

Fair Bandwidth Sharing among Virtual
Machines in a Multi-criticality Scope

Technical Report

CISTER-TR-130407

Version:

Date: 04-13-2013

Stefan Groesbrink

Luis Almeida

Mario de Sousa

Stefan M. Petters

Technical Report CISTER-TR-130407 Fair Bandwidth Sharing among Virtual Machines

 in a Multi-criticality Scope

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Fair Bandwidth Sharing among Virtual Machines in a Multi-criticality Scope
Stefan Groesbrink, Luis Almeida, Mario de Sousa, Stefan M. Petters

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.cister.isep.ipp.pt

Abstract
System virtualization’s consolidation in separated virtual machines provides a reasonable way to integrate
formerly distinct systems into a single mixed-criticality multi-core system. We propose an adaptive resource
management scheme for virtualization-based systems that have to be certified. Periodic servers and the elastic
task model combine analyzability at design time with adaptability at runtime. A mode change or theenabling /
disabling of tasks trigger a resource redistribution, which guarantees that a specified minimum is always allocated
and obtains a fair distribution of spare capacity among the virtual machines. The partitioned scheduling and the
assignment of static priorities ease certification. The scheme has the potential to improve the resource utilization
and support adaptive and self-optimizing applications with strongly varying execution times.

Fair Bandwidth Sharing among Virtual Machines in
a Multi-criticality Scope

Stefan Groesbrink
Heinz Nixdorf Institute

University of Paderborn
Paderborn, Germany
s.groesbrink@upb.de

Luis Almeida, Mario de Sousa
IT - Faculty of Engineering

University of Porto
Porto, Portugal

{lda, msousa}@fe.up.pt

Stefan M. Petters
CISTER/INESC-TEC,

ISEP, IPP
Porto, Portugal
smp@isep.ipp.pt

Abstract—System virtualization’s consolidation in separated

virtual machines provides a reasonable way to integrate for-

merly distinct systems into a single mixed-criticality multi-core

system. We propose an adaptive resource management scheme for

virtualization-based systems that have to be certified. Periodic

servers and the elastic task model combine analyzability at

design time with adaptability at runtime. A mode change or the

enabling / disabling of tasks trigger a resource redistribution,

which guarantees that a specified minimum is always allocated

and obtains a fair distribution of spare capacity among the

virtual machines. The partitioned scheduling and the assignment

of static priorities ease certification. The scheme has the potential

to improve the resource utilization and support adaptive and self-

optimizing applications with strongly varying execution times.

I. INTRODUCTION

System virtualization refers to the hypervisor-controlled
division of the resources of a computer system into multiple
virtual machines (VM). Each VM runs an adequate operat-
ing system, e.g., an efficient and highly predictive real-time
executive for safety-critical control tasks and a feature-rich
operating system for the communication or human-machine in-
terface. The consolidation of multiple systems with maintained
isolation and resource partitioning is well-suited to combine
independently developed trusted (and potentially certified)
systems of different criticality levels to a system-of-systems.
The rise of multi-core embedded processors [1] is a major
enabler for virtualization, whose architectural abstraction eases
the migration from single-core to multi-core platforms. The
replacement of multiple hardware units by a single multi-core
system has the potential to provide the required computational
capacity with reduced size, weight, and power.

In order to guarantee real-time requirements, existing vir-
tualization solutions for embedded systems apply a static
resource assignment [2]. Two typical solutions are an one-
to-one mapping of VMs to processors, or if VMs share a
processor, a static cyclic schedule with fixed execution time
slices. Static resource allocation naturally evokes fragmenta-
tion of available resources, as reserved, but unused capacity
cannot be reclaimed to improve the performance of other VMs.
Static approaches are in addition inappropriate for the varying
resource requirements of adaptive and self-optimizing systems
as well as open systems, in which subsystems may be added
or removed at runtime.

In this work, we propose an adaptive resource manage-
ment scheme based on a dynamic budget setting of servers

combined with an elastic task model. Next to the appropriate
consideration of multiple criticality levels, one goal is the fair
distribution of spare capacity among the virtual machines. This
is particularly important for virtual machines that either run
applications with strongly varying execution time or that can
take advantage of higher capacity to produce improved results
or provide extra functionality. This is a work-in-progress paper
and the necessary validation is still on-going.

