

Improving the performance of a Publish-
Subscribe message broker

Demo

CISTER-TR-190403

Rafael Rocha

Cláudio Maia

Luis Lino Ferreira

Pedro Souto

Pal Varga

Demo CISTER-TR-190403 Improving the performance of a Publish-Subscribe message ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

Improving the performance of a Publish-Subscribe message broker

Rafael Rocha, Cláudio Maia, Luis Lino Ferreira, Pedro Souto, Pal Varga

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

The Arrowhead Framework, a SOA-basedframework for IoT applications, provides the Event Handlersystem: a
publish/subscribe broker implemented withREST/HTTP(S). However, the existing implementation of theEvent
Handler suffers from message latency problems that arenot acceptable for industrial applications. Thus, this
paperdescribes the refactoring process of this system that enabled itto reach acceptable levels of latency.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Improving the performance of a Publish-Subscribe
message broker

Rafael Rocha, Cláudio Maia,
Luis Lino Ferreira

CISTER Research Center, ISEP
Polytechnic Institute of Porto

Porto, Portugal
{rtdrh, crr, llf}@isep.ipp.pt

Pedro Souto
Faculdade de Engenharia da

Universidade do Porto
Porto, Portugal
pfs@fe.up.pt

Pal Varga
Dept. of Telecomm. and Media

Informatics, Budapest University of
Technology and Economics

Budapest, Hungary
pvarga@tmit.bme.hu

Abstract—The Arrowhead Framework, a SOA-based
framework for IoT applications, provides the Event Handler
system: a publish/subscribe broker implemented with
REST/HTTP(S). However, the existing implementation of the
Event Handler suffers from message latency problems that are
not acceptable for industrial applications. Thus, this paper
describes the refactoring process of this system that enabled it
to reach acceptable levels of latency.

Keywords—Performance, Publish-Subscribe, HTTP, REST,
SOA, Java

I. INTRODUCTION
The Arrowhead Framework [1] aims at using a service-
oriented approach for IoT applications. It includes a set of
Core Services [1] (e.g. service discovery, orchestration and
authentication) that support the interaction between
Application Services, such as services capable of providing
sensor readings. One of the available Arrowhead systems, the
Event Handler, is used for sending periodic updates from a
producer service to several other consumer applications. In
this sense, the Event Handler serves as a REST/HTTP(S)
implementation of a publish-subscribe message broker, thus
the Event Handler does not process events, it only handles
their distribution from publishers to multiple subscribers. For
an Arrowhead service to continuously notify its subscribers on
time, the Event Handler’s performance is of extreme
importance. However, the existing implementation of the
Event Handler suffers from several end-to-end message
latency problems (leading up to a maximum of almost 5
seconds to deliver some messages), mostly due to the wasteful
creation of threads and HTTP connections, which also lead to
unnecessarily high CPU and memory usage, which
particularly affects resource-constrained host machines.
Therefore, a refactoring is necessary to address these
performance woes, in order to achieve an average end-to-end
latency of 50ms.

II. ANALYSING THE ORIGINAL VERSION OF EVENT HANDLER
Event Handler’s implementation in the official Arrowhead

repository [2] uses a combination of Grizzly (a framework
designed to take advantage of the Java Non-blocking I/O API)
for its HTTP server, and Jersey (a framework designed to
support JAX-RS APIs) for its RESTful API. Furthermore, no
thread pool configuration was found for the Grizzly HTTP
server module. Moreover, for the client applications that are
meant to use the Event Handler, i.e. the publishers and
subscribers, the Arrowhead Consortia provides client
skeletons to be extended with the developers’ own application
code [2]. These client skeletons use the same Jersey/Grizzly
setup and server configuration as the Arrowhead systems.

A. The testing environment
In order to evaluate the Event Handler’s performance, we

conducted a stress test on the system, with one Publisher
sending two thousand requests per second to the Event
Handler, which connects to just one Subscriber. Each request
weighs 71 bytes (measured with Wireshark), on a network
with 100 Mb/s LAN speed. To calculate the latency between
Publisher, Event Handler, and Subscriber, each time a system
sends or receives an HTTP request, it outputs a message
describing the action and the current timestamp. We deployed
the Event Handler on a Raspberry Pi 3 Model B+ and the
Subscriber on a Raspberry Pi 1 Model B+. Furthermore, in
order to ensure that end-to-end latency was correctly
calculated, the clock on all machines was synchronized using
a local NTP server, which provides accuracies generally in the
range of 0.1ms.

B. Performance
After sending two thousand events to the original Event

Handler, 41.9% of these events had an end-to-end latency
greater than 100ms, and 20.3% of these had a latency greater
than 1s, with an average of approximately 666.3ms. But the
maximum latency reaches 4.9s. Naturally, this type of
performance is not acceptable for industrial applications, and
thus, the official implementation of the Event Handler was
revised.

III. IMPROVING THE EVENT HANDLER
To improve the Event Handler’s performance, each

endpoint – the Publisher, the Event Handler, and the
Subscriber – had to be addressed. Thus, after a code analysis,
two major problems were detected. The first problem was that
none of the three components reused connections. This has a
major performance impact on system communications, since
establishing a connection from one system to another is rather
complex and consists of multiple packet exchanges between
two endpoints (connection handshaking), which can cause
major overhead, especially for small HTTP messages [3]. In
fact, a much higher data throughput is achievable if open
connections are re-used to execute multiple requests. This
problem required a different solution between the three
systems: 1) the Publisher had to use a connection pool so that
it could reuse its connections to the Event Handler; 2) the
Event Handler had to use Jersey’s own Server-Sent Events
mechanism to establish a persistent connection to each of its
Subscribers. The second problem consisted in the Event
Handler creating a new thread for every incoming request,
which would then greatly impact the machine’s available
RAM and response times. Thus, the Event Handler required a
thread pool to manage incoming requests in a less wasteful
manner.

