
1 / 19

Industrial Multimedia Over Factory-Floor
Networks

Eduardo Tovar 1, Francisco Vasques2, Filipe Pacheco1, Luís Ferreira1

1 IPP-HURRAY Research Group, Polytechnic Institute of Porto (ISEP-IPP), Portugal

{emt, ffp, llf}@dei.isep.ipp.pt
2 Department of Mechanical Engineering, University of Porto (FEUP), Portugal

vasques@fe.up.pt

Abstract

In this paper we describe a real-time industrial communication network able to support both control-

related and multimedia traffic. The industrial communication network is based on the PROFIBUS

standard, with multimedia capabilities being provided by an adequate integration of TCP/IP protocols into

the PROFIBUS stack. From the operational point of view the integration of TCP/IP into PROFIBUS is by

itself a challenge, since the master-slave nature of the PROFIBUS MAC makes complex the

implementation of the symmetry inherent to IP communications. From the timeliness point of view the

challenge is two folded. On one hand the multimedia traffic should not interfere with the timing

requirements of the "native" control-related PROFIBUS traffic (typically hard real-time). On the other

hand multimedia traffic requires certain levels of quality-of-service to be attained. In this paper we

provide a methodology that enables fulfilling the timing requirements for both types of traffic in these

real-time industrial LAN. Moreover, we describe suitable algorithms for the scheduling support of

concurrent multimedia streams.

1. Introduction

Communication networks aimed at the interconnection of sensors, actuators and controllers are

commonly known as fieldbus networks. In last decade, more and more standardised fieldbuses have been

accepted supporting the open system communication concept and thus having a vendor independent

communication. PROcess FIeld BUS (PROFIBUS) [1] is one of the most popular fieldbuses, which have

significantly evolved in recent years. In fact, PROFIBUS and its communication stack were originally

created as a communication support for the cell and field levels within automated factory environments.

Its great flexibility however was achieved at the cost of a reduced network responsiveness, which means

that PROFIBUS is not suited for high-speed real-time data exchanges. To overcome this problem, a new

upper layer protocol have been developed for PROFIBUS, called Decentralised Periphery (DP) [2]. Such

developments make PROFIBUS particularly suited for use as a control network in those applications

2 / 19

where a number of small-sized data variables have to be exchanged at a high rate. More recently, a new

Physical Layer has been defined to improve the network responsiveness, which is able to support

transmissions speeds up to 12 Mbit/sec.

Such recent developments are pulling PROFIBUS to support a new wide class of applications, such as

industrial multimedia applications. Examples of such applications for the industrial environment include

monitoring applications interfacing to microphones and cameras, remote access to maintenance data

including graphics and videos, etc. These kinds of applications are usually supported by the widely used

TCP/IP stack. Thus, the most effective way to integrate such applications within the PROFIBUS

communication stack is to integrate the TCP/IP stack into the PROFIBUS stack.

Such integration must be correctly specified, in order to provide the adequate Quality of Service to the

supported TCP/IP applications, while guaranteeing that the timing requirements of the control-related

traffic are always satisfied. A transparent solution for such integration is proposed in [6], based in an

adequate interface structured in three sub-layers: IP-Mapper; Admission Control and Scheduler (ACS)

and Dispatcher (Figure 1).

TCP/IP
Applications

PROFIBUS native
Applications

TCP/IP
Stack

FDL

PHY

IP-Mapper

Layer 7 protocols DP v1

empty

User

Layer 7

Layers 3-6

Layer 2

Layer 1

 (ACS)

Dispatcher

Figure 1 - Integration of the TCP/IP stack in a PROFIBUS network

The IP-Mapper sub-layer resides directly below the TCP/IP Protocol Stack. This layer is responsible for

the conversion of IP packets into/from PROFIBUS FDL frames. Therefore, it maps the TCP/IP services

into the PROFIBUS FDL services and performs the identification, fragmentation and re-assembly of the

IP packets to/from PROFIBUS FDL frames. The IP-Mapper layer is also responsible for the transparent

support of the peer-to-peer relationship inherent to the IP protocol, mapping it to the PROFIBUS FDL

master/slave paradigm [6].

The Admission Control and Scheduling (ACS) sub-layer resides directly under the IP-Mapper sub-layer.

The ACS sub-layer is responsible for the control/limitation of the network resources usage by the TCP/IP

applications. Moreover, this sub-layer must implement appropriate scheduling policies able to provide the

desired Quality of Service for the multimedia applications.

The Dispatcher sub-layer resides above the PROFIBUS FDL. Both PROFIBUS native traffic and IP

traffic (fragmented in PROFIBUS frames) pass through this sub-layer. The dispatcher is responsible for

maintaining proper timing constraints for the different types of traffic that are conveyed through the

3 / 19

network, thus providing the desired Quality of Service for multimedia applications, while guaranteeing

that the timing requirements of the control-related traffic are always satisfied.

The remainder of the paper is organised as follows: in Section 2 we briefly describe the PROFIBUS MAC

mechanisms, its timing behaviour and the proposed approach to jointly schedule IP-related traffic with

native PROFIBUS traffic. In Section 3 we describe how by proper pre-run-time schedulability analysis

the dispatcher sub-layer can be parameterised and implemented in order to provide the timing guarantees

for both the control-related and multimedia traffic. Finally, in Section 4, we propose and discuss

scheduling strategies for providing the QoS guarantees to concurrent IP traffic. Both on-line as well off-

line implementations of the algorithms are described. In Section 5 we draw some conclusions.

