

Exploring Xen/KVM in prototyping an
automotive use-case

Orientação científica: David Pereira, Coorientação: Cláudio Maia

BEng Thesis

CISTER-TR-191212

Johann Knorr

BEng Thesis CISTER-TR-191212 Exploring Xen/KVM in prototyping an automotive use-case

© 2019 CISTER Research Center
www.cister-labs.pt

1

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

Due to increasing autonomy in vehicles, the automotive industry is searching for solutionswhich allow the
reduction of engineering costs resulting from increasing hardware andsoftware requirements. To solve the
problem, one of the solutions being studied is theutilization of virtualization to allow multiple systems to coexist on
the same hardware,allowing the systems to function as if they are isolated, while reducing hardware costs.
Usingvirtualization, the system becomes capable of hosting services of mixed criticality safely,reducing
interference between the services through temporal and spatial isolation.In this project we analysed the Xen
hypervisor in an effort to better comprehend how itsinclusion would impact the execution of a system with real-
time requirements. After a brieflook at the current state of the art we describe how Xen behaves on the 32-bit
ARMarchitecture, how it shares peripheral devices between virtual machines and how interdomaincommunication
can be achieved. Following that, we present an example of how to deploy Xenon a Banana Pi SOC. After studying
how best to establish a continuous connection betweendifferent virtual machines we tested our solution for
message transfer jitter, deadline failurerate impact and deployed a prototype of an automotive application to
verify how the systemwould behave in a real-world scenario.As planned, a system of mixed criticality was deployed
on the hardware using the Xenhypervisor, PREEMPT RT was deployed on one virtual machine with real-time
requirements,while Linux was deployed on a general-purpose virtual machine. The test showed that on
theselected hardware Xen was unable to guarantee temporal isolation, showing significantperformance drops in
deadline failures. The communication between virtual machines andthe deployment of the real-world application,
however, were successful.

Exploring Xen/KVM in prototyping an automotive
use-case

CISTER

2018 / 2019

1160996 Johann Knorr

Johann Knorr (1160996) iii

Exploring Xen/KVM in prototyping an automotive
use-case

CISTER

2018 / 2019

1160996 Johann Knorr

Licenciatura em Engenharia Informática

Setembro 2019

Orientadores ISEP: David Pereira e Cláudio Maia

Johann Knorr (1160996) v

To Ana Silva, for all the support and love you give me

Johann Knorr (1160996) vii

Acknowledgments
Here I would like to thank my family for helping me become the person I am today and my

girlfriend, Ana Silva, for all the support and love you give me.

I thank the friends I made here at ISEP, specifically Bruno Reis, Flávio Costa, Francisco

Machado, João Cardoso, João Neves, Miguel Ramos and Rui Oliveira, for your companionship,

for sharing your knowledge and for our mutual support during these three years.

Lastly, I want to thank my supervisors, Cláudio Maia and David Pereira and my colleagues at

CISTER for guiding me and assisting me in the development of this project.

Johann Knorr

Johann Knorr (1160996) ix

Abstract
Due to increasing autonomy in vehicles, the automotive industry is searching for solutions

which allow the reduction of engineering costs resulting from increasing hardware and

software requirements. To solve the problem, one of the solutions being studied is the

utilization of virtualization to allow multiple systems to coexist on the same hardware,

allowing the systems to function as if they are isolated, while reducing hardware costs. Using

virtualization, the system becomes capable of hosting services of mixed criticality safely,

reducing interference between the services through temporal and spatial isolation.

In this project we analysed the Xen hypervisor in an effort to better comprehend how its

inclusion would impact the execution of a system with real-time requirements. After a brief

look at the current state of the art we describe how Xen behaves on the 32-bit ARM

architecture, how it shares peripheral devices between virtual machines and how interdomain

communication can be achieved. Following that, we present an example of how to deploy Xen

on a Banana Pi SOC. After studying how best to establish a continuous connection between

different virtual machines we tested our solution for message transfer jitter, deadline failure

rate impact and deployed a prototype of an automotive application to verify how the system

would behave in a real-world scenario.

As planned, a system of mixed criticality was deployed on the hardware using the Xen

hypervisor, PREEMPT RT was deployed on one virtual machine with real-time requirements,

while Linux was deployed on a general-purpose virtual machine. The test showed that on the

selected hardware Xen was unable to guarantee temporal isolation, showing significant

performance drops in deadline failures. The communication between virtual machines and

the deployment of the real-world application, however, were successful.

Keywords (Theme) Virtualization, Automotive, Embedded Systems, Mixed-

Criticality, Real-Time

Keywords (Technologies) Xen, Robot Operating System, 32-Bit ARM, Banana Pi, Linux

Johann Knorr (1160996) xi

Index
1 Introduction ... 1

1.1 Context .. 1

1.2 Problem Description .. 3

2 State of the Art .. 9

2.1 Related Work ... 9

2.2 Existing Technologies ... 11

2.3 Conclusion ... 17

3 Xen .. 19

3.1 Xen on ARM ... 19

3.2 Peripheral Sharing.. 20

3.3 Inter domain communication ... 21

3.4 Xen Installation .. 21

3.5 Domain Setup .. 25

4 Analysis and Design ... 29

4.1 Use-case .. 29

4.2 Interdomain Communication .. 29

4.3 Architectures ... 32

5 Implementation ... 35

5.1 OS Selection ... 35

5.2 Data Transmission Framework ... 36

6 Experiments ... 37

6.1 Message delivery time jitter ... 37

6.2 Deadline failure ... 40

6.3 Real-world application ... 42

7 Conclusions .. 47

7.1 Proposed vs achieved goals .. 47

7.2 The solution ... 48

Johann Knorr (1160996) xii

7.3 Future work and limitations ... 48

8 References ... 49

Johann Knorr (1160996) xiii

List of Images
Figure 1 The current solution in the automotive sector ... 3

Figure 2 Solution without hypervisors .. 4

Figure 3 Proposed use case ... 4

Figure 4 VMM Types Architecture ... 11

Figure 5 Xen Architecture .. 13

Figure 6 KVM Architecture .. 14

Figure 7 Peripheral Sharing Deployment Diagram .. 20

Figure 8 Observer Pattern Sequence Diagram Example ... 30

Figure 9 Publish Subcrbie Pattern Sequence Diagram Example ... 31

Figure 10 Deployment Diagram of the chosen architecture ... 33

Figure 11 Jitter time test sequence ... 38

Figure 12 Boxplot on round-trip time on Domain-0 and between the RTOS domain and the

GPOS domain ... 39

Figure 13 Real time application flowchart .. 41

Figure 14 Deadline failure rate comparison .. 42

Figure 15 Deployment of the Vortex Application .. 43

Figure 16 Execution of the Subscriber, Publisher and Message Broker 44

Figure 17 Visualization of the sensor data .. 44

Johann Knorr (1160996) xiv

List of Tables
Table 1 The project’s tasks and their expected duration .. 6

Table 2 Impact of missed deadlines on real-time systems ... 15

Table 3 Jitter Test Quantiles .. 39

Johann Knorr (1160996) xv

Glossary
ARAMiS - Accidental Risk Assessment Methodology for Industries

AUTOSAR – AUTOmotive Open System ARchitecture

CISTER – Research Centre in Real-Time & Embedded Computing Systems

ECU – Electronic Control Unit

EDF – Earliest Deadline First

EE – Erika Enterprise

FP – Fixed Priority

GPOS – General Purpose Operating System

HVM – Hardware Virtual Machine

ISEP – Instituto Superior de Engenharia do Porto

ISO - International Organization for Standardization

KIT - Karlsruhe Institute of Technology

KVM – Kernel Virtual Machine

LEI – Licenciatura em Engenharia Informática

OIL – OSEK Implementation Language

OS – Operating System
OSEK/VDX – Offene Systeme und deren Schnittstellen fur die Elektronik im Kraftfahrzeug

PESTI – Projeto/EstágioR&D – Research and Development

ROS – Robot Operating System

RTOS – Real-Time Operating System

SOC – System-on-a-Chip

VDX - Vehicle Distributed eXecutive

VM – Virtual Machine

VMM – Virtual Machine Monitor

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 1

1 Introduction
The project entitled “Exploring Xen/KVM in prototyping an automotive use-case”, explored in

this report, is part of the curricular unit named Projeto/Estágio (PESTI) of the Licenciatura em

Engenharia Informática (LEI) of the Instituto Superior de Engenharia do Porto (ISEP). This

project was proposed by the Research Centre in Real-Time & Embedded Computing Systems

(CISTER), a Research and Development (R&D) centre devoted to the study of real-time and

embedded systems, that is part of ISEP.

