

Implementing Multicore Real-Time
Scheduling Algorithms Based on Task
Splitting Using Ada 2012

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-100301

Version: 1.0

Date: 10-03-2010

Björn Andersson and Luís Miguel Pinho

Technical Report HURRAY-TR-080301

Implementing Multicore Real-Time Scheduling
Algorithms Based on Task Splitting Using Ada 2012

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Implementing Multicore Real-Time Scheduling Algorithms Based on Task
Splitting Using Ada 2012

Björn Andersson and Luís Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: bandersson@dei.isep.ipp.pt; lmp@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Multiprocessors, particularly in the form of multicores, are becoming standard building blocks for executing reliable
software. But their use for applications with hard real-time requirements is non-trivial. Well-known real-time
scheduling algorithms in the uniprocessor context (Rate-Monotonic [1] or Earliest-Deadline-First [1]) do not perform
well on multiprocessors. For this reason the scientific community in the area of real-time systems has produced new
algorithms specifically for multiprocessors. In the meanwhile, a proposal [2] exists for extending the Ada language with
new basic constructs which can be used for implementing new algorithms for real-time scheduling; the family of task
splitting algorithms is one of them which was emphasized in the proposal [2]. Consequently, assessing whether existing
task splitting multiprocessor scheduling algorithms can be implemented with these constructs is paramount. In this
paper we present a list of state-of-art task-splitting multiprocessor scheduling algorithms and, for each of them, we
present detailed Ada code that uses the new constructs.

Implementing Multicore Real-Time Scheduling
Algorithms Based on Task Splitting Using Ada 2012

Björn Andersson1 and Luís Miguel Pinho1,

1 CISTER-ISEP Research Centre,
Polytechnic Institute of Porto, Portugal

bandersson@dei.isep.ipp.pt, lmp@isep.ipp.pt

Abstract. Multiprocessors, particularly in the form of multicores, are becoming
standard building blocks for executing reliable software. But their use for
applications with hard real-time requirements is non-trivial. Well-known real-
time scheduling algorithms in the uniprocessor context (Rate-Monotonic [1] or
Earliest-Deadline-First [1]) do not perform well on multiprocessors. For this
reason the scientific community in the area of real-time systems has produced
new algorithms specifically for multiprocessors. In the meanwhile, a proposal
[2] exists for extending the Ada language with new basic constructs which can
be used for implementing new algorithms for real-time scheduling; the family
of task splitting algorithms is one of them which was emphasized in the
proposal [2]. Consequently, assessing whether existing task splitting
multiprocessor scheduling algorithms can be implemented with these constructs
is paramount. In this paper we present a list of state-of-art task-splitting
multiprocessor scheduling algorithms and, for each of them, we present detailed
Ada code that uses the new constructs.

Keywords: Ada, multiprocessors, multicores, real-time scheduling.

1 Introduction

Despite multiprocessors, in the form of multicores, becoming the norm in current
computer systems, their use for applications with real-time requirements is non-
trivial. The reason is that although a comprehensive toolbox of scheduling theories is
available for a computer with a single processor, such a well-established
comprehensive toolbox is currently not available for multicores.

One of the emerging and most interesting classes of multiprocessor scheduling
algorithms today is called task-splitting scheduling algorithms [3-9]. With such an
algorithm, most tasks are assigned to just one processor, whilst a few tasks are
assigned to two or more processors and may migrate in a controlled manner (the
migration may be performed in the middle of the execution of a job) so that at every
instant, such a task never executes on two or more processors simultaneously. This
class is appealing because the algorithms in this class (i) cause few (and provably

small number of) preemptions and (ii) can be proven to be able to schedule task sets
to meet deadlines even at high processor utilizations.

The Ada community has shown an increasing interest in real-time scheduling on
multicores [2,10,13] and a proposal exists [2] for extending the language for real-time
scheduling on multicores. Our initial opinion was that the proposed extension seemed
useful for implementing task splitting, but it is important to fully evaluate its
appropriateness considering the task splitting scheduling algorithms that have already
been published.

Therefore, in this paper, we present Ada code for implementing a subset of the
current task splitting scheduling algorithm. From the extensive set of previously
published algorithms, we have selected the ones [4,8,9] that perform best (in terms of
being able to schedule tasks at high utilization and generating few preemptions), and
that allow showing how different types of approaches can be programmed in Ada. We
would like to note, nevertheless, that the algorithm in [3] could be also used, but it
may require very small execution segments at highly precisely specified time
intervals, something which is difficult to achieve in practice.