2. Timing Behaviour of the PROFIBUS Protocol

A brief explanation of the PROFIBUS MAC timing behaviour is required, before discussing the rationale

for the three sub-layers.

2.1. Timing Characteristics of the PROFIBUS MAC Protocol

The PROFIBUS medium access control (MAC) protocol is based on a token passing procedure

(simplified version of the timed token protocol [3]) used by masters to grant the bus access to each one of

them, and a master-slave procedure used by masters to communicate with slaves. One of the PROFIBUS

MAC main functions is the control of the token cycle time, which is now briefly explained.

PROFIBUS defines two categories of messages: high priority and low priority. These two categories of

messages use two independent outgoing queues. After receiving the token, the measurement of the token

rotation time begins. This measurement expires at the next token arrival and results in the real token

rotation time (TRR). A target token rotation time (TTR) must be defined in a PROFIBUS network. The

value of this parameter is common to all masters, and is used as follows. When a station receives the

token, the token holding time (TTH) timer is given the value corresponding to the difference, if positive,

between TTR and TRR. If at the arrival, the token is late, that is, the real token rotation time (TRR) was

greater than the target rotation time (TTR), the master station may execute, at most, one high priority

message cycle (a message cycle is composed by a request frame and the associate response frame).

Otherwise, the master station may execute high priority message cycles while TTH > 0. TTH is always

tested at the beginning of the message cycle execution. This means that once a message cycle is started it

is always completed, including any required retries, even if TTH expires during the execution. The low

priority message cycles are executed if there are no high priority messages pending, and while TTH > 0

(also evaluated at the start of the message cycle execution, thus leading to a possible TTH overrun).

2.2. Consequences of the Token Lateness

In PROFIBUS, if a station receives a late token (TRR greater than TTR), then only one high priority

message will be transmitted. As a consequence, low priority traffic may drastically affect the high priority

traffic capabilities. In fact, if the low priority traffic is unconstrained, when a station receives an early

token (TRR smaller than TTR) it may use all the available time (TTH = TTR–TRR) to process low priority

4 / 19

traffic, delaying the token rotation. In this case, the subsequent stations may be limited to only one high

priority message transmission when holding the token.

As the number of high priority messages that can be transferred at the token arrival is highly dependent

on the amount of traffic transferred by the previous stations, a station receiving the token may become

unpredictably confined to a single high priority message transfer.

Two reasons justify a late token arriving to a master [4]:

1. As once a message cycle is started, it is always completed, even if TTH has expired during its

execution, a late token may be transmitted to the following stations.

2. If a master receives a late token, it will still be able to send one high priority message. This may

further increase the token lateness in the following masters.

Therefore, the token timing behaviour must be carefully controlled. Otherwise, the low-priority traffic of

precedent stations may jeopardise the timing requirements associated to the high-priority traffic requested

at any station in the network.

In [5], two different approaches were proposed to guarantee the real-time behaviour of the high priority

traffic in the PROFIBUS protocol.

1. An unconstrained low priority traffic profile, where real-time traffic requirements are satisfied, even

when only one high priority message is transmitted per token visit, independently of the low priority

traffic load;

2. A constrained low priority traffic profile where, by controlling the number of high priority and low

priority message transfers, all pending real-time traffic is transmitted at each token visit.

The analysis presented in [5] demonstrates that the first profile is a suitable approach for more responsive

systems (tighter deadlines), whilst the second one allows for an increased non-real-time traffic

throughput. Within the context of this paper, the second approach is the preferred one, since it allows an

increased and predictable low priority traffic throughput. Therefore, in the next subsection we analyse the

main characteristics of this profile, indicating how it guarantees the correct timing behaviour of the real-

time traffic in the PROFIBUS protocol.

2.3. The Constrained Low Priority Traffic Profile

The correct behaviour of the constrained low priority traffic profile requires the fulfilment of the

following assumption: at each token arrival, the master is able to execute all pending real-time message

requests. Therefore, by the thorough analysis of the high priority and low priority traffic requirements,

one must define the minimum value for the TTR parameter, which ensures that an arriving token will

always have time to process all the pending real-time message requests.

Complementarily, mechanisms must be implemented at each station to control the number of high priority

and low priority message transfers at each token visit, preventing the overuse of the token.

5 / 19

2.4. Message Model

Prior to the analysis of how to set the TTR parameter, lets consider the following message model. Consider

a PROFIBUS network with n masters, with addresses ranging from 1 to n. Slaves will have network

addresses higher than n. Consider a message stream to be a temporal sequence of message cycles

concerning, for instance, the remote reading of a specific process variable.

Assume that Shi
k and Sli

k defines a real-time message stream i in master k (k = 1, …n) of, respectively,

high or low priority. These message streams are characterised by their timing requirements, that is:

- Chi
k and Cli

k are the longest message cycle duration associated to requests produced by, respectively,

streams Shi
k or streams Sli

k.

- Thi
k and Tli

k are the periodicity of, respectively, streams Shi
k and streams Sli

k requests, that is, the

minimum inter-arrival time between two consecutive Shi
k (Sli

k) requests at the outgoing queue.

- nhk and nlk are, respectively, the number of messages streams Shi
k and Sli

k associated with master k .

