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Abstract:

Fieldbus communication networks aim to interconnect sensors, actuators and controllers
within distributed computer-controlled systems. Therefore, they constitute the foundation upon
which real-time applications are to be implemented. A potential leap towards the use of
fieldbus in such time-critical applications lies in the evaluation of its temporal behaviour. In the
past few years several research works have been performed on a number of fieldbuses.
However, these have mostly focused on the message passing mechanisms, without taking
into account the communicating application tasks running in those distributed systems. The
main contribution of this paper is to provide an approach for engineering real-time fieldbus
systems where the schedulability analysis of the distributed system integrates both the
characteristics of the application tasks and the characteristics of the message transactions
performed by these tasks. In particular, we address the case of systems where the Process-
Pascal multitasking language is used to develop P-NET based distributed applications.
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Abstract

Fieldbus communication networks aim to interconnect sensors, actuators and controllers within distributed computer-
controlled systems. Therefore, they constitute the foundation upon which real-time applications are to be implemented. A
potential leap towards the use of fieldbus in such time-critical applications lies in the evaluation of its temporal
behaviour. In the past few years several research works have been performed on a number of fieldbuses. However, these
have mostly focused on the message passing mechanisms, without taking into account the communicating application
tasks running in those distributed systems. The main contribution of this paper is to provide an approach for engineering
real-time fieldbus systems where the schedulability analysis of the distributed system integrates both the characteristics
of the application tasks and the characteristics of the message transactions performed by these tasks. In particular, we
address the case of systems where the Process-Pascal multitasking language is used to develop P-NET based distributed
applications.

1. Introduction

This paper focuses on the field level of the automation hierarchy, where typically the process-relevant field devices are
used by a computer system to automatically conduct the process.
Basically, the computer system should be able to receive, via the instrumentation interface, information about the status
of the controlled object, compute new commands according to the references provided by the man-machine interface, and
transmit new commands to the actuators, also via the instrumentation interface. To perform these operations, the
computer system should be provided with a control application program. The connection between the control system and
the sensors and actuator can be made by point-to-point links or by means of a (field level) network.
Typically, a field level network will be a broadcast network (like in most types of local area networks), where several
network nodes share a common communication channel. Messages are transmitted from a source node to a destination
node via the shared communication medium. A major problem occurs when at least two nodes attempt to send messages
via the shared medium at about the same time. This problem is solved by a medium access control (MAC) protocol.
The control software can run on one controller (centralised control) or the control functions can be distributed by several
control units each one performing a part of the control algorithm. This kind of architecture is usually called a distributed
computer-controlled system (DCCS)[1].
A DCCS is implemented by a set of computational devices. Each computational device runs a number of tasks. These
tasks may communicate their results by passing messages between computational devices across a field level
communication network. In order to guarantee that the timing requirements of the DCCS are met, the communication
delay between a sending task queuing a message, and the related receiving task being able to access that message, must
be upper bounded. This total delay is termed end-to-end communication delay [2], and is composed of the generation
delay (time taken by the sender’s task to generate and queue the related message), queuing delay (time taken by the
message to gain access to the field level communication network), transmission delay (time taken by the message to be
transmitted on the field level communication network), delivery delay (time taken to process the message at the
destination processor before finally delivering it to the destination task).
In terms of the response time analysis of tasks, distribution brings the need to include the end-to-end communication
delays, as one of the components of the overall task’s response time. The behaviour of the tasks will also determine the
communication pattern between applications.
In this paper, we will focus on this holistic approach for engineering real-time DCCS. The important contribution is not
only in the consideration of a specific fieldbus network, the P-NET [3], but also in reasoning the real-time analysis from
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the point of view application tasks. In this paper we address the case of a commercial software tool for developing
distributed applications for P-NET networks: the Process-Pascal language [4].
The remainder of this paper is organised as follows. In Section 2, we analyse the task models available in Process-Pascal.
Importantly, we reason on how the different types of tasks interact with each other when contending. In Section 3 we
review previous relevant work in determining the worst-case response of a task in a single processor system. This
analysis will be the basis for the response time analysis of Process-Pascal tasks, which is proposed in Section 4. In
Section 5 we introduce the P-NET network aspects by analysing the worst-case response time of communicating Process-
Pascal tasks. Importantly, we show the impact of the specific Process-Pascal task models in the evaluation of the end-to-
end communication delay of P-NET messages and propose a real-time guaranteed approach for developing distributed
applications with Process-Pascal where distribution is provided by P-NET networks. Finally, in Section 6 we draw some
conclusions.