A. Connection Pool in the Publisher
In order to re-use open connections between the Publisher

and the Event Handler, the best choice was to implement a
connection pool, via the Apache HTTP Client, on Jersey’s
transport layer. According to the Apache Software
Foundation [3], the client maintains a maximum limit of
connections on a per route basis (which can be configured),
so a request for a route for which the client already has a
persistent connection available in the pool will be handled by
renting a connection from the pool rather than creating a
brand-new connection. For the final test, only one connection
per route was set.

B. Server-Sent Events in the Event Handler and Subscriber
The Event Handler also did not re-use previously created

connections to its subscribers, consequently adding a large
overhead to the end-to-end latency of each published event.
Contrary to the previous problem’s solution though, in this
case, Jersey itself already offered a mechanism to handle a
one-way publish-subscribe model: Server-Sent Events (SSE).
According to the Jersey documentation [4], by using SSE,
when the Subscriber sends a request to the Event Handler, the
Event Handler holds a connection between itself and the
Subscriber until a new event is published. When an event is
published, the Event Handler sends the event to the
Subscriber, while keeping the connection open so that it can
be used for the next events. The Subscriber processes the
events sent from the Event Handler individually and
asynchronously without closing the connection. Therefore,
the Event Handler can reuse one connection per Subscriber.

C. Thread Pool in the Event Handler
By default, if the thread pool configuration of the Grizzly

HTTP server module is left untouched, Jersey generates a
new thread for each request. In other words, with every wave
of two thousand requests sent to the Event Handler, Jersey
will allocate around that same amount of server threads
simultaneously, only for them to be de-allocated soon
afterwards [5]. Naturally, this leads to a great amount of
overhead (thread creation and teardown, context switching
between thousands of threads) and a large consumption of
system memory (host OS must dedicate a memory block for
each thread stack; with default settings, just four threads
consume 1 Mb of memory [6]), which becomes largely
inefficient. Nonetheless, the solution for this is relatively
simple: configure a thread pool on the Grizzly HTTP server
module, which will reuse threads instead of destroying them.
The process to identify the optimal pool size was to start with
the same number of threads as the available number of CPU
cores and increase them until there is no discernible
improvement in throughput. Through this, the 50ms latency
goal was achieved on a thread pool of 64 threads.

IV. PERFORMANCE EVALUATION OF THE ENHANCED VERSION
After the major refactoring on the original Event Handler, the
“enhanced” version was put to the test on a similar testing
environment and workload as the original. However, instead
of just one Subscriber, it was decided to test the Event
Handler with seven different Subscribers, so as to ensure that
all changes would have a major effect on performance. After
repeating the same testing process, the test results were
exceedingly better than the previous version’s (see Fig. 1),

with an average of approximately 46.2ms of end-to-end
latency per request, and a maximum latency of approximately
114ms.

Fig. 1. End-to-end latency of the two versions of the Event Handler.

V. CONCLUSIONS AND FUTURE WORK
By changing how the original Event Handler and its

clients handled HTTP requests and thread creation, the
enhanced version of the Event Handler is now able to achieve
the initial goal of reaching an average end-to-end latency of
50ms. In fact, by considering the average latencies of both
versions, it is safe to say that the Event Handler had an overall
performance boost of over 93%. Nevertheless, the authors
theorize that the system’s performance might still be able to
improve even further than its current state by optimizing the
Event Handler’s thread pool size and the Publisher’s
connection pool.

ACKNOWLEDGMENTS
This work was partially supported by National Funds through

FCT/MEC (Portuguese Foundation for Science and Technology)
within the CISTER Research Unit (CEC/04234); also, by EU
ECSEL JU under the H2020 Framework Programme, JU grant nr.
737459 (Productive4.0 project) and by the Portuguese National
Innovation Agency (ANI) under the European Regional
Development Fund (FEDER), through the “Portugal 2020”
(PT2020) partnership, within the framework of the System of
Incentives to Research and Technological Development (SII&DT)
and the Operational Program for Competitiveness and
Internationalization (POCI), within project FLEXIGY, nº 34067
(AAC nº 03/SI/2017).

REFERENCES
[1] P. Varga, et al, “Making system of systems interoperable – The core

components of the arrowhead framework”, Journal of Network and
Computer Applications, Volume 81, 2017, Pages 85-95, ISSN 1084-
8045.

[2] "Arrowhead Consortia", GitHub, 2019. [Online]. Available:
https://github.com/arrowhead-f. [Accessed: 22- Mar- 2019].

[3] The Apache Software Foundation, "Chapter 2. Connection
management", Hc.apache.org, 2019. [Online]. Available:
https://bit.ly/2TQpBjK. [Accessed: 21- Mar- 2019].

[4] Project Jersey, "Chapter 14. Server-Sent Events (SSE) Support",
Docs.huihoo.com, 2019. [Online]. Available: https://bit.ly/2TpoQsK.
[Accessed: 21- Mar- 2019].

[5] N. Babcock, "Know Thy Threadpool: A Worked Example with
Dropwizard", Nbsoftsolutions.com, 2016. [Online]. Available:
https://bit.ly/2Js4Shm. [Accessed: 21- Mar- 2019].

[6] "Why using many threads in Java is bad",
Iwillgetthatjobatgoogle.tumblr.com, 2012. [Online]. Available:
https://bit.ly/2HCpHVE. [Accessed: 21- Mar- 2019].

