

Improving and modelling the performance of a
Publish-Subscribe message broker

Conference Paper

CISTER-TR-190708

2019/10/14

Rafael Rocha

Cláudio Maia

Luis Lino Ferreira

Conference Paper CISTER-TR-190708 Improving and modelling the performance of a ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

Improving and modelling the performance of a Publish-Subscribe message broker

Rafael Rocha, Cláudio Maia, Luis Lino Ferreira

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: rtdrh@isep.ipp.pt, clrrm@isep.ipp.pt, llf@isep.ipp.pt

https://www.cister-labs.pt

Abstract

The Event Handler 13 a publish-subscribe brokerimplemented over REST/HTTP(S) 13 is an auxiliary system ofthe
Arrowhead framework for Industrial IoT applications.However, during the course of this work we found that
theexisting implementation of the Event Handler suffers fromserious performance issues. This paper describes
thereengineering process that ultimately enabled it to reach muchmore acceptable levels of performance, by
using appropriatesoftware configurations and design patterns. Additionally, wealso illustrate how this enhanced
version of the Event Handlercan be modeled using Petri nets, to depict the performanceimpact of different thread
pool configurations and CPU coreavailability. Where the main objective of this model is to enablethe prediction of
the system performance to guarantee therequired quality of service.

Improving and modeling the performance of a
Publish-Subscribe message broker

Rafael Rocha, Cláudio Maia,
Luis Lino Ferreira

CISTER Research Center, ISEP Polytechnic Institute of Porto
Porto, Portugal

{rtdrh, crr, llf}@isep.ipp.pt

Pal Varga
Dept. of Telecomm. and Media Informatics, Budapest University

of Technology and Economics
Budapest, Hungary

pvarga@tmit.bme.hu

Abstract—The Event Handler – a publish-subscribe broker
implemented over REST/HTTP(S) – is an auxiliary system of
the Arrowhead framework for IoT applications. During this
work we found that the existing implementation of the Event
Handler suffers from serious performance issues. This paper
describes the reengineering effort that ultimately enabled it to
reach much more acceptable levels of performance, by using
appropriate software configurations and design patterns.
Additionally, we also illustrate how this enhanced version of the
Event Handler can be modeled using Petri nets, to depict the
performance impact of different thread pool configurations and
CPU core availability. The main objective of this modeling
process is to enable the estimation of the system’s performance
to guarantee the required quality of service.

Keywords—Performance, Publish-Subscribe, HTTP, REST,
SOA, Java, Petri Nets, Real-Time

I. INTRODUCTION
The Arrowhead Framework [1] aims at using a service-

oriented approach (SOA) for IoT applications, by providing a
set of services [1] that support the interaction between
applications, such as services capable of providing sensor
readings. One of the available Arrowhead systems, the Event
Handler (EH), is used to propagate updates from a producer
service to one or more consumer applications. In this sense,
the EH serves as a REST/HTTP(S) implementation of a
publish-subscribe message broker, handling the distribution of
messages (i.e. events) from publishers to subscribers (as is
portrayed on Fig. 1). For an Arrowhead publisher service to
continuously notify its subscribers within its performance
requirements, the EH’s performance is of extreme importance.
There are two important performance parameters to take into
account in a publish-subscribe setting: i) the end-to-end delay
for a message to go from a producer to a consumer; and ii) the
message throughput. i.e., the number of messages which can
be sent per time unit and processed by the EH. These two
performance parameters are evaluated in this work and then
modeled using Petri nets, in order to characterize and estimate
the EH’s performance on different hardware and network
scenarios.

However, the existing implementation of the EH suffers
from severe end-to-end message latency (leading up to a
maximum of 4.9 seconds to deliver a message), mostly due to
the wasteful creation of threads and HTTP connections, which
also lead to unnecessarily high CPU and memory usage,
particularly affecting resource-constrained host machines.
While each of these issues has its own documented solutions,
we were unable to find properly documented solutions for
Java-based message brokers. Therefore, this paper attempts to
provide a novel solution for this problem, by presenting the
engineering effort that was necessary to significantly improve
the EH’s end-to-end latency.

Fig. 1. A simplified representation of the Event Handler system where a
sensor monitoring application publishes data that is consumed by two
Arrowhead applications via Event Handler.

This paper starts with a brief description of the Arrowhead
Framework and its EH system, which highlights its
performance issues and how it can be solved. It then shows
how to model the EH using Petri Nets, finalizing with some
conclusions about the work.