II. SYSTEM MODEL

The periodic task model [3] defines workloads as a se-
quence of jobs. Each task ⌧

i

is characterized by a worst-case
execution time (WCET) C

i

and a period T

i

, denoting the
time interval between the activation times of consecutive jobs.
The utilization of a task U(⌧

i

) is defined as U(⌧
i

) = C

i

/T

i

.
Moreover, a criticality level � is assigned to each task [4],
lower value denoting higher criticality. The presented alloca-
tion scheme can be applied to the sporadic task model as well,
but the periodic model is more suitable for certification.

A VM V

k

is modeled as a set of tasks and a guest operating
system. Notation ⌧

i

2 V

k

denotes that task ⌧

i

is executed
in V

k

. The utilization of V

k

is the sum of the utilizations
of its tasks, implying that operating system overhead is ne-
glected: U(V

k

) =
P

⌧

i

2V

k

U(⌧
i

). The criticality level of V

k

corresponds to the highest criticality of its tasks: �(V
k

) =
max{�(⌧

i

)|⌧
i

2 V

k

}. Independent VMs are assumed, with
neither shared resources except from the processor, nor data
dependencies, nor inter-VM communication. V

k

7! Proc

l

denotes that VM V

k

is executed on processor Proc

l

.

Marau et al. extended the periodic task model in order to
realize an elastic scheduling [5]. A task ⌧

i

is characterized
by a minimum bandwidth U

min

(⌧
i

), a maximum bandwidth
U

min

(⌧
i

)+U

lax

(⌧
i

), and a Quality-of-Service (QoS) parameter
qos(⌧

i

). Given a (fixed) resource capacity U

R

, the spare
bandwidth defines the bandwidth that can be distributed among
tasks after having guaranteed their minimum requirements:
U

spare

= U

R

�
P

n

i=1 Umin

(⌧
i

). Marau et al. presented an
algorithm that provides a weighted distribution among the
services, in order to achieve a notion of fairness regarding
the QoS improvement.

III. ARCHITECTURE

A. Abstraction of Resource Supply by Virtual Processors

Target platform are homogeneous multi-core systems, con-
sisting of m identical cores. A virtual processor P

virt

k

is
a representation of a share of the bandwidth of a physical
processor to the VM V

k

and multiple virtual processors can
be mapped to a single physical processor. A formal abstraction
of the resource supply by a virtual processor was introduced
by Shin and Lee [6]. The periodic resource model �(⇧,⇥)
characterizes a periodic behavior of a partitioned resource: ⇥
time units are allocated every period ⇧ (0 < ⇥  ⇧). The
allocation according to the periodic resource model is a natural
fit to the periodic timing requirements of the applied workload
model. If a processor is not partitioned, an exclusively assigned
processor is modeled as �(1, 1). The minimum computation
time allocations provided by a virtual processor in a time
interval of length t are specified in terms of a supply bound
function sbf(t), which allows to analyze the schedulability of
a VM as if it is executed by a fractional processor.

Each virtual processor �
k

(⇧
k

,⇥
k

) is implemented as a
periodic server. If scheduled and therefore active, a server’s
capacity is used to execute the computation time demand
of the associated VM. The capacity limits this service and
is replenished at each period. The server enforces a certain
bandwidth ↵, limiting the contribution of a VM, even in the
presence of overloads:

↵

k

=
⇥

k

⇧
k

(1)

Moreover, the service delay � specifies the maximum
period of time that the associated VM may have to wait before
receiving computational service [7]:

�
k

= 2 · (⇧
k

�⇥
k

) (2)

B. Partitioned Hierarchical Scheduling

System virtualization implies partitioned scheduling, since
entire software stacks including operating system are inte-
grated, resulting in scheduling decisions on two levels (hierar-
chical scheduling). The hypervisor schedules the VMs and the
hosted guest operating systems schedule their tasks according
to their own local scheduling policies. This is irreconcilable
with a scheduling based on a global ready queue. To enable
the hypervisor-based integration of independently developed
and validated systems, temporal isolation between VMs has
to be ensured by a hierarchical scheduling scheme and there
are many solutions for uniprocessor hierarchical real-time
scheduling, e.g. [8], [9].

