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Abstract 

The Event Handler  13 a publish-subscribe brokerimplemented over REST/HTTP(S)  13 is an auxiliary system ofthe 
Arrowhead framework for Industrial IoT applications.However, during the course of this work we found that 
theexisting implementation of the Event Handler suffers fromserious performance issues. This paper describes 
thereengineering process that ultimately enabled it to reach muchmore acceptable levels of performance, by 
using appropriatesoftware configurations and design patterns. Additionally, wealso illustrate how this enhanced 
version of the Event Handlercan be modeled using Petri nets, to depict the performanceimpact of different thread 
pool configurations and CPU coreavailability. Where the main objective of this model is to enablethe prediction of 
the system performance to guarantee therequired quality of service. 
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Abstract—The Event Handler – a publish-subscribe broker 
implemented over REST/HTTP(S) – is an auxiliary system of 
the Arrowhead framework for IoT applications. During this 
work we found that the existing implementation of the Event 
Handler suffers from serious performance issues. This paper 
describes the reengineering effort that ultimately enabled it to 
reach much more acceptable levels of performance, by using 
appropriate software configurations and design patterns. 
Additionally, we also illustrate how this enhanced version of the 
Event Handler can be modeled using Petri nets, to depict the 
performance impact of different thread pool configurations and 
CPU core availability. The main objective of this modeling 
process is to enable the estimation of the system’s performance 
to guarantee the required quality of service. 

Keywords—Performance, Publish-Subscribe, HTTP, REST, 
SOA, Java, Petri Nets, Real-Time 

I. INTRODUCTION 
The Arrowhead Framework [1] aims at using a service-

oriented approach (SOA) for IoT applications, by providing a 
set of services [1] that support the interaction between 
applications, such as services capable of providing sensor 
readings. One of the available Arrowhead systems, the Event 
Handler (EH), is used to propagate updates from a producer 
service to one or more consumer applications. In this sense, 
the EH serves as a REST/HTTP(S) implementation of a 
publish-subscribe message broker, handling the distribution of 
messages (i.e. events) from publishers to subscribers (as is 
portrayed on Fig. 1). For an Arrowhead publisher service to 
continuously notify its subscribers within its performance 
requirements, the EH’s performance is of extreme importance. 
There are two important performance parameters to take into 
account in a publish-subscribe setting: i) the end-to-end delay 
for a message to go from a producer to a consumer; and ii) the 
message throughput. i.e., the number of messages which can 
be sent per time unit and processed by the EH. These two 
performance parameters are evaluated in this work and then 
modeled using Petri nets, in order to characterize and estimate 
the EH’s performance on different hardware and network 
scenarios. 

However, the existing implementation of the EH suffers 
from severe end-to-end message latency (leading up to a 
maximum of 4.9 seconds to deliver a message), mostly due to 
the wasteful creation of threads and HTTP connections, which 
also lead to unnecessarily high CPU and memory usage, 
particularly affecting resource-constrained host machines. 
While each of these issues has its own documented solutions, 
we were unable to find properly documented solutions for 
Java-based message brokers. Therefore, this paper attempts to 
provide a novel solution for this problem, by presenting the 
engineering effort that was necessary to significantly improve 
the EH’s end-to-end latency. 

 
Fig. 1. A simplified representation of the Event Handler system where a 
sensor monitoring application publishes data that is consumed by two 
Arrowhead applications via Event Handler. 

This paper starts with a brief description of the Arrowhead 
Framework and its EH system, which highlights its 
performance issues and how it can be solved. It then shows 
how to model the EH using Petri Nets, finalizing with some 
conclusions about the work. 

II. THE EVENT HANDLER 

A. The Arrowhead Framework 
 The Arrowhead Framework is the result of a set of 
European projects in which SOA principles have been applied 
to IoT and industrial applications. As the main result of the 
Arrowhead project, the framework continued its development 
independently and is now being used in multiple industrial 
installations and further developed in other projects. It aims at 
enabling all systems to work in a common and unified 
approach – leading towards high levels of interoperability. 
The software framework includes a set of Core Services [1] 
(service discovery, orchestration and authentication) that 
support the interaction between Application Services. 