II. THE EVENT HANDLER

A. The Arrowhead Framework
 The Arrowhead Framework is the result of a set of
European projects in which SOA principles have been applied
to IoT and industrial applications. As the main result of the
Arrowhead project, the framework continued its development
independently and is now being used in multiple industrial
installations and further developed in other projects. It aims at
enabling all systems to work in a common and unified
approach – leading towards high levels of interoperability.
The software framework includes a set of Core Services [1]
(service discovery, orchestration and authentication) that
support the interaction between Application Services.

 The Arrowhead Framework builds upon the local cloud
concept, where local automation tasks should be encapsulated
and protected from outside interference. Application services
are not able to communicate with services outside the local
cloud (intra-cloud orchestration), except with other
Arrowhead compliant local clouds (inter-cloud orchestration).
Each local cloud must contain, at least, the three mandatory
core systems: Service Registry, Authorization and
Orchestration. Thus, enabling the communication between
Arrowhead application services. These core systems are then
accompanied by automation supporting services that further
improve the core capabilities of a local cloud, from measuring
quality of service to enabling message propagation between
multiple systems. The Event Handler (EH) is one of these
supporting systems.

B. The Event Handler (original version)
The (Arrowhead's) EH uses a REST-based architecture

implemented on top of Grizzly [2] and Jersey [3]. Grizzly
comprises: i) a core framework that facilitates the
development of scalable event-driven applications using Java

Non-blocking I/O API, and ii) both client-side and server-side
HTTP services. Jersey is a framework that facilitates the
development of RESTful Web Services and its clients, by
providing an implementation of the standard JAX-RS API
(which is the standard specification for developing REST
services in Java) and some extensions. The standard use of
Jersey (which uses servlets as its underlying mechanism) will
lead to the creation of a new thread for each request and then
destroy the thread after its work is completed. Thus, RESTful
services using standard Jersey will slow down when there are
thousands of requests sent at the same time or at a very fast
pace (later explored in section II-C3). In order to solve this
problem, several implementations of web containers can
provide a thread pool, which reuses previously created threads
to execute current tasks and offers a solution to the problem of
thread creation overhead and resource consumption. This in
turn lowers the thread creation responsibility down a layer
below Jersey and to the web container [4]. Grizzly is a popular
implementation of these web containers.

However, the Grizzly HTTP server module in the EH does
not currently have a configured thread pool. Thus, it will most
likely not be able to efficiently handle multiple requests.
Moreover, for the client applications that are meant to use the
EH, i.e. the publishers and subscribers, the Arrowhead
Consortia provides client skeletons to be extended with the
developers’ own application code [5]. These client skeletons
use the same Jersey/Grizzly setup and server configuration as
the Arrowhead systems.

1) The testing environment

 In order to evaluate the EH’s performance, we conducted
a test on the system, with one Publisher sending 2000 events
(sequentially, with no delay) to the EH, which connects to one
Subscriber. Each request is 71 bytes long, on a 100 Mb/s
Switched Ethernet LAN. While there is an emergence of
wireless connectivity in industrial scenarios, it was important
for us to test the EH in a wired environment, so we would have
minor network latency. To measure the latency between
Publisher, EH, and Subscriber, each time one of these
components sends or receives an HTTP request, it outputs a
message describing the action and the current timestamp. We
deployed the EH and the Subscriber on Raspberry Pis. There
are two main reasons to use this platform: i) when testing
software in a resource-constrained platform, bottlenecks
become more obvious and easier to identify; ii) Raspberry Pi
hardware is heavily documented and its usage is widespread
for industrial and IoT applications. The testing environment is
displayed in Fig. 2, basically constituted by a publisher, a
subscriber and the EH, with all clocks synchronized using a
local NTP server, which provides accuracies in the range of
0.1 ms [6].

Fig. 2. Testing environment for the official Event Handler.

2) Performance evaluation

After sending 2000 events to the original EH, 41.9% of
these events had an end-to-end latency greater than 100 ms,
and 20.3% of these had a latency greater than 1 s, with an
average of approximately 666.3 ms. Moreover, the maximum
latency reaches the 4.9 s. This type of performance is a
symptom of a bottleneck in the system. Consequently, the
official implementation of the EH was revised.