1) Virtual Machine Scheduling: In the context of this
work, VMs are statically assigned to processors. Although a
dynamic mapping is conceptually and technically possible, a
static solution eases certification significantly, due to the lower
run-time complexity, the higher predictability, and the wider
experience of system designer and certification authority with
uniprocessor scheduling.

The partitioning of the VMs to the processors focuses
on two goals. Minimizing the overall required computation
bandwidth is the first goal, since it determines the number

of processors required to host the set of VMs. In addition, a
distribution of critical VMs among the processors is targeted.
If VMs of differing criticality share a processor, there are
in general more possibilities to apply an adaptive bandwidth
management and the addition of subsystems of low criticality
to critical subsystems can increase the resource utilization, as
higher criticality applications suffer from a more pessimistic
worst-case resource demand determination [10].

A dedicated virtual processor—modeled as a periodic re-
source model �

k

(⇧
k

,⇥
k

) and realized as a periodic server—is
assigned to each VM V

k

. The initial bandwidth of a server is
determined by the minimum bandwidth U

min

(V
k

). A small
period causes a high number of costly virtual machine context
switches and a large period results in a large service delay and
hence in a low reactivity. The largest possible blackout interval
without resource supply determines the largest possible service
delay �max

k

. A necessary condition is that �max

k

is not greater
than the smallest difference of period and WCET for all tasks
of VM

k

:
�max

k

 min
⌧

j

2V

k

(T
j

� C

j

) (3)

With the largest possible service delay �max

k

known for
each VM V

k

and Equation 3 and Equation 4 given, the
server parameters for the virtual processor assigned to V

k

are
determined as follows:

⇧
k

=
�max

k

2 · (1� ↵

k

)
=

�max

k

2 · (1� U

min

(V
k

))
(4)

⇥
k

= ⇧
k

· ↵
k

= ⇧
k

· U
min

(V
k

) (5)

According to the scheme Criticality as Priority Assignment
(CAPA) [11], static priorities are assigned to the servers in
the order of decreasing criticality level. Starvation of lower
criticality VMs is nevertheless precluded, since a server is
suspended when the capacity is exhausted, unless no other
VM is active or, if it is a soft server, moved to execute in a
lower priority band.

2) Task Scheduling: A guest operating system can apply
an arbitrary task scheduling algorithm A, as long as it allows
to abstract the computation time requirements of the VM for a
specific time interval of length t in terms of a demand-bound
function dbf

A,V

i

(t) [6]. The comparison of bounded demand of
a VM and bounded supply by the associated virtual processor
realizes the schedulability analysis.

C. Dynamic Bandwidth Distribution

The adaptive resource management is implemented by
a dynamic modification of the budgets of the servers. A
minimum bandwidth is guaranteed for each VM and addi-
tional bandwidth can be assigned. The minimum bandwidth
U

min

(V
k

) of the server associated to VM V

k

is set to the sum
of the minimum bandwidths of V

k

’s tasks:

U

min

(V
k

) =
X

⌧

i

2V

k

U

min

(⌧
i

) (6)

Since VMs are statically assigned to the processors, spare
bandwidth has to be handled separately for each processor.
U

spare

(l) specifies the spare bandwidth of processor Proc

l

.

According to the elastic task model, the spare bandwidth of
Proc

l

is equal to:

1  l  m : U
spare

(l) = U

R

�
X

V

i

7!Proc

l

U

min

(V
k

) (7)

The server period ⇧
k

is fixed, whereas the capacity ⇥
k

is
set dynamically in order to allocate bandwidth in an adaptive
manner. The distribution algorithm considers the two factors
criticality level and weight in order to determine which VM
receives how much spare bandwidth. The criticality level �

is the dominant factor and in a first step, the bandwidth is
assigned in a greedy manner in order of decreasing criticality.
The highest criticality level obtains as much bandwidth as
possible, limited by either the distributable amount U

spare

or
the maximum bandwidth of its VMs:

X

V

i

with �(V
i

)=max crit

(U
min

(V
i

) + U

lax

(V
i

)) (8)