2. Task's Model in Process-Pascal

The Process-Pascal language is similar to standard Pascal but it includes some extensions to allow multitasking and to
enable interoperation with industrial microprocessor-based controllers. One of those extensions targets the use of P-NET
networks to support the access to variables in remote network nodes.
The multitasking capabilities of Process-Pascal allow the division of a program into a set of tasks, each one performing a
distinct function. These tasks are scheduled by the operating system running on the network node (typically a controller).
The philosophy employed in Process-Pascal tries to give the user some control over the scheduling process, by allowing
enabling/disabling pre-emption or even to control in which points of the programs the scheduler should run.
In general, Process-Pascal tasks should contain its code within an endless loop, like it can be seen in the following
pseudo-code example:

Task GeneralControl
Begin
   (* initialisation code *)
   Loop
      (* code of the task *)
      ChangeTask;
   End;
End;

If the code is not comprised within an endless loop, when the processor reaches the last end statement the task will go
into the suspended state, and will not run again unless it is explicitly activated by another task.
In the previous pseudo-code example, the CHANGETASK call triggers the operating system scheduler, leading to a switch
from the running task to another.
Three different types of tasks can be defined in Process-Pascal: CYCLIC; TIMEDINTERRUPT and SOFTWIREINTERRUPT
tasks. CYCLIC tasks have the lowest relative priority (among the three different types) and SOFTWIREINTERRUPT tasks
have the highest relative priority.
CYCLIC tasks are executed in sequence. These tasks are placed on the CYCLIC task chain, and executed by an order
determined by the order of their definition within the program’s source code. Importantly, this kind of task can be pre-
empted by any other type of tasks except if it calls the DISABLE(TimedInterrupt),
DISABLE(SoftwireInterrupt) or DISABLE(Interrupt) system calls, to disable pre-emption imposed by
TIMEDINTERRUPT tasks, by SOFTWIREINTERRUPT tasks or by both these two types of tasks, respectively. By default,
interruptions are enabled in CYCLIC tasks. However, interrupts can be explicitly disabled inside a CYCLIC task (to
disallow pre-emption in a section of the task) and then explicitly enabled to allow pre-emption again, by the use of
ENABLE(Type_of_task) system calls.
When a CYCLIC task is pre-empted by a higher priority task (either a TIMEDINTERRUPT or a SOFTWIREINTERRUPT
task), the higher priority task will run until it ends and the CYCLIC task will then resume execution from the point of
interruption. In the example of Fig. 1, and throughout the rest of the paper, we consider that the time needed to switch
from task to task can be neglected.
TIMEDINTERRUPT tasks are released at well-defined time instants. At the end of its execution, to switch from a
TIMEDINTERRUPT task to another type of task, the CHANGETASK system call must also be used. A TIMEDINTERRUPT
task can pre-empt any CYCLIC task. Note however that it can not be pre-empted by a SOFTWIREINTERRUPT task (the
reverse is also valid). In Fig. 1 we illustrate these characteristics with an example set of three CYCLIC tasks (allowing
pre-emption) and one TIMEDINTERRUPT task (obviously periodic).
SOFTWIREINTERRUPT tasks are released only when, for instance, there is an access to an internal Process-Pascal global
variable (an event). Note that global variables in Process-Pascal can be internal (stored in the local network-node -
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controller) or external (stored in another device interconnected by, for instance, a P-NET network). Examples of events
that trigger SOFTWIREINTERRUPT tasks are keyboard activation or when a remote node reads a local variable. In Fig. 1
we exemplify a scenario where a SOFTWIREINTERRUPT task pre-empts CYCLIC tasks, but does not pre-empts the
TIMEDINTERRUPT tasks.