 The Arrowhead Framework builds upon the local cloud 
concept, where local automation tasks should be encapsulated 
and protected from outside interference. Application services 
are not able to communicate with services outside the local 
cloud (intra-cloud orchestration), except with other 
Arrowhead compliant local clouds (inter-cloud orchestration). 
Each local cloud must contain, at least, the three mandatory 
core systems: Service Registry, Authorization and 
Orchestration. Thus, enabling the communication between 
Arrowhead application services. These core systems are then 
accompanied by automation supporting services that further 
improve the core capabilities of a local cloud, from measuring 
quality of service to enabling message propagation between 
multiple systems. The Event Handler (EH) is one of these 
supporting systems. 

B. The Event Handler (original version) 
The (Arrowhead's) EH uses a REST-based architecture 

implemented on top of Grizzly [2] and Jersey [3]. Grizzly 
comprises: i) a core framework that facilitates the 
development of scalable event-driven applications using Java 



Non-blocking I/O API, and ii) both client-side and server-side 
HTTP services. Jersey is a framework that facilitates the 
development of RESTful Web Services and its clients, by 
providing an implementation of the standard JAX-RS API 
(which is the standard specification for developing REST 
services in Java) and some extensions. The standard use of 
Jersey (which uses servlets as its underlying mechanism) will 
lead to the creation of a new thread for each request and then 
destroy the thread after its work is completed. Thus, RESTful 
services using standard Jersey will slow down when there are 
thousands of requests sent at the same time or at a very fast 
pace (later explored in section II-C3). In order to solve this 
problem, several implementations of web containers can 
provide a thread pool, which reuses previously created threads 
to execute current tasks and offers a solution to the problem of 
thread creation overhead and resource consumption. This in 
turn lowers the thread creation responsibility down a layer 
below Jersey and to the web container [4]. Grizzly is a popular 
implementation of these web containers. 

However, the Grizzly HTTP server module in the EH does 
not currently have a configured thread pool. Thus, it will most 
likely not be able to efficiently handle multiple requests. 
Moreover, for the client applications that are meant to use the 
EH, i.e. the publishers and subscribers, the Arrowhead 
Consortia provides client skeletons to be extended with the 
developers’ own application code [5]. These client skeletons 
use the same Jersey/Grizzly setup and server configuration as 
the Arrowhead systems. 

1) The testing environment 
 

  In order to evaluate the EH’s performance, we conducted 
a test on the system, with one Publisher sending 2000 events 
(sequentially, with no delay) to the EH, which connects to one 
Subscriber. Each request is 71 bytes long, on a 100 Mb/s 
Switched Ethernet LAN. While there is an emergence of 
wireless connectivity in industrial scenarios, it was important 
for us to test the EH in a wired environment, so we would have 
minor network latency. To measure the latency between 
Publisher, EH, and Subscriber, each time one of these 
components sends or receives an HTTP request, it outputs a 
message describing the action and the current timestamp. We 
deployed the EH and the Subscriber on Raspberry Pis. There 
are two main reasons to use this platform: i) when testing 
software in a resource-constrained platform, bottlenecks 
become more obvious and easier to identify; ii) Raspberry Pi 
hardware is heavily documented and its usage is widespread 
for industrial and IoT applications. The testing environment is 
displayed in Fig. 2, basically constituted by a publisher, a 
subscriber and the EH, with all clocks synchronized using a 
local NTP server, which provides accuracies in the range of 
0.1 ms [6]. 

 
Fig. 2. Testing environment for the official Event Handler. 