We find that the new proposal [2] is sufficient for implementing those task splitting
algorithms [4,8,9] that we believe are useful to designers. Attaining efficient
implementations of them may require a new timing construct however.

The remainder of this paper is organized as follows. Section 2 presents the system
model and gives an overview of the algorithms. Section 3 presents the recently
proposed language extension. Sections 4 to 6 present Ada programs for the
dispatchers of the task splitting algorithms. Section 7 provides conclusions.

2 System model and algorithm overview

We consider the problem of scheduling a set of tasks τ = {τ1, τ2,…, τn} on m
processors. A task τi is characterized by Ti, Di, and Ci with the interpretation that the
task τi releases a (potentially infinite) sequence of jobs such that (i) the time between
two consecutive jobs of the same task is at least Ti and (ii) each job must complete Ci
units of execution within at most Di time units from the release of the job. We assume
that a job cannot execute on two or more processor simultaneously. We also assume
that a processor cannot execute two or more jobs at the same instant. We assume that
a job needs no resource (such as shared data structures) other than a processor for
execution.

We distinguish between three types of task sets:
• In an implicit-deadline task set, each task τi has Di = Ti;
• In a constrained-deadline task set, each task τi has Di ≤ Ti;
• In an arbitrary-deadline task set, each task τi is not constrained by the above

(Di = Ti or Di ≤ Ti).
In this paper, we focus on algorithms for constrained-deadline task sets. In order to
understand task splitting algorithms, let us consider the following example.

capacity reserved forτ2 on processor P1

time

time 0 S 2S 4S 5S 3S

P2

P1

capacity reserved for τ2 on processor P2

τ
2

Figure 1. Slot-based split-task dispatching: How to perform run-time dispatching of a task that
is assigned to two processors. A white rectangle with black dots indicates capacity reserved for
task τ2.

Example 1. Consider three tasks to be scheduled on two processors. Each task τi
has Ti=Di=1 and Ci=0.51. We can assign task τ1 to processor 1 and task τ3 to
processor 2 and then let task τ2 be assigned to both processors 1 and 2; we say that τ2
is a split task. This splitting should be done in a controlled manner; for example do
the splitting of τ2 so that τ2 requires 0.379 units of execution on processor 1 and 0.131
units of execution on processor 2. Since τ2 is assigned to two processors, it is
important that dispatchers on each processor ensure that τ2 never executes on two or
more processors simultaneously. ⁪

In task splitting algorithms, there are three approaches for ensuring that a split task
does not execute on two or more processors simultaneously:

• Slot-based split-task dispatching;
• Job-based split-task dispatching;
• Suspension-based split-task dispatching.
Slot-based split-task dispatching is used in [4, 5, 7]. Figure 1 shows the idea. Time

is organized into timeslots of equal size and these timeslots are synchronized across
all processors. The time interval of a timeslot is partitioned into three sub-time-
intervals, one in the beginning of the timeslot, one in the middle of the timeslot and
one in the end of the timeslot. A split task is assigned to the beginning sub-time-
interval of one processor and the end sub-time-interval of another processor; these
time intervals must be dimensioned so that the task meets its deadline and so that
there is no overlap in time between the subintervals.

Job-based split-task dispatching is used in [8, 9]. Figure 2 shows the idea. There
are no timeslots. Instead, when a job is released, a certain condition is setup
specifying when the job should migrate to another processor. This condition can be
that a certain amount of time has elapsed since the release of the job (used in [9]) or
that a certain amount of execution has been performed by the job (used in [8]).

Suspension-based split-task dispatching is similar to job-based split-task
dispatching but the default case is that all pieces of a job are ready all the time on all

 τ2 is a split task. When a job of τ2 arrives, it executes on processor 1 and then it migrates to processor 2.

time

time

deadline of the job. arrival of a job of task τ2

P2

P1

Figure 2. Job-based split-task dispatching: How to perform run-time dispatching of a task that
is assigned to two processors. A dark rectangle with white dots indicates execution of the job of
task τ2.

processors to which the split task is assigned. But when the job executes on one
processor, it suspends the job on the other processors.

Slot-based split-task dispatching and job-based split task dispatching are areas of
active research in the real-time systems research community. The slot-based split-task
dispatching offers higher utilization bounds whereas the job-based split task
dispatching offers fewer preemptions.