CyclicTask 1

CyclicTask 2

CyclicTask 3

release of task

completion of task execution

task is pre-empted

time

TIMEDINT. Task

SOFTW. Task

Figure 1 – Interaction between Process-Pascal tasks

To each SOFTWIREINTERRUPT task, it is required to define a variable with a specific softwire number (0-31). The task to
be released in association to the interrupt will have the same softwire number. The softwire number will define the
priority for the associated SOFTWIREINTERRUPT task: if two different events occur "simultaneously", the one with the
higher softwire number will be processed first.
All tasks are grouped in a task chain system. CYCLIC tasks are placed on the cyclic chain list with one task pointing to
the next task. TIMEDINTERRUPT tasks are placed on another chain list where the order is determined by the next time
they will run. Finally, SOFTWIREINTERRUPT tasks are in a third chain ordered by its interrupt connections. These will
run whenever an event occurs.
When CHANGETASK is called the next task to run can be the task with the higher priority on the SOFTWIREINTERRUPT
task chain. If there are no tasks on the SOFTWIREINTERRUPT task chain but there are tasks on the TIMEDINTERRUPT
chain, ready to run, the first will run. If there are no tasks on the SOFTWIREINTERRUPT and TIMEDINTERRUPT task
chains, the next task to run will be the next task on the CYCLIC task chain.

3. Response Time Analysis of Tasks in Single Processor Systems

In a single-processor real-time system, one must ensure that all tasks will be schedulable. Basically this means that the
response time of any task in the system; that is, the time interval measured from the instant a task is made runnable (is
released) to the instant it completes its execution, will not be higher than the acceptable for that task. The maximum
response time allowed for a task is usually called the task's relative deadline.
In this section we briefly survey previous relevant work in deriving pre-run-time schedulability analysis for guaranteeing
the schedulability of a task set. It is assumed that the task set is composed of independent tasks for which relative
deadlines (denoted D) are smaller or equal to the task's periodicity (denoted T). It is also assumed that tasks are scheduled
according to the deadline monotonic (DM) [5] priority assignment policy.

3.1. In the Pre-emptive Context

In [6] the authors proved that the worst-case response time Ri of a task i is found when all tasks are synchronously
released (critical instant) at their maximum rate. Ri is defined as:

iii CIR += (1)

In equation (1), Ci corresponds to the worst-case execution time (WCET) of task i. Ii is the maximum interference that
task i can experience from higher-priority tasks in any interval [t, t + Ri). The maximum interference (Ii) occurs, when all
higher-priority tasks are released synchronously with task i (the critical instant). Without loss of generality, it can be
assumed that all processes are released at time instant 0.
The response time can be given by equation 2 where the first term is the interference
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where hp(i) denotes the set of higher-priority tasks (than task i).
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Equation (2) embodies a mutual dependence, since Ri appears in both sides of the equation. In fact all the analysis
underlay this mutual dependence, since in order to evaluate Ri, Ii must be found, and vice-versa. The easiest way to solve
such equation is to form a recurrence relationship [7].
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The recursion ends when Wi
m+1 = Wi

m = Ri, and can be solved by successive iterations starting from Wi
0 = Ci. Indeed, it is

easy to show that Wi
m is non-decreasing. Consequently, the series either converges or exceeds Di (in the case of DM). If

the series exceeds Di, the task τi is not schedulable.