1.1 Context
Due to the advances in vehicle autonomy through computerization, the automotive industry

is searching for solutions that can keep engineering costs low while increasing performance

and guaranteeing the safety of critical systems within the vehicles [1]. The introduction of new

features, including increased multimedia capabilities, advanced driving assistance and safety

measures increase the costs of the required hardware and software. Several of these features

require the use of embedded systems, i.e., computer systems that dynamically interact with

the external world, these systems can influence but not control the environments they are

embedded in [2]. These systems are also frequently used in scenarios where timeliness is a

concern [3], meaning that the computation has not only to be logically correct but also

complete within a certain time bound. These systems are then an example of real-time

systems.

Examples of embedded systems in the automotive industry are electronic control units (ECUs)

that are responsible for controlling one or more electronic systems of the vehicle, as for

instance the vehicles emission rates or managing the information displayed on the dashboard

[3]. In fact, in 2015 cars contained around 110 ECUs responsible for the emission and cooling

systems, driving assistance features and engine operation [4]. Due to the demand in new

features and electronic components to control them, the automotive industry is interested in

decreasing the time to market while keeping the development and integration costs low. One

possible solution to overcome this challenge is the adoption of software virtualization

solutions.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 2

Virtualization is the technique by which several systems can execute on the same hardware,

while keeping their isolation and effectively behaving as if executing on different machines.

Each of these systems is known as a Virtual Machine (VM) and their manager/monitor is

known as the hypervisor. A hypervisor, or virtual machine monitor (VMM), is a tool that allows

one or more VMs to execute on top of the hardware. It guarantees that either machine does

not affect the other machines’ performance and creates increased security between

machines. Several different implementations of hypervisors exist on the market, both

commercial and open source variants. Some of the more well-known hypervisors are Xen [5],

KVM [6], Jailhouse [7], Microsoft Hyper-V [8], Oracle Virtual Box [9].

Through the use of hypervisors in the automotive use case, the system can become capable

of supporting systems of mixed criticality on the same platform, recurring to temporal and

spatial partitioning thereby reducing interference between systems and creating fault

containment zones [10] [11]. For instance, in a mixed criticality system, a multimedia system

with low criticality can coexist safely on the same hardware with an assisted driving system

with high criticality, without the multimedia system representing a liability to the assisted

driving system.

 Framing in the context of the Vortex collaborative laboratory

The project being reported here is part of a task that is framed in the R&D activities that are

part of the Vortex collaborative laboratory agenda. Vortex, which is led by Altran Portugal and

that has as partners ISEP, INESC TEC, NovaLINCS, and Beta-i, is one of the Portuguese

collaborative laboratories that were approved by the Portuguese Government and associated

research and innovation partners, and that started their activities during the year of 2019.

The work performed in this project contributes specifically to activities that were selected by

the Vortex governing body to tackle the challenges of the automotive industry in what

concerns the usage of virtualization solutions to provide increased support for assisted driving

features, with particular focus on visualization and having the Robot Operating System (ROS)

as the integration framework.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 3

1.2 Problem Description

This project aims to answer the question: Can an open source hypervisor fit the needs of the

automotive industry? It is unknown how real-time systems will behave under the influence of

Xen or KVM, two of the most used open source hypervisors, that is, how their timeliness varies

and how their access to the system’s resources can be guaranteed. The real-time system’s

requirements, namely predictability and deadline achievement can easily be jeopardized by

excessive utilization of the systems resources.

If any VM occupies the system’s CPU for too long or accesses memory that another VM was

making use of, this can have adverse effects on the RTOS’s timeliness, rendering it unusable if

no measures are taken to prevent it. It is therefore important to confirm if said measures exist

in the hypervisor and verify how well they behave under stress.

Figure 1 The current solution in the automotive sector

In the current approach used by the automotive industry, depicted in Figure 1, two computer

systems are used. While their independence is guaranteed, for every different real-time

service a new piece of hardware must be used, and as such it increases both material and

energy costs, as well as complicating the deployment.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 4

Figure 2 Solution without hypervisors

Should both systems be joined in the same hardware, without the use of a hypervisor, as

depicted in Figure 2, the energy consumption and material costs are reduced, but a security

vulnerability is exposed as there is no way to guarantee that the real-time application,

responsible for safety-critical applications can meet the deadlines, since the systems

resources will be heavily used by the other systems.

Figure 3 Proposed use case

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 5

In the proposed solution, which is shown Figure 3, the hypervisor solves the problem related

to the access to the systems resources, by guaranteeing their separation throughout the VMs,

making it so that one VM cannot access the resources allocated to another VM. By providing

temporal and spatial isolation, the hypervisor enables the system to maintain the real-time

application’s timeliness.

 Objectives

This project proposes to verify the feasibility of the usage of the Xen or the KVM hypervisor in

an embedded environment. The project will study the impact of executing systems of mixed

criticality in the chosen hypervisor and proceed to establish how different VMs are separated

and how they can eventually communicate with each other.

 Approach

In order to properly address the problem at hand, a preliminary study of the concept of

hypervisor and virtualization must be performed. This research focuses on the characteristics

and different types of hypervisors as well as differences in approaches to virtualization. The

next step focuses on the specific characteristics and design of both the Xen and KVM

hypervisors, allowing to identify advantages and disadvantages in their use and establishing

which should be used in the proposed use-case.

Having chosen a hypervisor, the next milestone becomes its execution on a Banana Pi, a

system on a chip (SOC) that serves as the embedded environment. For the correct execution

of this step, several pieces of software have to be compiled from source: the bootloader, U-

Boot, due to it being the de facto bootloader for embedded systems, the Linux kernel, serving

as the hypervisors host OS and the chosen hypervisor for this project.

Once the system’s initial configuration is finished, two VMs must be created. The installation

of the first machine contains a general-purpose operating system (GPOS), while the second

contains a real-time operating system (RTOS).

After both virtual machines are working correctly the system has to undergo a series of tests

to establish how the VMs affect each other’s functioning.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 6

 Contributions

Through this project, it is expected that Xen or KVM’s place in the automotive sector is either

corroborated or rejected as a viable hypervisor for the solution through virtualization. This

work highlights the processes by which deployment can be achieved and provides benchmarks

of the chosen hypervisor’s performance in the selected use case. Using a prototype

application from the Vortex Colab, we will test the communication between two VMs and

verify the behaviour of the VMM in a real-world scenario. By the end we expect to know if Xen

or KVM can safely support a system of mixed criticality, guarantee the timely execution of

safety-critical tasks and reduce the energy consumption and deployment efforts.

 Planning

The planning phase is of utmost importance for the success of any project, even more so for

R&D projects, where it is unknown if the final objective can be achieved. So being, having well

traced and delimited minor goals, and respecting them to all possible extent, helps in

maximizing the efficiency of all involved parties.

For this project, several major milestones were identified, which are represented in bold in

the table below. Minor goals are identified when the complexity of the milestone warrants it.

Table 1 The project’s tasks and their expected duration

Task Time

Hypervisor deployment 42d

Study on hypervisors and their use in embedded systems 14d

Perform KVM experiments 14d

Perform Xen experiments 14d

Write Paper on Hypervisors in Embedded Systems (Optional) 21d

Research on related works 14d

Writing of the paper 7d

Virtual Machine Deployment 10d

Compilation and deployment of the GPOS VM 3d

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 7

Compilation and deployment of the RTOS VM 7d

Write progress report 2d

M1 – Progress Report

Development of a real-time application 7d

Development of the prototype 22d

Study of the interdomain interference impact 14d

Write final report 22d

M2 – Report Delivery

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 9

2 State of the Art

2.1 Related Work

Several other projects have studied the requirements, advantages and disadvantages of

integrating hypervisors in the automotive realm. In the following sections, some of the

previously made studies are presented and their findings discussed.