Suspension-based split-task dispatching is not possible in the proposed Ada model
for multiprocessors, since there is a single ready queue within the same allocation
domain. It is also currently not explored in the real-time systems research community.
The authors believe this is because suspension-based split-task dispatching provides
utilization bounds and preemption bounds similar to the job-based split-task
dispatching but with the suspension-based split-task dispatching there is the drawback
that it can happen that an event (say a release of a job) on processor 1 causes a context
switch on processor 2 which in turns causes a context switch on processor 3 and so
on.

Hence, we will only discuss (i) slot-based split-task dispatching and (ii) job-based
split-task dispatching, because we believe they are most relevant for software
developers.

3 Language extensions

Burns and Wellings have proposed in [2, 10] language extensions for real-time
scheduling on multicores, which after discussion in the International Real-Time Ada
Workshop [13] have been proposed for the upcoming Ada revision [14]. This section
presents the proposed extension, but limited to what is necessary for implementing the
task splitting algorithms (more details on this proposal can be found in [16]).

The proposed extension defines appropriate packages for handling the set of CPUs
available to the program, and the creation of non-overlapping dispatching domains:

package System.MultiProcessors is
 type _Range is range 0..<implementation-defined>; CPU
 function Number_Of_CPUs return CPU_Range;
end System.MultiProcessors;

package System.MultiProcessors.CPU_Sets is
 type CPU_Set is private;
 Default_CPU_Set : constant CPU_Set;
 procedure All_Set(Set: in out CPU_Set);
end System.MultiProcessors.CPU_Sets;

package Ada.Dispatching is
 type Dispatching_Domain_Policy is private;

end Ada.Dispatching;

-- other declared types and subprograms not shown here

package Ada.Dispatching.Dom isains
 type Dispatching_Domain is private;
 System_Dispatching_Domain: Dispatching_Domain;

 -- other declared subprograms not shown here

 procedure Set_CPU(P : in CPU_Range;
 T : in Task_Id := Current_Task);

 procedure Delay_Until_And_Set_CPU(
 Delay_Until_Time : in Ada.Real_Time.Time;
 P : in CPU_Range);
end Ada.Dispatching_Domains;

Procedure Set_CPU is fundamental for task splitting as it allows to dynamically

change the allocation of tasks to specific CPUs.
Although not used in this paper, the capabilities for supporting more than one

dispatching domain are very interesting for other approaches. For example, it is also
important for some partitioned cluster approaches (such as in [7]) since it allows
detecting incorrect assignment of tasks to processors. Also, it is useful for improving
the performance of algorithms that do not use task splitting. For example, global
scheduling with EDF suffers from poor ability to meet deadlines for certain task sets
but this effect can be mitigated by subdividing processors into disjoint dispatching
domains and applying global scheduling with EDF on each dispatching domain (such
an approach is sometimes called clustered-global EDF [12]).

4 Slot-based split tasks dispatching

The algorithm described in this section is the one in [4], and it is shown in Figure 1.
The algorithm is intended for implicit-deadline sporadic tasks. The left column of
page 4 in [4] gives a good description of the dispatching algorithm. In this section, we
reformulate it with the proposed Ada extensions.

To illustrate task splitting, we will consider a task set τ={τ1, τ2, τ3} to be scheduled
on two processors. The tasks are characterized as T1=100 ms, T2=200 ms, T3=400 ms,
D1=100 ms, D2=200 ms, D3=400 ms and C1=51 ms, C2=102 ms, C3=204 ms.

Recall that the algorithm depends on a timeslot; the size of the timeslot is TMIN/δ,
where TMIN is the minimum of Ti of the task set and the parameters δ can be chosen
by the user. We choose δ=4 and apply it to the example above and this gives us that
the timeslot has a duration of 25 ms. Also, the algorithm depends on a parameter SEP
which specifies how much we can fill-up a processor when we (i) assign tasks to
processors and (ii) split tasks. Using Equation 27 in [4] tells us for δ=4 that
SEP=0.889.

The task assignment/splitting algorithm in [4] gives us the following (for δ=4,
SEP=0.889). Task τ1 is assigned to processor 1; task τ3 is assigned to processor 2; task
τ2 is assigned to both processor 1 and to processor 2 and the splitting of this task is
specified by two variables, hi_split and lo_split, with values hi_split[1]=0.379 and
lo_split[2]=0.131. Intuitively, this means that 37.9% of the processing capacity of
processor 1 will be used for task τ2 and analogously 13.1% of the processing capacity
of processor 2 will be used for task τ2. Together these figures (37.9% and 13.1%) give
us the utilization of the task τ2 (51%).