3.2. In the Non Pre-emptive Context

In [7] the authors updated the analysis of Joseph and Pandya to include blocking factors introduced by periods of non
pre-emption, due to the non-independence of the tasks. The worst-case response time is then updated to:
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which may also be solved using a similar recurrence relationship. Bi is the maximum blocking (higher-priority tasks are
blocked by lower-priority ones due to non pre-emption) a task i can suffer, and is defined as follows:
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where lp(i) denotes the set of lower-priority tasks (than task i).
Some care must be taken using equation (4) for the evaluation of the worst-case response time of non pre-emptable
independent tasks. In the case of pre-emptable tasks, with equation (2) we are finding the processor's level-i busy period
preceding the completion of task i; that is, the time during which task i and all other tasks with a priority level higher than
the priority level of task i still have processing remaining. For the case of non pre-emptive tasks, there is a slight
difference, since for the evaluation of the processor's level-i busy period we cannot include task i itself; that is, we must
seek the time instant preceding the execution start time of task i.
Therefore, equation (1) can be used to evaluate the task's response time of a task set in a non pre-emptable context and
independent tasks, where the interference must be now re-defined as follows:
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4. Response Time Analysis for Process-Pascal Tasks

The response time analysis outlined in the previous section will now be adapted in order to encompass the characteristics
of Process-Pascal tasks.
Process-Pascal tasks can be characterised by their type, their worst-case execution time (Ci) and their period (Ti). For a
SOFTWIREINTERRUPT task, Ti represents the minimum interval between two consecutive releases of the task. For a
TIMEDINTERRUPT task, Ti is equal to its period, which is defined on the declaration of the function. Finally, for the case
of CYCLIC tasks, its period will be defined has the minimum time between two consecutive executions. This time will be
sum of the best-case execution times for the tasks in the cyclic task chain.
To calculate the maximum response time of a task, we must know the component parts of that response time. Note again
that both SOFTWIREINTERRUPT and TIMEDINTERRUPT tasks are not pre-emptable. If two tasks of these types are
launched at the same time, one will have to wait for the other to finish..
In the following sections we will denote SI as the set of SOFTWIREINTERRUPT tasks, TI as the set of TIMEDINTERRUPT
tasks and CC as the set of CYCLIC tasks.



- 5 -

4.1. SOFTWIREINTERRUPT Tasks

Consider that a SOFTWIREINTERRUPT task 1 with the highest priority (e.g. 31) is runnable. This task will execute
immediately unless there is another SOFTWIREINTERRUPT or TIMEDINTERRUPT task running. As these types of tasks
cannot be pre-empted, the new task will wait for the first task to finish its execution, and then starts its execution. The
response time of the highest priority task is then the worst-case waiting time to start executing added to its own worst-
case execution time.
Considering equation (1), the worst-case response time for that task will happen when the SOFTWIREINTERRUPT task is
released just after the release of another SOFTWIREINTERRUPT or TIMEDINTERRUPT task. Thus, R1 = I1 + C1, where I1 is
as follows: I1 = max (Ci), with i ∈ (lpsi(1) ∪ TI), with lpsi(1) being the set of lower priority SOFTWIREINTERRUPT tasks.
Assume now the SOFTWIREINTERRUPT task with the second highest priority (also released at the critical instant). Firstly,
that task will have to wait for the completion of a blocking task. Then there is the interference caused by the highest
priority task, and then for any other tasks with the same priority that may already be in the task chain before it starts its
execution. This interference may only occur before the task starts its execution, since a SOFTWIREINTERRUPT task
cannot be pre-empted. So, the response time of the second highest priority task is R2 = I2 + C2, where the interference is
given by I2 = B2 + I2/T1 × C1 +  ∑k∈epsi(2), k≠2, k≠bi Ck. The term within the ceiling function gives the number of times the
highest priority task will be executed before the second task is allowed to run. bi is the task that has caused the initial
blocking. B2 represents the maximum completion time for any lower priority SOFTWIREINTERRUPT task and
TIMEDINTERRUPT tasks. epsi(2) represents the set of tasks with the same priority as task 2. Finally, B2 is defined as
follows: B2 = max (Ci), with i ∈ (lpsi(2) ∪ TI).
This reasoning can be generalised for any-priority SOFTWIREINTERRUPT task. The worst-case response time for this
type of tasks is given by equation (1), where the interference is defined as follows:
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where Bi is defined as: Bi=max(Cm),m∈(lpsi(i)∪TI).
In our model we are considering that SOFTWIREINTERRUPT tasks are usually sporadic. In this case Ti has a different
meaning than the one for periodic tasks. When referring to sporadic tasks, Ti represents the minimum time between two
consecutive executions of the task i. This makes our model somewhat pessimistic.

