables 4.2 and 4.3 show the summary of the results. In most cases, the algorithm succeeds in

generating a reduced-size graph in reasonable time. However, for some cases, e.g. mp3playback,

the run-time varies from seconds to days depending on the complexity of the graph. This result

is in-line with our expectations because the original graph is huge and consists of 10000 firings.

The algorithm achieves large reduction rates of the original HSDF graph, as shown in Table 4.3,

ranging from 50% in case of mp3playback up to 99.7% (approximately) in case of h263decoder,

in case of infinite buffers. In case of finite buffers, the reduction rates are less compared to infinite

case. It ranges from 35.4% up to 94.5% (approximately) depending on the buffer sizes and the

throughput constraint. Also, we notice that the slack-based merging algorithm’s run-time and

output graph size have an inverse relation with the buffer size of the application. The reason is

that small buffer sizes add extra dependencies in the graph that prevent further merging and makes

the algorithm spend more time exploring every combination of actors that could be merged. The

∞ and N/A entries imply that the merging algorithm spend unreasonable time (> 1 week) without

generating any output.

From these results, we can conclude that the slack-based merging algorithm typically succeeds

in achieving large reduction rates in the size of the output graphs. This result reflects positively

on the timing parameter extraction (TPE) algorithm, as shown in the experiments of Chapter 5.

54 Reducing Complexity of Dataflow Graphs

Table 4.3: Number of actors before and after merging.

Application

Number of actors

Before Merge

After Merge

Infinite Buffer Sizes (red. %)
Minimum Buffer Sizes

ζmaxζmaxζmax (red. %) ζζζ (red. %)

h263decoder 1190 4 (99.7%) 71 (94.0%) 300 (74.8%)
h263encoder 201 5 (97.5%) 11 (94.5%) 181 (10.0%)
modem 48 16 (66.7%) 31 (35.4%) 31 (35.4%)
samplerate 612 6 (99.0%) 127 (79.2%) 263 (57.0%)
satellite 4515 22 (99.5%) 988 (78.1%) 1972 (56.3%)
mp3playback 10000 5000 (50.0%) N/A N/A

4.5 Summary

In this chapter, we presented a new heuristic reduction algorithm for synchronous dataflow graphs

called slack-based merging. The proposed algorithm generates reduced-size HSDF graphs that

satisfy the throughput and latency constraints of the original application graph. This helps in

speeding up the process of timing parameter extraction and finding a feasible real-time schedule,

thereby reducing the overall design time of the real-time system, as we later show experimentally

in the next Chapters 5 and 6. The slack-based merging algorithm uses two main concepts: a)

the difference between the WCET of the SDF graph’s firings and its timing constraints (slack)

to merge firings together and generate a reduced-size HSDF graph, and b) the novel concept of

merging called safe merge, which is a merge operation that we prove cannot cause a live HSDF

graph to deadlock. Experimental results with real application models from the SDF3 benchmark

show that the reduced graph: 1) respects the throughput and latency constraints of the original

application graph and 2) when the throughput constraint is relaxed with respect to the maximal

throughput of the graph, the merging algorithm is able to achieve a larger reduction in graph size.

Chapter 5

Timing Parameter Extraction

The previous chapter presented the first stage of our solution to integrate mixed application mod-

els with timing constraints coexisting on the same multi-core platform. That stage was a graph

reduction technique called slack-based merging that aims to reduce the complexity of dataflow

applications by generating reduced-size HSDF graphs, avoiding possible large HSDF graphs gen-

erated from traditional conversion methods [Sriram and Bhattacharyya, 2000]. In this chapter, we

present the second stage of our solution called Timing Parameters Extraction (TPE) [Ali et al.,

2015]. This algorithm extracts the timing parameters (offsets, deadlines and periods) of cyclic

Homogeneous Synchronous Dataflow (HSDF) graphs with periodic sources (the output of the first

stage, Chapter 4) transforming them into real-time periodic tasks. This creates a unified model

for all applications running on the multi-core platform, where traditional real-time analysis and

scheduling techniques can be applied assuring real-time guarantees for the complete system.

This chapter starts by explaining key concepts, definitions and techniques that pave the way

for understanding the methodology of timing parameter extraction of HSDF graphs. First, we

present existing deadline assignment strategies for pipelines (Section 5.2), which we extend to be

applicable on Directed Cyclic Graphs (DCG). Second, we define the path sensitivity (Section 5.3)

concept that determines the order in which TPE traverses paths in the graph to extract timing pa-

rameters. Last, we propose a methodology for deriving latency constraints (Section 5.4) in case

of its absence from the graph timing properties to help in the TPE process. After this essential

overview, we explain in detail the TPE algorithm in Section 5.5. Then, we prove its correctness in

Section 5.6, followed by the experimental evaluation of the TPE algorithm in Section 5.7. Finally,

we conclude the chapter with a summary in Section 5.8.

5.1 Preliminaries

The TPE algorithm, presented in this chapter, works with HSDF graphs that have a single or

multiple latency constraints. This shows the ability of the TPE algorithm to deal with a more

complex model than the one proposed in this thesis (Section 3.4), which states a single end-to-

end latency constraint D for each HSDF graph. The multiple latency constraints are defined as

55

56 Timing Parameter Extraction

actor-to-actor deadlines (maximum timing constraints) between firings in the same iteration of

any two actors, vx and vy, that have a single or multiple route(s) between them in the HSDF

graph. In contrast, D is a latency constraint between an input and output actor only. Due to

this, this chapter refers to latency constraints with the symbol Dxy, where x and y are indices

that refer to the actors in the HSDF graph that are governed by the Dxy constraint. Therefore, a

time-constrained path P is defined as any route between two actors vx and vy that has a latency

constraintDxy. Fundamentally, P andDxy are defined by the same Equations (3.13) and (3.14), but

with two significant differences. First, actors vx and vy refer to any two actors in the HSDF graph

(not only to input and output actors). Second, the end-to-end latency constraint D is substituted

by the actor-to-actor latency constraint Dxy in Equation (3.14). Therefore, for the TPE algorithm

Equations (3.13) and (3.14) will be defined as:

P = {〈vx, . . . ,vy〉 : v⊆Vh} (5.1)

where, vx and vy refer to two actors in the HSDF graph defining the beginning and the end of the

path P, respectively. The latency constraint of P is defined as:

Dxy ≥
y

∑
i=x,
∀vi∈CP

Ci (5.2)

In conclusion, the ability to allow representing multiple latency constraints that may be re-

quired by some applications, extends the generality of the TPE algorithm, allowing it to be applied

on wider range of applications represented as HSDF graphs.

5.2 Deadline Assignment Strategies for Pipelines

The problem of assigning individual deadlines to dependent tasks of a pipeline application Ap,

represented by the graph Gp = 〈Vp,Ep〉, distributed on multiple processors using its end-to-end

deadline has been addressed in previous research [Di Natale and Stankovic, 1994, Kao and Garcia-

Molina, 1997, Lipari and Bini, 2011]. The pipeline application consists of a set of tasks (actors)

Vp that execute in sequence. The application has a latency constraint Dxy that represents the end-

to-end deadline of Ap, where vx and vy is the start and end task of Ap, respectively. Therefore, the

pipeline application graph Gp contains a single time-constrained path P with a latency constraint

Dxy. The proposed TPE algorithm supports two well-known deadline assignment methods for

pipelines, referred to as NORM and PURE. These are detailed next.

5.2.1 The NORM Method

The NORM method [Di Natale and Stankovic, 1994, Kao and Garcia-Molina, 1997] is an assign-

ment strategy to divide the end-to-end deadlineDxy of a pipeline proportionally to the computation

5.3 Path Sensitivity 57

time of its tasks. Therefore, the individual deadline of a task in a pipeline Di is computed as fol-

lows:

Di =
Ci

∑∀v j∈PC j

·Dxy (5.3)

From Equation (5.3), the NORM method assigns individual deadlines Di to tasks with the same

end-to-end deadline Dxy, such that all tasks have equal densities ρi.

ρi =
Ci

Di

=
∑∀v j∈PC j

Dxy

(5.4)

5.2.2 The PURE Method

The PURE method [Di Natale and Stankovic, 1994, Kao and Garcia-Molina, 1997] is a different

deadline assignment strategy based on the distribution of the laxity ε equally among all tasks of

the pipeline, such that each task have slack δ . The laxity ε on the time-constrained path P is

defined as follows:

ε =Dxy− ∑
∀v j∈P

C j (5.5)

Then, the slack δ of the tasks is equal to:

δ =
ε

|Vp|
(5.6)

where |Vp| is the number of tasks in the pipeline. Therefore, the individual deadline of a task in a

pipeline Di is computed as follows:

Di =Ci +δ (5.7)

Therefore,

Di =Ci +
Dxy−∑∀v j∈PC j

|Vp|
(5.8)

From Equation (5.7), the PURE method assigns individual deadlines Di, such that tasks have

relative densities ρi. This means, a task with high Ci have high ρi relative to a task with small Ci.

ρi =
Ci

Di

=
Ci

Ci +δ
(5.9)

5.3 Path Sensitivity

In this section, we define a key concept in our algorithm called path sensitivity, that enables sup-

porting general HSDF graphs, as opposed to being limited to pipelines. Dealing with actors in

general graphs implies that an actor can be present on multiple time-constrained paths of the

graph. The path sensitivity parameter helps in addressing this problem by determining the order

in which to consider the time-constrained paths when extracting the timing parameters.

58 Timing Parameter Extraction

Definition 5.1 (Path sensitivity γγγ). Path sensitivity is a measure of the criticality of a time-

constrained path with respect to density. It is calculated as follows:

γ = ∑
∀v j∈P

C j

Dxy

(5.10)

The density is the measure of how tight the latency constraint Dxy is for a time-constrained

path P compared to its execution time. γ is in the range (0,1] (because of the relation in Equa-

tion (3.14)), where higher values indicate higher sensitivity. In case of NORM, substituting Equa-

tion (5.10) in Equation (5.3) gives:

Di =
Ci

γ
(5.11)

by solving for γ and substituting Equation (5.4) in Equation (5.11)

ρi = γ (5.12)

This means that all tasks τi on the same time-constrained path P have densities ρi equal to the path

sensitivity γ .

In case of PURE, substituting Equation (5.10) in Equation (5.8) gives:

Di =Ci +δ =Ci +
(1− γ) ·Dxy

|P|
(5.13)

by dividing Equation (5.13) by Di, then substituting by Equation (5.4) and solving for ρi

ρi = 1−
δ

Di

= 1−
(1− γ) ·Dxy

|P| ·Di

(5.14)

From Equations (5.11), (5.12), (5.13) and (5.14), we can draw two conclusions. First, there is

an inverse relation between the path sensitivity γ and the task relative deadline Di for both NORM

and PURE. This conclusion is obvious from Equation (5.11). In case of Equation (5.13), since

0 < γ ≤ 1, an increase in the value of γ decreases the value of Di and vice versa, confirming the

inverse relation. Second, when the sensitivity γ of a time-constrained path increases, the value of

its task densities ρi increases too. This is confirmed from Equations (5.12) and (5.14) and the first

conclusion.

5.4 Deriving Latency Constraints

In this section, we present two techniques for deriving latency constraints for HSDF graphs. First,

we derive latency constraints for cyclic paths. We then derive end-to-end latency constraints in

case it is not specified by the application.

5.4 Deriving Latency Constraints 59

5.4.1 Deriving Constraints for Cyclic Paths

HSDF applications can have several cycles in its graph. Each cycle requires a latency constraint

that satisfies the throughput requirement ζi of the application. A quick choice for a cycle latency

constraint Dcycle
xy value is the period of the application Ai. However, such a choice of latency

constraint ignores the number of tokens d involved in the cycle and limits possible pipeline paral-

lelism in the application. Therefore, the latency constraint of a cyclic time-constrained path Dcycle
xy

must take into account the number of tokens involved in this cycle dcycle such that the application

throughput ζi is not violated. The latency constraint for a cyclic time-constrained path is defined

as follows [Moreira et al., 2007]:

Dcycle
xy =Ccycle +(

1
ζi

−
Ccycle

dcycle

) ·dcycle =
dcycle

ζi

(5.15)

where Ccycle is the summation of execution times of the actors involved in the cycle. The latency

constraint of a cycle tells us how much the execution of the actors on the cycle as a whole can be

extended while still guaranteeing the desired application throughput ζi.

5.4.2 Deriving End-to-End Latency Constraint

Our proposed algorithm requires an end-to-end latency constraint for each HSDF application to

satisfy the precedence constraints and the throughput requirement. In case of an HSDF application

without a specified end-to-end latency constraint Dxy, we derive it as follows:

Dxy = max{Ti,β · ∑
∀vi∈CP

Ci} (5.16)

As we can notice Dxy is set to the maximum of two values. The first, the application period Ti,

which is extracted from the inverse of its throughput requirement ζi, Ti = 1/ζi . The second, is

the sum of the Ci of actors in the critical path (CP) of the application multiplied by a constant β ,

where the CP of an application is defined as its longest execution path from input to output, as

defined in Section 3.2.2.

The β constant has a value that ranges [1,∞). Selecting β = 1 results in unnecessarily tight

actor deadline values and increases the total density of the application that makes it more critical

and hard to schedule with other applications, since the actors in the application CP have ρi = 1.

On the other hand, selecting higher values of β relaxes the criticality of the application and eases

its schedulability with other applications. A good value for β that we use in this thesis is when the

sensitivity of the CP of the application γCP is equal to the maximum sensitivity of all the cycles

γcycle in the application,

max
∀cycle∈G

{γcycle}= γCP = ∑
∀v j∈CP

C j

Dxy

=
∑∀v j∈CPC j

β ·∑∀v j∈CPC j

(5.17)

60 Timing Parameter Extraction

s

source

input

t

sink

output

Figure 5.1: HSDF graph after adding source s and sink t.

At this value of β , the individual deadlines of actors participating in cycles and time-constrained

paths governed by the derived end-to-end latency constraint in the application graph can be ex-

tended to the maximum possible limit (latency constraint computed in Equation (5.15)), while still

satisfying the throughput requirement ζ . Therefore, solving for β in Equation (5.17) defines it as:

β =
1

max∀cycle∈G{γcycle}
(5.18)

The derived end-to-end latency constraint Dxy, shown in Equation (5.16), is considered a lower

bound using β computed in Equation (5.18). Choosing a larger value will not affect the through-

put requirement of the application, but it increases the schedulability of the application. However,

it also delays the first output by a latency equal to the chosen value of the end-to-end latency

constraint Dxy. It is up to the system designer to choose a different larger value of β than Equa-

tion (5.18) if it suits the system.

5.5 Timing Parameters Extraction Algorithm

The algorithm presented in this section is intended for extracting the timing parameters (ai,Ci,Ti,Di)

of HSDF applications with periodic sources. It is divided into two phases. The first phase finds all

time-constrained paths in the graph, while second phase extracts the timing parameters of individ-

ual actors. The following sections explain these two phases in detail.

5.5.1 First phase: Finding All Time-Constrained Paths

In this phase, we calculate all time-constrained paths for a given HSDF in non-increasing order

of sensitivities. A time-constrained path in an HSDF can be between any two actors that have

a latency constraint. The first phase of the algorithm is divided into the following two stages,

creation of source and sink actors and path enumeration. These two stages are detailed next.

5.5.1.1 Creation of Source and Sink Actors

This technique have been used before in Section 4.2.2 to define the end-to-end path (Defini-

tion 4.8). Here, we use it again to easily traverse the graph G. First, we search the graph G to

find all input (output) actors. Actors associated with the input (output) data stream are specified as

5.5 Timing Parameters Extraction Algorithm 61

Partial Path :

Extend Partial Path using

Resulting Paths :

}
Figure 5.2: Enumeration of time-constrained paths.

the starting-actors (ending-actors), respectively. A dummy source s (sink t) actor that has a zero

execution time is inserted at the beginning (end) of the graph G, as shown in Figure 5.1. These two

actors (s, t) are connected with dummy links to starting and ending actors, respectively. Adding

these dummy actors with their edges converts the graph into a canonical form, since all the paths

that traverse the graph from the input to the output of the graph have a uniform form that starts

with s and ends with t. This is helpful when traversing multi-input/multi-output graphs.

5.5.1.2 Path enumeration

This is an iterative process where all time-constrained paths between source s and sink t actors in

the HSDF are generated. In case of having latency constraints between two specific actors, the

path enumeration phase generates all time-constrained paths between these two actors in addition

to the ones generated from s to t. The set of all time-constrained paths between actors with latency

constraints is called P , which is arranged in non-increasing order of path sensitivities γ . It is

defined as follows:

P = {〈Pi,γi〉 : V,γi−1 ≥ γi,γ ∈ (0,1]} (5.19)

The process starts by initializing P with a few partial paths. In this case, these initial partial

paths are all single hop paths generated by combining the start actors with the elements in their

list of successor actors. The list of successor actors is a set of child actors that are one hop away

from their parent. For example, in Figure 5.1, the list of successor actors for source actor s is

Succ(vs) = (a0,a1). The starting actors can be the source actor s or any actor that starts a set

of time-constrained paths vx with a specific latency constraint Dxy. The list of successor actors

Succ(vx) is defined as follows:

Succ(vx) = (vx1 ,vx2 ,vx3 , . . . ,vxl
) (5.20)

where l is the number of actors in Succ(vx). Then, the process picks up a partial path Pi =

〈vx, . . . ,v j〉 from P , where v j is not equal to the end actor vy, and extends it to a full path (Equa-

tion (3.13)), as shown in Figure 5.2. The extension process starts by getting the Succ(v j) =

62 Timing Parameter Extraction

(a) Class Head partial path

(b) Class Tail partial path

(c) Class Middle partial path

Figure 5.3: Partial path classes for offsets setting

(v j1 ,v j2 ,v j3 , . . . ,v jl). Then, it extends the partial path Pi to its l possible extended paths, Pi1 =

〈vx, . . . ,v j,v j1〉,Pi2 = 〈vx, . . . ,v j,v j2〉, . . . ,Pil = 〈vx, . . . ,v j,v jl 〉. It then removes Pi and inserts its l

possible continuations in P in non-increasing order of sensitivity. The path enumeration process

continues until all partial paths in P are extended to full time-constrained paths.

5.5.2 Second phase: Extracting Timing Parameters

The second phase, shown in Algorithm 3, repeats for each application in the application set A. It

picks a time-constrained path Pi in order of sensitivity from P . The selected path Pi is checked

whether or not it has actors v j with assigned deadlines D j. If Pi has no actors with assigned dead-

lines (∀v j ∈Pi), the algorithm assigns individual deadlines D j for the actors v j using dead_assign()

function that implements either NORM or PURE (Equations (5.3) or (5.8), respectively), using the

corresponding latency constraint Di
xy.