Recall that the timeslot duration is 25 ms. Due the unknown phasing of the task
arrival related to the slot start, the algorithm specifies that a reserve on processor 1 for
task τ2 should occupy a fraction hi_split[1]+2α of the duration of the timeslot and a
reserve on processor 2 for task τ2 should occupy a fraction lo_split[2]+2α of the
duration of the timeslot. (The value of α is computed based on δ; see Equation 9 in
[4]; in this example α becomes 0.02786.) Therefore, the duration of the reserve for
processor 1 becomes 4.668 ms and for processor 2 becomes 10.868 ms.

The code is as follows:

pragma Priority_Specific_Dispatching (EDF_Across_Priorities, 1, 10) ;
pragma Priority_Specific_Dispatching (FIFO_Within_Priorities, 11, 12);

with Ada.Real_Time.Timing_Events; use Ada.Real_Time.Timing_Events;
with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Dispatching.Domains; use Ada.Dispatching.Domains;
with System.Multiprocessors; use System.Multiprocessors;
with Ada.Real_Time; use Ada.Real_Time;
with Ada.Dispatching.EDF; use Ada.Dispatching.EDF;
with Ada.Asynchronous_Task_Control; use Ada.Asynchronous_Task_Control;

Period_Task_1 : constant Time_Span:=Milliseconds(100);
Min_Inter_Arrival_Task_2 : constant Time_Span:=Milliseconds(200);
Period_Task_3 : constant Time_Span:=Milliseconds(400);

Deadline_Task_1 : constant Time_Span:=Milliseconds(100);
Deadline_Task_2 : constant Time_Span:=Milliseconds(200);
Deadline_Task_3 : constant Time_Span:=Milliseconds(400);

Execution_Time_Task_1 : constant Time_Span:=Milliseconds(51);
Execution_Time_Task_2 : constant Time_Span:=Milliseconds(102);
Execution_Time_Task_3 : constant Time_Span:=Milliseconds(204);

TMIN : constant Time_Span := Milliseconds(100);
Time_Slot_Delta : constant integer := 4;
Time_Slot_Length : constant Time_Span := TMIN / Time_Slot_Delta;
Alpha : constant float := 0.02786; -- this is computed based on
 -- Time_Slot_Delta

CPU_1 : constant CPU_Range := 0;
CPU_2 : constant CPU_Range := 1;
Reserve_Phase_1_Task_2 : constant Time_Span:= Microseconds(4668);
Reserve_Phase_2_Task_2 : constant Time_Span:= Microseconds(10868);

Start_Time : Time := Clock;

type Current_Phase is (Not_Released, Phase_1, Suspended, Phase_2);

protected type Sporadic_Switcher is
 pragma iority(12); Pr
 procedure Register(ID : Task_ID; Phase_1_CPU, Phase_2_CPU: CPU_Range;
 Phase_1_Reserve, Phase_2_Reserve : Time_Span);
 procedure Handler(TM :in out Timing_Event);
 procedure Release_Task;
 procedure Finished;
 entry Wait;
private
 Released: Boolean := False;
 Switch_Timer: Timing_Event;

 Client_ID : Task_ID;
 Client_Phase_1_CPU, Client_Phase_2_CPU : CPU_Range;
 Client_Phase_1_Reserve, Client_Phase_2_Reserve : Time_Span;
 Client_Current_Phase : Current_Phase;

end Sporadic_Switcher;

End_of_Phase_1, Start_of_Phase_2, End_of_Slot: Time;

task Task_1 is
 pragma Priority (1);
end Task_1;

task Task_2 is
 pragma Priority (11);
end Task_2;

task _3 is Task

pragma Priority (1);
end Task_3;

protected body Sporadic_Switcher is
 procedure Register(ID : Task_ID; Phase_1_CPU, Phase_2_CPU: CPU_Range;
 Phase_1_Reserve, Phase_2_Reserve : Time_Span) is
 begin
 Client_ID := ID;
 Client_Phase_1_CPU := Phase_1_CPU;
 Client_Phase_2_CPU := Phase_2_CPU;
 Client_Phase_1_Reserve := Phase_1_Reserve;
 Client_Phase_2_Reserve := Phase_2_Reserve;

 end Register;

 procedure Handler(TM :in out Timing_Event) is
 begin
 case ient_Current_Phase is Cl
 when Not_Released =>
 Set_CPU(Client_Phase_2_CPU, Client_ID);
 Switch_Timer.Set_Handler(End_of_Slot, Handler'Access);
 Client_Current_Phase := Phase_2;
 Released := True;
 when Phase_1 =>
 Client_Current_Phase := Suspended;
 Switch_Timer.Set_Handler(Start_of_Phase_2, Handler'Access);
 -- between slots - do nothing just set timer, alternative would
 -- be to lower priority to a "background" level priority
 -- more work conservative but we decided to maintain the algorithm as
 -- is in the original paper