4.2. TIMEDINTERRUPT Tasks

All TIMEDINTERRUPT tasks have the same priority, so the first task to be runnable will be the first task to run, if they are
ready to run at the same time. The tasks are stacked on a FIFO queue called timed interrupt task chain. When a
TIMEDINTERRUPT task is released and there are only lower priority (CYCLIC) tasks running, the task will run
immediately (no waiting period). Therefore, and assuming again equation (1) for the response time analysis, the
interference will be I1 = 0. If we consider that there is already a task in the timed interrupt task chain, the waiting time
will be I2 = C1.
Therefore, for generalising, and including the interference resulting from SOFTWIREINTERRUPT tasks (which have all
higher priority than TIMEDINTERRUPT tasks), the interference is given by:
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4.3. CYCLIC Tasks

This type of tasks can be pre-empted by TIMEDINTERRUPT or SOFTWIREINTERRUPT tasks, which means that they may
suffer interference during their whole response time (refer to Section 4 for clarification). This characteristic will have to
be included in our models. For this case, it is not possible to divide the response time in waiting time and running time as
made in Sections 4.1 and 4.2.
Taking this into consideration, the worst-case response time for a CYCLIC task is given by:
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As mentioned in Section 3.1, equations for evaluating worst-case response times are typically mutually dependent
equations. This is also the case of equations (7), (8) and (9). Forming a recurrence relationship solves these equations.
For the case of CYCLIC tasks (equation (9)), the recurrent relationship will be:
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The first value of the iteration is Ri
0 = Ci. It can be proved that set of values Ri

0, Ri
1, Ri

2, K, Ri
n, K is monotonically non-

decreasing. When Ri
n+1 = Ri

n, the solution to the equation has been found.
Equations (7) and (8), for the SOFTWIREINTERRUPT and TIMEDINTERRUPT tasks, respectively, can be solved similarly.
The difference is that in these cases the recurrence aims at determining simply the value of the interference (the time
instant at which the task under analysis starts execution), whilst in the case of CYCLIC tasks we are seeking the time
instant when the task completes its execution (it can be pre-empted at any point by SOFTWIREINTERRUPT or
TIMEDINTERRUPT tasks).

5. Response Time for Communicating Tasks

When engineering a real-time system, it is necessary to evaluate the worst-case response time of the complete set of tasks
associated to it. When the system is a distributed one, a component of the tasks’ response time will be time need by a
communicating task to process remote accesses.
For analysing the behaviour of Process-Pascal tasks, we consider two different cases. First, we consider that CYCLIC
tasks may explicitly disable pre-emption. In a second case we consider that CYCLIC tasks allow pre-emption. This is the
most important since, as will be later seen, the Process-Pascal task models may impact the analysis for the evaluation of
messages’ worst-case response time.

5.1. Models for Process-Pascal Communicating Tasks

In Process-Pascal, external variables may represent variables related to other P-NET network nodes. These variables have
to be defined with the special keyword AT NET and with the address of the module, as can be seen on the following
extract of code.