2) Performance evaluation 
 

After sending 2000 events to the original EH, 41.9% of 
these events had an end-to-end latency greater than 100 ms, 
and 20.3% of these had a latency greater than 1 s, with an 
average of approximately 666.3 ms. Moreover, the maximum 
latency reaches the 4.9 s. This type of performance is a 
symptom of a bottleneck in the system. Consequently, the 
official implementation of the EH was revised. 

C. Improving the Event Handler 
A manual code review was performed on the Publisher, 

the EH, and the Subscriber. Two major problems were 
detected. The first problem was that none of the three 
components reused connections. This has a major 
performance impact on communications, since establishing a 
connection from one system to another is rather complex and 
consists of multiple packet exchanges between two endpoints 
(connection handshaking), which can cause major overhead, 
especially for small HTTP messages [7]. In fact, a much 
higher data throughput is achievable if open connections are 
re-used to execute multiple requests. This problem required a 
different solution for the three systems: a) the Publisher had to 
use a connection pool so that it could reuse its connections to 
the EH (see section II-C1); b) the EH had to use Jersey’s own 
Server-Sent Events mechanism to establish a persistent 
connection to each of its Subscribers (see section II-C2). The 
second problem consisted in the EH creating a new thread for 
every incoming request, which would then greatly impact the 
machine’s available RAM and response times. Thus, the EH 
required a thread pool to manage incoming requests in a less 
wasteful manner, as threads can be reused among different 
requests (see section II-C3). 

1) Reuse open connections between the Publisher and the 
Event Handler 

 
In order to reuse open connections between the Publisher 

and the EH, the best choice was to implement a connection 
pool on the Publisher, via the Apache HTTP Client on 
Jersey’s transport layer. On an Apache HTTP Client [7], the 
client maintains a maximum number of connections on a per 
endpoint basis (which can be configured), so a request for an 
endpoint for which the client already has a persistent 
connection available in the pool will be handled by reusing a 
connection from the pool rather than creating a brand-new 
connection. 

On our setup, only one connection per route was set in 
order to maintain message order, since using multiple parallel 
connections might lead to the processing of messages out of 
order. 
 

2) Establish a persistent connection between the Event 
Handler and each Subscriber 

 
The EH also did not reuse previously created connections 

to its subscribers, consequently adding a large overhead on 
each message end-to-end delay, due to the establishment of a 
connection. Thus, to avoid creating a connection to each 
subscriber on every request, we used Jersey's Server-Sent 
Events (SSE) [8] mechanism in the new implementation of 
the EH. 

The SSE mechanism can be used to handle a one-way 
publish-subscribe model. When the Subscriber sends a 



request to the EH, the EH holds a connection between itself 
and the Subscriber until a new event is published. When an 
event is published, the EH sends the event to the Subscriber, 
while keeping the connection open so that it can be reused for 
the next events. The Subscriber processes the events sent 
from the EH individually and asynchronously without closing 
the connection. Therefore, the EH can reuse one connection 
per Subscriber. 

 
3) Reuse previously created threads in the Event Handler 

 
As explained in section II-B, if the Grizzly HTTP server’s 

threadpool is not configured, Grizzly follows Jersey’s model 
of generating a new thread for each request, by default. In 
other words, with every wave of two thousand requests sent 
to the EH, Jersey will allocate 2000 server threads almost 
simultaneously and closes them soon afterwards [9]. 
Naturally, this leads to a great amount of overhead (thread 
creation and teardown and context switching between 
thousands of threads) and a large consumption of system 
memory (host OS must dedicate a memory block for each 
thread stack; with default settings, just four threads consume 
1 Mb of memory [10]), which becomes largely inefficient. 