If there is spare bandwidth left, the next lower criticality
level is served and so on. The weights influence the bandwidth
assignment among VMs of the same criticality level, since a
greedy strategy lacks fairness. The determination of the weight
of a VM is based on the weight of its tasks. The normalized
weight of a task ⌧

j

in turn is based on the qos(⌧
j

) value [5]:

w(⌧
j

) =
qos(⌧

j

)P
⌧

k

2V

i

qos(⌧
k

)
(9)

w(V
i

) =
X

⌧

j

2V

i

qos(⌧
j

)P
8⌧

l

qos(⌧
l

)
(10)

Assumed that the bandwidth U

spare

is to be distributed
among VMs of same criticality level, the shares are set to:

U

add

(V
i

) = w(V
i

) · U
spare

(11)

This results in a total bandwidth assignment of:

U(V
i

) = U

min

(V
i

) + U

add

(V
i

) (12)

The new server bandwidth its set to ↵

i

= U(V
i

) and the
replenished budget follows as ⇥

i

= ↵

i

·⇧
i

.

The goal of the adaptive resource management is maximiz-
ing the resource allocation in order of decreasing criticality.
Moreover, another goal is to maximize the QoS for the fixed
amount of computation capacity, if there are guest systems that
can take advantage of an additional allocation of bandwidth.

The hypervisor is in charge of setting the budgets of the
servers. The following events have a significant impact on the
spare bandwidth U

spare

and trigger a redistribution:

• mode change of a task / virtual machine

• enabling / disabling of a task / virtual machine

Only U

add

(V) is determined at runtime and added to the
constant U

min

(V). Therefore, it is precluded that the allocated
bandwidth falls below U

min

(V).

TABLE I: Example: Virtual Machine Set

VM modes � U

min

U

lax

w

V1 a 1 .1 0 �
b 1 .1 .1 �

V2 1 .1 0 �
V3 2 .2 .3 .2

V4 2 .2 .6 .8

V5 2 .3 .7 �
V6 3 0 .1 �

IV. EXAMPLE

The following example illustrates the benefits of a dynamic
distribution of spare bandwidth. The set of VMs is given in
Table I. The motivating example is the consolidation of safety-
critical control systems with QoS-driven computer visions
systems for the automotive domain. The VMs V1 and V2

host control systems of highest criticality level. Additional re-
sources are of no benefit for some applications (U

lax

(V2) = 0),
since they do not perform mode changes or enable or disable
tasks at runtime. V1 is assumed to use additional bandwidth to
produce better results, realized by a mode change.

The VMs V3, V4, and V5 execute computer vision systems,
for example, for the detection of other vehicles or objects for
a collision warning system or the detection of lanes for a lane-
departure warning system. The QoS is directly related to the
number of processed frames per second. The execution time
of the vision algorithms varies, dependent on the variety of
situations and illumination conditions. Such systems benefit
from additional resource allocations and both mode changes
and task enabling/disabling can be applied subject to the
driving situation. For example, the rear view camera system
must only be enabled when the car is reversing.

VM V6 hosts a non-critical system. No service level
guarantee is given (U

min

(V6) = 0) and the VM is scheduled
in background. Such a specification is only reasonable if it is
known that there actually will be allocations at runtime in the
situation in which this VM has demand. An example is the
control of an adjustable driver seat, which has a computation
demand only if the car is not moving and in this situation the
load of the VMs of higher criticality is low.

This example emphasizes the flexibility of the elastic
model to support different criticality levels. Naturally modeling
applications with varying demand, it can be used as well
for highly-critical applications without varying execution time
(U

lax

= 0) and for non-critical applications that are scheduled
in background (U

min

= 0).

Assuming a two-processor platform, an appropriate par-
titioning of this VM set is for example a mapping
of {V1, V5, V6} to processor Proc1 and of {V2, V3, V4}
to processor Proc2, resulting in spare bandwidths of
U

spare

(Proc1)=0.6 and U

spare

(Proc2)=0.5. Figure 1 depicts
the VM schedule and the bandwidth allocation (dotted box
b=Proc1, hatched box b=Proc2). For the sake of clarity, this
example considers only the VM level, not the task level, and
a period of 10 is assumed for all servers.

