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Abstract 

Due to increasing autonomy in vehicles, the automotive industry is searching for solutionswhich allow the 
reduction of engineering costs resulting from increasing hardware andsoftware requirements. To solve the 
problem, one of the solutions being studied is theutilization of virtualization to allow multiple systems to coexist on 
the same hardware,allowing the systems to function as if they are isolated, while reducing hardware costs. 
Usingvirtualization, the system becomes capable of hosting services of mixed criticality safely,reducing 
interference between the services through temporal and spatial isolation.In this project we analysed the Xen 
hypervisor in an effort to better comprehend how itsinclusion would impact the execution of a system with real-
time requirements. After a brieflook at the current state of the art we describe how Xen behaves on the 32-bit 
ARMarchitecture, how it shares peripheral devices between virtual machines and how interdomaincommunication 
can be achieved. Following that, we present an example of how to deploy Xenon a Banana Pi SOC. After studying 
how best to establish a continuous connection betweendifferent virtual machines we tested our solution for 
message transfer jitter, deadline failurerate impact and deployed a prototype of an automotive application to 
verify how the systemwould behave in a real-world scenario.As planned, a system of mixed criticality was deployed 
on the hardware using the Xenhypervisor, PREEMPT RT was deployed on one virtual machine with real-time 
requirements,while Linux was deployed on a general-purpose virtual machine. The test showed that on 
theselected hardware Xen was unable to guarantee temporal isolation, showing significantperformance drops in 
deadline failures. The communication between virtual machines andthe deployment of the real-world application, 
however, were successful. 
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Abstract 
Due to increasing autonomy in vehicles, the automotive industry is searching for solutions 

which allow the reduction of engineering costs resulting from increasing hardware and 

software requirements. To solve the problem, one of the solutions being studied is the 

utilization of virtualization to allow multiple systems to coexist on the same hardware, 

allowing the systems to function as if they are isolated, while reducing hardware costs. Using 

virtualization, the system becomes capable of hosting services of mixed criticality safely, 

reducing interference between the services through temporal and spatial isolation. 

In this project we analysed the Xen hypervisor in an effort to better comprehend how its 

inclusion would impact the execution of a system with real-time requirements. After a brief 

look at the current state of the art we describe how Xen behaves on the 32-bit ARM 

architecture, how it shares peripheral devices between virtual machines and how interdomain 

communication can be achieved. Following that, we present an example of how to deploy Xen 

on a Banana Pi SOC. After studying how best to establish a continuous connection between 

different virtual machines we tested our solution for message transfer jitter, deadline failure 

rate impact and deployed a prototype of an automotive application to verify how the system 

would behave in a real-world scenario. 

As planned, a system of mixed criticality was deployed on the hardware using the Xen 

hypervisor, PREEMPT RT was deployed on one virtual machine with real-time requirements, 

while Linux was deployed on a general-purpose virtual machine. The test showed that on the 

selected hardware Xen was unable to guarantee temporal isolation, showing significant 

performance drops in deadline failures. The communication between virtual machines and 

the deployment of the real-world application, however, were successful. 

Keywords (Theme)  Virtualization, Automotive, Embedded Systems, Mixed-

Criticality, Real-Time 

Keywords (Technologies)  Xen, Robot Operating System, 32-Bit ARM, Banana Pi, Linux 
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1 Introduction 
The project entitled “Exploring Xen/KVM in prototyping an automotive use-case”, explored in 

this report, is part of the curricular unit named Projeto/Estágio (PESTI) of the Licenciatura em 

Engenharia Informática (LEI) of the Instituto Superior de Engenharia do Porto (ISEP). This 

project was proposed by the Research Centre in Real-Time & Embedded Computing Systems 

(CISTER), a Research and Development (R&D) centre devoted to the study of real-time and 

embedded systems, that is part of ISEP. 

1.1 Context 
Due to the advances in vehicle autonomy through computerization, the automotive industry 

is searching for solutions that can keep engineering costs low while increasing performance 

and guaranteeing the safety of critical systems within the vehicles [1]. The introduction of new 

features, including increased multimedia capabilities, advanced driving assistance and safety 

measures increase the costs of the required hardware and software. Several of these features 

require the use of embedded systems, i.e., computer systems that dynamically interact with 

the external world, these systems can influence but not control the environments they are 

embedded in [2]. These systems are also frequently used in scenarios where timeliness is a 

concern [3], meaning that the computation has not only to be logically correct but also 

complete within a certain time bound. These systems are then an example of real-time 

systems.  

Examples of embedded systems in the automotive industry are electronic control units (ECUs) 

that are responsible for controlling one or more electronic systems of the vehicle, as for 

instance the vehicles emission rates or managing the information displayed on the dashboard 

[3]. In fact, in 2015 cars contained around 110 ECUs responsible for the emission and cooling 

systems, driving assistance features and engine operation [4]. Due to the demand in new 

features and electronic components to control them, the automotive industry is interested in 

decreasing the time to market while keeping the development and integration costs low. One 

possible solution to overcome this challenge is the adoption of software virtualization 

solutions.  
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Virtualization is the technique by which several systems can execute on the same hardware, 

while keeping their isolation and effectively behaving as if executing on different machines. 

Each of these systems is known as a Virtual Machine (VM) and their manager/monitor is 

known as the hypervisor. A hypervisor, or virtual machine monitor (VMM), is a tool that allows 

one or more VMs to execute on top of the hardware. It guarantees that either machine does 

not affect the other machines’ performance and creates increased security between 

machines. Several different implementations of hypervisors exist on the market, both 

commercial and open source variants. Some of the more well-known hypervisors are Xen [5], 

KVM [6], Jailhouse [7], Microsoft Hyper-V [8], Oracle Virtual Box [9].  

Through the use of hypervisors in the automotive use case, the system can become capable 

of supporting systems of mixed criticality on the same platform, recurring to temporal and 

spatial partitioning thereby reducing interference between systems and creating fault 

containment zones [10] [11]. For instance, in a mixed criticality system, a multimedia system 

with low criticality can coexist safely on the same hardware with an assisted driving system 

with high criticality, without the multimedia system representing a liability to the assisted 

driving system. 

 Framing in the context of the Vortex collaborative laboratory 

The project being reported here is part of a task that is framed in the R&D activities that are 

part of the Vortex collaborative laboratory agenda. Vortex, which is led by Altran Portugal and 

that has as partners ISEP, INESC TEC, NovaLINCS, and Beta-i, is one of the Portuguese 

collaborative laboratories that were approved by the Portuguese Government and associated 

research and innovation partners, and that started their activities during the year of 2019.  

The work performed in this project contributes specifically to activities that were selected by 

the Vortex governing body to tackle the challenges of the automotive industry in what 

concerns the usage of virtualization solutions to provide increased support for assisted driving 

features, with particular focus on visualization and having the Robot Operating System (ROS) 

as the integration framework.  



Exploring Xen/KVM in prototyping an automotive use-case 

Johann Knorr (1160996)   3 

1.2 Problem Description 

This project aims to answer the question: Can an open source hypervisor fit the needs of the 

automotive industry? It is unknown how real-time systems will behave under the influence of 

Xen or KVM, two of the most used open source hypervisors, that is, how their timeliness varies 

and how their access to the system’s resources can be guaranteed. The real-time system’s 

requirements, namely predictability and deadline achievement can easily be jeopardized by 

excessive utilization of the systems resources. 

If any VM occupies the system’s CPU for too long or accesses memory that another VM was 

making use of, this can have adverse effects on the RTOS’s timeliness, rendering it unusable if 

no measures are taken to prevent it. It is therefore important to confirm if said measures exist 

in the hypervisor and verify how well they behave under stress.  