 MultiPARTES: Multicore virtualization for Mixed-criticality Systems

The MultiPARTES [12] project’s goal was to promote “mixed-criticality integration for

embedded systems based on virtualization”. The MULTIPARTES authors discussed the

certification requirements in the automotive industry, specifically ISO/IEC 61508 and ISO

26262, and the difficulty of having software appraised due to conservative assumptions of the

certification authorities that also lead to poor usage of the system's potential. The authors

then list a set of requirements the system should display in order to qualify for independent

certification. First, the partitions should be isolated both spatially and temporarily. Next, it

should be possible to analyse partitions in an isolated fashion and methods for said analysis

must be provided. Lastly, the scheduling of one partition must not impact the scheduling of

another.

The team also presented the challenges that arose from designing a system with virtualization

capabilities, as each application had to be assigned to partitions and dependability and

security requirements had to be taken into consideration [12].

The MultiPARTES team brought up a series of important concerns, yet their project differs

from the one presented here since it does not cover the communication or partitioning

aspects, nor offers an implementation of their proposed methodology.

 Integrating Linux and the real-time ERIKA OS through the Xen hypervisor

In this paper, the authors test the compatibility between ERIKA Enterprise [13] , an RTOS, and

the Xen hypervisor on an embedded environment. The authors study a similar use case to the

one proposed in this project with the execution of an RTOS and a GPOS on the same hardware.

They alert the reader for the risks of mixed criticality without isolation guarantees, namely

failures in the GPOS, which might negatively affect the execution of safety-critical tasks on the

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 10

RTOS and malfunctions on the RTOS which, through errors in the file descriptors, might pollute

the Linux memory area.

The authors proceed to describe their approach to communication between partitions, having

the communication starting from Erika Enterprise’s partition as to guarantee that the

communication does not negatively affect the scheduling of the other real-time tasks, as the

RTOS is responsible for attributing the priority it deems fit for the communication.

Finally, the team lists the limitations and drawbacks from their implementation, specifically

the fact that whenever the RTOS needs to signal the GPOS it has to send first a hypercall to

the Xen hypervisor, effectively creating a bottleneck for the communication and presenting a

risk to the RTOS proper functioning, as the machine could stay in hypervisor mode for a period

of time that would compromise the deadline of real-time operations. The authors also argue

that isolation between the two partitions should be improved as to limit interference between

them

Nonetheless, the authors show that it is possible to execute Erika Enterprise on top of the Xen

hypervisor and that communication is possible, suggesting that more work should be put into

that research [14].

As the authors had suggested, more research must be done on the subject, the project

described relied on outdated versions of both Xen and Erika Enterprise, and both have come

a long way since the release of this experiment.

 ARAMiS II

The Accidental Risk Assessment Methodology for Industries (ARAMiS) is a project funded by

the German government and coordinated by the Karlsruhe Institute of Technology (KIT)

aiming to promote research on safety-critical application in the automotive and avionics

industry. It is a follow up to the original ARAMiS project, which ended in 2015. The project

mostly focuses on developing methodologies, tools and architectures to further facilitate the

development and deployment of safety-critical applications on multicore embedded systems

[15]. Several use cases are presented by ARAMiS, ranging from automotive to avionics and

industrial automation [16].

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 11

2.2 Existing Technologies

 Hypervisors

A hypervisor, also known as VMM, is a piece of software that allows a VM to execute on top

of the hardware. To be classified as a VMM it must follow three basic characteristics. Firstly,

it must allow for programs to be run as if they were being run right on top of the original

machine. Secondly, all programs run on the VM must have a minuscule impact on their

performance, compared to the original machine. Lastly, the VMM must be in control of the

entirety of the systems resources, meaning it is in control of which VM can use which

resources and to what extent [17].

Commonly, hypervisors are separated into two categories. The first category, referred to as

type 1, bare-metal or native hypervisor, encompasses the hypervisors that execute directly on

top of the hardware. These hypervisors must include code to perform the scheduling and

resource allocation. The second category, called type 2 or hosted hypervisor, runs on top of

an already existing OS [18]. It should be noted that type 2 hypervisors suffer from considerable

overhead due to the existing OS executing underneath. The architectural differences between

type 1 and type 2 hypervisors are depicted in Figure 4.

Figure 4 VMM Types Architecture

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 12

When discussing virtualization approaches, two fundamental techniques can be identified, full

virtualization and para-virtualization (PV), and some approaches that make use of

characteristics from both.

Full virtualization consists of the creation of a fully virtualized system through the abstraction

of the physical system. The OS is not aware of the virtualization and will, therefore, run just as

it would on the physical system [19].

Para-virtualization, on the other hand, involves modifying the OS, by exposing a virtual

architecture, so that it is aware of the ongoing virtualization, making it more efficient, yet

breaking backwards compatibility with existing code for said OS. Para-virtualized systems

usually add instructions, devices or registers to the architecture, improving overall

performance [20].

 Xen

Xen first came to be in 2003 as a platform for the instantiation of several smaller VMs, each

running on its own copy of an OS, by partitioning the underlying hardware to support their

concurrent execution, isolating the VMs from one another, guaranteeing both security and

performance identical to the underlying physical system. The original Xen hypervisor

functioned only via para-virtualization, as the hardware at the time made full virtualization

very costly from a performance perspective. The x86 architecture did not include virtualization

capabilities [21]. With the appearance of hardware virtualization extensions, that facilitated

full virtualization, Xen incorporated full virtualization resulting in a feature known as hardware

virtual machine (HVM), making it so that unmodified OSs could be run on top of the Xen

hypervisor. Currently, the Xen team is working on merging the PV working mode a working

mode and the fully virtualized mode to “simplify the interface between OSs with Xen Support

and the Xen Hypervisor” [22], an approach dubbed as PVH, as a mixture of PV and HVM.

Xen is a traditional type 1 hypervisor as it is in direct communication with the hardware. On a

system boot, Xen automatically creates a privileged guest, named Domain-0. This guest is

responsible for providing device drivers and running management applications. As with the

unprivileged guests (Domain-U), Domain-0 possesses its own virtual CPU and virtual memory.

Since Domain-0 is responsible for all the I/O tasks, the Domain-U guests only communicate

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 13

indirectly with peripheral devices, delegating those tasks to Domain-0 [23]. The basic

architecture of a Xen system is displayed in Figure 5.

Figure 5 Xen Architecture

 KVM

Having made its debut in 2006, the Kernel-based Virtual Machine (KVM) seeks to add

hypervisor capabilities to the mainline Linux kernel. Being embedded into the Linux Kernel, as

a module, KVM does not need to implement any functions to perform scheduling or resource

allocation, like a traditional type 1 hypervisor, making use of the already existing capabilities

of the Linux Kernel. With KVM, a virtual machine is, from the perspective of the system,

identical to any other process [24]. To achieve virtualization, KVM makes use of hardware

extensions on the CPU and virtualises I/O devices through Virtio, a technology similar to Xen’s

para-virtualized device drivers, enabling faster I/O operations [25].

KVM is often labelled a type 2 hypervisor. At first glance, it seems that KVM is running on top

of the OS, as well as the fact that it does not deal with scheduling and memory management,

like other hosted hypervisors. Despite those circumstances, KVM effectively transforms the

OS into a type 1 hypervisor, as it is a part of the OS and not software running on top [26]. The

functioning of KVM is shown in Figure 6.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 14

Figure 6 KVM Architecture

Processes in Linux have commonly two execution modes, kernel and user mode. With KVM, a

third mode, named guest mode, joins user mode and kernel mode. While running in guest

mode, the process has all the same privileges as any process in the regular operating modes,

with the addition that it can request that certain accesses to registers or instructions be

trapped. Under KVM, a virtual machine will run most of the time in guest mode, changing to

kernel mode when it must deal with events like external interrupts and changing to user mode

when requiring an I/O operation [24].

 Jailhouse

Jailhouse is a partitioning hypervisor released in 2013. Isolation is achieved via hardware-

assisted virtualization [27]. Due to its alternative approach to virtualization, Jailhouse offers

no scheduler, as a CPU cannot be shared between guests, called cells in the Jailhouse jargon.

Jailhouse is launched through Linux, the original system becomes then the root-cell,

comparable to Xen's Dom-0. The root-cell is responsible for distributing resources to the other

cells in a process called “shrinking”. In this process the root cell cedes control over some of its

CPU, memory or peripheral devices, and allocates them to the new cells [28].

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 15

 Real-Time Computing

A real-time computer system is a system which correctness is not measured only in its logically

correct computations but also in the timely arrival of said computations. It should be noted

that the aim is not to minimize the average response time but to meet the deadline of each

task [29].