On the other hand, if Pi has a set of actors with assigned deadlines Xi (shared actors vk with any

previously processed time-constrained paths), the algorithm assigns individual deadlines D j to the

unassigned actors v j using either NORM or PURE based on the corresponding latency constraint,

which is the difference between Di
xy and the sum of individual deadlines Dk already assigned to

actors, (Di
xy−∑∀vk∈Xi

Dk). In all cases, the period of the actor Tj is derived from the throughput

constraint ζA of the application. It is defined as follows:

Tj = 1/ζA (5.21)

This follows naturally for an HSDF graph, since each actor executes only once per iteration by

definition.

Once the application Ai actors relative deadline are determined, the offset of the actors a j

are calculated in a similar fashion. Algorithm 3 generates a new set P̂ ⊆ P containing time-

constrained paths that include s and t actors only. P̂ is arranged in a non-increasing order of Dxy.

If two paths have the same Dxy, they are ordered in a non-increasing order of γ . The algorithm

picks a time-constrained path Pi from P̂ . If the path has no actors with assigned offsets, it assigns

5.5 Timing Parameters Extraction Algorithm 63

Algorithm 3: Extracting timing parameters of HSDF
PiPiPi: A full time-constrained path in P set.
Di

xyDi
xyDi
xy: deadline constraint between actor vx and actor vy on a full time-constrained path Pi.

PPP: totally ordered set of all time-constrained paths of an application ordered according to γ , P = {Pi : γi−1 ≥ γi}.
P̂̂P̂P: totally ordered set of time-constrained paths from s to t of an application ordered according to Dxy, P̂ ⊆P ,

P̂ = {Pi : vx = s,vy = t, [Di−1
xy >Di

xy or {Di−1
xy =Di

xy,γi−1 ≥ γi}]}.
PH

iPH
iPH
i : set of higher sensitivity time-constrained paths than Pi, PH

i = {〈P1, . . . ,Pi−1〉 : γi−1 ≥ γi}
XiXiXi: set of shared actors between Pi with higher sensitivity time-constrained paths set PH

i , Xi = {vk : vk ∈ Pi,vk ∈ Pj ∈ PH
i }

pipipi: partial path in time-constrained path Pi.

1 begin

// Actor deadline assignment

2 foreach Pi in P do

3 if (∀v j ∈ Pi,D j =∅) then

4 foreach v j in Pi do

5 D j = dead_assign(Di
xy); // NORM/PURE

6 end

7 else // Xi ⊆ Pi

8 foreach v j in Pi−Xi do

9 D j = dead_assign(Di
xy− ∑

∀vk∈Xi

Dk); // NORM/PURE

10 end

11 end

12 end

// Actor offset assignment

13 foreach Pi in P̂ do

14 if (∀v j ∈ Pi,a j =∅) then

15 a0 = 0;
16 foreach v j in Pi, j = 1..sizeo f (Pi) do

17 a j = a j−1 +D j−1;
18 Tj = 1/ζAi

19 end

20 else

21 Determine all pi ∈ Pi with a j =∅.
22 Determine reference actor vr .
23 foreach pi in Pi do

24 if (pi is Head or Middle) then

25 foreach v j in pi do

26 vr = v j+1;
27 a j = ar−D j;
28 Tj = 1/ζA;
29 end

30 else

31 foreach v j in pi do

32 vr = v j−1;
33 a j = ar +Dr;
34 Tj = 1/ζA;
35 end

36 end

37 end

38 end

39 end

// Validation check

40 foreach Pi in P do

41 if ((∑
∀v j∈Pi

D j ≤D
i
xy) & (ay +Dy−ax ≤Di

xy)) then

42 Algorithm Succeeds;
43 else

44 Algorithm Fails;
45 end

46 end

47 end

64 Timing Parameter Extraction

offsets a j for the actors v j on the path in the direction from s to t as follows:

a j = a j−1 +D j−1 (5.22)

If time-constrained path Pi has a set of actors with assigned offsets (actors assigned in previously

processed paths), the algorithm traverses Pi in search for partial path segments pi of actors with

unassigned offsets. Once they are listed, the algorithm determines the reference actors vr and clas-

sify them into one of three types: Head, Middle or Tail, as shown in Figure 6.3. This information

is used to calculate the offsets a j, as shown in Algorithm 3. If the partial path pi is of type Head

or Middle, the reference actor vr is always on the right hand side of pi, as shown in Figures 6.3(a)

and 6.3(c), and the offsets of pi actors are assigned using the following equation:

a j = ar−D j (5.23)

After assigning the offset of the actor v j, the reference actor vr advances its position to the already

offset assigned actor, preparing for the offset assignment of the next actor in the partial path pi, as

shown in Algorithm 3. Offset assignment of Head and Middle in this way instead of traversing the

path from s to t assigning offsets using Equation (5.22), enables larger offset values to be assigned

to actors delaying their execution allow satisfying wider range of latency constraints, as we show

in Section 5.5.4.

If the partial path pi is type Tail, the reference actor vr is always on the left hand side of pi, as

shown in Figure 6.3(b), and the offsets of pi actors are assigned using the following equation:

a j = ar +Dr (5.24)

The reference actor vr advances in the same way mentioned previously. After assigning deadline

and offsets for the application actors, the algorithm checks the application for the validity of the

assigned values and that they do not violate the latency constraints specified.

Finally, we can conclude that Algorithm 3 preserves relative deadline values D j computed

from high-sensitivity time-constrained paths. This is clear from determining the actors with unas-

signed deadlines in Pi, and their corresponding latency constraint (Di
xy−∑∀vk∈Xi

Dk), leaving the

preassigned set of actors Xi untouched. In case of using deadline-based schedulers, this property

makes actors in high-sensitivity time-constrained paths have a higher priority compared to actors

in low-sensitivity time-constrained paths, since they have tighter deadlines (as concluded from

Equations (5.11) and (5.13)).

5.5.3 Complexity Analysis

In this section, we provide a complexity analysis for the TPE algorithm, previously presented

in Section 5.5. The TPE algorithm consists of two phases. The first phase, detailed in Sec-

tion 5.5.1, is concerned with finding the set of all time-constrained paths P , which have a com-

plexity of O(|Vh|+ |Eh|), since it is based on a Breadth First Search (BFS) [Lynch, 1996]. The

5.5 Timing Parameters Extraction Algorithm 65

(a) HSDF application.

a

b

c

d

e

f

0 1 2 3 4 5 6 7 8 9 10

(b) HSDF timing diagram.

aiaiai CiCiCi TiTiTi DiDiDi

aaa 0 1 2 3
bbb 3 1 2 2
ccc 5 1 2 2
ddd 7 1 2 1
eee 5 1 2 1
fff 6 1 2 1

(c) Actors’ timing parameters.

Figure 5.4: HSDF example.

second phase, detailed in Section 5.5.2, is concerned with extraction of timing parameters, as

shown in Algorithm 3. It is composed of three main parts: 1) actor deadline assignment, 2) actor

offset assignment and 3) validation check. Each part is represented by a loop (foreach state-

ment) that runs |P| times (in the worst case). The actor deadline and offset assignment parts

contains inside loops that run |Vh| times. Consequently, the complexity of the second phase

is equivalent to O((|P| · |Vh|)+ (|P| · |Vh|)+ |P|) = O(2|P||Vh|+ |P|). In conclusion, the total

complexity of the TPE algorithm is the sum of its two phases O(|Vh|+ |Eh|+(|P| · |Vh|)+ (|P| ·

|Vh|)+ |P|) = O(2|P||Vh|+ |P|+ |Vh|+ |Eh|). Hence, the final complexity of the TPE algorithm

is O(|P|+ |P||Vh|+ |Vh|+ |Eh|), which is polynomial and depends on |P|, |Vh| and |Eh|.

5.5.4 Example

In this section, we present an example, illustrated in Figure 5.4, to demonstrate our proposed al-

gorithm step-by-step. The following paragraphs explains this in detail.

Figure 5.4(a) shows an HSDF graph application comprising six actors (a,b,c,d,e, f) with

execution times of all actors equal to 1, throughput requirement ζ = 0.5, and two end-to-end

latency constraints, one is specified Ded = 3, while the other Dad is not. The example HSDF

graph is not trivial, as it features multiple input actors a and e, a cycle, and multiple initial to-

kens. Applying the first phase of our proposed algorithm results in three time-constrained paths.

The first time-constrained path is P1 = 〈e, f ,d〉 with an end-to-end latency constraint D1
ed = 3 and

sensitivity γ1 = 1. The second time-constrained path is P2 = 〈b,c〉, which represents a cycle in

the graph with a latency constraint D2
bc = 4 calculated by substituting with Ccycle = Cb +Cc = 2,

ζ = 0.5 and number of tokens in the cycle d = 2 in Equation (5.15). The sensitivity of P2 is

hence γ2 = 0.5 (Equation (5.10)). The third time-constrained path is P3 = 〈a,b,c,d〉 with a latency

66 Timing Parameter Extraction

constraint D3
ad equal to the second end-to-end deadline, which is not specified by the application.

Therefore, we calculate D3
ad using Equation (5.16) (β = 1/γ2 = 2, Equation (5.18)) that results in

D3
ad = 8 and its sensitivity is γ3 = 0.5. Therefore, the set of all possible time-constrained paths is

P = {〈P1,γ1〉,〈P2,γ2〉〈P3,γ3〉}= {〈(e, f ,d),1〉,〈(b,c),0.5〉,〈(a,b,c,d),0.5〉}.

The second phase of the proposed algorithm picks up P1 and assigns individual deadlines to ac-

tors (e, f ,d) equal to (De = 1,D f = 1,Dd = 1,), respectively. Picking up the next time-constrained

path P2 for deadline assignment results in (Db = 2,Dc = 2). Finally, picking up the last time-

constrained path P3 for deadline assignment results in (Da = 3). The individual deadline values

calculated are the same for both NORM and PURE.

For offset assignment, the algorithm creates the set of time-constrained paths that goes from

source s to sink t, ordered according to the constraint [Di−1
xy >Di

xy or {Di−1
xy =Di

xy,γi−1≥ γi}], P̂ =

{〈P3,D
3
ad〉,〈P1,D

1
ed〉}. First, it picks the time-constrained path with the longest end-to-end delay

P3 for offset assignment. Since none of its actors have assigned offsets, the actor offsets are (aa =

0,ab = 3,ac = 5,ad = 7). Then, it picks P1 where one of its actors d has already assigned offset ad

equal to 7. It discovers a single partial path of type Head in P1 which is p1 = (e, f). The reference

actor for p1 is actor d. Therefore, the offsets of actors e and f are (ae = 5,a f = 6), respectively. As

noted, actor e is triggered at time (ae = 5) even though its input data is available from time instance

zero to satisfy the latency constraint (Ded = 3) of the application. For the periods, (Ta = Tb = Tc =

Td = Te = Tf = 1/ζ = 2). Therefore, the extracted timing parameters (ai,Ci,Ti,Di) for the graph

actors {a,b,c,d,e, f} are {(0,1,2,3),(3,1,2,2),(5,1,2,2),(7,1,2,1),(5,1,2,1),(6,1,2,1)}, re-

spectively. These extracted parameters, shown in Figure 5.4(c), preserve the precedence, through-

put and latency constraints of the HSDF application, indicated in the timing diagram in Fig-

ure 5.4(b). The timing diagram also shows that multiple iterations of the graph execute in parallel

assuming at least three processors are available.

5.6 Validation of the TPE algorithm

This section validates the proposed algorithm by proving that it assigns individual deadlines for

actors of any application graph such that it respects all its latency constraints. First, we start by

the following property driven from the inverse relationship between path sensitivity γ and actor

relative deadline Dv (concluded from Equations (5.11) and (5.13)):

Property 5.1. If there are two time-constrained paths Pi and Pj, where γi > γ j and there is a shared

actor v between them. The deadline value Di
v computed for actor v on Pi is less than the value D

j
v

computed for the same actor on Pj, Di
v < D

j
v.

Another important property of the deadline assignment strategies NORM and PURE, derived

from Equations (5.3) and (5.8) is:

5.6 Validation of the TPE algorithm 67

Property 5.2. A time-constrained path P with a latency constraint Dxy, whose actors v j are as-

signed individual deadlines D j, using NORM or PURE, has the following property:

Dxy = ∑
∀v j∈P

D j (5.25)

From Property 5.2, it follows that applying Algorithm 3 on any time-constrained path P, whose

actors has no assigned deadlines, results in a time-constrained path that satisfies its latency con-

straints. This is for the simple case where the actors in P has no assigned deadlines. However,

when P shares some actors with higher sensitivity time-constrained paths the situation gets more

complex. Lemma 5.1 proves the correctness of this case.

Lemma 5.1. If a time-constrained path Pi with a latency constraint Di
xy, has a set of actors Xi

shared with higher sensitivity time-constrained paths PH
i = 〈P1, . . . ,Pi−1〉 in an application graph

G, Algorithm 3 assures that the sum of individual deadlines D j of actors in Pi is equal to Di
xy =

∑∀v j∈Pi
D j.

Proof. Let us assume a time-constrained path P′i = Pi, except that all its actors v′j have D′j = ∅

(empty element). Assigning individual deadlines D′j to the actors of time-constrained path P′i using

either NORM or PURE (Equations (5.3) and (5.8)) and its latency constraintDi
xy under the system

model constraint specified in Equation (3.14) then

∀v′j ∈ P′i , D′j ≥C j, D
i
xy = ∑

∀v′j∈P′i

D′j (5.26)

The set of shared actors Xi in Pi has a sum of individual deadlines equal to κ .

κ = ∑
∀v j∈Xi

D j, ∀v j ∈ Xi,D j ≥C j (5.27)

Here, κ represents the value calculated from the higher sensitivity time-constrained paths PH
i . Let

us assume κ ′ represents the value calculated for the same set of actors Xi on time-constrained path

P′i . Then, from Property 5.1:

κ < κ ′ (5.28)

And,

Di
xy−κ >Di

xy−κ ′ (5.29)

Again, let us assume that the sum of computation time of actors in Xi is c.

c = ∑
∀v j∈Xi

C j (5.30)

Then, from Equation (5.27)

κ ≥ c (5.31)

68 Timing Parameter Extraction

And, since the summation of individual deadlines of actors in P′i such that v′j ∈ P′i −Xi is

∑
v′j∈P′i−Xi

D′j =D
i
xy−κ ′ (5.32)

Therefore, from Equations (5.26) and (5.29) and the system model constraint specified in Equa-

tion (3.14)

Di
xy−κ >Di

xy−κ ′ ≥∑
∀v j

C j− c (5.33)

The intuitive reason behind Equation (5.33) is that the sum of deadlines of unshared actors is

greater than the sum of their execution times, according to our system model. Also, it can be

written as

Di
xy− ∑

∀v j∈Xi

D j >D
i
xy− ∑

∀v′j∈Xi

D′j ≥∑
∀v j

C j− c (5.34)

According to Equations (5.31) and (5.33), Di
xy− κ and κ follows the system model constraint

specified in Equation (3.14). Then, applying NORM or PURE (Equations (5.3) and (5.8)) using

the corresponding latency constraint Di
xy−κ , the sum of individual deadlines of all the actors in

Pi is

∑
∀v j∈Pi−Xi

D j + ∑
∀v j∈Xi

D j =D
i
xy−κ +κ =Di

xy (5.35)

Therefore, Algorithm 3 assures that Di
xy = ∑∀v j∈Pi

D j even when actors are shared across time-

constrained paths.

After proving that in case of a time-constrained path P sharing some actors with higher sensi-

tivity time-constrained paths, the proposed algorithm assures that P satisfies its latency constraints.

Here comes the main proof through Theorem 5.1 that states the validity of the proposed approach

and assures that any type of application graph (DAG or DCG) satisfies its latency constraints.

Theorem 5.1. Consider an HSDF DCG G = 〈V,E,d〉 with multiple latency constraints Di
xy. As-

suming that G is represented by a set of all possible time-constrained paths P ordered by non-

increasing order of sensitivity γ , Algorithm 3 assures that the actors of G are assigned individual

deadlines that makes any P ∈ P not exceed its specified latency constraint.

Proof. For any time-constrained path Pi there are two cases:

Case 1: Pi has no actors with assigned deadlines,

∀v j ∈ Pi,D j =∅ (5.36)

Therefore, Algorithm 3 applies either NORM or PURE stated by Equations (5.11) or (5.13) under

the system model constraint Dxy ≥ ∑∀v j∈PC j. Therefore, from Property 5.2:

∑
∀v j∈Pi

D j =D
i
xy (5.37)

5.7 Experiments 69

and, Pi does not exceed its specified latency constraint Di
xy.

Case 2: Pi has a set of shared actors Xi with a set of high-sensitivity time-constrained paths PH
i ,

∀vk ∈ Xi,Dk 6=∅ (5.38)

Therefore, Algorithm 3 determines the set of unassigned actors and their corresponding latency

constraint (Di
xy−∑∀vk∈Xi

Dvk
). Since Pi has a set of shared actors Xi with a set of high-sensitivity

time-constrained paths PH
i , Lemma 5.1 assures that the sum of individual deadlines D j of actors

in Pi is equal to Di
xy = ∑∀v j∈Pi

D j.

Therefore, Algorithm 3 assures that the assigned deadlines of all actors in G are such that all

latency constraints are satisfied.

Finally, we would like to show that in the special case of pipeline application graphs, the pro-

posed algorithm behaves identically to [Di Natale and Stankovic, 1994, Kao and Garcia-Molina,

1997, Lipari and Bini, 2011] and gives the same results. This is proved in Corollary 5.1.

Corollary 5.1. In case of pipeline application graph G = 〈V,E,d〉, where G is a multiple actor

graph with each actor having a single input/output connected in sequence, applying the proposed

algorithm will lead to exactly the same results as previous deadline assignment work for pipelines.

Proof. Let us assume that we have a pipeline application graph G = 〈V,E,d〉, where each actor

has a single input/output connected in sequence. Applying the first phase of the algorithm (finding

all possible time-constrained paths) on G results in a list P with a single time-constrained path

P = 〈s,v1,v2, . . . ,vz, t〉, where z is number of actors in G. Since it is a single time-constrained

path graph and its actors have no assigned deadlines, it will be covered by the first case (1) in

Theorem 5.1. Therefore, applying the proposed algorithm will lead to exactly the same results as

previous deadline assignment work for pipelines, Equations (5.3) and (5.8) will be applied in this

case.

Corollary 5.1 is an important finding, since it shows that our proposed algorithm is more

general and deals with any types of application graphs without any particular drawbacks.