The solution for this is to configure a thread pool on the 
Grizzly HTTP server module, which will reuse threads 
instead of destroying them. The key question is, what should 
be the optimal thread pool size for this scenario? While there 
is no clear-cut answer for this, it is usually suggested that if 
the HTTP request is CPU bound (as in this case), the amount 
of threads should be (at maximum) equal to the number of 
CPU cores in the host machine [11]. Otherwise, if the request 
is more I/O bound then more threads can successfully run in 
parallel. Therefore, the empirical process of identifying the 
optimal pool size consisted in starting with the same number 
of threads as the number of CPU cores and increasing them 
until there was no discernible improvement in throughput. 
Through this process, an interesting 10 ms average latency 
was achieved with a thread pool of 64 threads. 

III. PERFORMANCE EVALUATION  
After the major refactoring on the original EH, the 

enhanced version was put to the test on a similar environment 
and workload as the original. By subsequently repeating the 
same testing process, the test results were exceedingly better 
than the previous version’s (see Fig. 3), with an average end-
to-end latency of approximately 8.95 ms and a maximum 
latency of 32.00 ms. This high variation is mostly due to the 
Java implementation and its garbage collection mechanisms. 

After guaranteeing that the enhanced version was superior 
to the original one in the same test scenario, the performance 
of this new version was evaluated with two other test 
scenarios: 1) instead of 2000 events, the Publisher shall send 
9000 events, in order to detect potential bottlenecks; 2) the 
same scenario as scenario 1, however, instead of using a 
single Subscriber, six different Subscribers were used. Test 
results showed a similar performance increase. For scenario 
1, the average end-to-end latency was 8.98 ms, with a 
maximum latency of 52.00 ms. As for scenario 2, the average 
end-to-end latency was 10.68 ms, with a maximum latency of 
45.67 ms, measured between all six subscribers. A histogram 
with the end-to-end latency distribution for these two 
scenarios is displayed in Fig. 4. 

 
Fig. 3. End-to-end latency of the two versions of the Event Handler. 

 

  
Fig. 4. End-to-end latency distribution of 9000 events for one subscriber 
and six subscribers, with the enhanced Event Handler. 

IV. MODELING THE EVENT HANDLER’S PERFORMANCE 
In order to be able to estimate the performance of different 

applications supported by the EH system, it is necessary to 
take into account specific thread pool configurations, number 
of CPU cores and communication latencies and model it. 
Such a model was developed using Petri nets, which easily 
allows modeling systems that deal with concurrent activities 
[12, 13], such as communication networks, multiprocessor 
systems, and manufacturing systems. 

To develop this Petri net model, we adapted Lu & 
Gokhale’s methodology [14] which has been previously used 
to model the performance of a Web server with a thread pool 
architecture. The resulting Petri net is displayed in Fig. 5. For 
the stochastic analysis of the model, we decided to use Oris 



Tool [15] since it was one of the only open source tools with 
stochastic Petri nets analysis capabilities. 

 

A. Explaining the Petri net model 
 

Our model characterizes the EH’s execution in a quad-
core CPU (since real results have been obtained using a 
Raspberry Pi 3 Model B). Regarding the model itself, the 
Publisher place (the circle on the left) represents the 
Publisher, and the publish transition (the black vertical wide 
bar) represents the time it takes for a published event to be 
transmitted and reach the EH. The Request_Queue place 
holds unprocessed requests, while the 
assign_request_to_thread transition represents the EH thread 
pool limit – only assigning requests to a thread if the total 
number of active threads (represented by the token sum in 
Active_Threads, Executing_Thread_CoreX, and 
Ready_to_Send places) has not exceeded the specified limit. 
In the Petri net, this condition is executed through an enabling 
function (i.e. a boolean expression) in the transition, hence 
the letter “e” next to the assign_request_to_thread transition. 
Once a request is assigned to a thread, the thread is executed 
by one of the CPU cores. The Executing_Thread_CoreX 
place (X should be replaced by the corresponding core) 
represents the thread’s execution, while the executing_CoreX 
transition represents the amount of time it takes to execute. 
An inhibitor arc (which is used to mandate that the transition 
must only fire when the place has no tokens) is used from 
Executing_Thread_CoreX to the respective tX transition to 
avoid the firing of transition tX when 
Executing_Thread_CoreX already has a token, therefore 
guaranteeing that only one request is being executed on a 
specific CPU core. Once the executing_CoreX transition 
finishes, it sends a token to Ready_to_Send, where the event 
is ready to be sent to its subscribers. 