When considering real-time deadlines, three types can be identified, as shown in Table 2. Hard

deadlines are those where if the results are produced after the deadline, consequences might

be catastrophic. Soft deadlines are those where if the results are produced after the deadline

the system will have degradation in performance, but the result is still of some use to the

system. Firm deadlines are those where if the results are produced after the deadline the

results are simply discarded [30] [31].

Table 2 Impact of missed deadlines on real-time systems

Type Usefulness of missed deadlines Consequences of missed deadlines

Hard Real-Time Not useful Catastrophic

Soft Real-Time Useful Performance Degradation

Firm Real-Time Not useful Performance Degradation

To improve the chances of deadlines being met, every RTOS must implement a scheduling

algorithm which enables it to meet the established deadlines for each application. These real-

time scheduling algorithms select a method by which the next task is chosen, among others,

some are:

 Shortest job first

 Static priority

 Earliest deadline first

In the case of an eventual system overload, the algorithm must also determine a strategy to

solve the issue, which usually is achieved through either reducing or eliminating the execution

of tasks of lower priority [32].

Therefore, a RTOS is a system capable of executing real-time applications while providing the

aforementioned characteristics.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 16

 ERIKA Enterprise

Erika Enterprise (EE) is an OSEK/VDX and AUTOSAR compliant RTOS designed for single-chip

microcontrollers. EE provides a multithreading environment supporting real-time scheduling

algorithms and stack sharing [33]. The scheduling algorithms supported by the EE kernel

include Fixed Priority (FP), Earliest Deadline First (EDF) and Contract-based scheduling (FRSH).

This way EE can offer both traditional and innovative scheduling algorithms out of the box.

EE uses the OSEK Implementation Language (OIL), created by the OSEK/VDX consortium, to

define RTOS objects to be used by the application. Due to the complexity of the language and

to facilitate configuration, EE comes bundled with RT-Druid, thus providing a visual interface

capable of generating the needed configuration files [34].

OSEK/VDX

“Offene Systeme und deren Schnittstellen fur die Elektronik im Kraftfahrzeug” (OSEK) is a

partnership of the German automotive industry whose goal is to standardise the architecture

for distributed control units in the automotive sector. OSEK merged with the Vehicle

Distributed eXecutive (VDX) project in 1994, transforming the official name to OSEK/VDX [35].

The partnership is responsible for many standards, which have since been incorporated by the

International Organization for Standardization (ISO).

AUTOSAR

Founded in 2003, AUTOSAR (AUTOmotive Open System ARchitecture) is a consortium, created

by major automotive manufacturers, aiming to standardise the software architecture for

automotive embedded systems, improving safety and reducing energy consumption and

software reuse. AUTOSAR specifies several standards and guidelines that are highly regarded

in the industry [36] [37].

 FREERTOS

FreeRTOS is an RTOS designed for embedded devices, supporting over 35 architectures [38].

FreeRTOS supports both pre-emptive and cooperative scheduling and features FP and round-

robin scheduling algorithms.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 17

FreeRTOS uses C header files for configuration, therefore every application must have a

FreeRTOSConfig.h file. This file specifies the kernel’s characteristics for that application and is

therefore tied to the application instead of the kernel [39].

 SAFERTOS

Having been created as a fork of the FreeRTOS project, SafeRTOS inherited most of the

features from FreeRTOS. In addition, SafeRTOS puts a high value on deterministic priority-

based scheduling, This, in turn, brought it the certification of TÜV SÜD, having been certified

with IEC 61508-3 SIL and ISO 26262 ASIL [40].

 PREEMPT_RT

The PREEMPT_RT patch for the Linux kernel aims increase the preemption on said kernel by

reducing the code that is non-preemptible and changing the least code necessary to provide

real-time capabilities [41]. By transforming regular Linux into an RTOS, any program that runs

on the stock kernel also runs on PREEMPT_RT, thus providing combability with already existing

software and providing a familiar environment for further development [42].

 Das U-Boot

The “Universal Bootloader", also known as “Das U-Boot" or just U-Boot, is an open-source

bootloader created for embedded systems. It originated from a similar project called PPCBoot

in 2002 and is used as the default bootloader by a multitude of board vendors. The bootloader

supports a variety of architectures, both ARM and x86 [43] [44]. A bootloader in a computer

system is the application which loads the OS’s kernel into memory and proceeds to its

execution. The bootloader generally allows for a selection of the kernel to execute, in case

multiple kernels are present on the system. On embedded systems, a bootloader is also

responsible for programming the system’s memory controllers, initializing processor caches,

managing hardware peripherals and enabling network support. The responsibilities of the

bootloader on embedded systems are increased due to a lack of extensive firmware, generally

found on regular desktops or server systems [45].

2.3 Conclusion

After analysing the available technologies and ranking them in order of suitability for the

project at hand, it was decided that Xen would be the most suitable hypervisor to use. Xen

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 18

has more extensive documentation and reports of projects of similar nature on this

hypervisor, when compared with KVM.

Regarding the choice of the RTOS, Erika Enterprise proved to be the most suitable for this

project, due to the existing certification and previous deployment on the Xen hypervisor.

However, due to developments on the hypervisor since that deployment, Xen no longer

supports Erika Enterprise, and although efforts were made to correct this, they proved to be

fruitless.

Knowing that Linux fully supports Xen, PREEMPT_RT was chosen as the RTOS, despite being a

soft real-time OS it serves as proof of concept for this project.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 19

3 Xen
In this chapter, we provide a comprehensive explanation of Xen’s internal mechanisms. Here

we will draw the distinctions between Xen’s implementation on the ARM architecture versus

its x86 counterpart, listing the most important differences, followed by an explanation on how

peripheral sharing and interdomain communication are achieved and the steps required to

deploy the hypervisor and, finally, how to set up an unprivileged domain.

3.1 Xen on ARM

As seen in Chapter 2, Xen is a type 1 hypervisor. Xen manages all the accesses to the system’s

resources, except for the peripheral devices, which are controlled by Domain-0, as well as the

scheduling of all the different tasks. This description of Xen is true for both the x86 and ARM

architectures. There are, however, a few key differences in how Xen operates on ARM.

While the Xen project exists since 2003, it was not until 2013 that the ARM architecture

became supported. Facing the challenge of porting a 10-year-old project to a new

architecture, the Xen team seized the opportunity to remove any unnecessary code. Most

notably, the ARM version of Xen has no support for emulation, meaning that all references to

emulation have been substituted in favour of virtualization extensions present in the

hardware or paravirtualized interfaces, in the case of input/output devices.

On the x86 architecture, Xen supports two kinds of guests, paravirtualized guests, which must

be modified to execute on top of the hypervisor and fully virtualized guests, which make use

of emulation, do not need modification but have reduced performance. On ARM, due to the

lack of emulation, Xen only supports one type of guest, usually referred to as ARM Guest.

This guest type functions as an amalgamate of the previous two types, managing to avoid

modifying the overlying OS without suffering performance loss, which is achieved by making

use of the virtualization extensions present in the hardware to avoid the need for emulation,

thus not suffering the performance loss characteristic to the latter. The only things Xen

requires of the OS are custom device drivers for the peripheral devices [46].

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 20

3.2 Peripheral Sharing

While it is the purpose of the hypervisor to guarantee the separation between the different

VMs both spatially and temporally, it may sometimes be necessary to allow more than one

machine access to the same piece of hardware. For instance, to establish a working internet

connection, the VMs must access, and thus share, the network adapter. Without the

possibility of peripheral sharing, the machines would either not have access to the service or

the hardware would need to include one device for each domain, which would inevitably raise

the hardware cost of the system.

To control which domains, have access to which devices, Xen allows assigning the different

devices between VMs. By default, all available devices are assigned to Domain-0, through

Domain-0 the devices can then be distributed to different unprivileged domains, according to

their needs. Should more than one machine need access to the device though, Xen offers the

solution through the use of split device drivers.

The split device drivers achieve their function by, as the name suggests, being distributed

between two domains. One domain, the one which needs access to the device but does not

control it, uses the FrontendDriver to establish a connection to the domain which holds the

device. The device controlling domain, in turn, uses the BackendDriver to relay the previous

domains request to the device in question. Thus, the BackendDriver serves as a broker

between all the FrontendDrivers requests and the shared device. This behaviour is depicted

in Figure 7.