5.7 Experiments

The Timing Parameter Extraction (TPE) [Ali et al., 2015] is proposed for HSDF applications,

enabling them to be scheduled and analysed using traditional real-time analysis techniques. This

means that TPE requires conversion from an SDF graph to an HSDF graph, which may result in

large graphs and hence long run-times of the algorithm. However, in Chapter 4 we introduced a

graph reduction technique called slack-based merging, which addresses this problem by generating

a reduced-size HSDF graph that maintains the throughput and latency constraints of the original

application graph. In this experiment, we evaluate the run-time of the TPE algorithm with HSDF

70 Timing Parameter Extraction

Throughput %

0 20 40 60 80 100

n
u

m
b

e
r

o
f

a
c
to

rs

0

50

100

150

200

250
h263encoder

G
h
 (finite/infinite)

G
m

 finite

G
m

 infinite

(a) Results in terms of number of actors

Throughput %

0 20 40 60 80 100

M
e
rg

in
g

 +
 T

P
E

 r
u

n
-t

im
e
 (

s
e
c
)

0

10

20

30

40

50

60

70

80

90

100

h263encoder

G
h
 finite

G
m

 finite

G
h
 infinite

G
m

 infinite

(b) Results in terms of run-time

Throughput %

0 20 40 60 80 100

C
P

 %

0

100

200

300

400

500

600

700

h263encoder

G
m

 finite

G
m

 infinite

(c) The percentage of change in the CP execution time of Gm compared to Gh

Figure 5.5: h263encoder results.

graphs obtained using the classical conversion algorithm from [Sriram and Bhattacharyya, 2000]

(Gh) and the slack-based merging algorithm (Gm) presented in Chapter 4. This experiment will

show that spending this extra time running the slack-based merging algorithm to generate a graph

Gm typically results in a reduction in the run-time of the TPE algorithm, thereby reducing the

overall run-time of the complete process.

5.7.1 Experimental Setup

In this experiment, we have the same settings as previously used in Section 4.4. We change the

throughput requirement of the tested applications from the given throughput constraint (denoted by

0%) to the maximum throughput (denoted by 100%) in a step-wise fashion in increments of 20%.

The latency constraint Dxy of each application is set to the inverse of the throughput constraint of

the application, Dxy = 1/ζ . At each throughput step, we apply our merging algorithm on G to

generate a reduced-size HSDF graph Gm. Then, both types of graphs (Gh and Gm) are provided as

inputs to the TPE algorithm to compare and record their run-time.

5.7 Experiments 71

Throughput %

0 20 40 60 80 100

n
u

m
b

e
r

o
f

a
c
to

rs

0

200

400

600

800

1000

1200

1400
h263decoder

G
h
 (finite/infinite)

G
m

 finite

G
m

 infinite

(a) Results in terms of number of actors
Throughput %

0 20 40 60 80 100

M
e
rg

in
g

 +
 T

P
E

 r
u

n
-t

im
e
 (

s
e
c
)

0

1000

2000

3000

4000

5000

6000

7000

8000

h263decoder

G
h
 finite

G
m

 finite

G
h
 infinite

G
m

 infinite

(b) Results in terms of run-time

Throughput %

0 20 40 60 80 100

C
P

 %

0

100

200

300

400

500

600

700

800

900

1000

h263decoder

G
m

 finite

G
m

 infinite

(c) The percentage of change in the CP execution time of Gm compared to Gh

Figure 5.6: h263decoder results.

5.7.2 Experimental Results

The experiment is on applications with two types of buffer sizes, infinite buffers and minimum

buffers for maximum throughput (finite buffers). In case of applications with infinite buffers, the

results show that the proposed algorithm succeeds in generating a reduced-size compact graph Gm

at the maximum throughput (100%) in most cases, as shown in Figure 5.6(a), 5.7(a) and 5.8(a).

This is reflected in the large reduction in the run-time of slack-based merging added to the TPE

algorithm, that ranges from 39% to 95%, compared to the run-time of the TPE algorithm on the

original Gh graphs, as shown in Figure 5.6(b), 5.7(b) and 5.8(b). Also, the results show that

having a reduced-size graph Gm at the maximum throughput is not always possible in case of in-

finite buffers. The h263encoder application results, shown in Figure 5.5, illustrates that there are

cases where the ability to generate a reduced-size graph decreases with increasing the application

throughput (see Figure 5.5(a)). This is natural, because a higher throughput requirement restricts

the ability to merge parallel firings, which results in larger output graphs. This is reflected in the

increase in the total run-time of slack-based merging and TPE algorithm following the increase in

throughput constraint due to the increase in the Gm graph size, as shown in Figure 5.5(b).

72 Timing Parameter Extraction

Throughput %

0 20 40 60 80 100

n
u

m
b

e
r

o
f

a
c

to
rs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
satellite

G
h
 (finite/infinite)

G
m

 finite

G
m

 infinite

(a) Results in terms of number of actors

Throughput %

0 20 40 60 80 100

M
e

rg
in

g
 +

 T
P

E
 r

u
n

-t
im

e
 (

s
e

c
)

×10
4

0

0.5

1

1.5

2

2.5

3

3.5

satellite

G
h
 finite

G
m

 finite

G
h
 infinite

G
m

 infinite

(b) Results in terms of run-time

Throughput %

0 20 40 60 80 100

C
P

 %

0

100

200

300

400

500

600

700

satellite

G
m

 finite

G
m

 infinite

(c) The percentage of change in the CP execution time of Gm compared to Gh

Figure 5.7: satellite results.

In case of applications with minimum buffers for maximum throughput (finite buffers case),

the results show that when the throughput constraint is relaxed with respect to the maximum

throughput of the application, the proposed algorithm is able to achieve larger reduction in the

application graph size, as shown in Figures 5.5(a), 5.6(a), 5.7(a) and 5.8(a). This significantly

reduces the total run-time of slack-based merging and the TPE algorithm, within a range from

27% to 92%, at relaxed throughput constraints. This effect gradually decreases when approach-

ing the maximum throughput of the graph, as shown in Figures 5.5(b), 5.6(b), 5.7(b) and 5.8(b).

Moreover, in some finite buffer cases, i.e. h263encoder and h263decoder, when approaching the

maximum throughput the total run-time of slack-based merging and the TPE algorithm exceeds

the run-time of applying TPE directly on Gh, as shown in Figures 5.5(b) and 5.6(b). This is due

to the increase in the throughput constraint that decreases the ability of merging parallel firings, as

in the infinite buffer case. Also, the minimum buffers introduce more dependencies in the graph

compared to the infinite buffer case, which reduces the ability to achieve a large reduction in the

graph size. For the mp3playback, the output graph Gm takes indefinitely long time for extracting

its timing parameters that we terminated the experiment after two weeks without reaching any

result. This is due to the size of the output graph Gm is still huge (5000 actors), although it has

5.7 Experiments 73

Throughput %

0 20 40 60 80 100

n
u

m
b

e
r

o
f

a
c

to
rs

0

5

10

15

20

25

30

35

40

45

50
modem

G
h
 (finite/infinite)

G
m

 finite

G
m

 infinite

(a) Results in terms of number of actors

Throughput %

0 20 40 60 80 100

M
e

rg
in

g
 +

 T
P

E
 r

u
n

-t
im

e
 (

s
e

c
)

0

100

200

300

400

500

600

700

modem

G
h
 finite

G
m

 finite

G
h
 infinite

G
m

 infinite

(b) Results in terms of run-time

Throughput %

0 20 40 60 80 100

C
P

 %

0

10

20

30

40

50

60

70

80

modem

G
m

 finite

G
m

 infinite

(c) The percentage of change in the CP execution time of Gm compared to Gh

Figure 5.8: modem results.

been reduced to 50% of its size.

Figures 5.5(c), 5.6(c), 5.7(c) and 5.8(c) show a decrease in the percentage of the total ex-

ecution time of the CP of the applications (0% means execution time of CP is equal to the CP

of Gh) with the increase of the throughput constraint for a fixed end-to-end latency constraint D.

This means that the remaining slack (after generating the reduced-size graph Gm) increases along

with the increase in the throughput constraint. The interpretation of this phenomena is, when the

throughput constraint increases a merging decision could be rejected despite of the availability of

enough slack, because it could result in a violation of the throughput constraint by increasing the

period of the application. This conforms with the previous results which states that the increase in

the throughput constraint limits the ability of merging parallel firings.

From these results, we can conclude that our merging algorithm typically succeeds in gener-

ating reduced-size graphs, in particular for applications that do not need to execute at maximum

throughput, which helps in speeding up the derivation of the timing parameters.

74 Timing Parameter Extraction

5.8 Summary

In this chapter, we presented a new algorithm for extracting the real-time properties of dataflow

applications with timing constraints called Timing Parameter Extraction (TPE). The algorithm can

be applied on dataflow applications modelled as HSDF graphs with periodic sources. The main

novelty is that the HSDF graphs can be cyclic or acyclic and the graph actors are modelled as

arbitrary-deadline real-time tasks. In addition, it enables applying traditional real-time schedulers

and analysis techniques on HSDF dataflow graphs. Moreover, it provides a method to assign indi-

vidual deadlines for real-time dataflow actors and support for two deadline assignment techniques

(NORM/PURE) that are widely used in the literature. Through the chapter, we demonstrate the

functionality and the validity of the proposed algorithm using an example and proofs. Further-

more, we showed the positive effect of the reduction technique for synchronous dataflow SDF

graphs called slack-based merging, explained in Chapter 4, on the run-time of the TPE. The ex-

periments shows that the generated reduced-size HSDF graphs typically enable faster extraction

of timing parameters compared to using the original larger HSDF graphs.

Chapter 6

Communication-Aware Mapping

The preceding chapters (Chapters 4 and 5) presented a detailed overview of how to represent

dataflow applications with timing constraints as periodic independent arbitrary-deadline real-time

tasks, enabling the usage of traditional real-time scheduling and analysis techniques. The pro-

posed solution starts by proposing a graph reduction technique called slack-based merging algo-

rithm, demonstrated in Chapter 4, which aims to reduce the complexity of dataflow applications by

generating reduced-size HSDF graphs possibly avoiding large HSDF graphs generated from tra-

ditional conversion methods [Sriram and Bhattacharyya, 2000]. These reduced-size HSDF graphs

are used as an input to the next stage called Timing Parameters Extraction (TPE) [Ali et al., 2015],

where we extract the timing parameters (offsets, deadlines and periods) of the actors, transforming

them into real-time periodic tasks (Chapter 5). This creates a unified model for all applications

running on the multi-core platform, where traditional real-time analysis and scheduling techniques

can be applied assuring real-time guarantees for the complete system.

Now, we reached the final stage towards a complete approach for combining mixed applica-

tion models on multi-core real-time systems, which is application mapping. Such systems require

efficient techniques to map applications to cores, while satisfying their timing constraints, to avoid

over-dimensioned systems. In this chapter, we introduce an efficient mapping algorithm called

communication-aware mapping. This algorithm aims to provide an efficient solution to improve

utilization of the platform resources. The effectiveness of the approach is demonstrated through

experiments that show the improvement in utilizing the multi-core platform resources compared

to the well-known First Fit (FF) bin-packing heuristic. Also, the proposed algorithm takes into ac-

count the communication cost caused by message transfer between communicating tasks, which is

essential for dataflow applications in the mixed model. However, the mapping algorithm ignores

the communication modelling for independent real-time tasks, because they are not communi-

cating. This work is based on the heuristic algorithm for the mapping of real-time streaming

applications modelled as dataflow graphs on 2D mesh multi-core processors called Critical-Path-

First (CPF) [Ali et al., 2013].

This chapter begins with defining a methodology for modelling communication cost in data-

flow applications, detailed in Section 6.1. Next, we introduce the core selection methodology,

75

76 Communication-Aware Mapping

1

1

(a) HSDF graph

1

1

1

(b) HSDF graph with message actors Gcom

Figure 6.1: Initial modelling of communication.

which is a method used by communication-aware mapping algorithm for selecting the next core

for mapping in Section 6.2. Then, we present the algorithm itself in detail in Section 6.3, followed

by a discussion of its limitations and complexity analysis in Sections 6.4 and 6.5, respectively. We

experimentally evaluate our proposed approach in Section 6.6. Finally, we conclude the chapter

with a summary in Section 6.7.

6.1 Modelling Communication Cost

Dataflow applications are data-driven networks of actors where there is data transfer (communi-

cation) occurring between actors during application execution. This communication is significant,

since it plays an important role in determining when actors can fire. Also, it impacts the over-

all utilization of the resources and the end-to-end response time. Therefore, this communication

should be modelled in a way that ensures correct execution of dataflow applications, satisfying

their timing constraints. In this work, we model the communication in a two step process. The

first step is initial modelling, where we transform all the messages in the HSDF graph to actors,

as shown in Figure 6.1. We refer to these actors as message actors. Figure 6.1(a) depicts a HSDF

graph, where actors communicate with each other by sending a single message (token) on each

channel. These messages have been transformed into message actors to model the communication

cost, as shown in Figure 6.1(b). For example, the message actor vma0 ,b0
represents the message

transferred from actor va0 to actor vb0 . No transformation of initial tokens is required. The rea-

son is that initial tokens represent messages that are ready in the input buffers of their destination

6.1 Modelling Communication Cost 77

actors, waiting to be consumed. This means their execution time is equal to zero and they do not

affect the communication model.

The message actors have a WCET equal to the time required to traverse the IN of the platform

from the source to destination. Therefore, according to the platform described in Section 3.4,

which states a homogeneous multi-core platform with a 2D Mesh IN topology using X-Y routing,

wormhole switching and TDM arbitration, the WCET of a message actor is defined by Equa-

tion (3.27), where p refers to the message size (bits) in this work. However, Equation (3.27)

shows that the WCET of a message actor depends on the number of hops h a message traverses on

the IN, which cannot be computed a priori, because the mapping of the application graphs is not

known yet. To overcome this problem, we initially assume that each message have its source and

destination located on the two furthest cores on the platform. This means that each message has to

traverse the maximum number of hops ĥ on the IN of the platform. By evaluating Equation (3.19),

the maximum number of hops ĥ on a multi-core platform Π of size n×n is equal to:

ĥ = (n−1)+(n−1) = 2n−2 (6.1)

By substituting ĥ instead of h in Equation (3.27), the initial value of the WCET of a message actor

Ĉi,p is defined as:

Ĉi,p = ĥ ·
f

L·Ri
︸ ︷︷ ︸

message header

+

⌈
p j

f

⌉

·

(
f

L·Ri

−
lsw

Ri

)

︸ ︷︷ ︸

message payload

+

(
κi

Ri

−κi +1
)

·
f

L·Ri

−
1
G

︸ ︷︷ ︸

interference

(6.2)

where f is the flit size in bits, lsw represents the switch latency in seconds, G is the IN frequency

in hertz (Hz), L is the multi-core link capacity in bits per second (bps), and Ri is the reserved

bandwidth of L in percentage (%), dedicated to a specific dataflow application Ai.

The second step comes after mapping the application on the platform Π, where we update the

WCET of the message actors. At this point, we know exactly which messages flow on the IN of

the platform Π and which are not. Also, we can precisely determine the number of hops h each

message take to reach its destination. Based on this information, the WCET of message actors

that flow internally in cores are set to zero, since they reach their destination instantly once they

are generated. However, the WCET of message actors that flow on the IN are updated according

to the actual number of hops h they traverse. This is achieved by replacing maximum number of

hops ĥ in Equation (6.2) with the actual number of hops h, which results in an equation identical

to Equation (3.27).

Equation (6.2) shows that the execution time of a message actor comprises three terms. The

first term is the time spent by the message header (a single flit) to traverse the IN. The second term

is the time taken by the message payload to traverse the IN. The third term is the interference suf-

fered by the message actors during traversing the IN. From this, we can deduce two conclusions.

First, the reservation bandwidth R has a great impact on both the WCET of message actors and

the response time of a dataflow application, due to the inverse relation between R and WCET in

78 Communication-Aware Mapping

all three terms in Equation (6.2). A larger value of reservation bandwidthR decreases the WCET

of message actors and improves the response time of the dataflow application, which enhances

its schedulability. However, in case of limited communication resources, it may also reduce the

schedulability of multiple communication flows in the network, as the flows on some communica-

tion links may exceed the link capacity L. By changing the reservation bandwidth R, the system

designer can understand the impact of communication on the mapping of the applications, which

is evaluated later in Section 6.6.2. Second, we claim that despite the pessimism in the assumption

of maximum number of hops ĥ as an initial value for the WCET of message actors, its impact is

insignificant. The maximum number of hops ĥ affects only the time spent by the message header,

which is the first term of the equation. The message header is a single flit compared to the rest of

the message (payload). This means that our assumption has an insignificant effect on the WCET of

the message actors. Especially, when the message payload size is in terms of hundreds of flits. For

example, the h263decoder application has messages with a payload of 304128 Bytes. Assuming

a multi-core platform Π with the configuration mentioned in Table 6.1 (Section 6.6.1), the Ĉi,p of

a message actor is equal to 1×10−3 seconds, approximately. Although the maximum number of

hops ĥ is equal to 14, the value of the execution time of the message payload (9.3×10−4 seconds)

added to the interference (5×10−6 seconds) is 1336% greater than the execution time of the mes-

sage header (7× 10−7 seconds). This means, the impact of the maximum number of hops ĥ on

the WCET of message actors is insignificant. However, there are two cases where the impact of

the execution time of the message header can be significant. Either if the maximum number of

hops ĥ is in the order of 104 hop, or the message payload size is very small, e.g. 1 or 2 flits. Both

these cases are highly unlikely in the work considered in this thesis. Moreover, the second step of

updating the value of the WCET of message actor decreases more the effect of maximum number

of hops ĥ initial assumption, as explained later in Section 6.3.

The modelling of the communication cost is presented in the complete approach, shown in

Algorithm 4. Following Algorithm 4, it starts by generating a reduced-size graph Gm using the

slack-based merging algorithm, detailed in Chapter 4. Then comes the first stage of modelling the

communication cost by applying a graph transformation for the merged graph Gm, called channel

convert. This transformation process converts all channels of Gm into actors with WCET equal

to Ĉi,p. If initial tokens exist, they are added on the edge created between the message actor and

the destination actor. For example, the channel eb1,b0 connecting actors vb1 , vb0 is carrying an ini-

tial token, as shown in Figure 6.1(a). After transforming it into a message actor vmb1 ,b0
the initial

token is added on the new edge emb1 ,b0 ,b0 created between the message actor vmb1 ,b0
and the actor

vb0 , as shown in Figure 6.1(b). This transformation helps the timing parameter extraction (TPE)

algorithm, detailed in Chapter 5, to derive timing parameters (offset, period, deadline) also for

messages such that they can transfer safely from the source to the destination in a synchronized

manner with the execution of the actors in the graph. After extracting the timing parameters, the

main topic of this chapter called communication-aware mapping starts, which involves mapping

the tasks on the platform and updating their timing parameters according to the final placement of

the application graph on the platform Π. The communication-aware mapping is dicussed in detail

6.2 Core Selection Methodology 79

Algorithm 4: Complete approach for integrating mixed application models on the same platform Π

Input:

GGG: SDF application graph, G = 〈V,E,d〉.
Output:

ΨΨΨ: The complete system that consists of a homogeneous symmetrical multi-core platform
Π and the mapped application set A, Ψ = 〈Π,A〉.