 Hold(Client_ID); -- This call puts the task to sleep; it will not
 -- execute on any CPU until “continue” has been
 -- performed on it.
 when Suspended =>
 Set_CPU(Client_Phase_2_CPU, Client_ID);
 Switch_Timer.Set_Handler(End_of_Slot, Handler'Access);
 Client_Current_Phase := Phase_2;
 Continue(Client_ID);
 when Phase_2 =>
 Set_CPU(Client_Phase_1_CPU, Client_ID);
 Switch_Timer.Set_Handler(End_of_Phase_1, Handler'Access);
 Client_Current_Phase := Phase_1;
 end case;
 end Handler;

 procedure Release_Task is -- called by someone else or by interrupt
 Number_of_Slots: Integer;
 Release_Time, Slot_Start: Time;
 begin
 -- calculate parameters

 Release_Time := Clock;
 Number_of_Slots := (Release_Time - Start_Time) / Time_Slot_Length;
 Slot_Start := Start_Time + Time_Slot_Length * Number_of_Slots;
 End_of_Phase_1 := Slot_Start + Client_Phase_1_Reserve;
 Start_of_Phase_2 := Slot_Start + Time_Slot_Length - Client_Phase_2_Reserve;
 End_of_Slot := Slot_Start + Time_Slot_Length;

 -- decide if release or not depending of phase
 if Release_Time >= Slot_Start and Release_Time < End_of_Phase_1 then
 Set_CPU(Client_Phase_1_CPU, Client_ID);
 Switch_Timer.Set_Handler(End_of_Phase_1, Handler'Access);
 Client_Current_Phase := Phase_1;
 Released := True;
 elsif Release_Time >= Start_of_Phase_2 and Release_Time < End_of_Slot then
 Set_CPU(Client_Phase_2_CPU, Client_ID);
 Switch_Timer.Set_Handler(End_of_Slot, Handler'Access);
 Client_Current_Phase := Phase_2;
 Released := True;
 else
 -- between slots - do nothing just set timer
 -- alternative would be to lower priority to a "background" level
 -- priority
 -- more work conservative but we decided to maintain the
 -- algorithm as is in the original paper
 Client_Current_Phase := Not_Released;
 Switch_Timer.Set_Handler(Start_of_Phase_2, Handler'Access);
 end if;
 end Release_Task;

 procedure Finished is
 Cancelled: Boolean;
 begin
 -- cancel the timer.
 Switch_Timer.Cancel_Handler(Cancelled);
 end Finished;

 entry Wait when Released is
 begin
 Released := False;
 end Wait;

end Sporadic_Switcher;

task body Task_1 is
 Nex
begin

t : Time;

 Next := Ada.Real_Time.Clock;
 Set_CPU(CPU_1);
 loop
 Delay_Until_and_Set_Deadline(Next, Deadline_Task_1);
 -- Code of application
 Next := Next + Period_Task_1;
 end loop;
end Task_1;

My_Switcher: Sporadic_Switcher;

task ody Task_2 is

 b

begin
 My_Switcher.Register(Current_Task,
 CPU_2, CPU_1,
 Reserve_Phase_1_Task_2,
 Reserve_Phase_2_Task_2);
 loop
 My_Switcher.Wait;
 -- Code of application
 My_Switcher.Finished;
 end loop;
end Task_2;

task body Task_3 is

end Task_3;

-- similar to Task 1

We can make three observations. First, the non-split tasks, task 1 and task 3 have
very simple code; they are basically programmed like we would have done if we
wanted to implement partitioned EDF. Second, implementing task 2 requires some
extra work. First of all, split tasks execute in the processor which they are currently
allocated in preference to other tasks. Therefore, a priority level was created for the
split task (priority 11), higher than the band for the regular EDF tasks.

Note also that the algorithm in [4] was designed for sporadic tasks, therefore a
protected type is created to simultaneously control the release of the sporadic and to
control the allocation of the task to the processors, depending on the phase within the
slot. When the task is released (procedure Release_Task), first it is necessary to
determine in what phase of the slot the release instant occurred. If it is within the
interval reserved in a specific processor (Phase 1 – CPU 2; Phase 2 – CPU 1) then the
task is allocated to that processor, and immediately released. Note that if the release
instant is between the reserved slots, the task is not released. In all cases, a timer is
armed for the next instant that the task attributes need to be changed.