- We assume that the deadline of a message stream is equal to its period, that is, if in the outgoing

queue there are two high priority message requests from the same message stream, this means that the

deadline of the first request was missed.

Concerning the non real-time traffic, we consider that it is characterised just by the length of its messages:

CLP, since it is not possible to define a minimum inter-arrival time between two consecutive requests.

From the deadline assumption, it results that the maximum number of real-time pending requests in the

outgoing queue will be (nhk+nlk).

2.5. Setting TTR for the Constrained Low Priority Traffic Profile

2.5.1. Deadline Constraint

In order to respect the message timing requirements, it must be guaranteed that a requested real-time

message cycle may be processed before its deadline. We consider that this requirement must be respected

for all the real-time traffic but not for the case of non real-time traffic. As a message cycle cannot be

processed while the master does not receive the token, a deadline constraint can be defined as follows:

MAX
k
j

k
i

nlj
nhi
nk

TcycleTlTh

k

k

≥



















=
=
=

,min

..1
..1
..1

(1)

where TcycleMAX stands for the maximum elapsed time between two consecutive token arrivals to station

k , that is, the maximum TRR
k. Furthermore, as each station must be able to transmit all the pending high

priority traffic plus an agreed amount of low priority traffic, an upper bound for Tcycle can be defined as

follows:

τ++= ∑∑
==

n

k

k
n

k

k HlHhTcycle
11

(2)

6 / 19

where ∑ =
=

knh

i
k
i

k ChHh
1

 corresponds to the time to process the maximum number of high-priority

requests pending at station k and Hlk corresponds to the maximum amount of time, at each token arrival,

to schedule low-priority traffic. The logical ring latency (token walk time, including node latency delay,

media propagation delay, etc.) is represented by τ.

The deadline constraint can then be rewritten as:

{ } τ++≥ ∑∑
==

n

k

k
n

k

kk
j

k
i

kji
HlHhTlTh

11
,,

,min (3)

which ensures that even the most urgent request will be timely transferred.

2.5.2. Protocol Constraint

On the other hand, TTR must be set in order to guarantee that, at the token arrival, there will be always

enough time to execute all the pending high-priority requests and the agreed amount of low-priority

requests. This means that, at the token arrival, TTH = TTR-TRR must be enough to transfer all these requests.

As a consequence, TTR must be set as follows:

{ }k
TH

nk
MAXTR TTcycleT

..1
max

=
+≥ (4)

where kkk
TH HlHhT += represents the maximum amount of real-time traffic that may need to be

transferred at the token arrival.

Therefore, a lower bound for TTR is given by:

{ }k
TH

nk

n

k

k
n

k

k
TR THlHhT

..1
11

max
=

==

+++≥ ∑∑ τ (5)

Equations (3) and (5) are then the basis for setting the TTR parameter for the constrained low priority

profile. Finally, a scenario for this traffic profile is illustrated in Figure 2.

Hh1

Minimum TTR

Station 1

Station 2

Station 3

Maximum Cycle Time

Hl 1

Hh 2 Hl2

Hh3 Hl3

Token Arrival Token departure

Hh1 Hl 1

Figure 2 - Constrained Low Priority Traffic Profile

7 / 19

3. Dispatcher Sub-Layer

The jointly schedule of IP-related traffic with DP traffic, guaranteeing the imposed timing requirements

(real-time requirements, Quality of Service) can be implemented imposing a constrained low priority

traffic profile to the PROFIBUS FDL. One of the main responsibilities of the Dispatcher layer is to

impose such constrained low priority traffic profile, considering that the processed traffic will be

scheduled respecting both the deadline and the protocol constraints.

3.1. Mapping IP / DP Traffic into PROFIBUS FDL Traffic

The Dispatcher sub-layer will consider three traffic classes, which will be supported by five different

FIFO queues according to the traffic source (Figure 3):

1. The Guaranteed High-Priority traffic, which is PROFIBUS high priority traffic that will be always

scheduled on time (provided that both the protocol and deadline constraints are satisfied). This class

of traffic is intended to support the DP high priority traffic with timing requirements (DPH).

2. The Guaranteed Low-Priority traffic, which is PROFIBUS low priority traffic that will be scheduled

on time after the guaranteed high priority traffic (provided that both the protocol and deadline

constraints are satisfied). This class of traffic is intended to support the following two sub-classes:

a) DP low priority traffic with timing requirements (DPL);

b) IP traffic with QoS requirements (IPH).

3. The Best-Effort Low-Priority traffic, which is PROFIBUS low priority traffic that will be scheduled

after the guaranteed traffic, without any guarantees of timely delivery. This class of traffic is intended

to support the following two sub-classes:

a) IP traffic without QoS requirements (IP-BE);

b) non real-time DP low priority traffic (DP-BE).

High priority
PROFIBUS traffic

DP high priority traffic
(DPH)

DP low priority traffic
with timing requirements

(DPL)

IP traffic with QoS
requirements

(IPH)

DP low priority traffic
w/o timing requirements

(DP-BE)

IP traffic w/o QoS
requirements

(IP-BE)

Low priority
PROFIBUS traffic

Guaranteed (or real-time)
traffic

Best-Effort (or non real-time)
traffic

Figure 3 - Mapping the Generated Traffic on the PROFIBUS FDL Traffic

As a consequence, guaranteed traffic (real-time) is to be supported by both the high and low priority

PROFIBUS traffic classes, while best-effort traffic (non real-time) is to be supported just by the low

priority traffic.