Variables:

GmGmGm: merged HSDF application graph.
GcomGcomGcom: HSDF graph with channels modelled as actors.
PPP: totally ordered set of all time-constrained paths of an application ordered according to

γ , P = {Pi : γi−1 ≥ γi}.
ΠΠΠ: Homogeneous symmetrical multi-core platform, Π = {π1,π2, . . . ,πn}

1 begin

2 foreach Ai in A do

3 Gm = slack-based merging(G)// Chapter 4

4 Gcom = channel convert(Gm)// Section 6.1

5 P = T PE(Gcom) ..// Chapter 5

6 Ψ = communication-aware mapping(Gcom,P,Π)// Chapter 6

7 end

8 end

in Section 6.3.

6.2 Core Selection Methodology

In this section, we present the core selection methodology, which helps the communication-aware

mapping algorithm select a new core for allocating actors. This selection is based on a concept

called independent / dependent path that classifies the time-constrained paths of a graph G into

two types based on whether or not all its actors are unallocated. The independent / dependent path

concept is defined as follows:

Definition 6.1 (Independent / Dependent Path). A path PAi
= 〈v0,v1,v2, . . . ,v j〉 of a certain ap-

plication Ai is said to be independent iff all its actors are unallocated. If at least one of PAi
actors

is already allocated, the path is considered dependent.

The core selection is the process where a new core is selected for assigning actors. It is

composed of two different methods, which are called spiral_move and find_nearest_core, as shown

in Figure 6.2. Depending on the type of path to be allocated, independent or dependent, one of

these methods is applied, respectively.

For independent paths, the selection is performed by spiral_move. As shown in Figure 6.2(a),

every time the spiral_move function is called it returns the next core in the spiral path. The

spiral_move function is called when the current core fails the feasibility test (Section 3.1.2). The

spiral path for core selection is initialized only once at the beginning of the allocation process

80 Communication-Aware Mapping

0

0

1 2 3

1

2

3

Current CoreNext Core
spiral_move

(a) spiral_move

0

0

1 2 3

1

2

3

3 hop 1 hop 2 hop 4 hop
Current Core

(b) find_nearest_core

Figure 6.2: Core selection methodology

using one of the middle cores in the platform Π, and advances to the next core each time the

feasibility test (Section 3.1.2) fails. In case of the platform dimensions are even (n is even), the

middle cores are the four cores at the middle of the 2D-Mesh IN. Otherwise (n is odd), the middle

core is uniquely defined. For example, the middle cores in the platform Π shown in Figure 6.2 are

(1,1), (2,1), (1,2) and (2,2), where core (1,1) is selected to initialize the spiral path.

For dependent paths, as they are partially allocated, allocation of child (unallocated) actors

is done as near as possible to their parent (allocated) actors to reduce communication cost. The

function find_nearest_core starts searching for a suitable core (a core that passes the feasibility test

explained in Section 3.1.2) one hop away from the reference core (defined in Section 6.3.2), where

the first core that passes the feasibility test is selected. If not possible, it searches for a suitable

core two hops away, and so on, until finding a possible core. The search criteria starts by finding

the nearest core in this order: North, South, East and West. In each of these directions, starting

from two hops distance from the reference core, there are several cores that can be selected. For

example, Figure 6.2(b) shows in the South direction there are three cores that are two hops away

from the reference core. The find_nearest_core function arbitrarily chooses a core among them

and returns it for allocation. Figure 6.2(b) shows the searching regions, classified according to the

distance from the reference core.

6.3 Communication-Aware Mapping

The communication-aware mapping algorithm is a heuristic for allocating mixed application mod-

els on a 2D-mesh multi-core platform. These mixed application models comprise dataflow appli-

cations with timing constraints and real-time independent tasks. It aims to maximize the usage

6.3 Communication-Aware Mapping 81

Algorithm 5: Communication-aware mapping
Input:

GcomGcomGcom: HSDF graph with channels modelled as actors.
PPP: totally ordered set of all time-constrained paths of an application ordered according to

γ , P = {Pi : γi−1 ≥ γi}.
Output:

ΨΨΨ: The full system that consists of Homogeneous symmetrical multi-core platform Π and
the mapped application set A, Ψ = 〈Π,A〉.

Variables:

ΠΠΠ: Homogeneous symmetrical multi-core platform, Π = {π1,π2, . . . ,πn}

1 begin

2 Π = SPF(Gcom,P)
3 Gcom = EZM(Gcom)
4 P = T PE(Gcom)

5 end

of system resources while taking the communication cost of dataflow applications into considera-

tion. In case of dataflow applications, the algorithm uses the time-constrained paths and periodic

task set information output of the TPE algorithm to allocate the application graph on the platform.

For independent real-time tasks, the algorithm deals with them as graphs with a single node. The

communication-aware mapping algorithm is based on two main criteria:

1. Allocating time-constrained paths in decreasing order of sensitivity.

2. Exploiting parallelism in the application by allocating parallel time-constrained paths P on

different cores.

The first criteria allows the algorithm to map the time-constrained paths that have the highest

impact on the schedulability of the application first, which allows maximizing the usage of the

available resources. Also, it gives the mapping algorithm a tendency to order the allocation of

tasks from heaviest to lightest density, which has been shown to provide a better solution than the

well-known FF [Hoffman, 1999]. The second criteria potentiates parallelism, which improves the

performance of the allocated applications and allow mapping more applications, as demonstrated

later in Section 6.6.

This algorithm is inspired by the heuristic dataflow graph mapping algorithm called Critical-

Path-First (CPF) [Ali et al., 2013]. However, the communication-aware mapping uses the path

density as parameter for path sensitivity, as stated in Definition 5.1, while in case of CPF the exe-

cution time of a path determines the path sensitivity. The communication-aware mapping is more

general then the CPF algorithm. This is because CPF ignores the communication cost contrary to

the communication-aware mapping. In the following sections, we present a description of the gen-

eral functionality of the communication-aware mapping algorithm in Section 6.3.1. Section 6.3.2,

then provides a detailed explanation of the SPF mapping heuristic, which is a main building block

in the proposed algorithm.

82 Communication-Aware Mapping

6.3.1 General Functionality

The communication-aware mapping consists of three stages, as shown in Algorithm 5. The first

stage is the mapping heuristic called Sensitive-Path-First (SPF). The SPF algorithm is responsible

for allocating the application actors (not the message actors) of the Gcom graph on the multi-core

platform Π, such that the system is schedulable. This is assured through using the Partitioned Ear-

liest Deadline First (PEDF) as scheduler and the Quick convergence Processor-demand Analysis

(QPA) (Section 3.1.2.2) as feasibility test to decide whether or not to map an actor to a specific

core. The following Section 6.3.2 explains the SPF mapping algorithm in detail.

The second stage is eliminating message actors with zero computation time from the Gcom

graph, which we refer to as EZM(Gcom) in Algorithm 5. This stage searches Gcom for message

actors whose source and destination actors have been mapped to the same core to eliminate them

from the Gcom graph. This is because these messages are produced at their destination and never

use the IN of the platform. For example, the actors vb0 and vc0 in the Gcom shown in Figure 6.1(b)

have been mapped on the same core, so applying EZM(Gcom) stage eliminates the message actor

vmb0 ,c0
.

The third stage is the TPE algorithm that plays the role of updating the timing parameters for

the actors and the message actors in the graph according to the placement of the actors on the

platform Π. This update process is necessary because the initial values of timing parameters are

calculated based on two pessimistic assumptions, which are:

1. Each message have to cross the maximum number of hops ĥ on the platform Π.

2. All message actors flow on the IN of the platform Π.

This makes the initial values of the timing parameters pessimistic compared to the actual reality.

The new computed timing parameters relax the individual deadlines of the mapped actors by

recalculating them based on how many messages of the application graph use the IN and the actual

number of hops h that a message traverse on the IN. This means that the density of the mapped

actors decreases, allowing more new applications to be allocated, whether they are dataflow graphs

or independent real-time tasks, which helps increasing the utilization of the platform resources.

However, recalculating timing parameters raises a question about the schedulability of the

system, since the task’s timing parameters have been changed. Although it is a valid question, the

system is still schedulable. After mapping the application graph using SPF, two mutual exclusive

and jointly exhaustive cases can happen. They are:

1. Gcom is mapped such that every two communicating actors in the graph are located on two

different cores with a distance equal to the maximum number of hops ĥ. In this case, all the

message actors are flowing on the IN of the platform Π. This means EZM(Gcom) will not

eliminate any of the message actors. Also, all message actors traverse the maximum number

of hops ĥ on the IN. This means that their WCET is still the same and the TPE stage will

not update any of the timing parameters of the graph actors or message actors. Therefore,

the system is schedulable.

6.3 Communication-Aware Mapping 83

2. Gcom is mapped such that every two communicating actors in the graph are not located on

two different cores with a distance equal to the maximum number of hops ĥ. This means

either, some of the message actors have been eliminated in the EZM(Gcom) stage and the

rest is traversing a number of hops h less than or equal to the maximum ĥ, or all of the

messages are traversing a number of hops h less than or equal to the maximum ĥ (excluding

the first case). In both cases, the TPE algorithm will find more latency slack, resulting

from the eliminated message actors and the current mapping pattern, to distribute on Gcom

graph actors. This means that the relative deadline Di of the mapped actors will increase,

which will not affect the schedulability of the system. Also, the offsets ai of the mapped

actors will change, but the schedulability will not be affected. This is because of the QPA

feasibility test being offset agnostic, as shown in Algorithm 1 and Equation (3.8). This

means QPA assumes that all actors start simultaneously at time instant zero (ai = 0), which

is a pessimistic assumption.

Therefore, updating the timing parameters helps in increasing the utilization of the platform re-

sources without negatively affecting the schedulability of the system.

6.3.2 Sensitive-Path-First Algorithm

Sensitive-Path-First (SPF) is a heuristic algorithm that allocates mixed application models with

timing constraints, after unifying them, on a 2D-mesh multi-core platform. The main criteria of

the SPF algorithm is to allocate time-constrained paths P that have the highest sensitivity γ first.

It is also able to exploit parallelism in the application by allocating parallel time-constrained paths

P on different cores. These criteria allow maximizing the usage of the available resources and

potentiates parallelism, which helps increasing the number of mapped applications and improve

their performance.

The proposed approach, shown in Algorithm 6, picks a path Pi in order of sensitivity γ from P .

The selected path Pi is checked whether it is independent or dependent. Pi is always independent

by definition if it is the most sensitive path in the graph.

If path Pi is independent, the algorithm allocates its actors 〈v0,v1,v2, . . . ,v j〉 onto the multi-

core processor Π = {π1,π2, . . . ,πn}. For each actor v j, the allocation process checks the feasibility

test for the current core. If the test is true, it assigns the actor v j to the current core. Otherwise, the

next core is selected using spiral_move and the process is repeated again.

On the other hand, if path Pi is dependent, the algorithm searches its partial paths P
p
i (un-

allocated path sections) and classifies them into three classes: Head, Middle and Tail, similar to

the offset assignment mechanism mentioned in Section 5.5.2. Figure 6.3 shows the three classes

of partial paths. For each partial path P
p
i , the algorithm determines a reference allocated actor

(parent) and uses its core as a reference core in the process of selecting the nearest possible core.

This reference actor (parent) is determined according to the P
p
i class. In case of P

p
i being a Head,

the reference actor is the successor of the last actor in the partial path, as shown in Figure 6.3(a).

In case of a Tail, the reference actor is the last allocated actor before the partial path, as shown

84 Communication-Aware Mapping

Algorithm 6: Sensitive-Path-First (SPF)
PPP: totally ordered set of all time-constrained paths of an application Ai ordered according

to γ , P = {Pi : γi−1 ≥ γi}.
PiPiPi: A full time-constrained path in P .
P

p
iP
p
iP
p
i : Partial path of full path Pi.

LP
p
iLP
p
iLP
p
i : List of partial paths in Pi.

1 begin

2 n = spiral_move();
3 foreach Pi in P do

4 if Pi is Independent then

5 foreach v j in Pi do

6 while (all cores are not tested) and (v j not allocated) do

7 if f easibility test then

8 allocate v j on core πn.
9 else

10 n = spiral_move();
11 end

12 end

13 if v j not allocated then

14 unallocate ∀v j ∈ Ai from Π.
15 end

16 end

17 else // Dependent Path Case

18 search for possible P
p
i in Pi.

19 classify found P
p
i & add them to LP

p
i .

20 foreach P
p
i in LP

p
i do

21 if Head or Tail then

22 find the reference actor (Parent).
23 allocate using find_nearest_core.
24 else if Middle then

25 calculate mid-point (core).
26 allocate using find_nearest_core.
27 end

28 if (v j in P
p
i) not allocated then

29 unallocate ∀v j ∈ G from Π.
30 end

31 end

32 end

33 end

34 end

in Figure 6.3(b). In the case of a Middle, the reference core is selected differently. The class

middle partial path is surrounded by two allocated actors (parents), as shown in Figure 6.3(c). The

reference core is thus selected by computing the middle core between the parents. If the number

of cores between the parents is even, an arbitrary core is selected from the two middle cores in

6.4 Limitations 85

v0 v1
v2 v3 v4 v5

allocated

unallocated

Head
reference node

(a) Class Head partial path

v0 v1
v2 v3 v4 v5

Tail

(b) Class Tail partial path

v0 v1
v2 v3 v4 v5

Middle

(c) Class Middle partial path

Figure 6.3: Partial path classification used by SPF heuristic.

between the parents. The location of the computed reference core is given to find_nearest_core as

an input to find the possible nearest core to allocate the child actors.

The SPF approach uses two different techniques, spiral_move and find_nearest_core, for al-

locating independent and dependent paths, respectively. This is because independent paths can

be allocated on any set of cores that have enough capacity to accommodate the path. However,

unallocated parts (children) of a dependent path need to be allocated near to their parents to de-

crease the communication cost between child and parent actors. The partial path classification

discovers potential parallelism in the application, since, by definition, the full path (containing the

partial path) shares some of its actors with another allocated path. This feature is an advantage

and this knowledge allows to allocate these parallel sections on different cores (if possible), thus,

enhancing the performance and reduce the end-to-end worst-case response time of the application

graph. If the heuristic fails in the allocation of any path Pi, the heuristic unallocates all previously

allocated actors of the graph.

6.4 Limitations

The communication-aware mapping algorithm has a communication model that is used to account

for the communication cost of dataflow applications running on the platform Π. This communi-

cation model guides the mapping algorithm, aiming to increase utilization of the full system. It

comprises two phases that begin with modelling all the messages exchanged between actors as

message actors, as demonstrated in Section 6.1. Then after mapping the dataflow application on

the platform Π, the update phase recalculates the timing parameters of all actors and message

actors reflecting the current mapping decisions, as explained previously in Section 6.3.1. This

model successfully allows to show the impact of communication on the schedulability of the sys-

tem in terms of number of allocated applications, as experimentally demonstrated in Section 6.6.

However, it does not guarantee the feasibility of the communication on the IN of the platform Π.

This means that it does not guarantee that the sum of total reservations on each link on the IN

86 Communication-Aware Mapping

is less than or equal to 100%. Another limitation that affects the feasibility of the communica-

tion is coming from reserving a dedicated bandwidth per application and not per communication

flow. This means that the WCET of the communication flows (messages actors) can be more than

the one computed, which can affect the communication feasibility. This is because of the pos-

sibility of multiple communication flows of the same application using the same link of the IN

at the same time. This means that the dedicated bandwidth for this specific application is shared

between these communication flows on this link, which increases the WCET of these flows, and

hence affecting the communication feasibility. Performing schedulability analysis at the network

level during mapping would be possible, but would be dependent on the routing strategy used,

and would increase the complexity and overhead of the mapping. For simplicity, the approach

considers that the feasibility at the network is performed in a final step, after the applications

are mapped. Improvements to this approach are relevant future work and are briefly presented in

Chapter 7. Note that the reservation bandwidthR parameter allows the designer to understand the

impact of communication in the allocation of applications. When a particular mapping is found

not to be schedulable, this understanding can guide the selection of a newR.

The communication-aware mapping does not assure that firings of the same SDF actor are

mapped on the same core. This affects the correct execution of the HSDF application. Therefore,

we assume that shared states between firings of the same SDF actor are always communicated

through self edge channels.

6.5 Complexity Analysis

In this section, we provide a complexity analysis for the communication-aware mapping algorithm

(Section 6.5.1) and the complete approach (Section 6.5.2), previously presented in Algorithms 5

and 4, respectively. The complexity analysis is done assuming a single application graph as an

input.

6.5.1 Communication-Aware Mapping

The communication-aware mapping algorithm is composed of two sub-algorithms. They are the

SPF and the TPE. The SPF consists of a two-level nested loop (foreach statement) that runs

|P| · |Vh| times. Consequently, the complexity of SPF is equivalent to O(|P||Vh|). The complexity

of TPE is equivalent to O(|P|+ |P||Vh|+ |Vh|+ |Eh|) according to the calculations in Section 5.5.3.

Therefore, the total complexity is the sum of the complexity of the two algorithms SPF and TPE

O(|P|+ |P||Vh|+ |Vh|+ |Eh|+ |P||Vh|) = O(|P|+ 2|P||Vh|+ |Vh|+ |Eh|). Hence, the final com-

plexity of the communication-aware mapping algorithm is O(|P|+ |P||Vh|+ |Vh|+ |Eh|), which is

polynomial and depends on |P|, |Vh| and |Eh|.

6.6 Experiments 87

6.5.2 Complete Approach

Now, we are ready to compute the complexity of the complete approach, shown in Algorithm 4.