When the timer handler is called, it changes the allocation of the task, or, if it is the
end of the first phase, it needs to suspend the task with asynchronous task control. A
better approach (for improving average responsiveness) would be to decrease the
priority of the task to the EDF band (with a Deadline of Time’Last) or to create a
background tasks lower priority band, which would allow the task to execute if the
processor is idle. However, the task is suspended in order to maintain the equivalence
to the algorithm of [4].

In the code-example above, we let tasks 1 and 3 arrive periodically and task 2
arrive sporadically. The algorithm allows any subset of tasks to arrive periodically
and any subset of tasks to arrive sporadically however. For example, Task_1 can
easily be changed so that it arrives sporadically as well; changes needed for doing so
are listed below:

protected PO_for_Task_1 is
 pragma Priority(1);
 procedure Release_Task;
 entry Wait;
private
 Released: Boolean := False;
end PO_for_Task_1;

protected body PO_for_Task_1 is
 procedure Release_Task is -- called by someone else or by interrupt
 begin
 Released := True;
 end Release_Task;

 entry Wait when Released is
 begin
 Released := False;
 end Wait;
end PO_for_Task_1;

task body Task_1 is
begin
 Set_CPU(CPU_1);
 loop
 PO_for_Task_1.Wait;
 -- Code of application

end loop;
end Task_1;

Note that the protected object used for releasing Task 1 has the same priority

(preemption level) of the task as we are assuming that the release event is only within
CPU_1. If that was not the case, the preemption level would need to be higher [15]
than the priority of Task 1, as in the case of the switcher protected object.

For arbitrary-deadline sporadic tasks, although different off-line scheduling
algorithms are used [5], the algorithm for dispatching is the same as for implicit-
deadline, with only the parameters being calculated differently.

5 Job-based split tasks dispatching for implicit-deadline sporadic
tasks

The algorithm described in this section is the one in [9]. The text in the right column
of page 3 in [9] describes the dispatching algorithm. The algorithm is based on
configuring different priorities for each phase of the split task. The task starts to
execute in one CPU, and after a certain clock time its affinity is changed to the second
CPU, with a different priority.

To illustrate task splitting, we will consider the same task set as in Section 4;
consider a task set τ={τ1, τ2, τ3} to be scheduled on two processor. The tasks are
characterized as T1=100 ms, T2=200 ms, T3=400 ms, D1=100 ms, D2=200 ms,
D3=400 ms and C1=51 ms, C2=102 ms, C3=204 ms. The approach in [9] uses a rule
called HPTS (Highest Priority Task Splitting) and therefore, task τ1 is split between
processor 1 and processor 2. (Note that this is different from Section 4, where task τ2
was split between two processors.). Task τ2 is assigned to processor 1; task τ3 is
assigned to processor 2 and task τ1 is split between processor 1 and processor 2.

The splitting of task τ1 is done such that (i) the first piece of τ1 has execution time
49 ms, relative deadline 49 ms and is assigned to processor 1 and (ii) the second piece
of τ1 has execution time 2 ms, relative deadline 51 ms and is assigned to processor 2.
It is easy to see that the sum of the execution times of these pieces of task τ1 is C1 and
the sum of the relative deadlines of the pieces of task τ1 is D1.

In this section, we formulate the algorithm with the new Ada constructs. For
brevity we just show the main differences to the previous section.

The code is as follows:

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);
with System; use System;
with Ada.Dynamic_Priorities; use Ada.Dynamic_Priorities;
-- includes and constants similar to the previous section
-- The constants are used for task 2
C_First_Phase : constant Time_Span:=Milliseconds(49);
C_Second_Phase : constant Time_Span:=Milliseconds(2);
D_First_Phase : constant Time_Span:=Milliseconds(49);
D_Second_Phase : constant Time_Span:=Milliseconds(51);

Priority_Task1_First_Phase : constant Priority := 20;
Priority_Task1_Second_Phase : constant Priority := 19;

Priority_Task2 : constant Priority := 18;
Priority_Task3 : constant Priority := 17;

protected body Job_Based_Switcher is
 procedure Register(ID : Task_ID; Phase_1_CPU, Phase_2_CPU: CPU_Range;
 Phase_1_C, Phase_2_C, Phase_1_D, Phase_2_D: Time_Span;