 

Figure 1 The current solution in the automotive sector 

In the current approach used by the automotive industry, depicted in Figure 1, two computer 

systems are used. While their independence is guaranteed, for every different real-time 

service a new piece of hardware must be used, and as such it increases both material and 

energy costs, as well as complicating the deployment. 
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Figure 2 Solution without hypervisors 

Should both systems be joined in the same hardware, without the use of a hypervisor, as 

depicted in Figure 2, the energy consumption and material costs are reduced, but a security 

vulnerability is exposed as there is no way to guarantee that the real-time application, 

responsible for safety-critical applications can meet the deadlines, since the systems 

resources will be heavily used by the other systems. 

 

Figure 3 Proposed use case 
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In the proposed solution, which is shown Figure 3, the hypervisor solves the problem related 

to the access to the systems resources, by guaranteeing their separation throughout the VMs, 

making it so that one VM cannot access the resources allocated to another VM. By providing 

temporal and spatial isolation, the hypervisor enables the system to maintain the real-time 

application’s timeliness. 

 Objectives 

This project proposes to verify the feasibility of the usage of the Xen or the KVM hypervisor in 

an embedded environment. The project will study the impact of executing systems of mixed 

criticality in the chosen hypervisor and proceed to establish how different VMs are separated 

and how they can eventually communicate with each other.  

 Approach 

In order to properly address the problem at hand, a preliminary study of the concept of 

hypervisor and virtualization must be performed. This research focuses on the characteristics 

and different types of hypervisors as well as differences in approaches to virtualization. The 

next step focuses on the specific characteristics and design of both the Xen and KVM 

hypervisors, allowing to identify advantages and disadvantages in their use and establishing 

which should be used in the proposed use-case.  

Having chosen a hypervisor, the next milestone becomes its execution on a Banana Pi, a 

system on a chip (SOC) that serves as the embedded environment. For the correct execution 

of this step, several pieces of software have to be compiled from source: the bootloader, U-

Boot, due to it being the de facto bootloader for embedded systems, the Linux kernel, serving 

as the hypervisors host OS and the chosen hypervisor for this project. 

Once the system’s initial configuration is finished, two VMs must be created. The installation 

of the first machine contains a general-purpose operating system (GPOS), while the second 

contains a real-time operating system (RTOS).  

After both virtual machines are working correctly the system has to undergo a series of tests 

to establish how the VMs affect each other’s functioning. 
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 Contributions 

Through this project, it is expected that Xen or KVM’s place in the automotive sector is either 

corroborated or rejected as a viable hypervisor for the solution through virtualization. This 

work highlights the processes by which deployment can be achieved and provides benchmarks 

of the chosen hypervisor’s performance in the selected use case. Using a prototype 

application from the Vortex Colab, we will test the communication between two VMs and 

verify the behaviour of the VMM in a real-world scenario. By the end we expect to know if Xen 

or KVM can safely support a system of mixed criticality, guarantee the timely execution of 

safety-critical tasks and reduce the energy consumption and deployment efforts. 

 Planning 

The planning phase is of utmost importance for the success of any project, even more so for 

R&D projects, where it is unknown if the final objective can be achieved. So being, having well 

traced and delimited minor goals, and respecting them to all possible extent, helps in 

maximizing the efficiency of all involved parties. 

For this project, several major milestones were identified, which are represented in bold in 

the table below. Minor goals are identified when the complexity of the milestone warrants it. 

Table 1 The project’s tasks and their expected duration 

Task Time 

Hypervisor deployment 42d 

Study on hypervisors and their use in embedded systems 14d 

Perform KVM experiments 14d 

Perform Xen experiments 14d 

Write Paper on Hypervisors in Embedded Systems (Optional) 21d 

Research on related works 14d 

Writing of the paper 7d 

Virtual Machine Deployment 10d 

Compilation and deployment of the GPOS VM 3d 
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Compilation and deployment of the RTOS VM 7d 

Write progress report 2d 

M1 – Progress Report  

Development of a real-time application 7d 

Development of the prototype 22d 

Study of the interdomain interference impact 14d 

Write final report 22d 

M2 – Report Delivery  
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2 State of the Art 

2.1 Related Work 

Several other projects have studied the requirements, advantages and disadvantages of 

integrating hypervisors in the automotive realm. In the following sections, some of the 

previously made studies are presented and their findings discussed. 

 MultiPARTES: Multicore virtualization for Mixed-criticality Systems 

The MultiPARTES [12] project’s goal was to promote “mixed-criticality integration for 

embedded systems based on virtualization”. The MULTIPARTES authors discussed the 

certification requirements in the automotive industry, specifically ISO/IEC 61508 and ISO 

26262, and the difficulty of having software appraised due to conservative assumptions of the 

certification authorities that also lead to poor usage of the system's potential. The authors 

then list a set of requirements the system should display in order to qualify for independent 

certification. First, the partitions should be isolated both spatially and temporarily. Next, it 

should be possible to analyse partitions in an isolated fashion and methods for said analysis 

must be provided. Lastly, the scheduling of one partition must not impact the scheduling of 

another. 

The team also presented the challenges that arose from designing a system with virtualization 

capabilities, as each application had to be assigned to partitions and dependability and 

security requirements had to be taken into consideration [12]. 

The MultiPARTES team brought up a series of important concerns, yet their project differs 

from the one presented here since it does not cover the communication or partitioning 

aspects, nor offers an implementation of their proposed methodology. 

 Integrating Linux and the real-time ERIKA OS through the Xen hypervisor 

In this paper, the authors test the compatibility between ERIKA Enterprise [13] , an RTOS, and 

the Xen hypervisor on an embedded environment. The authors study a similar use case to the 

one proposed in this project with the execution of an RTOS and a GPOS on the same hardware. 

They alert the reader for the risks of mixed criticality without isolation guarantees, namely 

failures in the GPOS, which might negatively affect the execution of safety-critical tasks on the 
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RTOS and malfunctions on the RTOS which, through errors in the file descriptors, might pollute 

the Linux memory area. 

The authors proceed to describe their approach to communication between partitions, having 

the communication starting from Erika Enterprise’s partition as to guarantee that the 

communication does not negatively affect the scheduling of the other real-time tasks, as the 

RTOS is responsible for attributing the priority it deems fit for the communication. 

Finally, the team lists the limitations and drawbacks from their implementation, specifically 

the fact that whenever the RTOS needs to signal the GPOS it has to send first a hypercall to 

the Xen hypervisor, effectively creating a bottleneck for the communication and presenting a 

risk to the RTOS proper functioning, as the machine could stay in hypervisor mode for a period 

of time that would compromise the deadline of real-time operations. The authors also argue 

that isolation between the two partitions should be improved as to limit interference between 

them  

Nonetheless, the authors show that it is possible to execute Erika Enterprise on top of the Xen 

hypervisor and that communication is possible, suggesting that more work should be put into 

that research [14]. 

As the authors had suggested, more research must be done on the subject, the project 

described relied on outdated versions of both Xen and Erika Enterprise, and both have come 

a long way since the release of this experiment.  

 ARAMiS II 

The Accidental Risk Assessment Methodology for Industries (ARAMiS) is a project funded by 

the German government and coordinated by the Karlsruhe Institute of Technology (KIT) 

aiming to promote research on safety-critical application in the automotive and avionics 

industry. It is a follow up to the original ARAMiS project, which ended in 2015. The project 

mostly focuses on developing methodologies, tools and architectures to further facilitate the 

development and deployment of safety-critical applications on multicore embedded systems 

[15]. Several use cases are presented by ARAMiS, ranging from automotive to avionics and 

industrial automation [16]. 
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2.2 Existing Technologies 

 Hypervisors 

A hypervisor, also known as VMM, is a piece of software that allows a VM to execute on top 

of the hardware. To be classified as a VMM it must follow three basic characteristics. Firstly, 

it must allow for programs to be run as if they were being run right on top of the original 

machine. Secondly, all programs run on the VM must have a minuscule impact on their 

performance, compared to the original machine. Lastly, the VMM must be in control of the 

entirety of the systems resources, meaning it is in control of which VM can use which 

resources and to what extent [17]. 