Several real experiments have been performed in order to 
fine tune the module with real data extracted from several test 
runs from where we derive the values for each request type 
(i.e., considering requests sent from Publisher to EH, requests 
sent from EH to each Subscriber), and the CPU execution 
time for each request, and determine their most appropriate 
probability distribution function to be applied in the Petri net 

model. We determined that the requests sent from the 
Publisher to the EH had a Gamma distribution with shape (k) 
= 13.235 and rate (λ) = 2.088. However, Oris only provides 
transitions with an Erlang distribution which is a particular 
case of the Gamma distribution, where k should be an integer 
value. Similarly, the requests sent from the EH to its 
Subscribers also had a Gamma distribution with k = 6.235 
and λ = 2.683, where k was then rounded to 6, to likewise 
satisfy the Erlang distribution requirements. Finally, the CPU 
execution times in the EH (i.e. executing_CoreX) were 
decided to be represented as transitions with a uniform 
distribution, where the early finish time is 0 ms and the late 
finish time is 1 ms. 

B. Stochastic analysis of the Petri net model 
Oris provides a tool for transient analysis which consists 

in analyzing the probability of a process transitioning from 
one place to the other at a specific instant in time. Thus, the 
analysis creates a chart – in which the “time” variable is used 
as the X-axis and the “possible arrival state” variable (in other 
words, the place probability) is used as the Y-axis, where 
each time instant represents a probability distribution, which 
means that the sum of all values in each time instant must 
equal 1. This chart is displayed in Fig. 6. 
 

1) Interpreting the analysis results 
 

First, the only places that are present in the chart are 
Publisher, Ready_to_Send, Executing_Thread_CoreX and 
Subscriber_#. The reason for this is because the other places 
(aside from Request_Queue) only depend on immediate 
transitions, thus the token will not spend any time in these 
places, meaning that these do not have an impact in the 
overall processing time. Although Request_Queue is linked 
to an immediate transition (i.e. assign_request_to_thread), 
this transition is restricted to the EH’s thread pool size, which 
(as explained previously) is represented by the token sum in 
the Active_Threads place, the Executing_Thread_CoreX 
places, and the Ready_to_Send place. Since only one token is 
sent in this particular analysis, Request_Queue will not be 
storing any tokens, thus it will not be present in this chart. 

Until time 2.1 ms, the probability of a token being in 
Publisher is approximately 1, whereas the other places are 

Fig. 5.  Stochastic Petri net model of the Event Handler running on a quad-core CPU.  



still 0, because the Publisher takes at least 2 ms to send an 
event to the EH. Between time 2 and 13.6 ms, the probability 
of the Publisher sending a message decreases nonlinearly to 
0, while the exact opposite happens to the Subscriber, i.e., the 
probability that Subscriber_# has received the token rises 
nonlinearly to 1. In fact, at time 7.6 ms, the two curves cross 
each other, which means that, beyond this point, there is a 
higher probability of an event having reached the respective 
Subscriber, than it still being published by the Publisher. 
Furthermore, from 2.1 to 13.5 ms, the probability of the token 
being in Executing_Thread_CoreX has an almost Gaussian 
distribution, which means that once the message is sent from 
the Publisher, it is processed by the EH for a maximum of 1 
second. After this process, the message is then ready to be 
sent. Indeed, from 2.5 to 17 ms, similar to 
Executing_Thread_CoreX, the probability of the token being 
in Ready_to_Send also has a Gaussian distribution, meaning 
that once the EH is ready to send the published event, the 
Publisher has already sent the message, and the Subscriber is 
about to receive it – hence the probability decrease in 
Publisher and the increase in Subscriber_# right after the 
probability peak in Ready_to_Send. 