Phase_1_Prio, Phase_2_Prio: Priority) is
 begin

-- ... just update protected data
 end Register;

 procedure Handler(TM :in out Timing_Event) is
 begin
 -- in this algorithm, handler is just called in the end of phase 1
 Set_CPU(Client_Phase_2_CPU, Client_ID);
 Set_Priority(Client_Phase_2_Prio, Client_ID);
 end Handler;

 procedure Release_Task is
 begin
 -- calculate parameters

 Release_Time := Clock;
 End_of_Phase_1 := Release_Time + Client_Phase_1_D;

 -- set first phase parameters
 Set_CPU(Client_Phase_1_CPU, Client_ID);
 Set_Priority(Client_Phase_1_Prio, Client_ID);

 -- set timer
 Switch_Timer.Set_Handler(End_of_Phase_1, Handler'Access);

 -- release
 Released := True;
 end Release_Task;

 procedure Finished is
 Cancelled: Boolean;
 begin
 -- cancel the timer.
 Switch_Timer.Cancel_Handler(Cancelled);
 end Finished;

 entry Wait when Released is
 begin
 Released := False;
 end Wait;

end Job_Based_Switcher;

My_Switcher: Job_Based_Switcher;

task body Task_1 is
begin
 My_Switcher.Register(...);
 loop
 My_Switcher.Wait;
 -- Code of application
 My_Switcher.Finished;
 end loop;
end Task_1;

In this approach, the dispatching algorithm performs the migration at a certain time
relative to the arrival of a job. Thus, both Release_Task and Handler procedures
are much simpler. The first simply calculates the time to arm the timer, setting the
parameters of the first phase (CPU and priority), whilst the second just changes these
parameters. Note that we use fixed-priority scheduling of the task as proposed in [9].

6 Job-based split tasks dispatching for constrained-deadline
sporadic tasks

The algorithm described in this section is the one in [8]. Figure 6 on page 6 in [8]
gives a good description of the dispatching algorithm. The algorithm is very similar to
the algorithm in Section 5 but differs in that (i) it uses EDF instead of RM on each
processor and (ii) it performs migration when the job of a split task has performed a
certain amount of execution. Therefore, there is no need for the mechanism to migrate
the split task to know the arrival time of a job of a split task. Also, there are no
timeslots.

The code is as follows:

pragma Task_Dispatching_Policy(EDF_Across_Priorities);

protected My_Job_Based_Switcher is
 pragma iority(Ada.Execution_Time.Timers.Min_Handler_Ceiling); Pr
 procedure Register(ID : Task_ID; Phase_2_CPU : CPU_Range);

private
procedure Budget_Expired(T : in out Ada.Execution_Time.Timers.Timer);

 Client_ID : Task_ID;
 C
end My_Job_Based_Switcher;

lient_Phase_2_CPU : CPU_Range;

protected body My_Job_Based_Switcher is
 procedure Register(ID : Task_ID; Phase_2_CPU: CPU_Range) is
 begin
 -- ... just update protected data
 end Register;

 procedure Budget_Expired(T : in out Ada.Execution_Time.Timers.Timer) is

 begin
 -- similarly to previous section,
 -- handler is just called in the end of phase 1
 Set_CPU(Client_Phase_2_CPU, Client_ID);
 end Budget_Expired;

end My_Job_Based_Switcher;

task body Task_2 is
 Next : Time;
 My_Id : aliased Task_Identification.Task_Id:= Task_2'Identity;
 The_Timer : Ada.Execution_Time.Timers.Timer(My_Id'Access);
 Can
begin

celled: Boolean;

 My_Job_Based_Switcher.Register(...);
 Next := Ada.Real_Time.Clock;
 -- note that we do not assign the task to any processor
 -- We will do it later in the loop below
 loop
 Delay_Until_and_Set_Deadline(Next, Deadline_Task_2);
 Set_CPU(Phase_1_CPU, My_ID);
 Ada.Execution_Time.Timers.Set_Handler(The_Timer, C_First_Phase,
 My_Job_Based_Switcher.Budget_Expired'Access);
 -- Code of application
 Ada.Execution_Time.Timers.Cancel_Handler(The_Timer, Cancelled);
 Next := Next + Period_Task_2;

end Task_2;

end loop;

The code for execution-time monitoring that we use follows to some extent the
idea on page 7 in [11]. But expiry of our handler for execution time monitoring does
not need to notify the task (task 2) and this simplifies our code.