Commonly, hypervisors are separated into two categories. The first category, referred to as 

type 1, bare-metal or native hypervisor, encompasses the hypervisors that execute directly on 

top of the hardware. These hypervisors must include code to perform the scheduling and 

resource allocation. The second category, called type 2 or hosted hypervisor, runs on top of 

an already existing OS [18]. It should be noted that type 2 hypervisors suffer from considerable 

overhead due to the existing OS executing underneath. The architectural differences between 

type 1 and type 2 hypervisors are depicted in Figure 4. 

 

Figure 4 VMM Types Architecture 
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When discussing virtualization approaches, two fundamental techniques can be identified, full 

virtualization and para-virtualization (PV), and some approaches that make use of 

characteristics from both.  

Full virtualization consists of the creation of a fully virtualized system through the abstraction 

of the physical system. The OS is not aware of the virtualization and will, therefore, run just as 

it would on the physical system [19].  

Para-virtualization, on the other hand, involves modifying the OS, by exposing a virtual 

architecture, so that it is aware of the ongoing virtualization, making it more efficient, yet 

breaking backwards compatibility with existing code for said OS. Para-virtualized systems 

usually add instructions, devices or registers to the architecture, improving overall 

performance [20]. 

 Xen 

Xen first came to be in 2003 as a platform for the instantiation of several smaller VMs, each 

running on its own copy of an OS, by partitioning the underlying hardware to support their 

concurrent execution, isolating the VMs from one another, guaranteeing both security and 

performance identical to the underlying physical system. The original Xen hypervisor 

functioned only via para-virtualization, as the hardware at the time made full virtualization 

very costly from a performance perspective. The x86 architecture did not include virtualization 

capabilities [21]. With the appearance of hardware virtualization extensions, that facilitated 

full virtualization, Xen incorporated full virtualization resulting in a feature known as hardware 

virtual machine (HVM), making it so that unmodified OSs could be run on top of the Xen 

hypervisor. Currently, the Xen team is working on merging the PV working mode a working 

mode and the fully virtualized mode to “simplify the interface between OSs with Xen Support 

and the Xen Hypervisor” [22], an approach dubbed as PVH, as a mixture of PV and HVM. 

Xen is a traditional type 1 hypervisor as it is in direct communication with the hardware. On a 

system boot, Xen automatically creates a privileged guest, named Domain-0. This guest is 

responsible for providing device drivers and running management applications. As with the 

unprivileged guests (Domain-U), Domain-0 possesses its own virtual CPU and virtual memory. 

Since Domain-0 is responsible for all the I/O tasks, the Domain-U guests only communicate 
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indirectly with peripheral devices, delegating those tasks to Domain-0 [23]. The basic 

architecture of a Xen system is displayed in Figure 5. 

 

Figure 5 Xen Architecture 

 KVM 

Having made its debut in 2006, the Kernel-based Virtual Machine (KVM) seeks to add 

hypervisor capabilities to the mainline Linux kernel. Being embedded into the Linux Kernel, as 

a module, KVM does not need to implement any functions to perform scheduling or resource 

allocation, like a traditional type 1 hypervisor, making use of the already existing capabilities 

of the Linux Kernel. With KVM, a virtual machine is, from the perspective of the system, 

identical to any other process [24]. To achieve virtualization, KVM makes use of hardware 

extensions on the CPU and virtualises I/O devices through Virtio, a technology similar to Xen’s 

para-virtualized device drivers, enabling faster I/O operations [25]. 

KVM is often labelled a type 2 hypervisor. At first glance, it seems that KVM is running on top 

of the OS, as well as the fact that it does not deal with scheduling and memory management, 

like other hosted hypervisors. Despite those circumstances, KVM effectively transforms the 

OS into a type 1 hypervisor, as it is a part of the OS and not software running on top [26]. The 

functioning of KVM is shown in Figure 6. 
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Figure 6 KVM Architecture 

Processes in Linux have commonly two execution modes, kernel and user mode. With KVM, a 

third mode, named guest mode, joins user mode and kernel mode. While running in guest 

mode, the process has all the same privileges as any process in the regular operating modes, 

with the addition that it can request that certain accesses to registers or instructions be 

trapped. Under KVM, a virtual machine will run most of the time in guest mode, changing to 

kernel mode when it must deal with events like external interrupts and changing to user mode 

when requiring an I/O operation [24]. 

 Jailhouse 

Jailhouse is a partitioning hypervisor released in 2013. Isolation is achieved via hardware-

assisted virtualization [27]. Due to its alternative approach to virtualization, Jailhouse offers 

no scheduler, as a CPU cannot be shared between guests, called cells in the Jailhouse jargon. 

Jailhouse is launched through Linux, the original system becomes then the root-cell, 

comparable to Xen's Dom-0. The root-cell is responsible for distributing resources to the other 

cells in a process called “shrinking”. In this process the root cell cedes control over some of its 

CPU, memory or peripheral devices, and allocates them to the new cells [28]. 
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 Real-Time Computing 

A real-time computer system is a system which correctness is not measured only in its logically 

correct computations but also in the timely arrival of said computations. It should be noted 

that the aim is not to minimize the average response time but to meet the deadline of each 

task [29].  

When considering real-time deadlines, three types can be identified, as shown in Table 2. Hard 

deadlines are those where if the results are produced after the deadline, consequences might 

be catastrophic. Soft deadlines are those where if the results are produced after the deadline 

the system will have degradation in performance, but the result is still of some use to the 

system. Firm deadlines are those where if the results are produced after the deadline the 

results are simply discarded [30] [31]. 

Table 2 Impact of missed deadlines on real-time systems 

Type Usefulness of missed deadlines Consequences of missed deadlines 

Hard Real-Time Not useful Catastrophic 

Soft Real-Time Useful Performance Degradation 

Firm Real-Time Not useful Performance Degradation 

To improve the chances of deadlines being met, every RTOS must implement a scheduling 

algorithm which enables it to meet the established deadlines for each application. These real-

time scheduling algorithms select a method by which the next task is chosen, among others, 

some are: 

 Shortest job first 

 Static priority 

 Earliest deadline first 

In the case of an eventual system overload, the algorithm must also determine a strategy to 

solve the issue, which usually is achieved through either reducing or eliminating the execution 

of tasks of lower priority [32].  

Therefore, a RTOS is a system capable of executing real-time applications while providing the 

aforementioned characteristics. 
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 ERIKA Enterprise 

Erika Enterprise (EE) is an OSEK/VDX and AUTOSAR compliant RTOS designed for single-chip 

microcontrollers. EE provides a multithreading environment supporting real-time scheduling 

algorithms and stack sharing [33]. The scheduling algorithms supported by the EE kernel 

include Fixed Priority (FP), Earliest Deadline First (EDF) and Contract-based scheduling (FRSH). 

This way EE can offer both traditional and innovative scheduling algorithms out of the box. 

EE uses the OSEK Implementation Language (OIL), created by the OSEK/VDX consortium, to 

define RTOS objects to be used by the application. Due to the complexity of the language and 

to facilitate configuration, EE comes bundled with RT-Druid, thus providing a visual interface 

capable of generating the needed configuration files [34]. 

OSEK/VDX 

“Offene Systeme und deren Schnittstellen fur die Elektronik im Kraftfahrzeug” (OSEK) is a 

partnership of the German automotive industry whose goal is to standardise the architecture 

for distributed control units in the automotive sector. OSEK merged with the Vehicle 

Distributed eXecutive (VDX) project in 1994, transforming the official name to OSEK/VDX [35]. 

The partnership is responsible for many standards, which have since been incorporated by the 

International Organization for Standardization (ISO).  