8 / 19

3.2. Dispatcher Parameters and Master Allocation Time

In a typical PROFIBUS system implementation, a specific number of high priority DP message

transactions (DPH) have to be periodically supported. Essentially these transactions will be control data

exchange with slave devices. Depending on the type of message transactions, the bound for message

transaction duration will be different depending on the location, required inserted idle times, etc. The sum

of these durations added to a time span that considers a probabilistically obtained number of retries leads

to a master parameter: the allocation to DPH traffic in a master k (Tk
DPH).

It is also important to note that DPH traffic requires to be performed with a minimum time span. As the

masters share a timed token to access the transmission medium, the maximum time span between

consecutive token arrivals must be bounded. This can be achieved in a PROFIBUS implementation by

limiting the actual token holding time in each master in a way that the token will normally not arrive late

to the masters. The system wide TTR parameter must be set to a minimum value and the allocations for the

other types of traffic (apart from DPH) must be made accordingly to achieve that. These will be also

obtained during system planning.

TDCY (token cycle time) must be choose during the system planning according the timing requirements of

the most stringent (minimum interval between consecutive transactions) DPH traffic. Assume for the

example of Figure 4 that TDCY is 20ms. This is imposed by the application timing requirements and means

that all DPH traffic considered in the allocation for each master can be served at a rate which will be in

the minimum each 20ms. Of course, when DPH transactions are not performed in one TDCY, the overall

master allocation can be re-used for other types of traffic, namely best-effort traffic.

Master 2

Master 1

Cycle Time (TDCY)

T2
DPL

Allocation for other
(rather than DPH and
DPL) traffic in master 1

Allocation for other
(rather than DPH and
DPL) traffic in master 2

T 1
DPL

T 1
DPH

Token Arrival Token Passing

T 2
DPH

Overall allocation
for master 2

Figure 4 - DP Traffic Allocation Example

In Figure 4, the aggregate allocations concerning the other type of traffic (token passing included) could

be up to 12ms (considering 4ms for DPH traffic in each master). The way they are distributed among

masters is also a system planning issue. For the second class of control-related DP traffic: DPL traffic, it

must be given a fair throughput. But this traffic is not as time stringent as the DPH traffic. It might be

reasonable (depending on the actual application) to consider an allocation of one message transaction to

each master. This would mean that at least each TDCY a DPL message could be served. Again, if in some

9 / 19

there is no DPL traffic for the allocated time, this time will be reused, if needed to process best-effort

traffic.

In the proposed PROFIBUS system implementation, multimedia traffic will also be supported. This

traffic will convey IP fragments. While some multimedia traffic will not require stringent timing

characteristics (IP best effort traffic - IPBE) some other multimedia traffic have, namely bandwidth and

Jitter requirements (IPH traffic). The allocation reasoning for this type of traffic will be discussed in the

next section. But assume that in both masters this allocation is 2ms, meaning that both T1
IPH and T2

IPH will

have the value of 1ms. This means that for the value chosen for TDCY (imposed essentially by the required

rate for DPH transactions), an amount of 15ms (out of 20ms) is allocated for DPH, DPL and IPH traffic

related to both masters.

Master 2

Master 1

Cycle Time (TDCY)

T2
IPH

Possible Allocation for
BE traffic (both DP and
IP) in master 1

Possible Allocation for
BE traffic (both DP and
IP) in master 2

T1
IPH

Figure 5 - IP Traffic Allocation Example

Tk
MA denotes the master allocation time for processing DPH, DPL, IPH and BE (both IP-BE and DP-BE)

traffic in a master k . However, the sums of the Tk
MA for all masters can not be equal to TDCY. The reason is

that there is some management traffic and the token passing itself, that is generated at the FDL level. This

traffic must be taken into account during the system planning.

Tk
MA, Tk

DPH, Tk
DPL and Tk

IPH are then relevant parameters for the master k Dispatcher. TDCY is also a

relevant parameter and will have the same value in all masters. Best effort traffic will be served at the

Dispatcher according to the actual amount of the other traffic that is served in each time the Dispatcher

runs (which will be at least with a rate equal to TDCY).

3.3. Dispatcher Algorithm

According to the message model, a pre-defined set of dispatching rules imposes that, at each master

station, the Dispatcher will cyclically transfer to the FDL layer:

a) a maximum requested DPH messages (TDPH)

b) a maximum configured requested time of DPL messages (TDPL)

c) a maximum configured requested time of IPH messages (TIPH)

d) a variable number of DP best effort an IP-BE messages

10 / 19

Such dispatching strategy will induce predictable traffic scenarios, where the token holding time (TTH) is

never overran (provided that TTR is set according to the rules of the constrained low priority traffic

profile).

The Dispatcher has 5 FIFO queues, one for each of the traffic classes. Each queue must hold the traffic

needed for one dispatcher cycle. The Dispatcher is to be implemented on a cyclic base, and then the

dispatching algorithm is trigged every TDCY. At each dispatcher cycle the Dispatcher will serve its queues

and transfer traffic to the FDL queues. When the dispatcher algorithm is triggered, it will start processing

DPH. After processing DPH traffic, the dispatcher will serve DPL traffic until: the TDPL is consumed or

there is no more available time for the current dispatcher cycle. After processing DPL traffic, the

dispatcher will serve IPH traffic until: the TIPH is consumed or there is no more available time for the

current dispatcher cycle. Finally, after processing the IPH traffic, the dispatcher will serve Best Effort

traffic: one message from DP-BE queue if it fits the remaining time of the dispatcher cycle; one message

from IP-BE queue if it fits the remaining time of the dispatcher cycle; this will be repeated until the

queues are empty or no traffic from the queues will fit the remaining time of the dispatcher cycle.