C. Improving the Event Handler
A manual code review was performed on the Publisher,

the EH, and the Subscriber. Two major problems were
detected. The first problem was that none of the three
components reused connections. This has a major
performance impact on communications, since establishing a
connection from one system to another is rather complex and
consists of multiple packet exchanges between two endpoints
(connection handshaking), which can cause major overhead,
especially for small HTTP messages [7]. In fact, a much
higher data throughput is achievable if open connections are
re-used to execute multiple requests. This problem required a
different solution for the three systems: a) the Publisher had to
use a connection pool so that it could reuse its connections to
the EH (see section II-C1); b) the EH had to use Jersey’s own
Server-Sent Events mechanism to establish a persistent
connection to each of its Subscribers (see section II-C2). The
second problem consisted in the EH creating a new thread for
every incoming request, which would then greatly impact the
machine’s available RAM and response times. Thus, the EH
required a thread pool to manage incoming requests in a less
wasteful manner, as threads can be reused among different
requests (see section II-C3).

1) Reuse open connections between the Publisher and the
Event Handler

In order to reuse open connections between the Publisher

and the EH, the best choice was to implement a connection
pool on the Publisher, via the Apache HTTP Client on
Jersey’s transport layer. On an Apache HTTP Client [7], the
client maintains a maximum number of connections on a per
endpoint basis (which can be configured), so a request for an
endpoint for which the client already has a persistent
connection available in the pool will be handled by reusing a
connection from the pool rather than creating a brand-new
connection.

On our setup, only one connection per route was set in
order to maintain message order, since using multiple parallel
connections might lead to the processing of messages out of
order.

2) Establish a persistent connection between the Event
Handler and each Subscriber

The EH also did not reuse previously created connections

to its subscribers, consequently adding a large overhead on
each message end-to-end delay, due to the establishment of a
connection. Thus, to avoid creating a connection to each
subscriber on every request, we used Jersey's Server-Sent
Events (SSE) [8] mechanism in the new implementation of
the EH.

The SSE mechanism can be used to handle a one-way
publish-subscribe model. When the Subscriber sends a

request to the EH, the EH holds a connection between itself
and the Subscriber until a new event is published. When an
event is published, the EH sends the event to the Subscriber,
while keeping the connection open so that it can be reused for
the next events. The Subscriber processes the events sent
from the EH individually and asynchronously without closing
the connection. Therefore, the EH can reuse one connection
per Subscriber.

3) Reuse previously created threads in the Event Handler

As explained in section II-B, if the Grizzly HTTP server’s

threadpool is not configured, Grizzly follows Jersey’s model
of generating a new thread for each request, by default. In
other words, with every wave of two thousand requests sent
to the EH, Jersey will allocate 2000 server threads almost
simultaneously and closes them soon afterwards [9].
Naturally, this leads to a great amount of overhead (thread
creation and teardown and context switching between
thousands of threads) and a large consumption of system
memory (host OS must dedicate a memory block for each
thread stack; with default settings, just four threads consume
1 Mb of memory [10]), which becomes largely inefficient.

The solution for this is to configure a thread pool on the
Grizzly HTTP server module, which will reuse threads
instead of destroying them. The key question is, what should
be the optimal thread pool size for this scenario? While there
is no clear-cut answer for this, it is usually suggested that if
the HTTP request is CPU bound (as in this case), the amount
of threads should be (at maximum) equal to the number of
CPU cores in the host machine [11]. Otherwise, if the request
is more I/O bound then more threads can successfully run in
parallel. Therefore, the empirical process of identifying the
optimal pool size consisted in starting with the same number
of threads as the number of CPU cores and increasing them
until there was no discernible improvement in throughput.
Through this process, an interesting 10 ms average latency
was achieved with a thread pool of 64 threads.

III. PERFORMANCE EVALUATION
After the major refactoring on the original EH, the

enhanced version was put to the test on a similar environment
and workload as the original. By subsequently repeating the
same testing process, the test results were exceedingly better
than the previous version’s (see Fig. 3), with an average end-
to-end latency of approximately 8.95 ms and a maximum
latency of 32.00 ms. This high variation is mostly due to the
Java implementation and its garbage collection mechanisms.

After guaranteeing that the enhanced version was superior
to the original one in the same test scenario, the performance
of this new version was evaluated with two other test
scenarios: 1) instead of 2000 events, the Publisher shall send
9000 events, in order to detect potential bottlenecks; 2) the
same scenario as scenario 1, however, instead of using a
single Subscriber, six different Subscribers were used. Test
results showed a similar performance increase. For scenario
1, the average end-to-end latency was 8.98 ms, with a
maximum latency of 52.00 ms. As for scenario 2, the average
end-to-end latency was 10.68 ms, with a maximum latency of
45.67 ms, measured between all six subscribers. A histogram
with the end-to-end latency distribution for these two
scenarios is displayed in Fig. 4.