AUTOSAR 

Founded in 2003, AUTOSAR (AUTOmotive Open System ARchitecture) is a consortium, created 

by major automotive manufacturers, aiming to standardise the software architecture for 

automotive embedded systems, improving safety and reducing energy consumption and 

software reuse. AUTOSAR specifies several standards and guidelines that are highly regarded 

in the industry [36] [37]. 

 FREERTOS 

FreeRTOS is an RTOS designed for embedded devices, supporting over 35 architectures [38]. 

FreeRTOS supports both pre-emptive and cooperative scheduling and features FP and round-

robin scheduling algorithms. 
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FreeRTOS uses C header files for configuration, therefore every application must have a 

FreeRTOSConfig.h file. This file specifies the kernel’s characteristics for that application and is 

therefore tied to the application instead of the kernel [39]. 

 SAFERTOS 

Having been created as a fork of the FreeRTOS project, SafeRTOS inherited most of the 

features from FreeRTOS. In addition, SafeRTOS puts a high value on deterministic priority-

based scheduling, This, in turn, brought it the certification of TÜV SÜD, having been certified 

with IEC 61508-3 SIL and ISO 26262 ASIL [40]. 

 PREEMPT_RT 

The PREEMPT_RT patch for the Linux kernel aims increase the preemption on said kernel by 

reducing the code that is non-preemptible and changing the least code necessary to provide 

real-time capabilities [41]. By transforming regular Linux into an RTOS, any program that runs 

on the stock kernel also runs on PREEMPT_RT, thus providing combability with already existing 

software and providing a familiar environment for further development [42].  

 Das U-Boot 

The “Universal Bootloader", also known as “Das U-Boot" or just U-Boot, is an open-source 

bootloader created for embedded systems. It originated from a similar project called PPCBoot 

in 2002 and is used as the default bootloader by a multitude of board vendors. The bootloader 

supports a variety of architectures, both ARM and x86 [43] [44]. A bootloader in a computer 

system is the application which loads the OS’s kernel into memory and proceeds to its 

execution. The bootloader generally allows for a selection of the kernel to execute, in case 

multiple kernels are present on the system. On embedded systems, a bootloader is also 

responsible for programming the system’s memory controllers, initializing processor caches, 

managing hardware peripherals and enabling network support. The responsibilities of the 

bootloader on embedded systems are increased due to a lack of extensive firmware, generally 

found on regular desktops or server systems [45]. 

2.3 Conclusion 

After analysing the available technologies and ranking them in order of suitability for the 

project at hand, it was decided that Xen would be the most suitable hypervisor to use. Xen 



Exploring Xen/KVM in prototyping an automotive use-case 

Johann Knorr (1160996)   18 

has more extensive documentation and reports of projects of similar nature on this 

hypervisor, when compared with KVM.  

Regarding the choice of the RTOS, Erika Enterprise proved to be the most suitable for this 

project, due to the existing certification and previous deployment on the Xen hypervisor. 

However, due to developments on the hypervisor since that deployment, Xen no longer 

supports Erika Enterprise, and although efforts were made to correct this, they proved to be 

fruitless.  

Knowing that Linux fully supports Xen, PREEMPT_RT was chosen as the RTOS, despite being a 

soft real-time OS it serves as proof of concept for this project.   
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3 Xen 
In this chapter, we provide a comprehensive explanation of Xen’s internal mechanisms. Here 

we will draw the distinctions between Xen’s implementation on the ARM architecture versus 

its x86 counterpart, listing the most important differences, followed by an explanation on how 

peripheral sharing and interdomain communication are achieved and the steps required to 

deploy the hypervisor and, finally, how to set up an unprivileged domain. 

3.1 Xen on ARM 

As seen in Chapter 2, Xen is a type 1 hypervisor. Xen manages all the accesses to the system’s 

resources, except for the peripheral devices, which are controlled by Domain-0, as well as the 

scheduling of all the different tasks. This description of Xen is true for both the x86 and ARM 

architectures. There are, however, a few key differences in how Xen operates on ARM. 

While the Xen project exists since 2003, it was not until 2013 that the ARM architecture 

became supported. Facing the challenge of porting a 10-year-old project to a new 

architecture, the Xen team seized the opportunity to remove any unnecessary code. Most 

notably, the ARM version of Xen has no support for emulation, meaning that all references to 

emulation have been substituted in favour of virtualization extensions present in the 

hardware or paravirtualized interfaces, in the case of input/output devices. 

On the x86 architecture, Xen supports two kinds of guests, paravirtualized guests, which must 

be modified to execute on top of the hypervisor and fully virtualized guests, which make use 

of emulation, do not need modification but have reduced performance. On ARM, due to the 

lack of emulation, Xen only supports one type of guest, usually referred to as ARM Guest.  

This guest type functions as an amalgamate of the previous two types, managing to avoid 

modifying the overlying OS without suffering performance loss, which is achieved by making 

use of the virtualization extensions present in the hardware to avoid the need for emulation, 

thus not suffering the performance loss characteristic to the latter. The only things Xen 

requires of the OS are custom device drivers for the peripheral devices [46]. 
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3.2 Peripheral Sharing 

While it is the purpose of the hypervisor to guarantee the separation between the different 

VMs both spatially and temporally, it may sometimes be necessary to allow more than one 

machine access to the same piece of hardware. For instance, to establish a working internet 

connection, the VMs must access, and thus share, the network adapter. Without the 

possibility of peripheral sharing, the machines would either not have access to the service or 

the hardware would need to include one device for each domain, which would inevitably raise 

the hardware cost of the system. 

To control which domains, have access to which devices, Xen allows assigning the different 

devices between VMs. By default, all available devices are assigned to Domain-0, through 

Domain-0 the devices can then be distributed to different unprivileged domains, according to 

their needs. Should more than one machine need access to the device though, Xen offers the 

solution through the use of split device drivers.  

The split device drivers achieve their function by, as the name suggests, being distributed 

between two domains. One domain, the one which needs access to the device but does not 

control it, uses the FrontendDriver to establish a connection to the domain which holds the 

device. The device controlling domain, in turn, uses the BackendDriver to relay the previous 

domains request to the device in question. Thus, the BackendDriver serves as a broker 

between all the FrontendDrivers requests and the shared device.  This behaviour is depicted 

in Figure 7. 

 

Figure 7 Peripheral Sharing Deployment Diagram 
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3.3 Inter domain communication 

In order to determine the medium by which the domains communicate, a communication 

mechanism must be chosen. Xen offers two immediate solutions for interdomain 

communication. One solution is based on memory sharing between the domains, while the 

other solution is to delegate the communication to the OS.  

In terms of raw performance, it would undoubtedly be beneficial to use a mechanism based 

on shared memory. Xen supports memory sharing with grant tables, where one VM offers 

selected memory pages to be accessed by a different VM. Alas, Xen only supports this feature 

on fully virtualized machines executing in an x86 environment [42], rendering this solution 

unpractical at the current time.    

Making use of Xen’s ability to share peripherals, the communication can be handled on the 

OS level and, in this case, established through TCP. In order to allow each domain to appear 

in the network as its own device, Xen can be configured to use bridging. Using this mechanism, 

a network bridge can be created in the domain that controls the network device, usually 

Domain-0, where all the other domains can connect to, thus becoming available in the 

network.  

3.4 Xen Installation 

To deploy Xen on an ARM based system, a few steps must be taken. In this section we present 

the necessary steps to set up Xen and Domain-0 on a Banana Pi SOC. For this process, one 

should guarantee all the necessary toolchains are present. 

$ sudo apt install gcc-arm-linux-gnueabihf bc build-essential git 
device-tree-compiler ncurses-dev 

 Having acquired the necessary toolchains, we can start by collecting all the required source 

files for the bootloader, Xen, the Linux Kernel and the latest Linaro release based on Ubuntu.  