3.4. Synchronisation Issues

Ideally, the dispatching activities would be synchronised with the token arrivals at the FDL layer,

maximising the available throughput, since at each token arrival there would be, at most, the agreed

number messages to be transferred. However, such synchronisation is not easy, since it would imply

modifications of the PROFIBUS FDL. Then, in order to guarantee that the assumptions of the constrained

low priority traffic profile are always satisfied, it is considered that the token arrives at the station at the

same rate that the Dispatcher is executed, that is every TDCY.

As a consequence, the traffic throughput cannot be maximised, since there will be some token arrivals

where there is no traffic to be transferred at the FDL layer. For example, if TDCY=20ms and

Tcycleaverage=15ms, the traffic at station k would be processed as presented in Figure 6.

20 ms

Dispatched traffic (station k)

15 ms

Token arrivals at station k and the
related transfer of messages

15 ms 15 ms12 ms

Figure 6 - Absence of Synchronisation between the Dispatcher and the FDL

4. Scheduling the IP Traffic

In each master, the available IPH slots must be used to convey the IP traffic with QoS requirements. The

ACS sub-layer is composed of several relationship entities (REs) and a scheduler. Essentially each RE

relates to a particular TCP/IP stream flow. Essentially, and apart from a number of functionalities related

11 / 19

to fragment discarding, etc. (see [6] for more details), each RE will include a queue, used to store the IP

fragments coming from the IP-mapper. Fragments pending in these queues are passed to the dispatcher

sub-layer by the scheduler.

As previously mentioned, the multimedia traffic can typically be of two types: traffic that does not require

stringent timing characteristics (denoted as IP Best Effort traffic – IPBE), and multimedia traffic

characterised by specific QoS characteristics, namely bandwidth and jitter (referred to as IPH). At the

ACS sub-layer, there will exist as many REs (for both IPH and IPBE traffic) as the TCP/IP stream flows.

Each RE will also have associated timing parameters that will be used by the scheduler.

4.1. Basics on the Scheduler

Assume that a particular master will have to support a maximum of 5 simultaneous IPH traffic flows, as

characterised by the following table:

Periodicity (TDCY) Message Cycle Duration (µs)
IPH1 1 100
IPH2 3 200
IPH3 3 200
IPH4 4 400
IPH5 4 1000

Table 1

Transactions will typically carry the same amount of multimedia data (IP packets are fragmented in

several PROFIBUS frames). The different durations for the message cycles can be justified because

transactions may take place between masters and slaves in interconnected by a variable number of

network repeaters, which of course will introduce different values of latencies, as it happens in hybrid

wired/wireless broadcast networks [7].

Typically, these IPH traffic flows will correspond to streamed data (Audio, Video). Streamed data

requires stable bandwidth and is also quite sensitive to jitter and delay. Take for example IPH1. In each

50 TDCY (50 × 20 = 1000ms), 50 IPH1 transactions should be served. If, for example, each transaction

corresponds to the transfer of 100 bytes (800 bits) of multimedia data, this provides for bandwidth. In this

case it will be 50 × 800 = 40000bps. However, it is different to serve these 40000 bits in the last few ms

of the second or distributing this load throughout the whole second. Minimising jitter demands following

this second approach.

The scheduler will run each TDCY. If at each time the scheduler runs, there are pending fragments in all RE

IPH queues, and for the table above, the scheduler could perform in the following way:

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 1 1 1 1 1 1 1 1 1 1 1 1
IPH2 1 1 1 1
IPH3 1 1 1 1
IPH4 1 1 1
IPH5 1 1 1

Load (µs) 1900 100 100 500 1500 100 500 100 1500 500 100 100

Table 2

12 / 19

This is a typical example of a multi-cycle schedule [8], where the macro-cycle corresponds to 12 (the

pattern repeats after 12 TDCY). The macro-cycle is obtained by lowest common multiple (LCM) of the

periodicities. The scheduler will schedule 1 fragment (if for example the periodicity of IPH1 was 0.5

TDCY, then a 2 would appear in each entry of the table for IPH1) for each of the IPH REs in the first

micro-cycle. Then in the second micro-cycle it will schedule 1 fragment concerning IPH1 and so forth.

For this particular schedule, the minimum value for TIPH (the allocation for the QoS IP traffic) would be

1900µs. This load may take place each 12 cycles if the 5 IP flows are active simultaneously.

As the scheduler will run each TDCY, the required bandwidth for the IP traffic is guaranteed, and the flow

control scheme (window size control) of the TCP is encompassed.

Because it is not relevant (for instance concerning jitter) to shift some fragments between micro-cycles

(they are fragments of IP packets which need to be reassembled in the receiving side) the schedule could

be optimised in order to minimise the value for TIPH. In fact several policies like best-fit or worst-fit could

be used in order to modify the schedule illustrated in Table 2.