VAR
DigModule: PD3221 AT NET: (1, 45);
light->

DigModule.Digital_IO_1.FlagReg[6];

This pseudo-code includes the definition of a variable called DigModule as the entire interface of a P-NET module,
which can be accessed by P-NET port 1 (a P-NET gateway can be a multi-port node) and is resident on a P-NET network
node of the type PD3221 (slave node) with the network address 45. Then the variable light is defined to access a specific
bit, bit 7, of a register in the PD3221.
When a task is being executed and it wants to access a variable in a remote node, it simply does: a = light (to read)
or light = 1 (to write), where a can be a local variable. In effect, this equality operation is not so simple because it
involves communications through the P-NET network (sending a request and receiving the related response).
During the communication time, a CYCLIC task cannot be pre-empted by other CYCLIC tasks, but it can be pre-empted
by SOFTWIREINTERRUPT or TIMEDINTERRUPT tasks.

5.1.1. Case 1: Interrupts are Disabled
In Fig. 2, we show the impact of disabling pre-emption in a communicating CYCLIC task. When the
SOFTWIREINTERRUPT task is released, it can not immediately run because the CYCLIC task disabled interrupts. The
CYCLIC task may disable interrupts in order to perform critical operations, such as being involved in communications.
While waiting for the response (from the slave) to the request, the CYCLIC task will be blocked. When the response is
received the task continues to perform its critical operations and finally enables the interrupts. At this point the
SOFTWIREINTERRUPT task can run, until completion.
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Cyclic Task

release of task

completion of task execution

time

SOFTWIREINTERRUPT

Worst Case Response Time of Message

task executing critical operations

Enable interrupts

Disable Interrupts

task is envolved on communications

Message queued Response  received

the cyclic task is running

Figure 2 – A cyclic task with the interrupts disabled

5.1.2.  Case 2: Interrupts are Enabled
In the case that the CYCLIC task does not disable interrupts, this will allow other tasks to pre-empt it even if the CYCLIC
task is involved in communications. This case permits a better utilisation of the processor, as the SOFTWIREINTERRUPT
(or the TIMEDINTERRUPT) task will be executing while the CYCLIC task is blocked waiting for the response from the
slave.

Cyclic Task

release of task

completion of task execution

time

SOFTWIREINTERRUPT

Message Worst Case Response Time

task is pre-empted

task is envolved on
communications

Message queued
Response received

Figure 3 – A cyclic task with the interrupts enabled

The example is illustrated in Fig. 3, where a CYCLIC task initiated a communication transaction, queued a message and is
waiting for the response. During this period a SOFTWIREINTERRUPT task is released and starts execution. Note that this
SOFTWIREINTERRUPT task will also perform a communication transaction, but as there is already a communication
going on, this task will have to wait for the end of the communication transaction by the CYCLIC task (refer to Section
5.2. for better understanding this aspect).

5.2. Response Time Evaluation of P-NET Messages

The name P-NET is a derivation of “Process Network”. P-NET was designed as a communications link between
distributed process control sensors, actuators and small programmable controllers.
P-NET is a multi-master standard. Therefore, all communication is based on a principle, where a master sends a request
and the addressed slave immediately returns a response. For multi-master support, P-NET uses a Virtual Token Passing
(VTP) scheme.
The P-NET standard also stands that each master is only allowed to perform one message cycle (a message request from
the master followed by the immediate related response from the slave) per token visit. This is an important notion for the
remainder of this section.
Assume that CM is the maximum transmission duration of all message cycles in a P-NET network. This duration includes
both the longest request and response transmission times, and also the worst-case slave’s turnaround time.
Therefore, if a master uses the token to perform a message cycle, we can define a token holding time as:
H = ρ + CM + τ. In this expression, the symbol τ (= 40 bit periods) corresponds to the time to pass the token after a
message cycle has been performed. The symbol ρ (≤ 7 bit periods) denotes the worst-case master’s reaction time. If a
station does not use the token to perform a message cycle, the bus will be idle during σ (= 10 bit periods). These aspects
and the following basic message response time analysis thoroughly explained in [8].
We consider a network with n masters, with addresses ranging from 1 to n. Each master accesses the network according
to the VTP scheme. Hence, first master 1, then master 2, 3, … until master 1, and then again 2, 3, … Slaves will have
network addresses higher than n. We also assume the following message stream model:

),,( k
i

k
i

k
i

k
i DTCS = (11)



- 8 -

Si
k defines a message stream i in master k (k = 1, .., n). A message stream is a temporal sequence of message cycles

concerning, for instance, the remote reading of a specific process variable. Ci
k is the longest message cycle duration of

stream Si
k. Ti

k is the periodicity of stream Si
k requests. Finally, Di

k is the relative deadline of the message cycle, that is, the
maximum admissible time span between the instant when the message request is placed in the outgoing queue and the
complete reception of the related response at the master's incoming queue. We consider that messages generated in the
distributed system can be periodic or sporadic. For the case of sporadic message requests, its period corresponds to the
minimum time between any two consecutive requests for that stream. nsk is the number of message streams associated
with a master k.
In this model, the relative deadline of a message can be equal or shorter than its period (Di

k ≤ Ti
k). Thus, if in the outgoing

queue there are two message requests from the same message stream, this means that a deadline for the first of the
requests was missed. It also results that the maximum number of pending requests in the outgoing queue will be, in the
worst-case, nsk.
We denote the worst-case response time of a message stream i in a master k as Ri

k. This time is measured starting at the
instant when the request is placed in the outgoing queue, until the instant when the response is completely received at the
incoming queue. Basically, this time span is made up of the two following components: the time spent by the request in
the outgoing queue, until gaining access to the bus (queuing delay) and the time needed to process the message cycle, that
is, to send the request and receive the related response (transmission delay).
Thus,

k
i

k
i

k
i CQR += (12)

where Qi
k is the worst-case queuing delay of a message stream i in a master k.

In order to have simpler and more understandable analysis, we will use the maximum token holding time (H = ρ + CM +
τ) for all message cycle transactions, instead of considering the actual length for each particular message cycle. Thus, in
equation (13), Ci

k is replaced by CM.
A basic analysis for the worst-case response time can be performed if the worst-case token rotation time is assumed for
all token cycles (in [9], the authors developed a more sophisticated analysis by considering the actual token rotation
time).
As the token rotation time is the time span between two consecutive visits of the token to a particular station, the worst-
case token rotation time, denoted as V, is: V = n x H, which gives the worst-case time interval between consecutive token
visits to any master k (k = 1, .., n).
In P-NET, the outgoing queue is implemented as a first-come-first-served (FCFS) queue. Therefore, a message request
can be in any position within the nsk pending requests. nsk is also the maximum number of requests which, at any time,
are pending in the master k outgoing queue. This results from the adopted message stream model, which considers
Di

k ≤ Ti
k. Hence, the maximum number of token visits to process a message request in a master k, is nsk. The worst-case

queuing delay occurs if nsk requests are placed in the outgoing queue just after a message cycle was completed.
Based on these assumptions, in [9] the authors prove that the worst-case response time for a P-NET request is given by:

( )τρ ++××=××=×= M
kkkk CnnsHnnsVnsR (13)

5.3. Holistic Analysis

For the evaluation of the worst-case response time (WRCT) of the tasks it is important to note that the worst-case
execution time (C) of the tasks includes a portion concerning the communication response time (R).
In the remainder of this section we show, for the two referred cases (allowing and not allowing pre-emption of CYCLIC
tasks), that there is an important influence of the Process-Pascal task model in the evaluation of messages' response time
(equation (13)).
Additionally we update response time analysis of SOFTWIREINTERRUPT and TIMEDINTERRUPT tasks (Sections 4.1 and
4.2, respectively) to include periods of non pre-emption in CYCLIC tasks. The analysis is specifically updated taking into
account the message passing mechanisms.

5.3.1.  Case 1: Interrupts are Disabled
Equations (7) and (8) must be changed in order to include the blocking time due to the disabling of interrupts by CYCLIC
tasks.
Therefore, in the case of SOFTWIREINTERRUPT tasks the calculation of the blocking time is: Bi=max(Ci,Bcc),i∈(lpsi(i)∪TI),
where BCC is the longest blocking time due to the non pre-emptive period of any CYCLIC task.