Figure 7 Peripheral Sharing Deployment Diagram

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 21

3.3 Inter domain communication

In order to determine the medium by which the domains communicate, a communication

mechanism must be chosen. Xen offers two immediate solutions for interdomain

communication. One solution is based on memory sharing between the domains, while the

other solution is to delegate the communication to the OS.

In terms of raw performance, it would undoubtedly be beneficial to use a mechanism based

on shared memory. Xen supports memory sharing with grant tables, where one VM offers

selected memory pages to be accessed by a different VM. Alas, Xen only supports this feature

on fully virtualized machines executing in an x86 environment [42], rendering this solution

unpractical at the current time.

Making use of Xen’s ability to share peripherals, the communication can be handled on the

OS level and, in this case, established through TCP. In order to allow each domain to appear

in the network as its own device, Xen can be configured to use bridging. Using this mechanism,

a network bridge can be created in the domain that controls the network device, usually

Domain-0, where all the other domains can connect to, thus becoming available in the

network.

3.4 Xen Installation

To deploy Xen on an ARM based system, a few steps must be taken. In this section we present

the necessary steps to set up Xen and Domain-0 on a Banana Pi SOC. For this process, one

should guarantee all the necessary toolchains are present.

$ sudo apt install gcc-arm-linux-gnueabihf bc build-essential git
device-tree-compiler ncurses-dev

 Having acquired the necessary toolchains, we can start by collecting all the required source

files for the bootloader, Xen, the Linux Kernel and the latest Linaro release based on Ubuntu.

$ mkdir workspace
$ cd workspace
$ git clone git://git.denx.de/u-boot.git
$ cd u-boot
$ git checkout tags/v2019.01
$ cd ..
$ git clone
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 22

$ mv linux-stable linux
$ cd linux
$ git checkout tags/v4.19.37
$ cd ..
$ git clone git://xenbits.xen.org/xen.git
$ cd xen
$ git checkout tags/RELEASE-4.11.0
$ wget
http://releases.linaro.org/ubuntu/images/developer/15.12/linaro-
vivid-developer-20151215-714.tar.gz

Having acquired all the necessary files, the next step becomes compiling the downloaded

source codes and creating any necessary configuration files

While building the system from the ground up, the first program that needs to be compiled is

the bootloader. U-Boot already includes a default configuration for the Banana Pi, thus

removing any unnecessary complexity to this process. The boot.src file created in this step will

be used to configure the bootloader and designate the program to load on boot as well as the

arguments to pass to said program, in this case Xen [47].

$ cd u-boot
$ make CROSS_COMPILE=arm-linux-gnueabihf- Bananapi_config
$ make CROSS_COMPILE=arm-linux-gnueabihf -j ${nproc}
$ mkdir boot
$ cd boot
$ echo '
setenv fdt_addr 0x7ec00000
setenv fdt_high 0xffffffff
setenv kernel_addr_r 0x6ee00000
setenv xen_addr_r 0x6ea00000
fatload mmc 0 ${xen_addr_r} /xen
setenv bootargs "console=dtuart dtuart=serial0 dom0_mem=512M"
fatload mmc 0 ${fdt_addr} /sun7i-a20-bananapi.dtb
fdt addr ${fdt_addr} 0x40000
fdt resize
fdt chosen
fdt set /chosen \#address-cells <1>
fdt set /chosen \#size-cells <1>
fatload mmc 0 ${kernel_addr_r} /zImage
fdt mknod /chosen module@0
fdt set /chosen/module@0 compatible "xen,linux-zimage"
"xen,multiboot-module"
fdt set /chosen/module@0 reg <${kernel_addr_r} 0x${filesize} >
fdt set /chosen/module@0 bootargs "console=hvc0 ro
root=/dev/mmcblk0p2 rootwait clk_ignore_unused"
bootz ${xen_addr_r} - ${fdt_addr}
' > boot.cmd
$ mkimage -C none -A arm -T script -d "boot.cmd" "boot.scr"

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 23

$ cd ../../

The following program to be compiled is the hypervisor itself, besides cross compiling the code

to be executable on ARM one must also specify the target architecture, as we have seen that

Xen for x86, and ARM have different sources.

$ cd xen
$ make dist-xen XEN_TARGET_ARCH=arm32 CROSS_COMPILE=arm-linux-
gnueabihf- -j {nproc}
$ cd ..
Finally, we have to compile the Linux kernel to include all the necessary modules. Using the

menuconfig option we gain access to an interface that facilitates the selection of modules as

well as providing categorization and a description for each [48].

$ cd linux
$make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- multi_v7_defconfig
$make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig

 System Type -> Support for the Large Physical Address Extension
 Kernel Features -> Xen guest support on ARM
 Networking Support -> Networking options -> 802.1(d) Ethernet Bridging
 Device Drivers -> Multiple devices driver support (RAID and LVM) -> Device
mapper support
 Device Drivers -> Block Devices -> Xen block-device backend driver
 Device Drivers -> Network device support -> Xen backend network device
 Virtualization
 Virtualization -> Host kernel Accelerator for virtio net

$make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- zImage dtbs
modules -j {nproc}

Having all the binaries ready we must prepare an SD card to move them too. We’ll divide the

card into two partitions the first partition will be our boot partition and will hold the u-boot

and Xen binaries, the Kernel and the device tree blob, which we get through U-Boot. The

second partition will hold the files from the Linaro release as well as the modules selected

during the Kernel compilation phase.

$ sudo blockdev --rereadpt /dev/mmcblk0
$ sudo sfdisk /dev/mmcblk0 <<EOT
1M,16M,c
,4G,L
,,8e
EOT
$ sudo mkfs.vfat /dev/mmcblk0p1
$ sudo mkfs.ext4 /dev/mmcblk0p2

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 24

$ sudo dd if=u-boot/u-boot-sunxi-with-spl.bin of=/dev/mmcblk0
bs=1024 seek=8
$ sudo mkdir /mnt/mmc1
$ sudo mkdir /mnt/mmc2
$ sudo mount /dev/mmcblk0p1 /mnt/mmc1
$ sudo mount /dev/mmcblk0p2 /mnt/mmc2
$ sudo cp u-boot/boot/boot.scr /mnt/mmc1/
$ sudo cp linux/arch/arm/boot/zImage /mnt/mmc1/
$ sudo cp linux/arch/arm/boot/dts/sun7i-a20-bananapi.dtb /mnt/mmc1
$ sudo cp xen/xen/xen /mnt/mmc1/
$ sudo tar zxf linaro-vivid-developer-20151215-714.tar.gz -C
/mnt/mmc2 --strip 1
$ sync
$ sudo cp /mnt/mmc1/zImage /mnt/mmc2/root/zImage
$ sudo cp xen /mnt/mmc2/root/xen
$ sudo umount /mnt/mmc1
$ cd linux
$ sudo make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
INSTALL_MOD_PATH=/mnt/mmc2 modules_install
$ echo' /dev/mmcblk0p2 / ext4 rw,defaults 0 0 none /tmp tmpfs
defaults 0 0 ' > /mnt/mmc2/etc/fstab
$ touch /mnt/mmc2/machine-id
$ sudo umount /mnt/mmc2

From here we insert the card into the Banana Pi’s card reader and boot it. All the following

steps are executed on the Banana Pi either with a monitor and keyboard or a serial connection

with an UART cable.

$ echo 'deb http://ports.ubuntu.com/ubuntu-ports/ xenial main
universe restricted multiverse
deb-src http://ports.ubuntu.com/ubuntu-ports/ xenial main universe
restricted multiverse’ > /etc/apt/sources.list
$ echo' auto lo
iface lo inet loopback
auto eth0
iface eth0 inet dhcp
> /etc/network/interfaces
$ service networking restart
$ sudo apt update
$ sudo apt dist-upgrade
$ cd /root/xen
$ make clean
$ apt install build-essential
$ apt build-dep xen
$./configure
$ make install
$ echo ‘/usr/local/lib’ >> /etc/ld.so.conf
$ ldconfig
$ sudo apt install lvm2

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 25

$ sudo apt install debootstrap
$ sudo apt install openssh-server
$ apt-get install bridge-utils
$ brctl addbr br0
$ echo '
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet manual
auto br0
iface br0 inet dhcp
 bridge_ports eth0' > /etc/network/interfaces
$ service networking restart
$ echo 'none /proc/xen xenfs defaults 0 0' | sudo tee -a /etc/fstab
$ /etc/init.d/xencommons start

This concludes the necessary steps to set up Xen and Domain-0. The system is now set up to

host other VMs and can be accessed remotely via SSH. The system is also set up to be able to

share the network adapter with any other domain since we will be using the network to

establish a connection between the domains.