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 2 1 1 2 1 1 2 1 1
IPH2 1 1 1 1
IPH3 1 1 1 1
IPH4 1 1 1
IPH5 1 1 1

Load (µs) 1000 1000 100 500 1000 600 500 100 1000 1000 100 100

Table 3

A schedule can be supplied to the scheduler through a table, which is defined during system planning

(off-line schedule). In this case the scheduler will only perform dispatching: for each micro-cycle, it will

execute the related schedule for that micro-cycle. Then it will increment the micro-cycle counter and

perform the next schedule (another entry in the table column) till the micro-cycle which finishes the

macro-cycle. The disadvantages are that off-line schedules (made available through a static table) may be

memory consuming. This is particular acute if the value for the macro-cycle (which only depends on the

periodicity of the IPH fragments) is very high. Therefore, we propose the use of an on-line scheduler,

which we describe in the next sub-section. This on-line scheduler minimises the required TIPH value,

while maintaining strict periodicity in each IPH stream flow. This on-line scheduler is based on the off-

line deferred-release algorithm proposed in [9] for building a Bus Arbitrator Table for WorldFIP

industrial networks.

4.2. The Proposed Scheduling Algorithms

For the example of Table 1, it is easy to see (from Table 2) that some of the lines of Table 2 could be

shifted in order to try to minimise the value TIPH for while maintaining the strict periodicities the frames

for each IPH flow are served. Table 4 illustrates this new schedule.

13 / 19

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 1 1 1 1 1 1 1 1 1 1 1 1
IPH2 1 1 1 1
IPH3 1 1 1 1
IPH4 1 1 1
IPH5 1 1 1

Load (µs) 700 1300 100 300 700 1100 300 300 500 1300 300 100

Table 4

With this schedule, the minimum value for TIPH will be 1300µs.

The following algorithm can be an algorithm performed during system planning for both obtaining the

schedule table (if off-line schedule is used) and the value concerning TIPH for a given RFieldbus master.

First, there is the need to obtain the value for the macro-cycle (which in any case will be a parameter

required by the scheduler).

function macro-cycle;
input: niph /* number of IPH flows (number of RelationshipEntities) */

tp[i] /* vector containing the periodicity of the fragments */
Tdcy /* value for TDCY, which is also the scheduler cycle */

output:Mcy /* number of cycles of the macro-cycle */

begin
1: max = 0;
2: for i = 1 to niph do
3: if tp[i] > max then
4: max = tp[i]
5: end if
6: end for;
7: N = max - 1;
8: ctrl = FALSE;
9: while ctrl = FALSE do
10: N = N + 1;
11: ctrl = TRUE;
12: for i = 1 to niph do
13: if N mod (tp[i]/Tdcy) <> 0 then
14: ctrl = FALSE
15: end if
16: end for
17: end while;
18: MCy = N;

return MCy;

An algorithm for obtaining a schedule like that as given by Table 4 for the traffic as given by Table 1 is

presented below. This algorithm determines also the value for TIPH. The output will be a table containing

the schedule (sched [,]), the value for TIPH and a vector for the shift (offset []). These two last parameters

are not relevant for a scheduler based on a off-line schedule (table).

function schedule;
input: niph /* number of IPH flows (number of RelationshipEntities)*/

tp[i] /* vector containing the periodicity of the fragments */
/* ORDERED by periodicities; i ranging from 1 to niph */

cp[i] /* vector containing the transaction duration of the fragments */
/* i ranging from 1 to niph */
/* (Target Message Cycle Time) */

Tdcy /* value for TDCY, which is also the scheduler cycle */
Mcy /* number of cycles in the macro-cycle */

outputs:
sched[i,cycle]/* i ranging from 1 to niph */

/* cycle ranging from 1 to Mcy */
offset[i] /* shift in the line pattern */

/* i ranging from 1 to niph */
tiph /* value for the parameter TIPH */

14 / 19

begin
1: /* obtains the shift */
2: for i = 1 to niph do
3: min_load = MAXINT;
4: for cycle = 1 to (tp[i] div Tdcy)
5: cycle1 = cycle;
6: max_load = 0;
7: repeat
8: if load[cycle1] > max_load then
9: max_load = load[cycle1];
10: end if;
11: cycle1 = cycle1 + (tp[i] div Tdcy)
12: until cycle1 > Mcy;
13: if max_load < min_load then
14: cycle_min = cycle;
15: min_load = max_load;
16: end if
17: end for
18: end for;
19: cycle = cycle_min;
20: offset[i] = cycle_min - 1;
21:
22: /* updates the load in each cycle and builds the schedule */
23: repeat
24: load[cycle] = load[cycle] + cp[i];
25: sched[i,cycle] = 1;
26: cycle = cycle + (tp[i] div Tdcy);
27: until cycle > Mcy;
28:
29: /* obtains the value for TIPH */
30: tiph = 0;
31: for i = 1 to Mcy do
32: if load[i] > tiph then
33: tiph = load[i];
34: end if
35: end for;

return sched, offset, tiph;

Providing the schedule table as a parameter to the scheduler (which in fact will be more like a dispatcher),

the scheduler algorithm will be as follows (note that the scheduler must run each TDCY):

function scheduler (based on a off-line schedule);
input: niph /* number of IPH flows */

/* (number of IPH RelationshipEntities) */
nipbe /* number of IPBE flows */

/* (number of IPBE RelationshipEntities) */
Mcy /* number of cycles in the macro-cycle */
sched[i,cycle] /* i ranging from 1 to niph */