Fig. 3. End-to-end latency of the two versions of the Event Handler.

Fig. 4. End-to-end latency distribution of 9000 events for one subscriber
and six subscribers, with the enhanced Event Handler.

IV. MODELING THE EVENT HANDLER’S PERFORMANCE
In order to be able to estimate the performance of different

applications supported by the EH system, it is necessary to
take into account specific thread pool configurations, number
of CPU cores and communication latencies and model it.
Such a model was developed using Petri nets, which easily
allows modeling systems that deal with concurrent activities
[12, 13], such as communication networks, multiprocessor
systems, and manufacturing systems.

To develop this Petri net model, we adapted Lu &
Gokhale’s methodology [14] which has been previously used
to model the performance of a Web server with a thread pool
architecture. The resulting Petri net is displayed in Fig. 5. For
the stochastic analysis of the model, we decided to use Oris

Tool [15] since it was one of the only open source tools with
stochastic Petri nets analysis capabilities.

A. Explaining the Petri net model

Our model characterizes the EH’s execution in a quad-
core CPU (since real results have been obtained using a
Raspberry Pi 3 Model B). Regarding the model itself, the
Publisher place (the circle on the left) represents the
Publisher, and the publish transition (the black vertical wide
bar) represents the time it takes for a published event to be
transmitted and reach the EH. The Request_Queue place
holds unprocessed requests, while the
assign_request_to_thread transition represents the EH thread
pool limit – only assigning requests to a thread if the total
number of active threads (represented by the token sum in
Active_Threads, Executing_Thread_CoreX, and
Ready_to_Send places) has not exceeded the specified limit.
In the Petri net, this condition is executed through an enabling
function (i.e. a boolean expression) in the transition, hence
the letter “e” next to the assign_request_to_thread transition.
Once a request is assigned to a thread, the thread is executed
by one of the CPU cores. The Executing_Thread_CoreX
place (X should be replaced by the corresponding core)
represents the thread’s execution, while the executing_CoreX
transition represents the amount of time it takes to execute.
An inhibitor arc (which is used to mandate that the transition
must only fire when the place has no tokens) is used from
Executing_Thread_CoreX to the respective tX transition to
avoid the firing of transition tX when
Executing_Thread_CoreX already has a token, therefore
guaranteeing that only one request is being executed on a
specific CPU core. Once the executing_CoreX transition
finishes, it sends a token to Ready_to_Send, where the event
is ready to be sent to its subscribers.

Several real experiments have been performed in order to
fine tune the module with real data extracted from several test
runs from where we derive the values for each request type
(i.e., considering requests sent from Publisher to EH, requests
sent from EH to each Subscriber), and the CPU execution
time for each request, and determine their most appropriate
probability distribution function to be applied in the Petri net

model. We determined that the requests sent from the
Publisher to the EH had a Gamma distribution with shape (k)
= 13.235 and rate (λ) = 2.088. However, Oris only provides
transitions with an Erlang distribution which is a particular
case of the Gamma distribution, where k should be an integer
value. Similarly, the requests sent from the EH to its
Subscribers also had a Gamma distribution with k = 6.235
and λ = 2.683, where k was then rounded to 6, to likewise
satisfy the Erlang distribution requirements. Finally, the CPU
execution times in the EH (i.e. executing_CoreX) were
decided to be represented as transitions with a uniform
distribution, where the early finish time is 0 ms and the late
finish time is 1 ms.

B. Stochastic analysis of the Petri net model
Oris provides a tool for transient analysis which consists

in analyzing the probability of a process transitioning from
one place to the other at a specific instant in time. Thus, the
analysis creates a chart – in which the “time” variable is used
as the X-axis and the “possible arrival state” variable (in other
words, the place probability) is used as the Y-axis, where
each time instant represents a probability distribution, which
means that the sum of all values in each time instant must
equal 1. This chart is displayed in Fig. 6.

1) Interpreting the analysis results

First, the only places that are present in the chart are
Publisher, Ready_to_Send, Executing_Thread_CoreX and
Subscriber_#. The reason for this is because the other places
(aside from Request_Queue) only depend on immediate
transitions, thus the token will not spend any time in these
places, meaning that these do not have an impact in the
overall processing time. Although Request_Queue is linked
to an immediate transition (i.e. assign_request_to_thread),
this transition is restricted to the EH’s thread pool size, which
(as explained previously) is represented by the token sum in
the Active_Threads place, the Executing_Thread_CoreX
places, and the Ready_to_Send place. Since only one token is
sent in this particular analysis, Request_Queue will not be
storing any tokens, thus it will not be present in this chart.