It is composed of four sub-algorithms. They are the slack-based merging, the channel convert,

the TPE and the communication-aware mapping. First, the slack-based merging has a complexity

of O(|Vh|
2 + |Vh||Eh|), as detailed in Section 4.3.4. Second, the channel convert has a complexity

of O(|Eh|), since it traces every edge in the HSDF graph and converts it into an actor, as shown

in Figure 6.1. Third, the TPE has a complexity of O(|P|+ |P||Vh|+ |Vh|+ |Eh|), as detailed in

Section 5.5.3. Fourth, the communication-aware mapping has a complexity of O(|P|+ |P||Vh|+

|Vh|+ |Eh|), as explained previously. Therefore, the final complexity of the complete approach is

equivalent to O(|Vh|
2+ |Vh||Eh|+ |P|+ |P||Vh|+ |Vh|+ |Eh|), which is still polynomial and depends

on |P|, |Vh| and |Eh|.

6.6 Experiments

Finally, we reached the evaluation section of this chapter. Through the previous ones, we eval-

uated the primal stages of the complete approach step by step. In Chapter 4, we evaluated the

slack-based merging algorithm and showed that it generates reduced-size HSDF graphs that sat-

isfy the throughput and latency constraints of the original application graph. Then, we followed

it by evaluating the TPE algorithm in Chapter 5, where we showed it typically extracts timing

parameters faster using these reduced-size HSDF graphs compared to using the original larger

graphs.

In this section, we evaluate the full system solution using three experiments that test different

algorithms of its structure. The first experiment, detailed in Section 6.6.2, evaluates the com-

munication modelling methodology of the communication-aware mapping algorithm through the

testing of the communication cost and its effect on the schedulability of the system. The second ex-

periment, presented in Section 6.6.3, evaluates the SPF mapping heuristic of the communication-

aware mapping algorithm by comparing it against the well-known FF bin-packing heuristic. The

reason for choosing FF is it has been shown to behave as well as other bin-packing algorithms, and

outperform them in some cases, in terms of achieved throughput [Guo and Bhuyan, 2006, Hoff-

man, 1999]. The final experiment, presented in Section 6.6.4, evaluates the complete approach

and shows the trade-off between using original and merged dataflow graphs in terms of number of

allocated applications and the overall run-time of the complete approach. This evaluation assess

the suitability of the proposed approach for different types of applications.

6.6.1 General Experimental Setup

The set of input applications comprises SDF3 benchmark applications [Stuijk et al., 2006]. The

SDF3 benchmark applications are classified into two types: high (u > 0.5) and low (u≤ 0.5) total

utilization, as shown in Table 6.2. From these two types, each experiment uses different weights

for the random generator to create five sets, of 500 applications each, with a range of Low/High:

88 Communication-Aware Mapping

Table 6.1: General configuration of the experimental setup.

Platform size n×n 8×8
Maximum number of hops ĥ 14
Router switch latency lsw 1 cycle
flit size f 16 Byte
Feasibility test QPA
Link Capacity L 256 Gbps
IN frequency G 2 GHz
Number of allocated Slots κi 1
Reservation BandwidthRi R

Table 6.2: SDF3 benchmark applications.

Applications Utilization (Low/High)

h263decoder 0.76 (High)
h263encoder 1.2 (High)
modem 0.9 (High)
samplerate 0.37 (Low)
satellite 0.6 (High)
MP3 decoder (granule level) 0.41 (Low)
MP3 decoder (block level) 0.41 (Low)

90% Low - 10% High, 60% Low - 40% High, 40% Low - 60% High, 20% Low - 80% High, 10%

Low - 90% High. Each experiment runs the complete approach, shown in Algorithm 4, on these

five input data sets trying to allocate as many applications as possible on the multi-core platform Π

using this approach. To ensure the schedulability of the system, the Quick convergence Processor-

demand Analysis (QPA) is used to guarantee the feasibility of the mapped applications. The Π

is an 8× 8 2D-mesh homogeneous multi-core with a NoC of link capacity L equal to 256 Gbps.

Each application Ai has a single allocated slot in a TDM frame, and the reservation bandwidth per

application Ri equal to R. Table 6.1 summarizes the general configuration of the experimental

setup.

6.6.2 Evaluation of the Communication Cost

In real-time multi-core platforms that run dependent tasks, communication plays a big role in the

schedulability of the system. In our system, this role can be noticed in Equation (3.27) that shows

the inverse relation between the IN link capacity L and the reserved bandwidthR on one side, and

the WCET of messages Ci,p on the other side. The link capacity L and the reserved bandwidthRi

represent the communication resources available to an application. When the communication re-

sources increase the resource utilization decreases allowing the IN to handle more traffic, and vice

versa. This experiment aims to demonstrate the effect of availability of communication resources

on the schedulability of the system in terms of number of allocated applications. To show this, we

run Algorithm 4 on the input data sets, mentioned previously in Section 6.6.1, using three values

6.6 Experiments 89

90%/10% 60%/40% 40%/60% 20%/80% 10%/90%

Data sets (Low%/High%)

0

50

100

150

200

250

300

350

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

a
p

p
li

c
a

ti
o

n
s

Reservation Bandwidth

infinite R

5% R ideal
1% R ideal
5% R TDM
1% R TDM

Figure 6.4: Effect of reservation bandwidthR.

of the reservation bandwidthR. These values considered are: infinity, 5% and 1%.

The infinity value of reservation bandwidth R represents a system that does not model com-

munication costs in any way where messages reach their destination immediately once they are

produced. Therefore, in such system the WCET of message actors is equal to zero and its com-

munication is always feasible. This allows to set an upper bound on the number of allocated

applications, no matter which type of arbiter and arbiter configuration is used. On the contrary,

the 5% and 1% values of reservation bandwidthR represent a system with limited communication

resources. As we mentioned previously in Section 6.4, the communication-aware mapping does

not guarantee the communication feasibility of the system. This means the experimental results

may be optimistic, but demonstrates the impact of communication cost on the schedulability of

the system. To decrease the margin of optimism in our results, we give away bandwidth at a fine

granularity to assure that each communication link can handle messages from a lot of applications

before it becomes infeasible. For example, a reservation bandwidth of 1% allows 100 applications

to use a communication link safely, since they have one allocated slot each.

In this thesis, we propose a platform with a TDM arbiter for the IN to guarantee dedicated

bandwidth to mapped applications and to provide traffic isolation. Using a TDM arbiter results

in interference, as the reserved bandwidth R is not available immediately once requested by the

application. This interference shows up as the term IT DM in Equation (3.16), which evolves into

Equation (3.27) used in our experiments. However, we would like to investigate the boundaries of

our complete approach in case of using different types of arbiters for particular reservation band-

width R values (5% and 1%). Therefore, we run the same experiment assuming an ideal arbiter,

which means WCET of message actors Ci,p is equal to the isolation time Ciso
i,p . This experiment

gives an upper bound on the number of allocated application by our complete approach using any

type of arbiters at specific reservation bandwidthR values.

Figure 6.4 shows the summary of the results in case of infinite communication resources (in-

90 Communication-Aware Mapping

90%/10% 60%/40% 40%/60% 20%/80% 10%/90%

Data sets (Low%/High%)

0

50

100

150

200

250

300

350

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

a
p

p
li
c
a
ti

o
n

s

SPF vs. FF

infinite R SPF
5% R SPF
1% R SPF
infinite R FF
5% R FF
1% R FF

(a) Results in terms of average number of
mapped applications.

90%/10% 60%/40% 40%/60% 20%/80% 10%/90%

Data sets (Low%/High%)

6

8

10

12

14

16

18

20

R
u

n
-t

im
e
 (

h
o

u
rs

)

SPF vs. FF

infinite R SPF
5% R SPF
1% R SPF
infinite R FF
5% R FF
1% R FF

(b) Results in terms of run-time.

Figure 6.5: Evaluation of the mapping heuristic.

finite R), TDM and an ideal arbiter. The results show that the case of infinite communication

resources (infinite R) upper bound any type of arbiter for any reservation bandwidth R value in

terms of average number of mapped applications. As expected, it upper bounds the ideal arbiter

that is considered as an optimistic upper bound for the TDM arbiter. The infinite R exceeds by

an average of 26% and 76% more mapped applications over 5% and 1% R values for the ideal

arbiter, respectively. This shows the importance of considering communication cost and its effect

on the number of schedulable applications on the system.

Another optimistic upper bound is the ideal arbiter to the actual TDM arbiter for any reserva-

tion bandwidthR value, as shown in Figure 6.4. The ideal arbiter allocates an average of 31% and

28% more applications over the actual TDM arbiter in 5% and 1% R, respectively. This shows

the effect of the TDM interference IT DM on the number of schedulable applications on the system.

Also, the results illustrate the direct relation between the reservation bandwidthR and the number

of allocated applications on the platform Π. As we notice from Figure 6.4, when R is equal to

infinity, the maximum number of allocated applications is achieved in all input data sets, no matter

which type of arbiter is used. However, the number of allocated applications reduces following

the decrease of R. In addition, we notice that the number of mapped application decreases as

the percentage of high utilization application increases in the input data sets. This is due to high

utilization applications consume a lot of the platform resources preventing our algorithm from

mapping more applications.

Finally, we can conclude that the communication cost has a significant impact on the schedu-

lability of the system. When the communication resources (reservation bandwidthR) increase the

number of mapped applications increase, and vice versa.

6.6.3 Evaluation of the Mapping Heuristic

The proposed complete approach is modular and easily allows using different bin-packing heuris-

tics. In this experiment, we compare two different mapping heuristics, Sensitive-Path-First (SPF)

6.6 Experiments 91

and First Fit (FF). The choice of FF for comparison with SPF heuristic is because FF surpasses

other bin-packing algorithms in terms of achieved throughput [Guo and Bhuyan, 2006]. This ex-

periment uses the same input data sets and settings as illustrated in the previous experiment in

Section 6.6.2, except it assumes TDM arbitration and runs for both SPF and FF heuristics.

The experimental results are demonstrated in Figure 6.5. In terms of number of allocated

applications, Figure 6.5(a) shows that the SPF heuristic dominates FF, succeeding efficiently in

utilizing the computational resources through the allocation of more applications in all input data

sets and for different reservation bandwidthR values. In case of infinite reservation bandwidthR,

which represents an upper bound on number of mapped applications using any arbiter type, the

achieved gain using SPF ranges from 2% to 10% (approximately) with an average gain of 6%. In

case of 5% reservation bandwidth R, the achieved gain ranges from 4% to 24% (approximately)

with an average gain of 12%. In case of 1% reservation bandwidth R, the achieved gain ranges

from 3% to 28% (approximately) with an average gain of 15%. This is due to the selective nature

of the SPF heuristic that enables the allocation of actors in the most sensitive paths first that have

higher impact on application schedulability, previously discussed in Section 6.3.2. Also, SPF ac-

tively encourages mapping independent and partial (Head, Tail, Middle) paths on different cores,

which enables parallelism to be exploited in each application. In addition, Figure 6.5(a) illustrates

the effect of the communication resources on the number of allocated applications, whatever bin-

packing heuristic is used (SPF or FF). The presented results conforms with the conclusions of the

previous experiment detailed in Section 6.6.2.

In terms of run-time, the SPF heuristic outperforms FF. As noticed in Figure 6.5(b), the SPF

heuristic achieves a lower run-time for most data sets and reservation bandwidth R values. The

overall achieved gain, in terms of run-time, ranges from 1% to 22% (approximately) with an av-

erage of 9%. This occurs because SPF has a tendency to order the tasks in decreasing order of

density while mapping, which enables the heuristic to find a feasible core quicker than FF. This

tendency is coming from the nature of SPF to map higher sensitive paths first. The higher sensi-

tive paths comprise tasks with high densities that have great impact on the schedulability of the

system. Therefore, mapping highly sensitive paths first means mapping tasks in decreasing or-

der of density. The results show that there is no added complexity from using SPF compared to

FF. Also, the results show that the run-time of both heuristics converge for high utilization data

sets. The reason behind this is that both heuristics struggle similarly to map applications, because

high utilization applications consume a lot of resources leaving no space for mapping others. This

struggle is illustrated in the rise of run-time with the increase of high utilization applications in the

input data sets.

Based on these results, we conclude that SPF outperforms the well-known FF both in terms of

number of mapped applications and run-time.

6.6.4 Evaluation of Slack-based Merging

In this experiment, we evaluate an important part of the proposed complete approach, which is the

slack-based merging. The evaluation illustrates the trade-off between using merged and original

92 Communication-Aware Mapping

90%/10% 60%/40% 40%/60% 20%/80% 10%/90%

Data sets (Low%/High%)

100

150

200

250

300

350

400

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

a
p

p
li
c
a
ti

o
n

s

Merged vs. Original

Merged
Original

(a) Results in terms of average number of
mapped applications.

90%/10% 60%/40% 40%/60% 20%/80% 10%/90%

Data sets (Low%/High%)

0

20

40

60

80

100

120

140

R
u

n
-t

im
e
 (

h
o

u
rs

)

Merged vs. Original

Merged
Original

(b) Results in terms of run-time.

Figure 6.6: Mapping results for merged and original HSDF graphs.

HSDF graphs in terms of number of mapped applications and run-time of the complete approach.

This experiment uses the same five input data sets and settings described in Section 6.6.1. The

mapping heuristic is SPF, and the reservation bandwidth R is set to infinity. The choice of set-

ting the value of R to infinity is because it has the shortest run-time, as shown in Figure 6.5(b).

Any choice of a different value ofR definitely will lead to new results in terms of absolute value.

However, these new results will have the same trend of the existing results and conclusions will

be the same. Moreover, the new experiments will take unreasonable longer run-time.

The experimental results are summarized in Figure 6.6. In terms of number of mapped ap-

plications, the original HSDF graphs (complete approach without slack-based merging) enabled

the complete approach to map approximately 12% (approximately) more applications than the

merged ones in all input data sets. This is because the original HSDF graphs contain fine-grained

parallelism that the SPF heuristic exploits to efficiently use the platform resources. However, the

merged HSDF graphs lose such fine-grained parallelism in the slack-based merging process, de-

creasing the ability of the SPF heuristic to map applications.

As expected, the complete approach, using merged HSDF graphs achieves lower run-time in

all input data sets compared to the original ones. The reduction in run-time ranges from 82% to

90%. This trade-off between the number of mapped applications and the run-time, clearly, goes

into the favour of using slack-based merging and merged HSDF graphs, since it speeds up the

overall design time of the system. However, this does not mean that the slack-based merging is

the best in all cases. The experimental results of Chapter 5 have shown that dataflow applications

with high throughput fail in the merging process and generates a new graph with almost the same

size as the original one. This means that the slack-based merging will not help in reducing the

overall time of the system design process. Even more, it will slow it down by adding the run-time

of the merging process as an overhead.

In general, the proposed complete approach succeeds in decreasing the overall design time of

the system significantly, especially at relaxed throughput constraints.

6.7 Summary 93

6.7 Summary

This chapter presented the final stage of the complete approach called communication-aware

mapping. It is a heuristic algorithm for mapping mixed application models, dataflow graphs

with timing constraints and independent real-time tasks, taking into account the communica-

tion cost of dataflow graphs. The platform considered in this work is 2D-Mesh homogeneous

multi-core processors operated using X-Y routing, wormhole switching and TDM arbitration. The

communication-aware mapping algorithm comprises three heuristics. They are: 1) Sensitive-Path-

First (SPF), 2) eliminate messages with zero execution time (EZM) and 3) Timing Parameter Ex-

traction (TPE). SPF is responsible for mapping mixed application models in the communication-

aware mapping algorithm, guaranteeing the schedulability of the system. It is based on the heuris-

tic algorithm for the mapping of real-time streaming applications called Critical-Path-First (CPF)

[Ali et al., 2013]. The SPF main criteria is to allocate time-constrained paths P that have the high-

est sensitivity γ (density) first. It is also able to exploit parallelism in the application by allocating

parallel time-constrained paths P on different cores. These criteria allow maximizing the usage

of the available resources and potentiates parallelism, and hence helps increasing the number of

mapped applications and improve their performance. Before the communication-aware mapping

begins execution, all messages in a application are initially modelled as real-time tasks. This ini-

tial modelling is updated using the two heuristics EZM and TPE to reflect the actual estimate

of communication cost after mapping the application on the platform. The experimental evalu-

ation reveals a direct relation between the number of allocated applications and the availability

of communication resources, which demonstrates the importance of considering communication

cost. The experiments shows that ignoring communication cost allows mapping up to 76% more

applications (infinite case), which gives a wrong perception of the ability to map applications with

timing constraints. These extra applications can be mapped, but they would not actually meet

their timing constraints, which is a dangerous situation in real-time systems. Also, it shows that

the SPF mapping heuristic surpasses the well-known FF bin-packing heuristic in terms of number

of allocated applications and run-time that reaches up to a maximum of 28% and 22%, respec-

tively. Moreover, it shows that the slack-based merging has a great impact on the run-time of the

complete approach achieving a reduction in the overall system design time that ranges from 82%

to 90%.

94 Communication-Aware Mapping

Chapter 7

Conclusion and Future Directions

In this chapter, we conclude this work by briefly discussing the research question of integrat-

ing mixed application models with timing constraints (dataflow and real-time applications) on

the same multi-core platform and recapping the proposed solution. We discuss our contributions

stating their pros and cons in Section 7.1. Then, we provide possible extensions of our work in

Section 7.2.

7.1 Conclusions

We are surrounded by embedded systems that help us in various daily life activities. Initially, em-

bedded systems were designed to perform a dedicated function within a larger system. However,

the increase in the application demands and the advancement in processor architectures allowed

them to perform multiple functions from different computing domains simultaneously. For exam-

ple, autonomous driving systems enable cars to navigate without human input, while providing

infotainment to the passengers. Both autonomous navigation and infotainment are functions from

two different computing domains. Hence, there is a growing trend of embedded systems running

mixed application models on their processing platform. In this thesis, we are concerned with em-

bedded systems running mixed application models with timing constraints. The considered mixed

applications models are dataflow applications with timing constraints (latency and throughput) and

traditional real-time applications represented as independent periodic tasks. Such embedded sys-

tems running mixed application models require real-time guarantees that assure satisfying timing

constraints.

We proposed an approach, formulated in Algorithm 4, which transforms SDF graphs into peri-

odic arbitrary-deadline tasks, to enable applying real-time scheduling and analysis techniques that

guarantee that the timing constraints of the applications are satisfied when they are mapped on

the multi-core platform. The proposed approach comprises three main contributions, Slack-Based

Merging, Timing Parameter Extraction (TPE) and Communication-Aware Mapping. In the follow-

ing sections, we recap on our main contributions, discussing their advantages and disadvantages.