/* cycle ranging from 1 to Mcy */

outputs:

begin
1:
2:
3: /* this runs only first time */
4: if start = TRUE then
5: cycle = 1;
6: start = FALSE
7: end if;
8:
9: cycle = cycle + 1;
10: if cycle > Mcy then
11: cycle = 1
12: end if;
13:
14: /* i identifying iph_Entities */
15: for i = 1 to niph do
16: if sched[i,cycle] > 0 then
17: /* sched_queue gets a pending request, if any, from the */
18: /* i Relationship Entity, and passes it to the FDL */
19:
20: sched_queue(i)
21: end if;

15 / 19

22: end for;
23:
24: /* Part for the IP-BE Traffic */
25:
26: repeat
27: flag = FALSE;
28: /* i identifying ipbe_entities */
29:
30: for i = 1 to nipbe do
31: /* in the following case sched_queue returns 0 */
32: /* if either there are no pending requests in the */
33: /* relationship entity queue or BE dispatcher queue */
34: /* does not accept */
35:
36: if sched_queue(i) <> 0 then
37: flag = TRUE
38: end if;
39: end for;
40: until flag = FALSE;

return;

For the on-line scheduler (the scheduler obtains the actual schedule for each cycle) performing the

scheduling as illustrated in Table 4, parameters such as tp[i] and offset [] are also required from system

planning (through System Management). The algorithm is as follows (note that the scheduler must run

each TDCY):

function scheduler (based on a on-line schedule);
input: niph /* number of IPH flows */

/* (number of IPH RelationshipEntities) */
nipbe /* number of IPBE flows */

/* (number of IPBE RelationshipEntities) */
Mcy /* number of cycles in the macro-cycle */
tp[i] /* vector containing the periodicity of the fragments */

/* ORDERED by periodicities; i ranging from 1 to niph */
offset[i] /* shift in the line pattern */

/* i ranging from 1 to niph */

outputs:

begin
1:
2: /* this runs only first time */
3: if start = TRUE then
4: cycle = 1;
5: for i = 1 to niph do
6: num_sch[i] = 0
7: end for;
8: start = FALSE
9: end if;
10:
11: cycle = cycle + 1;
12: if cycle > Mcy then
13: cycle = 1
14: for i = 1 to niph do
15: num_sch[i] = 0
16: end for;
17: end if;
18:
19: /* i identifying iph_Entities */
20: for i = 1 to niph do
21: hit = ((cycle - offset[i]) div tp[i]);
22: if ((cycle - offset[i]) mod tp[i]) <> 0 then
23: hit = hit + 1;
24: end if;
25: hit = hit - num_sch[i];
26: if hit > 0 then
27: /* sched_queue gets a pending request, if any, from the */
28: /* i Relationship Entity, and passes it to the FDL */
29:
30: sched_queue(i)
31:
32: num_sch[i] = num_sch[i] + 1;
33: end if;

16 / 19

34: end for;
35:
36: /* Part for the IP-BE Traffic */
37:
38: /* AS DESCRIBED IN THE OFF-LINE SCHEDULER */

return;

Fragmentation of IP packets (at the IP-mapper) and the timing behaviour of the IP applications will imply

a non-periodic behaviour of the arrival pattern of IP fragments to the RE queues. This will not be the only

reason why even with a IPH stream going on, when the scheduler executes get_queue(i), the queue in the

Relationship Entity i is empty.

Therefore, in some cycles the scheduled transaction will not actually take place. Table 5 illustrates this

situation:

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 0 0 1 1 1 1 1 1 1 1 1 1
IPH2 1 1 1 1
IPH3 1 1 1 1
IPH4 1 1 1
IPH5 0 1 1

Load (µs) 700
-100

1300
-1100

100 300 700 1100 300 300 500 1300 300 100

Table 5

"Compensation" for this can be achieved in the next macro-cycle (another resolution can be used), by

scheduling the "failed" transactions in next micro-cycles with available TIPH.

Therefore, if in the next macro-cycle all queues have fragments for the schedule of Table 4, and IPH1 and

IPH5 have additional fragments, then, the actual schedule in the next macro-cycle would be as given in

Table 6.

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
IPH1 3 1 1 1 1 1 1 1 1 1 1 1
IPH2 1 1 1 1
IPH3 1 1 1 1
IPH4 1 1 1
IPH5 1 1 1 1

Load (µs) 700
+200

1300 100
+1000

300 700 1100 300 300 500 1300 300 100

Table 6

Both the off-line and the on-line scheduler algorithms previously presented can be updated to incorporate

this feature. Below, we exemplify with the on-line scheduler version. This algorithm requires as

additional parameters, cp[i] and TIPH. Note that for each cycle the load actually used must be computed.