$ mkdir workspace 
$ cd workspace 
$ git clone git://git.denx.de/u-boot.git 
$ cd u-boot 
$ git checkout tags/v2019.01 
$ cd .. 
$ git clone 
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git 
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$ mv linux-stable linux 
$ cd linux 
$ git checkout tags/v4.19.37 
$ cd .. 
$ git clone git://xenbits.xen.org/xen.git 
$ cd xen 
$ git checkout tags/RELEASE-4.11.0 
$ wget 
http://releases.linaro.org/ubuntu/images/developer/15.12/linaro-
vivid-developer-20151215-714.tar.gz 

Having acquired all the necessary files, the next step becomes compiling the downloaded 

source codes and creating any necessary configuration files 

While building the system from the ground up, the first program that needs to be compiled is 

the bootloader. U-Boot already includes a default configuration for the Banana Pi, thus 

removing any unnecessary complexity to this process. The boot.src file created in this step will 

be used to configure the bootloader and designate the program to load on boot as well as the 

arguments to pass to said program, in this case Xen [47]. 

$ cd u-boot 
$ make CROSS_COMPILE=arm-linux-gnueabihf- Bananapi_config 
$ make CROSS_COMPILE=arm-linux-gnueabihf -j ${nproc} 
$ mkdir boot 
$ cd boot 
$ echo ' 
setenv fdt_addr 0x7ec00000 
setenv fdt_high 0xffffffff 
setenv kernel_addr_r 0x6ee00000 
setenv xen_addr_r 0x6ea00000 
fatload mmc 0 ${xen_addr_r} /xen 
setenv bootargs "console=dtuart dtuart=serial0 dom0_mem=512M" 
fatload mmc 0 ${fdt_addr} /sun7i-a20-bananapi.dtb 
fdt addr ${fdt_addr} 0x40000 
fdt resize 
fdt chosen 
fdt set /chosen \#address-cells <1> 
fdt set /chosen \#size-cells <1> 
fatload mmc 0 ${kernel_addr_r} /zImage 
fdt mknod /chosen module@0 
fdt set /chosen/module@0 compatible "xen,linux-zimage" 
"xen,multiboot-module" 
fdt set /chosen/module@0 reg <${kernel_addr_r} 0x${filesize} > 
fdt set /chosen/module@0 bootargs "console=hvc0 ro 
root=/dev/mmcblk0p2 rootwait clk_ignore_unused" 
bootz ${xen_addr_r} - ${fdt_addr} 
' > boot.cmd 
$ mkimage -C none -A arm -T script -d "boot.cmd" "boot.scr" 
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$ cd ../../ 

The following program to be compiled is the hypervisor itself, besides cross compiling the code 

to be executable on ARM one must also specify the target architecture, as we have seen that 

Xen for x86, and ARM have different sources.  

$ cd xen 
$ make dist-xen XEN_TARGET_ARCH=arm32 CROSS_COMPILE=arm-linux-
gnueabihf- -j {nproc} 
$ cd .. 
Finally, we have to compile the Linux kernel to include all the necessary modules. Using the 

menuconfig option we gain access to an interface that facilitates the selection of modules as 

well as providing categorization and a description for each [48]. 

$ cd linux 
$make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- multi_v7_defconfig 
$make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig 
 
 System Type -> Support for the Large Physical Address Extension 
 Kernel Features -> Xen guest support on ARM 
 Networking Support -> Networking options -> 802.1(d) Ethernet Bridging 
 Device Drivers -> Multiple devices driver support (RAID and LVM) -> Device  
mapper support 
 Device Drivers -> Block Devices -> Xen block-device backend driver 
 Device Drivers -> Network device support -> Xen backend network device 
 Virtualization 
 Virtualization -> Host kernel Accelerator for virtio net 
 
$make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- zImage dtbs 
modules -j {nproc} 

Having all the binaries ready we must prepare an SD card to move them too. We’ll divide the 

card into two partitions the first partition will be our boot partition and will hold the u-boot 

and Xen binaries, the Kernel and the device tree blob, which we get through U-Boot. The 

second partition will hold the files from the Linaro release as well as the modules selected 

during the Kernel compilation phase. 

$ sudo blockdev --rereadpt /dev/mmcblk0 
$ sudo sfdisk /dev/mmcblk0 <<EOT 
1M,16M,c 
,4G,L 
,,8e 
EOT 
$ sudo mkfs.vfat /dev/mmcblk0p1 
$ sudo mkfs.ext4 /dev/mmcblk0p2 
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$ sudo dd if=u-boot/u-boot-sunxi-with-spl.bin of=/dev/mmcblk0 
bs=1024 seek=8 
$ sudo mkdir /mnt/mmc1 
$ sudo mkdir /mnt/mmc2 
$ sudo mount /dev/mmcblk0p1 /mnt/mmc1 
$ sudo mount /dev/mmcblk0p2 /mnt/mmc2 
$ sudo cp u-boot/boot/boot.scr /mnt/mmc1/ 
$ sudo cp linux/arch/arm/boot/zImage /mnt/mmc1/ 
$ sudo cp linux/arch/arm/boot/dts/sun7i-a20-bananapi.dtb /mnt/mmc1 
$ sudo cp xen/xen/xen /mnt/mmc1/ 
$ sudo tar zxf linaro-vivid-developer-20151215-714.tar.gz -C 
/mnt/mmc2 --strip 1 
$ sync 
$ sudo cp /mnt/mmc1/zImage /mnt/mmc2/root/zImage 
$ sudo cp xen /mnt/mmc2/root/xen 
$ sudo umount /mnt/mmc1 
$ cd linux 
$ sudo make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- 
INSTALL_MOD_PATH=/mnt/mmc2 modules_install 
$ echo' /dev/mmcblk0p2 / ext4 rw,defaults 0 0 none /tmp tmpfs 
defaults 0 0 ' > /mnt/mmc2/etc/fstab 
$ touch /mnt/mmc2/machine-id 
$ sudo umount /mnt/mmc2 

From here we insert the card into the Banana Pi’s card reader and boot it. All the following 

steps are executed on the Banana Pi either with a monitor and keyboard or a serial connection 

with an UART cable. 

$ echo 'deb http://ports.ubuntu.com/ubuntu-ports/ xenial main 
universe restricted multiverse 
deb-src http://ports.ubuntu.com/ubuntu-ports/ xenial main universe 
restricted multiverse’ > /etc/apt/sources.list 
$ echo' auto lo 
iface lo inet loopback 
auto eth0 
iface eth0 inet dhcp 
> /etc/network/interfaces 
$ service networking restart 
$ sudo apt update 
$ sudo apt dist-upgrade 
$ cd /root/xen 
$ make clean 
$ apt install build-essential 
$ apt build-dep xen 
$ ./configure 
$ make install 
$ echo ‘/usr/local/lib’ >> /etc/ld.so.conf 
$ ldconfig 
$ sudo apt install lvm2 
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$ sudo apt install debootstrap 
$ sudo apt install openssh-server  
$ apt-get install bridge-utils 
$ brctl addbr br0 
$ echo ' 
auto lo 
iface lo inet loopback 
auto eth0 
iface eth0 inet manual 
auto br0 
iface br0 inet dhcp 
  bridge_ports eth0' > /etc/network/interfaces 
$ service networking restart 
$ echo 'none /proc/xen xenfs defaults 0 0' | sudo tee -a /etc/fstab 
$ /etc/init.d/xencommons start 

This concludes the necessary steps to set up Xen and Domain-0. The system is now set up to 

host other VMs and can be accessed remotely via SSH. The system is also set up to be able to 

share the network adapter with any other domain since we will be using the network to 

establish a connection between the domains. 