95

96 Conclusion and Future Directions

7.1.1 Slack-Based Merging

Slack-based merging is an algorithm for addressing the problem that SDF graphs may grow expo-

nentially when converted to an HSDF graph. It is based on two main concepts. First is the concept

of slack, which is the difference between the WCET of the SDF graph’s firings and their relative

deadlines. Second is the novel concept called safe merge, which is a merge operation that we prove

cannot cause a live HSDF graph to deadlock. The algorithm generates reduced-size HSDF graphs

that satisfy the throughput and latency constraints of the original application graph. The experi-

mental results of Chapter 4 show that the proposed algorithm achieves large reduction rates of the

original HSDF graph, in terms of number of actors, that reaches up to 99.7% in some applications.

This result reflects positively on the run-time of the complete approach, achieving a reduction in

the overall system design time that ranges from 82% to 90%, as demonstrated in the experimental

evaluation in Chapter 6. This does not mean that the slack-based merging is always a good so-

lution for reducing the complexity of HSDF dataflow applications. One of the drawbacks of this

algorithm is a reduction of fine-grained parallelism in the application, which is a main benefit of

the dataflow computational model. This reduction decreases the maximum throughput a dataflow

application is able to reach, although never below the throughput constraint. Another drawback

the experimental results of Chapter 5 have shown is that the merging algorithm may be ineffective

and generates a new graph with almost the same size as the original for dataflow applications with

high throughput requirements. In this case, slack-based merging will not reduce the overall time

of the system design process. In fact, it will slow it down by adding the run-time of the merging

process as an overhead.

7.1.2 Timing Parameter Extraction

Timing Parameter Extraction (TPE) is an algorithm for converting HSDF graphs with multiple tim-

ing constraints (throughput constraint and multiple latency constraints), represented as a Directed

Cyclic Graphs (DCG), into arbitrary-deadline real-time tasks defined with offsets, periods, dead-

lines as timing parameters. This enables applying well known real-time schedulers and analysis

techniques on HSDF dataflow graphs. The proposed algorithm provides a method to assign indi-

vidual deadlines for real-time dataflow actors and support for two deadline assignment techniques

(NORM/PURE) that are widely used in the literature. In addition, it allows capturing overlapping

iterations, which is a main characteristic of the execution of dataflow applications, by modelling

actors as tasks with arbitrary-deadlines. However, the TPE algorithm has a downside related to

the first phase of the algorithm that finds all possible time-constrained paths (Section 5.5.1). This

phase of the TPE algorithm is a very computationally expensive process, especially when the

HSDF graph is large. The experimental results of Chapter 5 shows that applying TPE on the satel-

lite large size HSDF graph with 4515 actors takes 3.2× 104 seconds approximately. When the

HSDF graph becomes larger, i.e. mp3playback with size of 10000 actors, the TPE takes indefi-

nitely long time for extracting its timing parameters that we terminated the experiment after two

weeks without reaching any result. Speeding up the TPE run-time was the main motivation for

7.1 Conclusions 97

proposing the slack-based merging algorithm, which it achieved successfully with improvements

of up to 92% and 95% for the cases with finite and infinite buffer, respectively.

7.1.3 Communication-Aware Mapping

Communication-aware mapping is an algorithm for mapping mixed application models (dataflow

application and independent real-time tasks) with timing constraints taking into account the com-

munication cost of dataflow applications. The proposed algorithm is able to exploit parallelism in

the application by allocating parallel paths on different cores. The main criteria for the allocation

is to allocate paths with higher impact on the schedulability of the application first. Also, it models

the messages (tokens) exchanged in dataflow applications as real-time tasks and hence, accounts

for the communication cost. The experimental evaluation (Chapter 6) demonstrated four key re-

sults that concern both the communication-aware mapping algorithm and the complete approach.

They are:

1. the importance of the communication cost and its impact on the number of allocated appli-

cations and the schedulability of the system. The results show that ignoring communication

cost, as frequently done in existing work, allows mapping up to 76% more applications,

which gives a wrong perception of the ability to map applications with timing constraints.

These extra applications can be mapped, but they would not actually meet their timing con-

straints, which is a dangerous situation in real-time systems.

2. the direct relation between the number of allocated applications and the availability of the

communication resources. The experimental results show, when the reservation bandwidth

is equal to infinity, the maximum number of allocated applications is achieved in all in-

put data sets, no matter which type of arbiter is used. However, the number of allocated

applications reduces following the decrease of the reservation bandwidth.

3. the effect of the TDM arbiter interference on the number of allocated applications on the

platform, which shows that an ideal arbiter allocates an average of 31% and 28% more ap-

plications over the actual TDM arbiter in 5% and 1% reservation bandwidth, respectively.

This result sets the boundary for the possibility of using any type of arbiter based on band-

width reservations, since it quantifies how much better a different type of arbiter could

maximally do.

4. the ability of the proposed algorithm, particularly its main mapping heuristic called Sensitive-

Path-First (SPF), to efficiently use platform resources and speed up the mapping process

compared to well known bin-packing heuristics like First-Fit (FF). The results show that

SPF surpasses FF in terms of number of allocated applications and run-time that reaches up

to a maximum of 28% and 22%, respectively. This shows that there is no added overhead

when using the SPF heuristic. On the contrary, it saves time.

Although the communication modelling of communication-aware mapping algorithm success-

fully allows to show the impact of communication on the schedulability of the system in terms of

98 Conclusion and Future Directions

number of allocated applications, as experimentally demonstrated in Chapter 6, this model is sub-

ject to the limitations discussed in Section 6.4 and proposed as future work in Section 7.2.

7.2 Future Work

In every research, there is room for improvement. In this section, we discuss possible future

directions for improving and extending our work.

7.2.1 Timing Parameter Extraction (TPE)

The TPE algorithm transforms a HSDF graph with multiple latency constraints into independent

arbitrary-deadline real-time tasks. One of the main phases of this transformation process is an

algorithm that traverses the HSDF graph to find all time-constrained paths, as explained in Sec-

tion 5.5.1. This phase has a run-time that grows rapidly with the increase in size of the HSDF

graph. In this thesis, we have addressed this problem by introducing the reduction algorithm

called slack-based merging that reduces the complexity of HSDF dataflow graphs, speeding up

the run-time of the TPE algorithm, demonstrated in the experimental results in Chapters 4 and 5.

However, the nature of the algorithm has a downside of reducing fine-grained parallelism, which

is a main benefit of the dataflow computational model. Also, in some cases its run-time adds

an overhead on the overall design time, as shown in the experimental results in Chapter 5. A

future direction to address this problem is to propose an algorithm to find only the necessary time-

constrained paths in the HSDF graph that are critical for correct execution that satisfies timing

constraints. This is because many time-constrained paths share the same actors (dependent paths).

Once the timing parameters of an actor is derived from a high sensitivity time-constrained path, it

is not mandatory to check the same actor for a lower sensitivity time-constrained path. This will

speed-up the run-time of both the TPE algorithm and the complete approach. A possible start is

the work of [Geilen, 2009], where the author proposes an SDF graph reduction technique based

on Max-Plus algebra that transforms an SDF graph into a smaller HSDF graph with equivalent

maximal throughput and latency, which is faster to analyse. This smaller HSDF graph can be used

to find the necessary time-constrained paths in the graph that are critical for correct execution that

satisfies timing constraints.

7.2.2 Communication-Aware Mapping

The communication-aware mapping algorithm is based on a communication model that accounts

for the communication cost and its effect on the schedulability of the system without guaranteeing

the communication feasibility. This means that it does not guarantee that the sum of total reser-

vations on each link on the interconnect IN is less than or equal to 100%, as discussed previously

in Section 6.4. A future direction is to improve the communication model to check the feasibility

of the communication while mapping tasks on the platform. This requires accounting for different

7.2 Future Work 99

message routing mechanisms, i.e. X-Y routing, on the IN of the platform. Another possible exten-

sion is to consider a real-time communication model that incorporate fixed-priority for scheduling

messages on the IN, such as the communication models discussed in [Nikolić et al., 2013, Shi and

Burns, 2008]. Such a communication model will provide real-time guarantees for the messages

flowing on the IN, allowing communication feasibility and satisfying timing constraints for both

communication and the system.

100 Conclusion and Future Directions

References

Adapteva Epiphany multi core architecture. URL http://www.adapteva.com.

ARM Ltd.Cortex™-A Series. URL http://www.arm.com/products/processors/

cortex-a/cortex-a17-processor.php.

Benny Akesson, Anna Minaeva, Premysl Sucha, Andrew Nelson, and Zdenek Hanzalek. An
efficient configuration methodology for time-division multiplexed single resources. In 21st

IEEE Real-Time and Embedded Technology and Applications Symposium, pages 161–171, April
2015. doi: 10.1109/RTAS.2015.7108439.

Hazem Ismail Ali, Luís Miguel Pinho, and Benny Akesson. Critical-path-first based allocation of
real-time streaming applications on 2d mesh-type multi-cores. In 2013 IEEE 19th International

Conference on Embedded and Real-Time Computing Systems and Applications, pages 201–208,
Aug 2013. doi: 10.1109/RTCSA.2013.6732220.

Hazem Ismail Ali, Benny Akesson, and Luís Miguel Pinho. Generalized extraction of real-time
parameters for homogeneous synchronous dataflow graphs. In Proceedings of the 2015 23rd

Euromicro International Conference on Parallel, Distributed, and Network-Based Processing,
PDP ’15, pages 701–710, Washington, DC, USA, 2015. IEEE Computer Society. ISBN 978-
1-4799-8491-6. doi: 10.1109/PDP.2015.57. URL http://dx.doi.org/10.1109/PDP.

2015.57.

Hazem Ismail Ali, Sander Stuijk, Benny Akesson, and Luís Miguel Pinho. Reducing the com-
plexity of dataflow graphs using slack-based merging. ACM Trans. Des. Autom. Electron.

Syst., 22(2):24:1–24:22, January 2017. ISSN 1084-4309. doi: 10.1145/2956232. URL
http://doi.acm.org/10.1145/2956232.

Björn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority scheduling on multiprocessors.
In Real-Time Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd IEEE, pages 193–
202, Dec 2001. doi: 10.1109/REAL.2001.990610.

Mohamed Bamakhrama and Todor Stefanov. Hard-real-time Scheduling of Data-dependent Tasks
in Embedded Streaming Applications. In Proceedings of the Ninth ACM International Confer-

ence on Embedded Software, EMSOFT ’11, pages 195–204, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0714-7. doi: 10.1145/2038642.2038672. URL http://doi.acm.org/

10.1145/2038642.2038672.

Mohamed Bamakhrama and Todor Stefanov. Managing Latency in Embedded Streaming Appli-
cations Under Hard-real-time Scheduling. In Proceedings of the Eighth IEEE/ACM/IFIP In-

ternational Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS
’12, pages 83–92, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1426-8. doi:
10.1145/2380445.2380464. URL http://doi.acm.org/10.1145/2380445.2380464.

101

http://www.adapteva.com
http://www.arm.com/products/processors/cortex-a/cortex-a17-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a17-processor.php
http://dx.doi.org/10.1109/PDP.2015.57
http://dx.doi.org/10.1109/PDP.2015.57
http://doi.acm.org/10.1145/2956232
http://doi.acm.org/10.1145/2038642.2038672
http://doi.acm.org/10.1145/2038642.2038672
http://doi.acm.org/10.1145/2380445.2380464

102 REFERENCES

Arnab Banerjee, Pascal T. Wolkotte, Robert D. Mullins, Simon W. Moore, and Gerard J. M. Smit.
An Energy and Performance Exploration of Network-on-Chip Architectures. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, 17(3):319–329, March 2009. ISSN
1063-8210. doi: 10.1109/TVLSI.2008.2011232.

Sanjoy Baruah and Theodore P. Baker. Global EDF Schedulability Analysis of Arbitrary Sporadic
Task Systems. In 2008 Euromicro Conference on Real-Time Systems, pages 3–12, July 2008a.
doi: 10.1109/ECRTS.2008.27.

Sanjoy Baruah and Theodore P. Baker. Schedulability analysis of global edf. Real-Time Systems,
38(3):223–235, 2008b. ISSN 1573-1383. doi: 10.1007/s11241-007-9047-9. URL http:

//dx.doi.org/10.1007/s11241-007-9047-9.

Sanjoy Baruah and Nathan Fisher. The partitioned multiprocessor scheduling of deadline-
constrained sporadic task systems. IEEE Transactions on Computers, 55(7):918–923, July
2006. ISSN 0018-9340. doi: 10.1109/TC.2006.113.

Sanjoy Baruah and Joël Goossens. Scheduling real-time tasks: Algorithms and complexity. Hand-

book of scheduling: Algorithms, models, and performance analysis, 3, 2004.

Sanjoy Baruah, Louis E. Rosier, and Rodney R. Howell. Algorithms and complexity concerning
the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems,
2(4):301–324, Nov 1990. ISSN 1573-1383. doi: 10.1007/BF01995675. URL http://dx.

doi.org/10.1007/BF01995675.

Sanjoy Baruah, Rodney R. Howell, and Louis E. Rosier. Feasibility problems for recurring
tasks on one processor. Theoretical Computer Science, 118(1):3–20, 1993. ISSN 0304-
3975. doi: 10.1016/0304-3975(93)90360-6. URL http://www.sciencedirect.com/

science/article/pii/0304397593903606.

Sanjoy Baruah, Neil K. Cohen, C. Greg Plaxton, and Donald A. Varvel. Proportionate progress: A
notion of fairness in resource allocation. Algorithmica, 15(6):600–625, 1996. ISSN 1432-0541.
doi: 10.1007/BF01940883. URL http://dx.doi.org/10.1007/BF01940883.

Marco Bekooij, Rob Hoes, Orlando Moreira, Peter Poplavko, Milan Pastrnak, Bart Mesman, Jan-
David Mol, Sander Stuijk, Valentin Gheorghita, and Jef van Meerbergen. Dataflow Analysis for
Real-Time Embedded Multiprocessor System Design. In Peter Stok, editor, Dynamic and Ro-

bust Streaming in and between Connected Consumer-Electronic Devices, volume 3 of Philips

Research Book Series, pages 81–108. Springer Netherlands, 2005. ISBN 978-1-4020-3453-4.
URL http://dx.doi.org/10.1007/1-4020-3454-7_4.

Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin Joyce, Vince Leung, John MacKay,
Mike Reif, Liewei Bao, John Brown, Matthew Mattina, Chyi-Chang Miao, Carl Ramey, David
Wentzlaff, Walker Anderson, Ethan Berger, Nat Fairbanks, Durlov Khan, Froilan Montenegro,
Jay Stickney, and John Zook. TILE64 - Processor: A 64-Core SoC with Mesh Interconnect. In
2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pages
88–598, Feb 2008. doi: 10.1109/ISSCC.2008.4523070.

Luca Benini, Eric Flamand, Didier Fuin, and Diego Melpignano. P2012: Building an ecosystem
for a scalable, modular and high-efficiency embedded computing accelerator. In 2012 Design,

Automation Test in Europe Conference Exhibition (DATE), pages 983–987, March 2012. doi:
10.1109/DATE.2012.6176639.

http://dx.doi.org/10.1007/s11241-007-9047-9
http://dx.doi.org/10.1007/s11241-007-9047-9
http://dx.doi.org/10.1007/BF01995675
http://dx.doi.org/10.1007/BF01995675
http://www.sciencedirect.com/science/article/pii/0304397593903606
http://www.sciencedirect.com/science/article/pii/0304397593903606
http://dx.doi.org/10.1007/BF01940883
http://dx.doi.org/10.1007/1-4020-3454-7_4

REFERENCES 103

Shuvra Shikhar Bhattacharyya, Praveen K. Murthy, and Edward Ashford Lee. Synthesis of
Embedded Software from Synchronous Dataflow Specifications. Journal of VLSI signal

processing systems for signal, image and video technology, 21(2):151–166, 1999. ISSN
0922-5773. doi: 10.1023/A:1008052406396. URL http://dx.doi.org/10.1023/A%

3A1008052406396.

Greet Bilsen, Marc Engels, Rudy Lauwereins, and J. A. Peperstraete. Cyclo-static data flow. In
Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference

on, volume 5, pages 3255–3258 vol.5, May 1995. doi: 10.1109/ICASSP.1995.479579.

Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. Qnoc: Qos architecture and
design process for network on chip. J. Syst. Archit., 50(2-3):105–128, February 2004. ISSN
1383-7621. doi: 10.1016/j.sysarc.2003.07.004. URL http://dx.doi.org/10.1016/j.

sysarc.2003.07.004.

Adnan Bouakaz, Jean-Pierre Talpin, and Jan Vitek. Affine Data-Flow Graphs for the Synthesis
of Hard Real-Time Applications. In Proceedings of the 2012 12th International Conference on

Application of Concurrency to System Design, ACSD ’12, pages 183–192, Washington, DC,
USA, 2012. IEEE Computer Society. ISBN 978-0-7695-4709-1. doi: 10.1109/ACSD.2012.16.
URL http://dx.doi.org/10.1109/ACSD.2012.16.

Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algorithms

And Applications (Real-Time Systems Series). Springer-Verlag TELOS, Santa Clara, CA, USA,
2004. ISBN 0387231374.

John M. Calandrino, James H. Anderson, and Dan P. Baumberger. A Hybrid Real-Time Schedul-
ing Approach for Large-Scale Multicore Platforms. In Real-Time Systems, 2007. ECRTS ’07.

19th Euromicro Conference on, pages 247–258, july 2007. doi: 10.1109/ECRTS.2007.81.

Donald D. Chamberlin. The "Single-assignment" Approach to Parallel Processing. In Proceedings

of the November 16-18, 1971, Fall Joint Computer Conference, AFIPS ’71 (Fall), pages 263–
269, New York, NY, USA, 1971. ACM. doi: 10.1145/1479064.1479114. URL http://doi.

acm.org/10.1145/1479064.1479114.

Houssine Chetto, Maryline Silly, and T. Bouchentouf. Dynamic scheduling of real-time tasks
under precedence constraints. Real-Time Syst., 2(3):181–194, September 1990. ISSN 0922-
6443. doi: 10.1007/BF00365326. URL http://dx.doi.org/10.1007/BF00365326.

Jack B. Copeland. Colossus: The Secrets of Bletchley Park’s Codebreaking Computers. Oxford
University Press, first edition edition, feb 2006.

Daily Autonomous Car News. WHEN WILL SELF DRIVING CARS BE READY -
BOSCH SYSTEMS CONTROL PRESIDENT ANSWER, dec 2015. URL http://www.

autonomous-car.com/2015/12/when-will-self-driving-cars-be-ready.

html.