Note also, in the algorithm description, shaded parts corresponding to additions in order to perform the

"compensation".

function scheduler_with_compensation (based on a on-line schedule);
input: niph /* number of IPH flows */

/* (number of IPH RelationshipEntities) */
nipbe /* number of IPBE flows */

/* (number of IPBE RelationshipEntities) */
Mcy /* number of cycles in the macro-cycle */
tp[i] /* vector containing the periodicity of the fragments */

17 / 19

/* ORDERED by periodicities; i ranging from 1 to niph */
offset[i] /* shift in the line pattern */

/* i ranging from 1 to niph */
tiph /* value for the parameter TIPH */
cp[i] /* vector containing the transaction duration of the fragments */

/* i ranging from 1 to niph */
/* (Target Message Cycle Time) */

outputs:

begin
1:
2: /* this runs only first time */
3: if start = TRUE then
4: cycle = 1;
5:
6: for i = 1 to niph do
7: num_sch[i] = 0;
8: num_disp[i] = 0;
9: req[i] = Mcy div tp[i]; /* normal number in macro-cycle */
10: req_fail[i] = 0;
11: end for;
12: start = FALSE
13: end if;
14:
15: cycle = cycle + 1;
16: if cycle > Mcy then
17: cycle = 1
18: /* i identifying iph_Entities */
19: for i = 1 to npih do
20:
21: num_sch[i] = 0
22:
23: /* at each macro-cycle updates the number of failed */
24: /* transactions from the previous macro-cycle */
25:
26: req_fail[i] = req_fail[i] + (req[i] - num_disp[i]);
27:
28: /* limits the number of failed to support the */
29: /* when a stream is not active */
30:
31: if req_fail[i] > req[i] then
32: req_fail[i] = req[i]
33: end if
34: end for;
35:
36: /* i identifying iph_Entities */
37: for i = 1 to niph do
38: num_disp[i] = 0
39: end for;
40: end if;
41:
42: load_cycle = 0;
43:
44: /* i identifying iph_Entities */
45: for i = 1 to niph do
46: hit = ((cycle - offset[i]) div tp[i]);
47: if ((cycle - offset[i]) mod tp[i]) <> 0 then
48: hit = hit + 1;
49: end if;
50: hit = hit - num_sch[i];
51: if hit > 0 then
52: /* sched_queue gets a pending request, if any, from the */
53: /* i Relationship Entity, and passes it to the FDL */
54:
55: if sched_queue(i) <> 0 then
56: load_cycle = load_cycle + cp[i];
57: num_disp[i] = num_disp[i] + 1;
58: end if;
59:
60: num_sch[i] = num_sch[i] + 1;
61: end if;
62: end for;
63:
64: /* at this point, the actual load is calculated for the current cycle */
65: /* now do the required compensation in the remaining tiph */

18 / 19

66:
67: /* i identifying iph_Entities */
68: for i = 1 to npih do
69: if req_fail[i] <> 0 then
70: j = req_fail[i];
71: for k = 1 to j do
72: if (load_cycle + cp[i]) <= tiph then
73: if sched_queue(i) <> 0 then
74: load_cycle = load_cycle + cp[i];
75: req_fail[i] = req_fail[i] - 1;
76: end if;
77: end if;
78: end for;
79: end if;
80: end for;
81:
82: /* AS PREVIOUSLY DESCRIBED FOR THE IPBE TRAFFIC */

return;

5. Conclusions

In this paper, a real-time industrial communication network based on the PROFIBUS standard is

proposed. Such network supports both control-related and TCP/IP-related traffic, and is able to provide

the adequate Quality of Service to the supported TCP/IP applications, while guaranteeing that the timing

requirements of the control-related traffic are always satisfied. Several real-time issues were explored

within the proposed architecture. One of those issues was a pre-run-time strategy that enables performing

allocation in the master token holding time for different types of traffic. This pre-run-time analysis

permits to parameterise the proposed Dispatcher sub-layer. Additionally, scheduling algorithms are

proposed to provide the desired Quality of Service for multimedia applications

References

[1] EN 50170, "General Purpose Field Communication System", European Standard, CENELEC, 1996,

Vol. 2/3.

[2] DIN 19245, "PROFIBUS-DP - Process Field Bus Decentralised Periphery (DP) - Part 3", Draft

Standard DIN 19245, issue 1994.

[3] Grow, R.: “A Timed Token Protocol for Local Area Networks”, Proceedings of Electro’82, Token

Access Protocols, Paper 17/3, May 1982.

[4] Tovar, E. and Vasques, F.: “Cycle Time Properties of the PROFIBUS Timed-Token Protocol”.

Computer Communications 22 (1999), pp. 1206-1216, Elsevier.

[5] Tovar, E. and Vasques, F.: “Real-Time Fieldbus Communications Using Profibus Networks”. IEEE

Transactions on Industrial Electronics, vol. 46, nº 6, December 1999.

[6] Pacheco, F., Tovar, E., Kalogeras, A. and Pereira, N., “Supporting Internet Protocols in Master-

Slave Fieldbus Networks”, Technical Report, Polytechnic Institute of Porto, HURRAY-TR-0124,

April 2001.

[7] Alves, M., Tovar, E. and Vasques, F., “On the Adaptation of Broadcast Transactions in Token-

Passing Fieldbus Networks with Heterogeneous Transmission Media”, Technical Report,

Polytechnic Institute of Porto, HURRAY-TR-0121, April 2001.

19 / 19

[8] Raja, P. and Noubir, G., “Static and Dynamic Polling Mechanisms for Fieldbus Networks”. ACM

Operating Systems Review, Vol. 27, No. 3, pp. 34-45, 1993.

[9] Tovar, E. and Vasques, F., “Distributed Computing for the Factory-floor: a Real-Time Approach

Using WolrdFIP Networks”. Computers in Industry, Elsevier Science, Vol. 44, No. 1, pp. 11-30,

January 2001.