3.5 Domain Setup 

Now that the system is set up, we can engage in the process of creating our unprivileged 

domains.  These domains, just like Domain-0, require a Kernel and a partition with the files 

from any Linux distribution. Unlike Domain-0, however, these domains also require a 

configuration file, which will, amongst other things, list the amount of memory allocated to 

the domain, the CPU cores it can access, and its name. In this section we will present an 

example on how to set up a domain on the previously configured system. 

Firstly, we will be creating the partition to which the domain will have access. For this purpose, 

we will be using a logical volume created through LVM. 

$ lvm 
 lvm> pvcreate /dev/mmcblk0p3 
 lvm> vgcreate vg0 /dev/mmcblk0p3  
 lvm> vcreate -L 2G vg0 --name linux-guest-1 
 lvm> exit 
$ mkfs.ext4 /dev/vg0/linux-guest-1 

Next, we will be mounting the created partition and bootstrap our chosen distribution on it, 

meaning we will gather all the files present in the distribution and deploy them on the 

partition. 
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$ mount /dev/vg0/linux-guest-1 /mnt 
$ debootstrap --arch armhf xenial /mnt http://ports.ubuntu.com/ 

Finally, we will access the partition and prepare it for its use. We will be configuring the 

network as well as the file systems table and installing an SSH server, so the domain can be 

accessed remotely. Furthermore, we need to attribute a password to the root user and change 

the hostname, as it will default to the hostname of Domain-0. 

$ mount /dev/vg0/linux-guest-1 /mnt 
$ chroot /mnt 
$ passwd 
$ echo 'domU' > /etc/hostname 
$ echo 'auto eth0 
iface eth0 inet dhcp' > /etc/network/interfaces 
$ apt install openssh-server 
$ echo '/dev/xvda / ext4 rw,relatime,data=ordered 0 1' >> /etc/fstab 
$ exit 
$ umount /mnt 

Having prepared the partition, and using the same kernel as Domain-0, this VM only requires 

a configuration file. 

$ echo 'kernel = "/root/zImage" 
memory = 256 
name = "domU1" 
vcpu = 2 
serial = "pty" 
disk = [ "phy:/dev/vg0/linux-guest-1,xvda,w" ] 
vif = ["bridge=br0"] 
extra = "console=hvc0 xencons=tty root=/dev/xvda' > domU.cfg 

In this example configuration file, we attributed 256 mb of memory to the domain, named it 

“domU1”, specified the partition it is able to access, granted it access to the network through 

the network bridge,  and gave it access to all 2 of the systems CPU cores.   Xen allows for more 

configuration options, for instance, we can attribute specific cores of the CPU to each domain. 

The virtual CPU is identified by an index and can be retrieved through the tools stack using:  

$ xl vcpu-list 

Considering that our system’s CPU only possesses two cores, we considered it to be beneficial 

to allow the system to use all the available cores, as tests showed a higher responsiveness for 

each VM when the cores were shared between our three VMs, the three VM setup is further 

analysed in section 4.3.    

Finally, to start the VM we use the xl toolstack to create the domain. The created domain can 

then be accessed through domain-0’s console or via an SSH connection. In this example we 
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will be accessing the new domain at its creation through the domain-0 console with the “-c” 

option, to resume control of the domain-0 we press “CRTL + ]” to escape the new domain’s 

console. 

$ xl create domU.cfg -c 

This finalizes the creation of our VM. The machine is now running and ready to be given the 

use it was created for. 
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4 Analysis and Design 
Having acquired enough information on the hypervisor’s functioning, we can now progress to 

the analysis of the use case. Here we will offer a brief explanation on the proposed use case, 

the requirements to fulfil as well as the limitations we incur. For each requisite we will present 

different solutions and the reasoning that led to the adoption of one solution over the other. 

4.1 Use-case 

The system must allow one VM, hosting a real-time OS, to transmit previously gathered sensor 

data to another VM, hosting a general-purpose OS, so that it can proceed to the visualization 

of the transmitted data.  

Requirements: 

 Create one VM with a GPOS; 

 Create one VM with an RTOS; 

 Establish a continuous connection between the GPOS VM and the RTOS VM; 

Limitations: 

 The chosen GPOS and RTOS must be compatible with Xen; 

 The chosen GPOS and RTOS must execute on a 32-bit ARM environment; 

 The chosen GPOS and RTOS must be capable of handling the interdomain 

communication. 

4.2 Interdomain Communication 

Facing the problem of interdomain communication and the limitations Xen imposes, one must 

determine how the connection will be established. Being barred of using a shared memory 

mechanism, the next-best option is to establish a communication channel through TCP. The 

next hurdle to overcome is the discovery of the other domain, as each domain is unaware of 

the other’s address and availability. When problems of continuous communication between 

different system are faced, we can use one of two notable patterns: the observer pattern or 

the publish-subscribe pattern. 
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 The Observer Pattern 

In this pattern, we admit the existence of an object, commonly known as the subject, 

responsible for the maintenance of a list of all the objects registered for notification on a 

certain event, the observers. When the event happens, the subject automatically notifies all 

the registered observers which can then act upon the event.   

A common use for this pattern is scenarios where there is a dependency between two roles, 

where encapsulating between the two allows for a higher code reutilization, and the change 

of an object belonging to one of the roles forces changes of all the objects of the other role.  

In summary, this pattern allows for abstract coupling between the subject and the observer 

since the subject only knows its list of observers conforming to the specified interface, and  

broadcast communication, the event that fires the notification does not need to specify the 

receiver, since all the subscribed observers are notified [49]. Figure 8 presents an example on 

how the observer pattern’s operation is accomplished. 

 

Figure 8 Observer Pattern Sequence Diagram Example 

The Observer pattern enables a one-to-many relationship between the message sender and 

the receivers, but in a system in need of a many-to-many relationship, where the senders 

notify several receivers and the receivers get notified by several senders demands for a more 

appropriate pattern to be applied. 
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 The Publish-Subscribe Pattern 

The Publish-Subscribe pattern serves the same purpose as the Observer pattern in so far as 

that they both enable the communication between different entities. In the case of the 

Publish-Subscribe pattern, we admit the existence of at least three entities: one or more 

publishers and subscribers and the message broker. The message broker is an entity 

responsible for holding the information of all the topics being advertised and serves as an 

intermediary in the communication process. The publisher sends a notification on a certain 

topic which is then added to the list of topics on the message broker. The subscriber, an entity 

similar to an observer, notifies the message broker of its interest in the topic of the publisher 

and so the message broker informs the two of each other’s existence. By serving as an 

intermediary between the communication of the publisher and the subscriber, the message 

broker diminishes the coupling in the system and enables a many-to-many relationship 

between the communicating nodes [50]. This process is depicted in Figure 9.  

 

Figure 9  Publish Subcrbie Pattern Sequence Diagram Example 

Since the proposed solution intends to emulate the same behaviour as the components in an 

automotive vehicle, where a many-to-many relationship between certain components is often 
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required, we decided that the Publish-Subscribe pattern would be more adequate for this 

solution. 

4.3 Architectures 

Having decided how the domains will communicate, the next step becomes distributing 

responsibilities between the domains. As per the use case’s requirements, the RTOS domain 

is the one publicising information, meaning that it must hold the responsibilities of the 

publisher. Equally, the GPOS domain is on the receiving end and must therefore host the 

subscriber. One responsibility remains however, since we have yet to decide which VM should 

have the responsibility of hosting the message broker. In our case, we have three available 

candidates, each with its advantages and drawbacks: 

 The RTOS domain: Hosting the message broker on this domain limits us to two actively 

used domains. However, it also increases the risk of failing to meet deadlines for real-

time applications, hence this domain should host as little responsibilities as possible; 

 The GPOS domain: Equally to the RTOS domain, using this machine to serve as 

message broker limits the actively used machines to two. Using this domain reduces 

the risk of deadline failure as it frees the RTOS domain to pursue the activities with 

deadlines to follow. This domain however is the least secure and most prone to failure 

as it is the one the end user will be communicating with, the most. 