Until time 2.1 ms, the probability of a token being in
Publisher is approximately 1, whereas the other places are

Fig. 5. Stochastic Petri net model of the Event Handler running on a quad-core CPU.

still 0, because the Publisher takes at least 2 ms to send an
event to the EH. Between time 2 and 13.6 ms, the probability
of the Publisher sending a message decreases nonlinearly to
0, while the exact opposite happens to the Subscriber, i.e., the
probability that Subscriber_# has received the token rises
nonlinearly to 1. In fact, at time 7.6 ms, the two curves cross
each other, which means that, beyond this point, there is a
higher probability of an event having reached the respective
Subscriber, than it still being published by the Publisher.
Furthermore, from 2.1 to 13.5 ms, the probability of the token
being in Executing_Thread_CoreX has an almost Gaussian
distribution, which means that once the message is sent from
the Publisher, it is processed by the EH for a maximum of 1
second. After this process, the message is then ready to be
sent. Indeed, from 2.5 to 17 ms, similar to
Executing_Thread_CoreX, the probability of the token being
in Ready_to_Send also has a Gaussian distribution, meaning
that once the EH is ready to send the published event, the
Publisher has already sent the message, and the Subscriber is
about to receive it – hence the probability decrease in
Publisher and the increase in Subscriber_# right after the
probability peak in Ready_to_Send.

According to the analysis’s time estimations, the
maximum time it takes to send an event (i.e. with a 99%
chance) from the Publisher to the EH (i.e., when the
probability for the Publisher place reaches approximately 0)
is around 13.6 ms, while the estimated latest time for a
Subscriber to receive an event (i.e., when the probability for
the Subscriber_# places reaches approximately 1) is around
17.1 ms. Nevertheless, there is a 99% chance that Subscribers
will receive the published event around 14.3 ms.
Furthermore, the probability for the Ready_To_Send place to
hold a token peaks (47%) at the 7.6 ms, which means that the
EH is ready to send the published event to its subscribers at
this instant, 47% of the times.

2) Comparing the model with the actual experiments

Overall, the values collected from the model match the

results obtained in the experiments of the enhanced EH. In
the Petri Net model, the probability distribution for
Subscriber_# to receive the published message is only higher
than Publisher, Executing_Thread_CoreX, and

Ready_to_Send after the 8.5 ms instant. One can see that this
value is matched with the experiment results for one
Subscriber reported in Fig. 4, where it is possible to see that
around 60% of the events were delivered with an 8 ms
latency. Whereas for the six Subscribers tests, where the
average end-to-end latency is approximately 10.68 ms, the
corresponding probability distribution is 80.4%.

C. Validating the Petri net model
In addition to the initial stochastic analysis with one

token, another stochastic analysis was performed with four
tokens to examine how the model scales with the processing
of multiple messages. In other words, each token is supposed
to represent a message. The same transient analysis matrix
was calculated, and the distribution of the estimated end-to-
end latencies for four messages is depicted in Fig. 7,
juxtaposed with the real test results from Fig. 4.
Unfortunately, due to some processing limitations of the Oris
tool, we were unable to assess the performance for more than
four tokens. Nevertheless, this stochastic analysis with four
tokens is able to capture the latency interval for most
messages, i.e. from 8 to 16 ms, which mostly goes in hand
with the event latency distributions of the test results.
However, the authors feel that these latency estimations must
still be further improved in order to fine tune the probability
for each latency and also to capture a wider range of latencies,
since the more extreme latencies (i.e. below 8 ms and above
17 ms) are not represented. In terms of improving these
estimations, this could be done by: i) changing the probability
distributions and the parameters chosen for each transition; or
ii) changing the Petri net model itself.

V. CONCLUSIONS AND FUTURE WORK
By changing how the original EH and its clients handled

HTTP requests and thread creation, the enhanced version of
the EH is now able to achieve much higher levels of
performance, evolving from an average latency of 666.3 ms
to 8.95 ms. In fact, considering the average latency of both
versions for the same test scenario, the EH had an overall
performance boost of over 98%. Nonetheless, the system’s
performance might still be able to improve even further than
its current state by optimizing the EH’s thread pool size and
the Publisher’s connection pool. However, the gains would

Fig. 6. Transient analysis of the Petri net model with one token.