3.5 Domain Setup

Now that the system is set up, we can engage in the process of creating our unprivileged

domains. These domains, just like Domain-0, require a Kernel and a partition with the files

from any Linux distribution. Unlike Domain-0, however, these domains also require a

configuration file, which will, amongst other things, list the amount of memory allocated to

the domain, the CPU cores it can access, and its name. In this section we will present an

example on how to set up a domain on the previously configured system.

Firstly, we will be creating the partition to which the domain will have access. For this purpose,

we will be using a logical volume created through LVM.

$ lvm
 lvm> pvcreate /dev/mmcblk0p3
 lvm> vgcreate vg0 /dev/mmcblk0p3
 lvm> vcreate -L 2G vg0 --name linux-guest-1
 lvm> exit
$ mkfs.ext4 /dev/vg0/linux-guest-1

Next, we will be mounting the created partition and bootstrap our chosen distribution on it,

meaning we will gather all the files present in the distribution and deploy them on the

partition.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 26

$ mount /dev/vg0/linux-guest-1 /mnt
$ debootstrap --arch armhf xenial /mnt http://ports.ubuntu.com/

Finally, we will access the partition and prepare it for its use. We will be configuring the

network as well as the file systems table and installing an SSH server, so the domain can be

accessed remotely. Furthermore, we need to attribute a password to the root user and change

the hostname, as it will default to the hostname of Domain-0.

$ mount /dev/vg0/linux-guest-1 /mnt
$ chroot /mnt
$ passwd
$ echo 'domU' > /etc/hostname
$ echo 'auto eth0
iface eth0 inet dhcp' > /etc/network/interfaces
$ apt install openssh-server
$ echo '/dev/xvda / ext4 rw,relatime,data=ordered 0 1' >> /etc/fstab
$ exit
$ umount /mnt

Having prepared the partition, and using the same kernel as Domain-0, this VM only requires

a configuration file.

$ echo 'kernel = "/root/zImage"
memory = 256
name = "domU1"
vcpu = 2
serial = "pty"
disk = ["phy:/dev/vg0/linux-guest-1,xvda,w"]
vif = ["bridge=br0"]
extra = "console=hvc0 xencons=tty root=/dev/xvda' > domU.cfg

In this example configuration file, we attributed 256 mb of memory to the domain, named it

“domU1”, specified the partition it is able to access, granted it access to the network through

the network bridge, and gave it access to all 2 of the systems CPU cores. Xen allows for more

configuration options, for instance, we can attribute specific cores of the CPU to each domain.

The virtual CPU is identified by an index and can be retrieved through the tools stack using:

$ xl vcpu-list

Considering that our system’s CPU only possesses two cores, we considered it to be beneficial

to allow the system to use all the available cores, as tests showed a higher responsiveness for

each VM when the cores were shared between our three VMs, the three VM setup is further

analysed in section 4.3.

Finally, to start the VM we use the xl toolstack to create the domain. The created domain can

then be accessed through domain-0’s console or via an SSH connection. In this example we

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 27

will be accessing the new domain at its creation through the domain-0 console with the “-c”

option, to resume control of the domain-0 we press “CRTL +]” to escape the new domain’s

console.

$ xl create domU.cfg -c

This finalizes the creation of our VM. The machine is now running and ready to be given the

use it was created for.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 29

4 Analysis and Design
Having acquired enough information on the hypervisor’s functioning, we can now progress to

the analysis of the use case. Here we will offer a brief explanation on the proposed use case,

the requirements to fulfil as well as the limitations we incur. For each requisite we will present

different solutions and the reasoning that led to the adoption of one solution over the other.

4.1 Use-case

The system must allow one VM, hosting a real-time OS, to transmit previously gathered sensor

data to another VM, hosting a general-purpose OS, so that it can proceed to the visualization

of the transmitted data.

Requirements:

 Create one VM with a GPOS;

 Create one VM with an RTOS;

 Establish a continuous connection between the GPOS VM and the RTOS VM;

Limitations:

 The chosen GPOS and RTOS must be compatible with Xen;

 The chosen GPOS and RTOS must execute on a 32-bit ARM environment;

 The chosen GPOS and RTOS must be capable of handling the interdomain

communication.

4.2 Interdomain Communication

Facing the problem of interdomain communication and the limitations Xen imposes, one must

determine how the connection will be established. Being barred of using a shared memory

mechanism, the next-best option is to establish a communication channel through TCP. The

next hurdle to overcome is the discovery of the other domain, as each domain is unaware of

the other’s address and availability. When problems of continuous communication between

different system are faced, we can use one of two notable patterns: the observer pattern or

the publish-subscribe pattern.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 30

 The Observer Pattern

In this pattern, we admit the existence of an object, commonly known as the subject,

responsible for the maintenance of a list of all the objects registered for notification on a

certain event, the observers. When the event happens, the subject automatically notifies all

the registered observers which can then act upon the event.

A common use for this pattern is scenarios where there is a dependency between two roles,

where encapsulating between the two allows for a higher code reutilization, and the change

of an object belonging to one of the roles forces changes of all the objects of the other role.

In summary, this pattern allows for abstract coupling between the subject and the observer

since the subject only knows its list of observers conforming to the specified interface, and

broadcast communication, the event that fires the notification does not need to specify the

receiver, since all the subscribed observers are notified [49]. Figure 8 presents an example on

how the observer pattern’s operation is accomplished.

Figure 8 Observer Pattern Sequence Diagram Example

The Observer pattern enables a one-to-many relationship between the message sender and

the receivers, but in a system in need of a many-to-many relationship, where the senders

notify several receivers and the receivers get notified by several senders demands for a more

appropriate pattern to be applied.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 31

 The Publish-Subscribe Pattern

The Publish-Subscribe pattern serves the same purpose as the Observer pattern in so far as

that they both enable the communication between different entities. In the case of the

Publish-Subscribe pattern, we admit the existence of at least three entities: one or more

publishers and subscribers and the message broker. The message broker is an entity

responsible for holding the information of all the topics being advertised and serves as an

intermediary in the communication process. The publisher sends a notification on a certain

topic which is then added to the list of topics on the message broker. The subscriber, an entity

similar to an observer, notifies the message broker of its interest in the topic of the publisher

and so the message broker informs the two of each other’s existence. By serving as an

intermediary between the communication of the publisher and the subscriber, the message

broker diminishes the coupling in the system and enables a many-to-many relationship

between the communicating nodes [50]. This process is depicted in Figure 9.

Figure 9 Publish Subcrbie Pattern Sequence Diagram Example

Since the proposed solution intends to emulate the same behaviour as the components in an

automotive vehicle, where a many-to-many relationship between certain components is often

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 32

required, we decided that the Publish-Subscribe pattern would be more adequate for this

solution.

4.3 Architectures

Having decided how the domains will communicate, the next step becomes distributing

responsibilities between the domains. As per the use case’s requirements, the RTOS domain

is the one publicising information, meaning that it must hold the responsibilities of the

publisher. Equally, the GPOS domain is on the receiving end and must therefore host the

subscriber. One responsibility remains however, since we have yet to decide which VM should

have the responsibility of hosting the message broker. In our case, we have three available

candidates, each with its advantages and drawbacks:

 The RTOS domain: Hosting the message broker on this domain limits us to two actively

used domains. However, it also increases the risk of failing to meet deadlines for real-

time applications, hence this domain should host as little responsibilities as possible;

 The GPOS domain: Equally to the RTOS domain, using this machine to serve as

message broker limits the actively used machines to two. Using this domain reduces

the risk of deadline failure as it frees the RTOS domain to pursue the activities with

deadlines to follow. This domain however is the least secure and most prone to failure

as it is the one the end user will be communicating with, the most.

 Domain-0: Using Domain-0 to be the message broker increases the actively used

machines to three, meaning that each of the other domains will have less processor

time. Domain-0 already is responsible for enabling the communication through TCP

between the other domains which would make it a good choice in terms of

consolidating similar responsibilities. Using Domain-0 frees the RTOS domain CPU

time and is more secure than the GPOS domain as it is not accessed by the end user.