 Domain-0: Using Domain-0 to be the message broker increases the actively used 

machines to three, meaning that each of the other domains will have less processor 

time. Domain-0 already is responsible for enabling the communication through TCP 

between the other domains which would make it a good choice in terms of 

consolidating similar responsibilities. Using Domain-0 frees the RTOS domain CPU 

time and is more secure than the GPOS domain as it is not accessed by the end user.  

Making a compromise between performance and security, we decided that the best option 

would be to use Domain-0 to be the message broker.  
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Figure 10 Deployment Diagram of the chosen architecture 

In conclusion, as seen in Figure 10, the proposed architecture consists of three VMs. Domain-

0, which serves as message broker between the publishers and subscribers, the RTOS domain, 

which registers as a publisher on Domain-0, responsible for transmitting the sensor data, and 

the GPOS domain, which registers as a subscriber on Domain-0, responsible for interpreting 

the received data. 





Exploring Xen/KVM in prototyping an automotive use-case 

 

Johann Knorr (1160996)   35 

5 Implementation 
The current chapter’s scope is to delineate the implementation of the use case. We will be 

covering the OS selection for each VM and the framework chosen to handle the data 

transmission. 

5.1 OS Selection 

To answer the problem of the OS selection, several candidates were studied. All candidates 

are limited by two factors. First, they must present a version compatible with the 32-Bit ARM 

architecture. Second, they must be compatible with Xen. In the case of the OS for the real-

time domain, the OS also must provide real-time capabilities. 

Considering the machine with real-time requirements, the first RTOS to be considered was 

ERIKA Enterprise, due to the previous projects that combined Xen and the RTOS on hardware 

similar to the Banana Pi [14] and the certifications this RTOS possesses [51] [52]. 

Unfortunately, developments on the Xen API required modifications on ERIKA’s end, making 

it so that this option was discarded due to time constraints. The second choice was FreeRTOS, 

a highly popular RTOS that also was at one time compatible with Xen. Being an older project, 

it also suffered the same fate as ERIKA. As the Xen API changed, FreeRTOS drivers had to 

change too, and the project’s maintainers deeming it not important enough to maintain the 

compatibility, so it was eventually lost. Finally, we resorted to Preempt-RT, a modification of 

the Linux Kernel which outfits it with real-time capabilities, transforming Linux into a soft real-

time system. While it is arguably not the best option, it serves the purposes of the use case 

well enough to illustrate the capabilities of the hypervisor regarding the maintenance of 

spatial and temporal isolation.  

Having chosen Linux as being the OS of the RTOS domain, a distribution had to be chosen as 

well, thus, the chosen OS for the RTOS domain is a release of Ubuntu 16.04 with a Preempt-

RT modified kernel. 

Turning now to the OS for the GPOS domain, the solution is very straightforward. Xen is 

developed with Linux in mind, Linux is the native Xen OS and officially supported by the 

community. The only limiting factor when choosing a distribution is the target architecture, 
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the distribution must have a release for the 32-Bit ARM architecture, having already chosen 

Ubuntu 16.04 for the RTOS, the same choice was made for the GPOS, as it facilitates 

configuration and installation, and is compatible with the chosen data transmission 

framework. 

5.2 Data Transmission Framework  

Having chosen a communication mechanism, and how to apply it, a framework was chosen 

which would enable the use of the publish-subscribe pattern in the interdomain 

communication, ROS. 

ROS [53] is a framework which, with its tools and libraries, allows us to easily establish a 

communication channel between our domains. Each domain runs an application which 

registers as a node on the ROS Master, the message broker. These nodes can then publish or 

subscribe to certain topics. Every node connects to its master through TCP, needing thus either 

the domain’s IP or hostname, the URL for the master is saved in an environment variable and 

therefore independent of the application. 

In this case we deployed the ROS Master on our Domain-0 and created two nodes, one for 

each unprivileged domain. On the RTOS domain, the node was created as a simple publisher, 

repeatedly sending a message. On the GPOS domain, the subscriber node would receive the 

message and print it to the screen. After this preliminary test it was shown that the 

communication was working as designed. 
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6 Experiments 
Having verified that it is indeed possible to transmit data between VMs using ROS on Xen, it is 

important to calculate the costs of using our solution to achieve our goal and contemplate the 

behaviour of a real-world application on the system. For this purpose, we implemented two 

test cases and deployed a prototype of a real-world application developed by the Vortex 

Colab. 

 The first test is designed to measure the resulting jitter, the difference in message 

transfer time, from sending information between ROS nodes on different domains in 

comparison to two ROS nodes on the same domain. 

 The second test measures the deadline failure rate impact of the GPOS domain on the 

RTOS domain, as we expect the hypervisor to guarantee temporal isolation. 

 The Vortex prototype application is used to interpret the transferred sensor data and 

perform its visualization through a web browser.  

6.1 Message delivery time jitter 

This test was created to measure the impact of Xen’s peripheral sharing in the transmission 

time of data between the domains. Using ROS to handle the publishing and subscribing of 

messages, a test was designed where the publisher would send a message to the subscriber 

containing the messages index. The subscriber would then reply with the same index, allowing 

the publisher to register both departure and arrival time of the message. 
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Figure 11 Jitter time test sequence 

After recording the departure and arrival time, the time difference is calculated and the next 

message is sent, repeating the process until the target number of messages is hit. This process 

is illustrated in Figure 11. 

To measure the jitter, first 100 thousand messages were sent from the publisher on Domain-

0 to the subscriber on Domain-0, the same experiment was then performed sending messages 

from the publisher on the RTOS domain to the subscriber on the GPOS domain, resulting in a 

total of 400 thousand messages and 200 thousand time records, one for every pair of 

messages. 

In order to obtain a proper visualization of the data, allowing us to make judgements on the 

results, we will be making use of a box plot. A box plot allows us to visualize numeric data 

through its quantiles, meaning that it represents the minimum, the maximum, the mean, the 

first quantile and the third quantile of the numeric data. We can then visualize the precision 

in the data gathered, meaning how far the values deviate from one another. In this case we 

will be removing the outliers, the values which are more than one and a half standard 

deviations away from the third quantile, as these values are not representative of the normal 

functioning and are considered experimental errors. 
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Figure 12 Boxplot on round-trip time on Domain-0 and between the RTOS domain and the 

GPOS domain 

In Figure 12, we can observe that the median for the RTOS-GPOS dataset lies outside of the 

box of the Domain-0 dataset, which suggests that the two groups are likely to be different. 

The boxes represent the interquartile range for each dataset, meaning the interval between 

the first and the third quantile. The values that lead to the plot can be analysed in Table 3. 

Table 3 Jitter Test Quantiles 

Dataset Domain-0 to Domain-0 RTOS domain to GPOS domain 

Minimum 0.001863956 0.004333973 

First Quantile 0.009802461 0.034840465 

Median 0.015256524 0.050739527 

Third Quantile 0.033153057 0.074551940 

Maximum 0.06817695 0.134117127 
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To be certain that the existing difference between the two datasets is statistically significant 

and not simply a result of chance, we will finalize this experiment with a student’s t-test [54]. 

A student’s t-test allows us to determine if the mean difference between the two groups is 

statistically significant, thus allowing us to make conclusions based on the datasets. Using a 

two tailed student’s t-test with a confidence level of 95% we obtain a p-value lower than 2.2𝑒ିଵ଺, which is lower than our significance level, thus rejecting the null hypothesis that the 

true difference in means is 0 and concluding that the means are significantly different. 

Having determined that the difference is statistically significant, we can now analyse the 

means to determine the performance loss incurred from using two domains. With the mean 

of the Domain-0 dataset being 3.208 milliseconds and the mean of the RTOS-GPOS dataset 

being 6.062 milliseconds we verify an increase of 88.97% in round trip time.  