Morteza Damavandpeyma, Sander Stuijk, Marc Geilen, Twan Basten, and Henk Corporaal. Para-
metric throughput analysis of scenario-aware dataflow graphs. In Computer Design (ICCD),

2012 IEEE 30th International Conference on, pages 219–226, Sept 2012. doi: 10.1109/ICCD.
2012.6378644.

http://dx.doi.org/10.1023/A%3A1008052406396
http://dx.doi.org/10.1023/A%3A1008052406396
http://dx.doi.org/10.1016/j.sysarc.2003.07.004
http://dx.doi.org/10.1016/j.sysarc.2003.07.004
http://dx.doi.org/10.1109/ACSD.2012.16
http://doi.acm.org/10.1145/1479064.1479114
http://doi.acm.org/10.1145/1479064.1479114
http://dx.doi.org/10.1007/BF00365326
http://www.autonomous-car.com/2015/12/when-will-self-driving-cars-be-ready.html
http://www.autonomous-car.com/2015/12/when-will-self-driving-cars-be-ready.html
http://www.autonomous-car.com/2015/12/when-will-self-driving-cars-be-ready.html

104 REFERENCES

Ali Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean cycle algorithms for
system-performance analysis. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 17(10):889–899, Oct 1998. ISSN 0278-0070. doi: 10.1109/43.728912.

Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor systems.
ACM Comput. Surv., 43(4):35:1–35:44, October 2011. ISSN 0360-0300. doi: 10.1145/1978802.
1978814. URL http://doi.acm.org/10.1145/1978802.1978814.

Benoît Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps, Patrice Couvert,
Benoit Ganne, Pierre Guironnet de Massas, François Jacquet, Samuel Jones, Nicolas Morey
Chaisemartin, Frédéric Riss, and Thierry Strudel. A clustered manycore processor architecture
for embedded and accelerated applications. In High Performance Extreme Computing Confer-

ence (HPEC), 2013 IEEE, pages 1–6, Sept 2013. doi: 10.1109/HPEC.2013.6670342.

Marco Di Natale and John A. Stankovic. Dynamic end-to-end guarantees in distributed real time
systems. In Real-Time Systems Symposium, 1994., Proceedings., pages 216–227, 1994.

Robert P. Dick, David L. Rhodes, and Wayne Wolf. TGFF: task graphs for free. In Hard-

ware/Software Codesign, 1998. (CODES/CASHE ’98) Proceedings of the Sixth International

Workshop on, pages 97–101, mar 1998. doi: 10.1109/HSC.1998.666245.

Arvind Easwaran, Insik Shin, and Insup Lee. Optimal virtual cluster-based multiproces-
sor scheduling. Real-Time Systems, 43:25–59, 2009. ISSN 0922-6443. doi: 10.1007/
s11241-009-9073-x. URL http://dx.doi.org/10.1007/s11241-009-9073-x.

Stephen A. Edwards and Edward A. Lee. The case for the precision timed (pret) machine. In
Proceedings of the 44th Annual Design Automation Conference, DAC ’07, pages 264–265,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-627-1. doi: 10.1145/1278480.1278545.
URL http://doi.acm.org/10.1145/1278480.1278545.

Glenn A. Elliott, Namhoon AKim, Jeremy P. Erickson, Cong Liu, and James H. Andersony. Min-
imizing response times of automotive dataflows on multicore. In 2014 IEEE 20th International

Conference on Embedded and Real-Time Computing Systems and Applications, pages 1–10,
Aug 2014. doi: 10.1109/RTCSA.2014.6910527.

Robert Ennals, Richard Sharp, and Alan Mycroft. Task Partitioning for Multi-core Network
Processors. In Proceedings of the 14th International Conference on Compiler Construction,
CC’05, pages 76–90, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-25411-0, 978-3-
540-25411-9. doi: 10.1007/978-3-540-31985-6_6. URL http://dx.doi.org/10.1007/

978-3-540-31985-6_6.

Gerald Estrin and Rein Turn. Automatic Assignment of Computations in a Variable Structure
Computer System. IEEE Transactions on Electronic Computers, EC-12(6):755–773, Dec 1963.
ISSN 0367-7508. doi: 10.1109/PGEC.1963.263559.

John D. Evans and Robert R. Kessler. A Communication-Ordered Task Graph Allocation Algo-
rithm. Technical report, IEEE Transactions on Parallel and Distributed Systems, 1992.

Nathan Fisher, Sanjoy Baruah, and Theodore P. Baker. The partitioned scheduling of spo-
radic tasks according to static-priorities. In 18th Euromicro Conference on Real-Time Systems

(ECRTS’06), pages 10 pp.–127, 2006. doi: 10.1109/ECRTS.2006.30.

http://doi.acm.org/10.1145/1978802.1978814
http://dx.doi.org/10.1007/s11241-009-9073-x
http://doi.acm.org/10.1145/1278480.1278545
http://dx.doi.org/10.1007/978-3-540-31985-6_6
http://dx.doi.org/10.1007/978-3-540-31985-6_6

REFERENCES 105

Sahar Foroutan, Benny Akesson, Kees Goossens, and Frédéric Petrot. A general framework for
average-case performance analysis of shared resources. In 2013 Euromicro Conference on Dig-

ital System Design, pages 78–85, Sept 2013. doi: 10.1109/DSD.2013.116.

Stefan K. Gehrig and Fridtjof J. Stein. Dead reckoning and cartography using stereo vision for
an autonomous car. In Intelligent Robots and Systems, 1999. IROS ’99. Proceedings. 1999

IEEE/RSJ International Conference on, volume 3, pages 1507–1512 vol.3, 1999. doi: 10.1109/
IROS.1999.811692.

Marc Geilen. Reduction techniques for synchronous dataflow graphs. In Proceedings of the 46th

Annual Design Automation Conference, DAC ’09, pages 911–916, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-497-3. doi: 10.1145/1629911.1630146. URL http://doi.acm.

org/10.1145/1629911.1630146.

Amir Hossein Ghamarian, Marc Geilen, Twan Basten, Bart D. Theelen, Mohammad Reza
Mousavi, and Sander Stuijk. Liveness and Boundedness of Synchronous Data Flow Graphs.
In 2006 Formal Methods in Computer Aided Design, pages 68–75, Nov 2006. doi: 10.1109/
FMCAD.2006.20.

Amir Hossein Ghamarian, Sander Stuijk, Twan Basten, Marc Geilen, and Bart D. Theelen. La-
tency minimization for synchronous data flow graphs. In Digital System Design Architectures,

Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on, pages 189–196, Aug
2007. doi: 10.1109/DSD.2007.4341468.

Amir Hossein Ghamarian, Marc Geilen, Twan Basten, and Sander Stuijk. Parametric Throughput
Analysis of Synchronous Data Flow Graphs. In Design, Automation and Test in Europe, 2008.

DATE ’08, pages 116–121, March 2008. doi: 10.1109/DATE.2008.4484672.

Manil Dev Gomony, Benny Akesson, and Kees Goossens. Architecture and optimal configuration
of a real-time multi-channel memory controller. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’13, pages 1307–1312, San Jose, CA, USA, 2013. EDA
Consortium. ISBN 978-1-4503-2153-2. URL http://dl.acm.org/citation.cfm?id=

2485288.2485602.

Kees Goossens, John Dielissen, and Andrei Radulescu. Æthereal network on chip: concepts,
architectures, and implementations. IEEE Design Test of Computers, 22(5):414–421, Sept 2005.
ISSN 0740-7475. doi: 10.1109/MDT.2005.99.

Kees Goossens, Arnaldo Azevedo, Karthik Chandrasekar, Manil Dev Gomony, Sven Goossens,
Martijn Koedam, Yonghui Li, Davit Mirzoyan, Anca Molnos, Ashkan Beyranvand Nejad, An-
drew Nelson, and Shubhendu Sinha. Virtual execution platforms for mixed-time-criticality sys-
tems: The compsoc architecture and design flow. SIGBED Rev., 10(3):23–34, October 2013a.
ISSN 1551-3688. doi: 10.1145/2544350.2544353. URL http://doi.acm.org/10.1145/

2544350.2544353.

Sven Goossens, Benny Akesson, and Kees Goossens. Conservative open-page policy for mixed
time-criticality memory controllers. In 2013 Design, Automation Test in Europe Conference

Exhibition (DATE), pages 525–530, March 2013b. doi: 10.7873/DATE.2013.118.

Sven Goossens, Jasper Kuijsten, Benny Akesson, and Kees Goossens. A reconfigurable real-
time sdram controller for mixed time-criticality systems. In 2013 International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 1–10, Sept 2013c.
doi: 10.1109/CODES-ISSS.2013.6658989.

http://doi.acm.org/10.1145/1629911.1630146
http://doi.acm.org/10.1145/1629911.1630146
http://dl.acm.org/citation.cfm?id=2485288.2485602
http://dl.acm.org/citation.cfm?id=2485288.2485602
http://doi.acm.org/10.1145/2544350.2544353
http://doi.acm.org/10.1145/2544350.2544353

106 REFERENCES

Micheal Gschwind, H. Peter Hofstee, Brian Flachs, Martin Hopkins, Yukio Watanabe, and Takeshi
Yamazaki. Synergistic Processing in Cell’s Multicore Architecture. IEEE Micro, 26(2):10–24,
March 2006. ISSN 0272-1732. doi: 10.1109/MM.2006.41.

Jiani Guo and Laxmi Narayan Bhuyan. Load balancing in a cluster-based web server for multime-
dia applications. IEEE Trans. Parallel Distrib. Syst., 17(11):1321–1334, November 2006. ISSN
1045-9219. doi: 10.1109/TPDS.2006.159. URL http://dx.doi.org/10.1109/TPDS.

2006.159.

Joost P. H. M. Hausmans, Maarten H. Wiggers, Stefan J. Geuns, and Marco Bekooij. Data-
flow Analysis for Multiprocessor Systems with Non-starvation-free Schedulers. In Proceedings

of the 16th International Workshop on Software and Compilers for Embedded Systems, M-
SCOPES ’13, pages 13–22, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2142-6. doi:
10.1145/2463596.2463603. URL http://doi.acm.org/10.1145/2463596.2463603.

Steve Heath. 1 - What is an embedded system? In Steve Heath, editor, Embedded Sys-

tems Design (Second Edition), pages 1–14. Newnes, Oxford, second edition edition, 2002.
ISBN 978-0-7506-5546-0. doi: 10.1016/B978-075065546-0/50002-5. URL http://www.

sciencedirect.com/science/article/pii/B9780750655460500025.

Paul Hoffman. The Man Who Loved Only Numbers: The Story of Paul Erdos and the Search for

Mathematical Truth. Biography-science. Hyperion Books, 1999.

Jingcao Hu and Radu Marculescu. Exploiting the routing flexibility for energy/performance aware
mapping of regular noc architectures. In Proceedings of the Conference on Design, Automation

and Test in Europe - Volume 1, DATE ’03, pages 10688–, Washington, DC, USA, 2003. IEEE
Computer Society. ISBN 0-7695-1870-2. URL http://dl.acm.org/citation.cfm?

id=789083.1022804.

Damir Isović and Gerhard Fohler. Efficient Scheduling of Sporadic, Aperiodic, and Periodic Tasks
with Complex Constraints. In Proceedings of the 21st IEEE Conference on Real-time Systems

Symposium, RTSS’10, pages 207–216, Washington, DC, USA, 2000. IEEE Computer Soci-
ety. ISBN 0-7695-0900-2. URL http://dl.acm.org/citation.cfm?id=1890629.

1890656.

Manuel Jiménez, Rogelio Palomera, and Isidoro Couvertier. Introduction to Embedded Systems

: Using Microcontrollers and the MSP430. Springer-Verlag New York, 1 edition, 2014. doi:
10.1007/978-1-4614-3143-5.

Mathai Joseph. Real-time systems - specification, verification and analysis. 1996.

Ben Kao and Hector Garcia-Molina. Deadline assignment in a distributed soft real-time system.
Parallel and Distributed Systems, IEEE Transactions on, 8(12):1268–1274, 1997.

Richard M. Karp and Raymond E. Miller. Properties of a Model for Parallel Computations: De-
terminancy, Termination, Queueing. SIAM Journal on Applied Mathematics, 14(6):pp. 1390–
1411, 1966. ISSN 00361399. URL http://www.jstor.org/stable/2946247.

Kenya Tech News. Top Ten Smartphones In Kenya Quarter 3 - July To Septem-
ber 2015, Sep 2015. URL http://www.kachwanya.com/2015/10/06/

top-ten-smartphones-in-kenya-quarter-3-july-to-september-2015/.

http://dx.doi.org/10.1109/TPDS.2006.159
http://dx.doi.org/10.1109/TPDS.2006.159
http://doi.acm.org/10.1145/2463596.2463603
http://www.sciencedirect.com/science/article/pii/B9780750655460500025
http://www.sciencedirect.com/science/article/pii/B9780750655460500025
http://dl.acm.org/citation.cfm?id=789083.1022804
http://dl.acm.org/citation.cfm?id=789083.1022804
http://dl.acm.org/citation.cfm?id=1890629.1890656
http://dl.acm.org/citation.cfm?id=1890629.1890656
http://www.jstor.org/stable/2946247
http://www.kachwanya.com/2015/10/06/top-ten-smartphones-in-kenya-quarter-3-july-to-september-2015/
http://www.kachwanya.com/2015/10/06/top-ten-smartphones-in-kenya-quarter-3-july-to-september-2015/

REFERENCES 107

Minsoo Kim, Joonho Song, Dohyung Kim, and Shihwa Lee. H.264 decoder on embedded dual
core with dynamically load-balanced functional paritioning. In Image Processing (ICIP), 2010

17th IEEE International Conference on, pages 3749–3752, Sept 2010. doi: 10.1109/ICIP.2010.
5653439.

C. Mani Krishna. Real-Time Systems. McGraw-Hill Higher Education, 1st edition, 1996. ISBN
0070570434.

Edward Ashford Lee. Consistency in dataflow graphs. Parallel and Distributed Systems, IEEE

Transactions on, 2(2):223–235, Apr 1991. ISSN 1045-9219. doi: 10.1109/71.89067.

Edward Ashford Lee and David G. Messerschmitt. Synchronous data flow. Proceedings of the

IEEE, 75(9):1235–1245, Sept 1987a. ISSN 0018-9219. doi: 10.1109/PROC.1987.13876.

Edward Ashford Lee and David G. Messerschmitt. Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing. IEEE Trans. Comput., 36(1):24–35, January 1987b.
ISSN 0018-9340. doi: 10.1109/TC.1987.5009446. URL http://dx.doi.org/10.1109/

TC.1987.5009446.

John Lehoczky, Lui Sha, and Ye Ding. The rate monotonic scheduling algorithm: exact charac-
terization and average case behavior. In [1989] Proceedings. Real-Time Systems Symposium,
pages 166–171, Dec 1989. doi: 10.1109/REAL.1989.63567.

Hennadiy Leontyev and James H. Anderson. A Hierarchical Multiprocessor Bandwidth Reser-
vation Scheme with Timing Guarantees. In Real-Time Systems, 2008. ECRTS ’08. Euromicro

Conference on, pages 191–200, july 2008. doi: 10.1109/ECRTS.2008.22.

Joseph Y.-T. Leung and M. L. Merrill. A Note on Preemptive Scheduling of Periodic, Real-Time
Tasks. Information Processing Letters, 11:115–118, 1980.

Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of fixed-priority scheduling of
periodic, real-time tasks. Performance Evaluation, 2(4):237–250, 1982.

Min Li, Hui Wang, and Ping Li. Tasks mapping in multi-core based system: hybrid ACO GA
approach. In ASIC, 2003. Proceedings. 5th International Conference on, volume 1, pages 335–
340 Vol.1, Oct 2003. doi: 10.1109/ICASIC.2003.1277556.

Giuseppe Lipari and Enrico Bini. On the Problem of Allocating Multicore Resources to Real-
Time Task Pipelines. 4th Workshop on Compositional Theory and Technology for Real-Time

Embedded Systems (CRTS ’11), November 2011.

C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment. J. ACM, 20(1):46–61, January 1973.

Di Liu, Jelena Spasic, Jiali Teddy Zhai, Todor Stefanov, and Gang Chen. Resource optimization
for CSDF-modeled streaming applications with latency constraints. In Design, Automation

and Test in Europe Conference and Exhibition (DATE), 2014, pages 1–6, March 2014. doi:
10.7873/DATE.2014.201.

Jane W.S. Liu. Real-Time Systems. Prentice Hall, 2000. ISBN 9780130996510. URL https:

//books.google.pt/books?id=855QAAAAMAAJ.

http://dx.doi.org/10.1109/TC.1987.5009446
http://dx.doi.org/10.1109/TC.1987.5009446
https://books.google.pt/books?id=855QAAAAMAAJ
https://books.google.pt/books?id=855QAAAAMAAJ

108 REFERENCES

Jian Liu, Li-Rong Zheng, and Hannu Tenhunen. Interconnect Intellectual Property for Network-
on-chip (NoC). J. Syst. Archit., 50(2-3):65–79, February 2004. ISSN 1383-7621. doi: 10.1016/
j.sysarc.2003.07.003. URL http://dx.doi.org/10.1016/j.sysarc.2003.07.003.

Yi Liu, Xin Zhang, He Li, and Depei Qian. Allocating Tasks in Multi-core Processor based
Parallel System. In Network and Parallel Computing Workshops, 2007. NPC Workshops. IFIP

International Conference on, pages 748–753, Sept 2007. doi: 10.1109/NPC.2007.26.

Virginia Mary Lo. Heuristic algorithms for task assignment in distributed systems. IEEE Trans.

Comput., 37(11):1384–1397, November 1988. ISSN 0018-9340. doi: 10.1109/12.8704. URL
http://dx.doi.org/10.1109/12.8704.

José María López, José Luis Díaz, and Daniel F. García. Utilization Bounds for EDF Scheduling
on Real-Time Multiprocessor Systems. Real-Time Syst., 28(1):39–68, October 2004. ISSN
0922-6443. doi: 10.1023/B:TIME.0000033378.56741.14. URL http://dx.doi.org/10.

1023/B:TIME.0000033378.56741.14.

Angelo Kuti Lusala and Jean-Didier Legat. Combining sdm-based circuit switching with packet
switching in a NoC for real-time applications. In 2011 IEEE International Symposium of Cir-

cuits and Systems (ISCAS), pages 2505–2508, May 2011. doi: 10.1109/ISCAS.2011.5938113.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1996. ISBN 1558603484.

Perng-Yi Richard Ma, Edward Y. S. Lee, and Masahiro Tsuchiya. A task allocation model for
distributed computing systems. IEEE Trans. Comput., 31(1):41–47, January 1982. ISSN 0018-
9340. doi: 10.1109/TC.1982.1675884. URL http://dx.doi.org/10.1109/TC.1982.

1675884.