It should also be noted that the algorithm in [8] allows a task to be split between
more than two processors. Our Ada code can be extended to that case by letting the
handler Budget_Expired set up a new execution-time monitoring, with a call to
Set_Handler.

7 Conclusions

We have seen details on how task splitting algorithms can be implemented using the
recently proposed Ada extensions. In terms of efficiency, we expect this Ada code to
be acceptable on multicores with a small number of cores. For very large multicores,
the mechanism for migrating a task may impose a significant sequential bottleneck
and for such platforms, a direct implementation of the task splitting algorithms in the
Ada run-time may be needed. Also, if clocks and timers are available in just one (or in
a reduced set of) processor(s), local timers are needed for better efficiency,
particularly for more sophisticated algorithms such as the one in Section 4; an
approach with user-defined clocks could be looked after. Nevertheless, multicore
scheduling is still in its beginning, therefore it is still too soon to determine which
algorithms to support.

Acknowledgments. This work was partially funded by the Portuguese Science and
Technology Foundation (Fundação para a Ciência e a Tecnologia - FCT) and the
European Commission through grant ArtistDesign ICT-NoE-214373.

References

1. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment", Journal of the ACM, vol. 20, pp. 46 - 61, 1973.

2. Burns, A., Wellings, A.: Supporting Execution on Multiprocessor Platforms". In Proc.of
14th International Real-Time Ada Workshop, 2009.

3. Andersson, B., Tovar E.: Multiprocessor Scheduling with Few Preemptions. In Proc.of The
12th IEEE International Conference on Embedded and Real-Time Computing and
Application, pp. 322-334, 2006.

4. Andersson, B., Bletsas, K.: Sporadic Multiprocessor Scheduling with Few Preemptions. In
Proc.of 20th Euromicro Conference on Real-Time Systems, pp. 243-252, 2008.

5. Andersson, B., Bletsas, K., Baruah, S.K.: Scheduling Arbitrary-Deadline Sporadic Task
Systems on Multiprocessors". In Proc.of 29th IEEE Real-Time Systems Symposium, pp.
385-394, 2008.

6. Andersson, B., Bletsas, K.: Notional Processors: An Approach for Multiprocessor
Scheduling". In Proc.of 15th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 3-12, 2009.

7. Bletsas, K. Andersson, K.: Preemption-light multiprocessor scheduling of sporadic tasks
with high utilisation bound. In Proc.of 30th IEEE Real-Time Systems Symposium, 2009.

8. Kato, S., Yamasaki, N., Ishikawa, Y.: Semi-Partitioned Scheduling of Sporadic Task
Systems on Multiprocessors. In Proc.of 21st Euromicro Conference on Real-Time Systems
(ECRTS2009), pp. 249-258, 2009.

9. Lakshmanan, K., Rajkumar, R., Lehoczky, J.: Partitioned Fixed-Priority Preemptive
Scheduling for Multi-Core Processors. In Proc.of 21st Euromicro Conference on Real-Time
Systems, pp. 239-248, 2009.

10. Wellings, A., Burns, A.: Beyond Ada 2005: Allocating Tasks to Processors in SMP
Systems; A. Wellings, A. Burns. In Proc.of 13th International Real-Time Ada Workshop,
2007.

11. "Ada Issue 307 Execution-Time Clocks”, 2006, available at
http://www.sigada.org/ada_letters/apr2006/AI-00307.pdf.

12. Brandenburg, B., Calandrino, J. Anderson, J.: On the Scalability of Real-Time Scheduling
Algorithms on Multicore Platforms: A Case Study, Proceedings of the 29th IEEE Real-Time
Systems Symposium, pp. 157-169, December 2008.

13. “Multiprocessor Systems Session Summary” at 14th International Real-Time Ada
Workshop (IRTAW-14), Chairs: A. Burns and A.J. Wellings. Rapporteurs: A.J. Wellings
and A. Burns.

14. “Managing affinities for programs executing on multiprocessor platforms”, AI-167, 2009.
Available at http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai05s/ai05-0167-1.txt?rev=1.1.

15. Rajkumar, R., Sha, L., Lehoczky, J.P: Real-time synchronization protocols for
multiprocessors, In Proceedings 9th IEEE Real-Time Systems Symposium, pages 259–269,
1988.

16. Burns, A., Wellings, A.J.: Dispatching Domains for Multiprocessor Platforms and their
Representation in Ada, 15th International Conference on Reliable Software Technologies -
Ada-Europe 2010, Valencia, Spain, June 14-18, 2010.