According to the analysis’s time estimations, the 
maximum time it takes to send an event (i.e. with a 99% 
chance) from the Publisher to the EH (i.e., when the 
probability for the Publisher place reaches approximately 0) 
is around 13.6 ms, while the estimated latest time for a 
Subscriber to receive an event (i.e., when the probability for 
the Subscriber_# places reaches approximately 1) is around 
17.1 ms. Nevertheless, there is a 99% chance that Subscribers 
will receive the published event around 14.3 ms. 
Furthermore, the probability for the Ready_To_Send place to 
hold a token peaks (47%) at the 7.6 ms, which means that the 
EH is ready to send the published event to its subscribers at 
this instant, 47% of the times. 

 
2) Comparing the model with the actual experiments 

 
Overall, the values collected from the model match the 

results obtained in the experiments of the enhanced EH. In 
the Petri Net model, the probability distribution for 
Subscriber_# to receive the published message is only higher 
than Publisher, Executing_Thread_CoreX, and 

Ready_to_Send after the 8.5 ms instant. One can see that this 
value is matched with the experiment results for one 
Subscriber reported in Fig. 4, where it is possible to see that 
around 60% of the events were delivered with an 8 ms 
latency. Whereas for the six Subscribers tests, where the 
average end-to-end latency is approximately 10.68 ms, the 
corresponding probability distribution is 80.4%. 

C. Validating the Petri net model 
In addition to the initial stochastic analysis with one 

token, another stochastic analysis was performed with four 
tokens to examine how the model scales with the processing 
of multiple messages. In other words, each token is supposed 
to represent a message. The same transient analysis matrix 
was calculated, and the distribution of the estimated end-to-
end latencies for four messages is depicted in Fig. 7, 
juxtaposed with the real test results from Fig. 4. 
Unfortunately, due to some processing limitations of the Oris 
tool, we were unable to assess the performance for more than 
four tokens. Nevertheless, this stochastic analysis with four 
tokens is able to capture the latency interval for most 
messages, i.e. from 8 to 16 ms, which mostly goes in hand 
with the event latency distributions of the test results. 
However, the authors feel that these latency estimations must 
still be further improved in order to fine tune the probability 
for each latency and also to capture a wider range of latencies, 
since the more extreme latencies (i.e. below 8 ms and above 
17 ms) are not represented. In terms of improving these 
estimations, this could be done by: i) changing the probability 
distributions and the parameters chosen for each transition; or 
ii) changing the Petri net model itself. 

V. CONCLUSIONS AND FUTURE WORK 
By changing how the original EH and its clients handled 

HTTP requests and thread creation, the enhanced version of 
the EH is now able to achieve much higher levels of 
performance, evolving from an average latency of 666.3 ms 
to 8.95 ms. In fact, considering the average latency of both 
versions for the same test scenario, the EH had an overall 
performance boost of over 98%. Nonetheless, the system’s 
performance might still be able to improve even further than 
its current state by optimizing the EH’s thread pool size and 
the Publisher’s connection pool. However, the gains would 

Fig. 6.   Transient analysis of the Petri net model with one token. 



 
Fig. 7. Estimated end-to-end latency probability for four messages. 

most likely be marginal. Moreover, we propose a Petri net 
model for the EH in order to estimate the overall end-to-end 
latency probability of each component (Publisher, EH, and 
Subscribers). Results show that the model provides a good 
estimation of results. However, it could still be further 
improved, either by changing the probability distributions 
and their parameters chosen for each transition or by editing 
the Petri net model itself. Nevertheless, these questions are 
expected to be the focus for future research work. The results 
and the model produced by this work can now be used by the 
Arrowhead QoS manager in order to be able to 
calculate/estimate the delays of Arrowhead services in 
different configurations.  
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