Paul Marchal, Diederik Verkest, Adelina Shickova, Francky Catthoor, Frédéric Robert, and An-
thony Leroy. Spatial division multiplexing: a novel approach for guaranteed throughput on
NoCs. In 2005 Third IEEE/ACM/IFIP International Conference on Hardware/Software Code-

sign and System Synthesis (CODES+ISSS’05), pages 81–86, Sept 2005. doi: 10.1145/1084834.
1084858.

Timothy G. Mattson, R.F. Van der Wijngaart, Michael Riepen, Thomas Lehnig, Paul Brett, Werner
Haas, Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Gregory Ruhl, and Saurabh
Dighe. The 48-core SCC Processor: the Programmer’s View. In High Performance Computing,

Networking, Storage and Analysis (SC), 2010 International Conference for, pages 1–11, nov.
2010. doi: 10.1109/SC.2010.53.

Mehdi Modarressi, Hamid Sarbazi-Azad, and Mohammad Arjomand. A hybrid packet-circuit
switched on-chip network based on SDM. In 2009 Design, Automation Test in Europe Confer-

ence Exhibition, pages 566–569, April 2009. doi: 10.1109/DATE.2009.5090728.

Orlando Moreira, Frederico Valente, and Marco Bekooij. Scheduling Multiple Independent Hard-
real-time Jobs on a Heterogeneous Multiprocessor. In Proceedings of the 7th ACM &Amp;

IEEE International Conference on Embedded Software, EMSOFT ’07, pages 57–66, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-825-1. doi: 10.1145/1289927.1289941. URL
http://doi.acm.org/10.1145/1289927.1289941.

http://dx.doi.org/10.1016/j.sysarc.2003.07.003
http://dx.doi.org/10.1109/12.8704
http://dx.doi.org/10.1023/B:TIME.0000033378.56741.14
http://dx.doi.org/10.1023/B:TIME.0000033378.56741.14
http://dx.doi.org/10.1109/TC.1982.1675884
http://dx.doi.org/10.1109/TC.1982.1675884
http://doi.acm.org/10.1145/1289927.1289941

REFERENCES 109

Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in direct net-
works. Computer, 26(2):62–76, February 1993. ISSN 0018-9162. doi: 10.1109/2.191995.
URL http://dx.doi.org/10.1109/2.191995.

Borislav Nikolić, Hazem Ismail Ali, Stefan Markus Petters, and Luís Miguel Pinho. Are vir-
tual channels the bottleneck of priority-aware wormhole-switched noc-based many-cores? In
Proceedings of the 21st International Conference on Real-Time Networks and Systems, RTNS
’13, pages 13–22, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2058-0. doi:
10.1145/2516821.2516845. URL http://doi.acm.org/10.1145/2516821.2516845.

Dong-Ik Oh and Theodore P. Baker. Utilization Bounds for N-Processor Rate MonotoneSchedul-
ing with Static Processor Assignment. Real-Time Syst., 15(2):183–192, September 1998.
ISSN 0922-6443. doi: 10.1023/A:1008098013753. URL https://doi.org/10.1023/A:

1008098013753.

Sung-Heun Oh and Seung-Min Yang. A Modified Least-Laxity-First Scheduling Algorithm for
Real-Time Tasks. In Proceedings of the 5th International Conference on Real-Time Computing

Systems and Applications, RTCSA ’98, pages 31–, Washington, DC, USA, 1998. IEEE Com-
puter Society. ISBN 0-8186-9209-X. URL http://dl.acm.org/citation.cfm?id=

600376.828687.

Victor Pankratius, Ali Jannesari, and Walter F. Tichy. Parallelizing Bzip2: A Case Study in Mul-
ticore Software Engineering. Software, IEEE, 26(6):70–77, Nov 2009. ISSN 0740-7459. doi:
10.1109/MS.2009.183.

Dar-Tzen Peng and Kang G. Shin. Static allocation of periodic tasks with precedence constraints
in distributed real-time systems. In Distributed Computing Systems, 1989., 9th International

Conference on, pages 190–198, jun 1989. doi: 10.1109/ICDCS.1989.37947.

Peter Poplavko, Twan Basten, Marco Bekooij, Jef van Meerbergen, and Bart Mesman. Task-level
Timing Models for Guaranteed Performance in Multiprocessor Networks-on-chip. In Proceed-

ings of the 2003 International Conference on Compilers, Architecture and Synthesis for Em-

bedded Systems, CASES ’03, pages 63–72, New York, NY, USA, 2003. ACM. ISBN 1-58113-
676-5. doi: 10.1145/951710.951721. URL http://doi.acm.org/10.1145/951710.

951721.

Mahendra PratapSingh and Manoj Kumar Jain. Evolution of Processor Architecture in Mobile
Phones. International Journal of Computer Applications, 90(4):34–39, March 2014. doi: 10.
5120/15564-4339.

Peter Puschner and Alan Burns. Guest Editorial: A Review of Worst-Case Execution-Time
Analysis. Real-Time Systems, 18(2):115–128, 2000. ISSN 1573-1383. doi: 10.1023/A:
1008119029962. URL http://dx.doi.org/10.1023/A:1008119029962.

Manar Qamhieh, Frédéric Fauberteau, Laurent George, and Serge Midonnet. Global EDF
Scheduling of Directed Acyclic Graphs on Multiprocessor Systems. In Proceedings of the

21st International Conference on Real-Time Networks and Systems, RTNS ’13, pages 287–296,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2058-0. doi: 10.1145/2516821.2516836.
URL http://doi.acm.org/10.1145/2516821.2516836.

Qualcomm. Qualcomm® Snapdragon™ 820 processor, July 2016. https://www.qualcomm.
com/products/snapdragon/processors/820.

http://dx.doi.org/10.1109/2.191995
http://doi.acm.org/10.1145/2516821.2516845
https://doi.org/10.1023/A:1008098013753
https://doi.org/10.1023/A:1008098013753
http://dl.acm.org/citation.cfm?id=600376.828687
http://dl.acm.org/citation.cfm?id=600376.828687
http://doi.acm.org/10.1145/951710.951721
http://doi.acm.org/10.1145/951710.951721
http://dx.doi.org/10.1023/A:1008119029962
http://doi.acm.org/10.1145/2516821.2516836
https://www.qualcomm.com/products/snapdragon/processors/820
https://www.qualcomm.com/products/snapdragon/processors/820

110 REFERENCES

Krithi Ramamritham. Allocation and scheduling of precedence-related periodic tasks. IEEE

Transactions on Parallel and Distributed Systems, 6(4):412–420, Apr 1995. ISSN 1045-9219.
doi: 10.1109/71.372795.

Ismael Ripoll, Alfons Crespo, and Aloysius K. Mok. Improvement in Feasibility Testing for
Real-time Tasks. Real-Time Syst., 11(1):19–39, July 1996. ISSN 0922-6443. doi: 10.1007/
BF00365519. URL http://dx.doi.org/10.1007/BF00365519.

Jorge E Rodrigues. A GRAPH MODEL FOR PARALLEL COMPUTATIONS. Technical report,
Cambridge, MA, USA, 1969.

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Multi-core real-time
scheduling for generalized parallel task models. pages 217–226, Nov 2011. ISSN 1052-8725.
doi: 10.1109/RTSS.2011.27.

Hrishikesh Salunkhe, Orlando Moreira, and Kees van Berkel. Mode-controlled dataflow based
modeling amp; analysis of a 4g-lte receiver. In 2014 Design, Automation Test in Europe Con-

ference Exhibition (DATE), pages 1–4, March 2014. doi: 10.7873/DATE.2014.225.

Daniel Sanchez, George Michelogiannakis, and Christos Kozyrakis. An Analysis of On-chip
Interconnection Networks for Large-scale Chip Multiprocessors. ACM Trans. Archit. Code

Optim., 7(1):4:1–4:28, May 2010. ISSN 1544-3566. doi: 10.1145/1756065.1736069. URL
http://doi.acm.org/10.1145/1756065.1736069.

Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep Dubey,
Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa, Ed Gro-
chowski, Toni Juan, and Pat Hanrahan. Larrabee: A many-core x86 architecture for visual
computing. ACM Trans. Graph., 27(3):18:1–18:15, August 2008. ISSN 0730-0301. doi:
10.1145/1360612.1360617. URL http://doi.acm.org/10.1145/1360612.1360617.

Zheng Shi and Alan Burns. Real-time communication analysis for on-chip networks with
wormhole switching. In Proceedings of the Second ACM/IEEE International Symposium on

Networks-on-Chip, NOCS ’08, pages 161–170, Washington, DC, USA, 2008. IEEE Com-
puter Society. ISBN 978-0-7695-3098-7. URL http://dl.acm.org/citation.cfm?

id=1397757.1397996.

Michael W. Shields. Karp and Miller Computation Graphs, pages 75–92. Springer London,
London, 1997. ISBN 978-1-4471-0933-4. doi: 10.1007/978-1-4471-0933-4_8. URL http:

//dx.doi.org/10.1007/978-1-4471-0933-4_8.

Firew Siyoum, Marc Geilen, Orlando Moreira, Rick Nas, and Henk Corporaal. Analyzing syn-
chronous dataflow scenarios for dynamic software-defined radio applications. In 2011 Inter-

national Symposium on System on Chip (SoC), pages 14–21, Oct 2011. doi: 10.1109/ISSOC.
2011.6089222.

Brinkley Sprunt. Aperiodic task scheduling for real-time systems. PhD thesis, Pittsburgh, PA,
USA, 1990. AAI9107570.

Marco Spuri. Analysis of Deadline Scheduled Real-Time Systems. Technical report, 1996.

Marco Spuri and John A. Stankovic. How to integrate precedence constraints and shared resources
in real-time scheduling. Computers, IEEE Transactions on, 43(12):1407–1412, dec 1994. ISSN
0018-9340. doi: 10.1109/12.338100.

http://dx.doi.org/10.1007/BF00365519
http://doi.acm.org/10.1145/1756065.1736069
http://doi.acm.org/10.1145/1360612.1360617
http://dl.acm.org/citation.cfm?id=1397757.1397996
http://dl.acm.org/citation.cfm?id=1397757.1397996
http://dx.doi.org/10.1007/978-1-4471-0933-4_8
http://dx.doi.org/10.1007/978-1-4471-0933-4_8

REFERENCES 111

Sundararajan Sriram and Shuvra Shikhar Bhattacharyya. Embedded Multiprocessors: Scheduling

and Synchronization. Marcel Dekker, Inc., 2000.

Sundararajan Sriram and Edward Ashford Lee. Determining the Order of Processor Transactions
in StaticallyScheduled Multiprocessors. J. VLSI Signal Process. Syst., 15(3):207–220, March
1997. ISSN 0922-5773. doi: 10.1023/A:1007956226232. URL http://dx.doi.org/10.

1023/A:1007956226232.

John A. Stankovic and Krithi Ramamritham, editors. Tutorial: hard real-time systems. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1989.

Sander Stuijk, Marc Geilen, and Twan Basten. SDF3: SDF For Free. In Application of Concur-

rency to System Design, 2006. ACSD 2006. Sixth International Conference on, pages 276–278,
june 2006. doi: 10.1109/ACSD.2006.23.

Sander Stuijk, Twan Basten, Marc Geilen, and Henk Corporaal. Multiprocessor Resource Allo-
cation for Throughput-Constrained Synchronous Dataflow Graphs. In 2007 44th ACM/IEEE

Design Automation Conference, pages 777–782, June 2007.

Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Technical Reference, 4th
edition, 2002. ISBN 0130661023.

TESLA. TESLA Motors, July 2016. https://www.tesla.com/.

Bart D. Theelen, Marc Geilen, Twan Basten, Jeroen P. M. Voeten, Stefan Valentin Gheorghita, and
Sander Stuijk. A scenario-aware data flow model for combined long-run average and worst-case
performance analysis. In Fourth ACM and IEEE International Conference on Formal Methods

and Models for Co-Design, 2006. MEMOCODE ’06. Proceedings., pages 185–194, July 2006.
doi: 10.1109/MEMCOD.2006.1695924.

András Vajda. Multi-core and Many-core Processor Architectures, pages 9–43. Springer US,
Boston, MA, 2011. ISBN 978-1-4419-9739-5. doi: 10.1007/978-1-4419-9739-5_2. URL
http://dx.doi.org/10.1007/978-1-4419-9739-5_2.

Jelte Peter Vink, Kees van Berkel, and Pieter van der Wolf. Performance analysis of soc archi-
tectures based on latency-rate servers. In 2008 Design, Automation and Test in Europe, pages
200–205, March 2008. doi: 10.1109/DATE.2008.4484686.

Yu Wang, Kai Zhou, Zhonghai Lu, and Huazhong Yang. Dynamic TDM virtual circuit implemen-
tation for NoC. In Circuits and Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference

on, pages 1533–1536, Nov 2008. doi: 10.1109/APCCAS.2008.4746325.

David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl Ramey,
Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant Agarwal. On-Chip Inter-
connection Architecture of the Tile Processor. IEEE Micro, 27(5):15–31, Sept 2007. ISSN
0272-1732. doi: 10.1109/MM.2007.4378780.

Maarten H. Wiggers, Marco Bekooij, and Gerard J. M. Smit. Efficient Computation of Buffer
Capacities for Cyclo-Static Dataflow Graphs. In 2007 44th ACM/IEEE Design Automation

Conference, pages 658–663, June 2007.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank

http://dx.doi.org/10.1023/A:1007956226232
http://dx.doi.org/10.1023/A:1007956226232
https://www.tesla.com/
http://dx.doi.org/10.1007/978-1-4419-9739-5_2

112 REFERENCES

Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The Worst-case
Execution-time Problem—Overview of Methods and Survey of Tools. ACM Trans. Embed.

Comput. Syst., 7(3):36:1–36:53, May 2008. ISSN 1539-9087. doi: 10.1145/1347375.1347389.
URL http://doi.acm.org/10.1145/1347375.1347389.

Fengxiang Zhang and Alan Burns. Schedulability Analysis for Real-Time Systems with EDF
Scheduling. IEEE Transactions on Computers, 58(9):1250–1258, Sept 2009a. ISSN 0018-
9340. doi: 10.1109/TC.2009.58.

Fengxiang Zhang and Alan Burns. Improvement to quick processor-demand analysis for edf-
scheduled real-time systems. In Real-Time Systems, 2009. ECRTS ’09. 21st Euromicro Confer-

ence on, pages 76–86, July 2009b. doi: 10.1109/ECRTS.2009.20.

Linlin Zhang, Virginie Fresse, Mohammed A. S. Khalid, Dominique Houzet, and Anne-Claire
Legrand. Evaluation and Design Space Exploration of a Time-Division Multiplexed NoC on
FPGA for Image Analysis Applications. CoRR, abs/1002.1881, 2010. URL http://arxiv.

org/abs/1002.1881.

Gouqing Zhou and Jun Wu. Unmanned Aerial Vehicle (UAV) data flow processing for natural
disaster response. ASPRS 2006, May 2006.

Haitao Zhu, Steve Goddard, and Matthew B. Dwyer. Response Time Analysis of Hierarchical
Scheduling: The Synchronized Deferrable Servers Approach. In Real-Time Systems Symposium

(RTSS), 2011 IEEE 32nd, pages 239–248, Nov 2011. doi: 10.1109/RTSS.2011.29.

http://doi.acm.org/10.1145/1347375.1347389
http://arxiv.org/abs/1002.1881
http://arxiv.org/abs/1002.1881

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	List of Abbreviations
	List of Symbols
	List of Symbols
	1 Introduction
	1.1 Real-time Computational Model
	1.1.1 Real-time Applications
	1.1.2 Worst-Case Execution Time

	1.2 Dataflow Computational Model
	1.2.1 Dataflow Applications
	1.2.2 Streaming Applications

	1.3 Processing Platform
	1.4 Problem Statement
	1.5 Solution Overview
	1.6 Thesis Contributions
	1.7 Thesis Organization

	2 State of the Art
	2.1 Dataflow Graph Analysis
	2.2 Timing Parameter Extraction
	2.3 Efficient Mapping

	3 Background
	3.1 Real-time Systems
	3.1.1 Multi-core Scheduling
	3.1.2 Feasibility Tests

	3.2 Dataflow Computational Model
	3.2.1 Synchronous Dataflow
	3.2.2 Homogenous Synchronous Dataflow
	3.2.3 Buffer Modelling in Dataflow Graphs

	3.3 Multi-/Many-Core Platforms
	3.4 System Model

	4 Reducing Complexity of Dataflow Graphs
	4.1 Definitions
	4.2 Safe Merge
	4.2.1 Definition and Function
	4.2.2 A Safe Merge is Deadlock-Free

	4.3 Slack-Based Merging Algorithm
	4.3.1 Merging Strategy
	4.3.2 Valid Merge
	4.3.3 The Algorithm
	4.3.4 Complexity Analysis
	4.3.5 Example

	4.4 Experiments
	4.5 Summary

	5 Timing Parameter Extraction
	5.1 Preliminaries
	5.2 Deadline Assignment Strategies for Pipelines
	5.2.1 The NORM Method
	5.2.2 The PURE Method

	5.3 Path Sensitivity
	5.4 Deriving Latency Constraints
	5.4.1 Deriving Constraints for Cyclic Paths
	5.4.2 Deriving End-to-End Latency Constraint

	5.5 Timing Parameters Extraction Algorithm
	5.5.1 First phase: Finding All Time-Constrained Paths
	5.5.2 Second phase: Extracting Timing Parameters
	5.5.3 Complexity Analysis
	5.5.4 Example

	5.6 Validation of the TPE algorithm
	5.7 Experiments
	5.7.1 Experimental Setup
	5.7.2 Experimental Results

	5.8 Summary

	6 Communication-Aware Mapping
	6.1 Modelling Communication Cost
	6.2 Core Selection Methodology
	6.3 Communication-Aware Mapping
	6.3.1 General Functionality
	6.3.2 Sensitive-Path-First Algorithm

	6.4 Limitations
	6.5 Complexity Analysis
	6.5.1 Communication-Aware Mapping
	6.5.2 Complete Approach

	6.6 Experiments
	6.6.1 General Experimental Setup
	6.6.2 Evaluation of the Communication Cost
	6.6.3 Evaluation of the Mapping Heuristic
	6.6.4 Evaluation of Slack-based Merging

	6.7 Summary

	7 Conclusion and Future Directions
	7.1 Conclusions
	7.1.1 Slack-Based Merging
	7.1.2 Timing Parameter Extraction
	7.1.3 Communication-Aware Mapping

	7.2 Future Work
	7.2.1 Timing Parameter Extraction (TPE)
	7.2.2 Communication-Aware Mapping

	References