Making a compromise between performance and security, we decided that the best option

would be to use Domain-0 to be the message broker.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 33

Figure 10 Deployment Diagram of the chosen architecture

In conclusion, as seen in Figure 10, the proposed architecture consists of three VMs. Domain-

0, which serves as message broker between the publishers and subscribers, the RTOS domain,

which registers as a publisher on Domain-0, responsible for transmitting the sensor data, and

the GPOS domain, which registers as a subscriber on Domain-0, responsible for interpreting

the received data.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 35

5 Implementation
The current chapter’s scope is to delineate the implementation of the use case. We will be

covering the OS selection for each VM and the framework chosen to handle the data

transmission.

5.1 OS Selection

To answer the problem of the OS selection, several candidates were studied. All candidates

are limited by two factors. First, they must present a version compatible with the 32-Bit ARM

architecture. Second, they must be compatible with Xen. In the case of the OS for the real-

time domain, the OS also must provide real-time capabilities.

Considering the machine with real-time requirements, the first RTOS to be considered was

ERIKA Enterprise, due to the previous projects that combined Xen and the RTOS on hardware

similar to the Banana Pi [14] and the certifications this RTOS possesses [51] [52].

Unfortunately, developments on the Xen API required modifications on ERIKA’s end, making

it so that this option was discarded due to time constraints. The second choice was FreeRTOS,

a highly popular RTOS that also was at one time compatible with Xen. Being an older project,

it also suffered the same fate as ERIKA. As the Xen API changed, FreeRTOS drivers had to

change too, and the project’s maintainers deeming it not important enough to maintain the

compatibility, so it was eventually lost. Finally, we resorted to Preempt-RT, a modification of

the Linux Kernel which outfits it with real-time capabilities, transforming Linux into a soft real-

time system. While it is arguably not the best option, it serves the purposes of the use case

well enough to illustrate the capabilities of the hypervisor regarding the maintenance of

spatial and temporal isolation.

Having chosen Linux as being the OS of the RTOS domain, a distribution had to be chosen as

well, thus, the chosen OS for the RTOS domain is a release of Ubuntu 16.04 with a Preempt-

RT modified kernel.

Turning now to the OS for the GPOS domain, the solution is very straightforward. Xen is

developed with Linux in mind, Linux is the native Xen OS and officially supported by the

community. The only limiting factor when choosing a distribution is the target architecture,

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 36

the distribution must have a release for the 32-Bit ARM architecture, having already chosen

Ubuntu 16.04 for the RTOS, the same choice was made for the GPOS, as it facilitates

configuration and installation, and is compatible with the chosen data transmission

framework.

5.2 Data Transmission Framework

Having chosen a communication mechanism, and how to apply it, a framework was chosen

which would enable the use of the publish-subscribe pattern in the interdomain

communication, ROS.

ROS [53] is a framework which, with its tools and libraries, allows us to easily establish a

communication channel between our domains. Each domain runs an application which

registers as a node on the ROS Master, the message broker. These nodes can then publish or

subscribe to certain topics. Every node connects to its master through TCP, needing thus either

the domain’s IP or hostname, the URL for the master is saved in an environment variable and

therefore independent of the application.

In this case we deployed the ROS Master on our Domain-0 and created two nodes, one for

each unprivileged domain. On the RTOS domain, the node was created as a simple publisher,

repeatedly sending a message. On the GPOS domain, the subscriber node would receive the

message and print it to the screen. After this preliminary test it was shown that the

communication was working as designed.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 37

6 Experiments
Having verified that it is indeed possible to transmit data between VMs using ROS on Xen, it is

important to calculate the costs of using our solution to achieve our goal and contemplate the

behaviour of a real-world application on the system. For this purpose, we implemented two

test cases and deployed a prototype of a real-world application developed by the Vortex

Colab.

 The first test is designed to measure the resulting jitter, the difference in message

transfer time, from sending information between ROS nodes on different domains in

comparison to two ROS nodes on the same domain.

 The second test measures the deadline failure rate impact of the GPOS domain on the

RTOS domain, as we expect the hypervisor to guarantee temporal isolation.

 The Vortex prototype application is used to interpret the transferred sensor data and

perform its visualization through a web browser.

6.1 Message delivery time jitter

This test was created to measure the impact of Xen’s peripheral sharing in the transmission

time of data between the domains. Using ROS to handle the publishing and subscribing of

messages, a test was designed where the publisher would send a message to the subscriber

containing the messages index. The subscriber would then reply with the same index, allowing

the publisher to register both departure and arrival time of the message.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 38

Figure 11 Jitter time test sequence

After recording the departure and arrival time, the time difference is calculated and the next

message is sent, repeating the process until the target number of messages is hit. This process

is illustrated in Figure 11.

To measure the jitter, first 100 thousand messages were sent from the publisher on Domain-

0 to the subscriber on Domain-0, the same experiment was then performed sending messages

from the publisher on the RTOS domain to the subscriber on the GPOS domain, resulting in a

total of 400 thousand messages and 200 thousand time records, one for every pair of

messages.

In order to obtain a proper visualization of the data, allowing us to make judgements on the

results, we will be making use of a box plot. A box plot allows us to visualize numeric data

through its quantiles, meaning that it represents the minimum, the maximum, the mean, the

first quantile and the third quantile of the numeric data. We can then visualize the precision

in the data gathered, meaning how far the values deviate from one another. In this case we

will be removing the outliers, the values which are more than one and a half standard

deviations away from the third quantile, as these values are not representative of the normal

functioning and are considered experimental errors.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 39

Figure 12 Boxplot on round-trip time on Domain-0 and between the RTOS domain and the

GPOS domain

In Figure 12, we can observe that the median for the RTOS-GPOS dataset lies outside of the

box of the Domain-0 dataset, which suggests that the two groups are likely to be different.

The boxes represent the interquartile range for each dataset, meaning the interval between

the first and the third quantile. The values that lead to the plot can be analysed in Table 3.

Table 3 Jitter Test Quantiles

Dataset Domain-0 to Domain-0 RTOS domain to GPOS domain

Minimum 0.001863956 0.004333973

First Quantile 0.009802461 0.034840465

Median 0.015256524 0.050739527

Third Quantile 0.033153057 0.074551940

Maximum 0.06817695 0.134117127

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 40

To be certain that the existing difference between the two datasets is statistically significant

and not simply a result of chance, we will finalize this experiment with a student’s t-test [54].

A student’s t-test allows us to determine if the mean difference between the two groups is

statistically significant, thus allowing us to make conclusions based on the datasets. Using a

two tailed student’s t-test with a confidence level of 95% we obtain a p-value lower than 2.2𝑒ିଵ଺, which is lower than our significance level, thus rejecting the null hypothesis that the

true difference in means is 0 and concluding that the means are significantly different.

Having determined that the difference is statistically significant, we can now analyse the

means to determine the performance loss incurred from using two domains. With the mean

of the Domain-0 dataset being 3.208 milliseconds and the mean of the RTOS-GPOS dataset

being 6.062 milliseconds we verify an increase of 88.97% in round trip time.

This test allows us to conclude that using Xen’s split driver peripheral sharing model results in

a significant overhead in the message transfer time. It should be noted, however, that all

messages were delivered successfully.

6.2 Deadline failure

One of the most important features of a real-time system is that it is predictable, meaning

that we can expect a task to have a certain computation time and that it will arrive in a defined

time window. The rear end of the time window is defined to be the deadline, any tasks which

computation ends after the deadline is considered a failure. To measure the impact in the

deadline failure rate on our RTOS domain resulting from our GPOS domain’s utilization, we

fashioned a test which would first measure the deadline failure without the GPOS domain and

afterwards the deadline failure with the GPOS domain.

For this test a simple real-time application was written, which would perform an access to the

system’s memory every 6 milliseconds. If the operation took over 6 milliseconds, our defined

deadline, we considered it a failure, otherwise we considered it to have been successful. The

operation was then repeated ten thousand times and the successes and failures recorded, as

depicted in Figure 13.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 41

Figure 13 Real time application flowchart

Running the application without interference from the GPOS domain resulted in 40 failures

and 9960 successes, meaning that the failure rate was of 0.4%.

In order to tests the GPOS domain ‘s impact, another application was written, similarly to the

real-time application, memory accesses are performed, however at a larger rate. For each

iteration of this programs functioning, five sub processes would perform memory accesses

simultaneously, in an attempt to occupy both the CPU and the memory. This program would

then execute for all ten thousand iterations of the real-time application.