- 9 -

For TIMEDINTERRUPT tasks, we will have also to consider the impact of non pre-emptive periods in CYCLIC tasks (BCC).
As TIMEDINTERRUPT tasks are not pre-emptable, this term must be considered in the equation for the evaluation of the
interference. Therefore, equation (8) is updated to:

∑ ∑
∈ ≠∈

+











+=

SIy ikTIk
ky

y

i
CCi CC

T

I
BI

,

* (14)

An important result of not allowing pre-emption in any task (note that both TIMEDINTERRUPT and
SOFTWIREINTERRUPT tasks are not pre-emptable) is that there can only be one message at a time waiting to be
transmitted in a master k outgoing queue.
Therefore, and for this scenario, equation (14) will result in Rk = V. This result can be used to evaluate the maximum
blocking time for a task due to communication delays. This time can be incorporated to obtain a parcel of the blocking
time, BCC, of a SOFTWIREINTERRUPT or TIMEDINTERRUPT task.

5.3.2. Case 2: Interrupts are Enabled
In this case, a CYCLIC task can be pre-empted. However, there is still an additional blocking time in both
SOFTWIREINTERRUPT or TIMEDINTERRUPT tasks, due to the fact that if they have message cycles to perform, they may
have to wait for the completion of a message cycle previously initiated by a CYCLIC task (refer to Fig. 3).

Master 1

Master 2

Master 3

message is queued

end of transmission

token holding time of master 1

token holding time of master 2

token holding time of master 3

time
WCRT (Softwire Message)

message from the cyclic task is queued – M1

message from the softwire task is queued – M2

Message from CYCLIC
task processed

Message from SOFTWIREINTERRUPT
task processed

Figure 4 – Messages on the network

As SOFTWIREINTERRUPT and TIMEDINTERRUPT tasks cannot interrupt each other there will be at most two pending
requests (one from the cyclic task and another from the higher priority task) on the output communication queue. Take
the example of Fig. 4 and assume the case that in master 3 there are two tasks: a CYCLIC task and a
SOFTWIREINTERRUPT task.
The worst case happens when master 3 as just finished transmitting a message and a CYCLIC task queues a message
(M1). Then the CYCLIC task is pre-empted by a SOFTWIREINTERRUPT task, which queues another message (M2).
As P-NET uses a FCFS communication queue, the message from the SOFTWIREINTERRUPT task will have to wait for the
transmission of the message that is already in the communication queue. As in P-NET a master is only able to process a
message cycle per token visit, M2 will only be transmitted after 2 token visits to master 3.
Therefore, and for the evaluation of the tasks' response time, in the case of CYCLIC tasks, the messages' response time
will be Rk = V, whilst for the other two types of tasks will be Rk = 2 × V.

6. Conclusions

The problem of engineering real-time distributed applications is a complex one. A potential leap towards the use of
fieldbus in such time-critical applications lies in the evaluation of its temporal behaviour.
In the past few years several research works have been performed on a number of fieldbuses. However, these have
mostly focused on the message passing mechanisms, without taking to account the real implementations of those
communication protocols, and emphatically without taking into account the application development tools for those
distributed systems. The main contribution of this paper was to provide an application software perspective for
engineering real-time with fieldbus networks. We address the case of P-NET fieldbus networks and the Process-Pascal
tool to develop P-NET based distributed applications.
Importantly, we have developed worst-case response time analysis for the actual tasks that are executed in
P-NET networks and integrated this analysis with the worst-case response time analysis of P-NET network messages.
In this way, we provide an important set of analysis for engineering real-time distributed applications with
P-NET networks using the natural system developer's perspective: an application software perspective.
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Also an important result was to show how the timing analysis performed merely at the message level can be influenced in
its assumptions when application task models (communicating tasks) are brought into consideration.
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