This test allows us to conclude that using Xen’s split driver peripheral sharing model results in 

a significant overhead in the message transfer time. It should be noted, however, that all 

messages were delivered successfully. 

6.2 Deadline failure  

One of the most important features of a real-time system is that it is predictable, meaning 

that we can expect a task to have a certain computation time and that it will arrive in a defined 

time window. The rear end of the time window is defined to be the deadline, any tasks which 

computation ends after the deadline is considered a failure. To measure the impact in the 

deadline failure rate on our RTOS domain resulting from our GPOS domain’s utilization, we 

fashioned a test which would first measure the deadline failure without the GPOS domain and 

afterwards the deadline failure with the GPOS domain. 

For this test a simple real-time application was written, which would perform an access to the 

system’s memory every 6 milliseconds. If the operation took over 6 milliseconds, our defined 

deadline, we considered it a failure, otherwise we considered it to have been successful.  The 

operation was then repeated ten thousand times and the successes and failures recorded, as 

depicted in Figure 13. 
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Figure 13 Real time application flowchart 

Running the application without interference from the GPOS domain resulted in 40 failures   

and 9960 successes, meaning that the failure rate was of 0.4%. 

In order to tests the GPOS domain ‘s impact, another application was written, similarly to the 

real-time application, memory accesses are performed, however at a larger rate.  For each 

iteration of this programs functioning, five sub processes would perform memory accesses 

simultaneously, in an attempt to occupy both the CPU and the memory. This program would 

then execute for all ten thousand iterations of the real-time application. 

Performing the same experiment as before, now with the GPOS domain consuming the 

system’s resources, the test resulted in 1737 failures and 8263 successes, resulting in a 

deadline failure rate of 17.37%. 
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Figure 14 Deadline failure rate comparison 

Comparing the two deadline failure rate, represented in Figure 14, 0.4% when the RTOS 

domain is working alone and 17.37 when it is under the influence of the GPOS domain, we 

verify an increase in 4242.5%. This leads us to conclude that our solution fails to guarantee 

temporal isolation, this failure is likely due to the domain’s shared CPU cores, a problem which 

can only be solved by performing the test on a piece of hardware featuring a CPU with at least 

three cores, one for each domain. 

6.3 Real-world application 

The most important milestone for this project is confirming if, despite Xen’s performance 

drawbacks, the deployed solution is capable of handling the execution of an application which 

can be used in a real-world scenario. For this purpose, we resorted to using an application 

made available to us through to the Vortex Colab. This application is being developed for the 

automotive industry to allow the visualization of sensor data collected by the vehicle. 

Just like our system, this application relies on ROS to perform the transfer of data, which is 

then interpreted and made available for visualization through a web browser.  The sensor data 

transferred is available in its raw form, courtesy of the Karlsruhe Institute of Technology [55], 

but can only be used after conversion to the ROS bag file format [56]. We use this generated 
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bag file on our RTOS domain and initiate publication through the rosbag tool. Through ROS’s 

rosbag tool we can easily initiate the gradual transfer of the sensor data at any given rate, 

meaning we can accelerate or decelerate the transmission. The setup is illustrated in Figure 

15. 

 

Figure 15 Deployment of the Vortex Application 

On our GPOS domain we can find the subscriber, labelled ROSToSeq. This program allows us 

to transform the received messages into a format, called sequences, which can be interpreted 

by the virtualization server. Lastly, the virtualization server provides a web interface through 

which all the created sequences can be played at the user’s leisure. 

In Figure 16 we can see on the left, the transmission of the contents of the bag file, listing the 

total time of the file and the current instant being transmitted. On the top right corner, we 
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can see index of the last created file as well as some indicators of the conversion time. Finally, 

on the bottom right we can follow the execution of the ROS Master. 

 

Figure 16 Execution of the Subscriber, Publisher and Message Broker 

After the files have been created and transmitted, we can proceed to the visualization of said 

files through the visualization server. As shown in Figure 17, after selecting the sequence to 

reproduce, the program will load the sequence and display all the entities captured by the 

sensor on the vehicles travel, as well as the trajectory the vehicle followed, as can be seen in 

Figure 17. 

 

 

Figure 17 Visualization of the sensor data 
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Having executed a prototype of an application to be used in the automotive industry for a 

real-world scenario, we can conclude, through this experiment, that our system is capable of 

achieving the proposed goal, while virtualizing all the required machines with Xen. The result 

of this test represents the first experiment, for the Vortex Colab, in a series of attempts to use 

Xen for virtualizing automotive systems, however, further testing should be done on hardware 

which is generally used in the industry to confirm if the solution is scalable and can meet the 

requirements of the Vortex Colab.
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7 Conclusions 
In this chapter we will look back at all the work done during the development of this project, 

making judgements on the advantages and drawbacks of the implemented solution. First, we 

will list the objectives which were achieved, followed by a brief description of the 

implemented solution and finishing with the limitations the systems incurs through our 

solution and the selected hardware. Having done this analysis, a few suggestions will be made 

on how to conduct further research on this topic as well as a description of limiting factors in 

the conduction of this research. 

7.1 Proposed vs achieved goals 

Here we will list the initial objectives proposed by the project: 

 Study the partitioning aspect of the Xen or KVM hypervisor 

 Study the communication aspect of the Xen or KVM hypervisor 

 Study the impact of deploying systems of mixed criticality on the Xen or KVM 

hypervisor 

Having listed all the proposed objectives, we will now list what was indeed achieved: 

 Two VMs were deployed on the Banana Pi SOC. To each VM was an independent 

storage area and memory were allocated. The processor cores were shared due to 

their limited number. Peripheral devices are assigned to Domain-0 but can be shared 

with other domains through the use of split drivers. 

 The two VMs were connected through TCP on the OS level as, on ARM, Xen does not 

support memory sharing. 

 Three experiments were performed on the deployed solution. One to measure 

message transfer jitter, one to measure the impact the GPOS machine has on the 

RTOS machines’ deadline failure rate and one to verify how the solution would behave 

in real-world conditions. 
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7.2 The solution 

To test the partitioning and communication aspects of the Xen hypervisor, the system was 

deployed on a Banana PI SOC. For the deployment of Domain-0 and the GPOS domain Ubuntu 

16.04 was chosen as the OS, on the RTOS domain the OS was equally Ubuntu 16.04, however 

with a PREEMPT_RT modified kernel, turning it into a sot real-time system. After the 

deployment of the system a communication channel was set up through TCP with ROS using 

the publish-subscribe pattern, as it was deemed more appropriate for the proposed scenario. 

The solution features thus three VMs, Domain-0, which serves as the message broker for our 

communication, the GPOS domain which serves as the subscriber and receives information 

and the RTOS domain which serves as the publisher and is responsible for the transmission of 

data.  

The solution was later tested for message transfer jitter and deadline failure. In the message 

transfer test, the system suffered an 88.97% decrease in velocity in comparison to two 

services on the same domain. In the deadline test, a 4242.5% increase on missed deadlines 

was measured when the GPOS domain was allowed to consume the system’s CPU and 

memory resources simultaneously with the RTOS domain. 

Finally, to test if the system could be used in the automotive industry a prototype of a real-

world application was used to simulate the transmission and visualization of sensor data 

between two VMs, a test which proved to be successful and without noteworthy problems. 

7.3 Future work and limitations 

In the conduction of this research, the most limiting factor were the missing, outdated and 

often miscategorised parts of the Xen documentation. Other limiting factors included limited 

support for the chosen hardware on the part of the chosen OSs and the extensive time 

consumed by compilating all the necessary parts. 

For future work, different hardware should be used, as 32-Bit is on the decline and support is 

dropping. Equally, for better testing the partitioning aspect, principally in terms of the CPU, 

the hardware used should feature at least six cores, to comfortably host all three VMs without 

interference.
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