Fig. 7. Estimated end-to-end latency probability for four messages.

most likely be marginal. Moreover, we propose a Petri net
model for the EH in order to estimate the overall end-to-end
latency probability of each component (Publisher, EH, and
Subscribers). Results show that the model provides a good
estimation of results. However, it could still be further
improved, either by changing the probability distributions
and their parameters chosen for each transition or by editing
the Petri net model itself. Nevertheless, these questions are
expected to be the focus for future research work. The results
and the model produced by this work can now be used by the
Arrowhead QoS manager in order to be able to
calculate/estimate the delays of Arrowhead services in
different configurations.

ACKNOWLEDGMENTS
This work was partially supported by National Funds through
FCT/MEC (Portuguese Foundation for Science and
Technology) within the CISTER Research Unit
(CEC/04234); also, by EU ECSEL JU under the H2020
Framework Programme, JU grant nr. 737459 (Productive4.0
project) and by the Portuguese National Innovation Agency
(ANI) under the European Regional Development Fund
(FEDER), through the “Portugal 2020” (PT2020)
partnership, within the framework of the System of
Incentives to Research and Technological Development

(SII&DT) and the Operational Program for Competitiveness
and Internationalization (POCI), within project FLEXIGY, nº
34067 (AAC nº 03/SI/2017).

REFERENCES
[1] P. Varga, et al, Making system of systems interoperable – The core

components of the arrowhead framework, Journal of Network and
Computer Applications, Volume 81, 2017, Pages 85-95, ISSN 1084-
8045.

[2] Project Grizzly, Javaee.github.io, 2019. [Online]. Available:
https://javaee.github.io/grizzly/. [Accessed 22 Mar 2019].

[3] Jersey, Jersey.github.io, 2019. [Online]. Available:
https://jersey.github.io/. [Accessed 22 Mar 2019].

[4] Jersey @ManagedAsync and copying data between HTTP thread and
Worker thread, Stack Overflow, 2019. [Online]. Available:
https://stackoverflow.com/questions/31137134/jersey-managedasync-
and-copying-data-between-http-thread-and-worker-thread. [Accessed
21 Mar 2019].

[5] Arrowhead Consortia, GitHub, 2019. [Online]. Available:
https://github.com/arrowhead-f. [Accessed 22 Mar 2019].

[6] D. Mills, Network Time Synchronization Research Project,
Eecis.udel.edu, 2019. [Online]. Available:
https://www.eecis.udel.edu/~mills/ntp.html. [Accessed 21 Mar 2019].

[7] The Apache Software Foundation, Chapter 2. Connection
management, Hc.apache.org, 2019. [Online]. Available:
http://hc.apache.org/httpcomponents-client-
ga/tutorial/html/connmgmt.html. [Accessed 21 Mar 2019].

[8] Project Jersey, Chapter 14. Server-Sent Events (SSE) Support,
Docs.huihoo.com, 2019. [Online]. Available: . [Accessed 21 Mar
2019].

[9] N. Babcock, Know Thy Threadpool: A Worked Example with
Dropwizard, Nbsoftsolutions.com, 2016. [Online]. Available:
https://nbsoftsolutions.com/blog/know-thy-threadpool-a-worked-
example-with-dropwizard. [Accessed 21 Mar 2019].

[10] Why using many threads in Java is bad,
Iwillgetthatjobatgoogle.tumblr.com, 2012. [Online]. Available:
http://iwillgetthatjobatgoogle.tumblr.com/post/38381478148/why-
using-many-threads-in-java-is-bad. [Accessed 21 Mar 2019].

[11] Project Grizzly, "Project Grizzly - Best Practices", Javaee.github.io,
2018. [Online]. Available:
https://javaee.github.io/grizzly/bestpractices.html. [Accessed 21 Mar
2019].

[12] S. Kounev. Performance modeling and evaluation of distributed
component-based systems using queueing petri nets. IEEE
Transactions on Software Engineering, Volume 32, Issue7, pages 486–
502, 2006.

[13] W. M. Zuberek. Timed petri nets in modeling and analysis of
manufacturing systems. Emerging Technologies, Robotics and Control
Systems, Volume 1, 2007.

[14] J. Lu, S. Gokhale, Performance Analysis of a Web Server with
Dynamic Thread Pool Architecture, Proceedings of the 22nd
International Conference on Software Engineering & Knowledge
Engineering, 2010, Pages 99-105.

[15] M. Paolieri, et al, Oris Tool - Analysis of Timed and Stochastic Petri
Nets, Oris-tool.org, 2019. [Online]. Available: https://www.oris-
tool.org/. [Accessed 15 May 2019].