From t=0 until t=10, the schedule without distribution of
spare bandwidth is illustrated. V1 is assumed to be in mode (a),

!b
+0.1

+0.1 -0.3

+0.4

+0.6 -0.1

+0.1

+0.2

Fig. 1: Example: Virtual Machine Schedule with Adaptive Bandwidth Allocation

V6 is assumed to be deactivated. At t=10, U
spare

(Proc1)=0.6
is assigned to V5, since it is the only guest with a nonzero U

lax

.
On Proc2, V3 obtains an additional bandwidth of 0.1 and V4

obtains additional bandwidth of 0.4, according to their weight.
At t=20, V1 switches to mode (b), in which it benefits from
extra bandwidth and the bandwidth of the lower-criticality V5

is reduced accordingly. V6 becomes active, is however not
executed (no guaranteed bandwidth), since the VMs of higher
criticality use the entire bandwidth. At t=30, V3 is deactivated
and the released bandwidth is redistributed to V4 and V6.

V. CONCLUSION

We proposed an adaptive resource management scheme for
virtualization-based systems that have to be certified. Periodic
servers and the elastic task model combine analyzability at
design time with adaptability at runtime. Periodic servers
provide isolation among VMs and the dynamic budget re-
plenishment implements an efficient bandwidth reallocation.
A mode change or the enabling / disabling of tasks trigger
a resource redistribution, which handles multiple criticality
levels appropriately and aims at achieving a fair distribution
of spare capacity among VMs.

The partitioned scheduling and the assignment of static
priorities ease certification significantly. The server-based lim-
itation of the computation time of highly-critical applications
precludes a starvation of applications of lower criticality. Most
important for certification, the bandwidth allocation never
falls below the application-specific minimum bandwidth. The
elastic task model is highly qualified for applications that can
take advantage of higher computational bandwidth to produce
improved results or realize additional functionality. It extends
the well-known periodic task model, which is inaccurate in
case of large variations of execution times.

An example illustrated situations, in which a dynamic
bandwidth assignment improved the performance of VMs com-
pared to a static scheme by redistributing capacity. The nec-
essary validation is still on-going and includes the integration

into a real-time multi-core hypervisor and a paravirtualization
of a real-time operating system.

ACKNOWLEDGMENT

This work was partially supported within the project
ARAMiS by the German Federal Ministry for Education and
Research with the funding IDs 01IS11035, by FEDER through
the COMPETE program, and by the Portuguese Government
through FCT grants SENODS - CMU-PT/SAI/0045/2009 and
SMARTS - FCOMP-01-0124-FEDER-020536. The responsi-
bility for the content remains with the authors.

REFERENCES

[1] A. Monot et al., “Multicore Scheduling in Automotive ECUs,” in
Embedded Real Time Software and Systems, 2010.

[2] Z. Gu and Q. Zhao, “A State-of-the-Art Survey on Real-Time Issues
in Embedded Systems Virtualization,” Journal of Software Engineering
and Applications, vol. 5, no. 4, pp. 277–290, 2012.

[3] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment,” in Journal of the ACM, 1973.

[4] S. Vestal, “Preemptive Scheduling of Multi-Criticality Systems with
Varying Degrees of Execution Time Assurance,” in Real-Time Systems
Symposium, 2007.

[5] R. Marau et al., “Efficient Elastic Resource Management for Dynamic
Embedded Systems,” in Conference on Trust, Security and Privacy in
Computing and Communications, 2011.

[6] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. of the 24th Real-Time Systems Symposium, 2003.

[7] A. Mok and A. Feng, “Real-Time Virtual Resource: A Timely Abstrac-
tion for Embedded Systems,” in Lecture Notes in Computer Science,
vol. 2491, 2002, pp. 182–196.

[8] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions:
Response-time analysis and server design,” in Conference on Embedded
Software, 2004.

[9] G. Lipari and E. Bini, “Resource Partitioning Among Real-Time Ap-
plications,” in Euromicro Conference on Real-Time Systems, 2003.

[10] S. Baruah et al., “Mixed-Criticality Scheduling: Improved Resource-
Augmentation Results,” in Conference on Computers and Their Appli-
cations, 2010.

[11] D. de Niz et al., “On the Scheduling of Mixed-Criticality Real-Time
Task Sets,” in Real-Time Systems Symposium, 2009.