Performing the same experiment as before, now with the GPOS domain consuming the

system’s resources, the test resulted in 1737 failures and 8263 successes, resulting in a

deadline failure rate of 17.37%.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 42

Figure 14 Deadline failure rate comparison

Comparing the two deadline failure rate, represented in Figure 14, 0.4% when the RTOS

domain is working alone and 17.37 when it is under the influence of the GPOS domain, we

verify an increase in 4242.5%. This leads us to conclude that our solution fails to guarantee

temporal isolation, this failure is likely due to the domain’s shared CPU cores, a problem which

can only be solved by performing the test on a piece of hardware featuring a CPU with at least

three cores, one for each domain.

6.3 Real-world application

The most important milestone for this project is confirming if, despite Xen’s performance

drawbacks, the deployed solution is capable of handling the execution of an application which

can be used in a real-world scenario. For this purpose, we resorted to using an application

made available to us through to the Vortex Colab. This application is being developed for the

automotive industry to allow the visualization of sensor data collected by the vehicle.

Just like our system, this application relies on ROS to perform the transfer of data, which is

then interpreted and made available for visualization through a web browser. The sensor data

transferred is available in its raw form, courtesy of the Karlsruhe Institute of Technology [55],

but can only be used after conversion to the ROS bag file format [56]. We use this generated

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 43

bag file on our RTOS domain and initiate publication through the rosbag tool. Through ROS’s

rosbag tool we can easily initiate the gradual transfer of the sensor data at any given rate,

meaning we can accelerate or decelerate the transmission. The setup is illustrated in Figure

15.

Figure 15 Deployment of the Vortex Application

On our GPOS domain we can find the subscriber, labelled ROSToSeq. This program allows us

to transform the received messages into a format, called sequences, which can be interpreted

by the virtualization server. Lastly, the virtualization server provides a web interface through

which all the created sequences can be played at the user’s leisure.

In Figure 16 we can see on the left, the transmission of the contents of the bag file, listing the

total time of the file and the current instant being transmitted. On the top right corner, we

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 44

can see index of the last created file as well as some indicators of the conversion time. Finally,

on the bottom right we can follow the execution of the ROS Master.

Figure 16 Execution of the Subscriber, Publisher and Message Broker

After the files have been created and transmitted, we can proceed to the visualization of said

files through the visualization server. As shown in Figure 17, after selecting the sequence to

reproduce, the program will load the sequence and display all the entities captured by the

sensor on the vehicles travel, as well as the trajectory the vehicle followed, as can be seen in

Figure 17.

Figure 17 Visualization of the sensor data

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 45

Having executed a prototype of an application to be used in the automotive industry for a

real-world scenario, we can conclude, through this experiment, that our system is capable of

achieving the proposed goal, while virtualizing all the required machines with Xen. The result

of this test represents the first experiment, for the Vortex Colab, in a series of attempts to use

Xen for virtualizing automotive systems, however, further testing should be done on hardware

which is generally used in the industry to confirm if the solution is scalable and can meet the

requirements of the Vortex Colab.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 47

7 Conclusions
In this chapter we will look back at all the work done during the development of this project,

making judgements on the advantages and drawbacks of the implemented solution. First, we

will list the objectives which were achieved, followed by a brief description of the

implemented solution and finishing with the limitations the systems incurs through our

solution and the selected hardware. Having done this analysis, a few suggestions will be made

on how to conduct further research on this topic as well as a description of limiting factors in

the conduction of this research.

7.1 Proposed vs achieved goals

Here we will list the initial objectives proposed by the project:

 Study the partitioning aspect of the Xen or KVM hypervisor

 Study the communication aspect of the Xen or KVM hypervisor

 Study the impact of deploying systems of mixed criticality on the Xen or KVM

hypervisor

Having listed all the proposed objectives, we will now list what was indeed achieved:

 Two VMs were deployed on the Banana Pi SOC. To each VM was an independent

storage area and memory were allocated. The processor cores were shared due to

their limited number. Peripheral devices are assigned to Domain-0 but can be shared

with other domains through the use of split drivers.

 The two VMs were connected through TCP on the OS level as, on ARM, Xen does not

support memory sharing.

 Three experiments were performed on the deployed solution. One to measure

message transfer jitter, one to measure the impact the GPOS machine has on the

RTOS machines’ deadline failure rate and one to verify how the solution would behave

in real-world conditions.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 48

7.2 The solution

To test the partitioning and communication aspects of the Xen hypervisor, the system was

deployed on a Banana PI SOC. For the deployment of Domain-0 and the GPOS domain Ubuntu

16.04 was chosen as the OS, on the RTOS domain the OS was equally Ubuntu 16.04, however

with a PREEMPT_RT modified kernel, turning it into a sot real-time system. After the

deployment of the system a communication channel was set up through TCP with ROS using

the publish-subscribe pattern, as it was deemed more appropriate for the proposed scenario.

The solution features thus three VMs, Domain-0, which serves as the message broker for our

communication, the GPOS domain which serves as the subscriber and receives information

and the RTOS domain which serves as the publisher and is responsible for the transmission of

data.

The solution was later tested for message transfer jitter and deadline failure. In the message

transfer test, the system suffered an 88.97% decrease in velocity in comparison to two

services on the same domain. In the deadline test, a 4242.5% increase on missed deadlines

was measured when the GPOS domain was allowed to consume the system’s CPU and

memory resources simultaneously with the RTOS domain.

Finally, to test if the system could be used in the automotive industry a prototype of a real-

world application was used to simulate the transmission and visualization of sensor data

between two VMs, a test which proved to be successful and without noteworthy problems.

7.3 Future work and limitations

In the conduction of this research, the most limiting factor were the missing, outdated and

often miscategorised parts of the Xen documentation. Other limiting factors included limited

support for the chosen hardware on the part of the chosen OSs and the extensive time

consumed by compilating all the necessary parts.

For future work, different hardware should be used, as 32-Bit is on the decline and support is

dropping. Equally, for better testing the partitioning aspect, principally in terms of the CPU,

the hardware used should feature at least six cores, to comfortably host all three VMs without

interference.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 49

8 References

[1] The Linux Foundation Automotive Grade Linux (AGL) Virtualization Expert Group (EG-

VIRT), The Automotive Grade Linux Software Defined Connected Car Architecture,

The Linux Foundation, 2018.

[2] L. P. Kaelbling, Learning in Embedded Systems, A Bradford book, 1993.

[3] A. Massa and M. Barr, Programming Embedded Systems, O'Reilly, 2006.

[4] T. Holstein and J. Wietzke, Contradiction of Separation through Virtualization and

Inner Virtual Machine Communication in Automotive Scenarios.

[5] Xen Project, “Home - Xen Project,” The Linux Foundation, [Online]. Available:

https://xenproject.org/. [Accessed 30 May 2019].

[6] K. contributors, “KVM,” KVM, 07 November 2016. [Online]. Available:

https://www.linux-kvm.org/page/Main_Page. [Accessed 30 May 2019].

[7] Siemens, “GitHub - siemens/jailhouse: Linux-based partitioning hypervisor,” [Online].

Available: https://github.com/siemens/jailhouse. [Accessed 31 May 2019].

[8] S. Cooley and H. Lohr, “Hyper-V on Windows 10 | Microsoft Docs,” Microsoft

Corporation, 05 February 2016. [Online]. Available: https://docs.microsoft.com/en-

us/virtualization/hyper-v-on-windows/. [Accessed 30 May 2019].

[9] “Oracle VM VirtualBox,” Oracle, [Online]. Available: https://www.virtualbox.org/.

[Accessed 30 May 2019].

[10] P. Modica, A. Biondi, G. Buttazzo and A. Patel, “Supporting Temporal and Spatial

Isolation in a Hypervisor for ARM Multicre Platforms,” in 2018 IEEE International

Conference of Industrial Technology (ICIT), Lyon, France, 2018.

[11] T. J. M, Virtualization for embedded systems, developerWorks, 2011.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 50

[12] S. Trujillo, A. Crespo and A. Alonso, “MultiPARTES: Multicore Virtualization for Mixed-

Criticality Systems,” 2013 Euromicro Conference on Digital System Design, pp. 260-

265, 2013.

[13] Evidence, “Erika Enterprise | Open Source RTOS OSEK/VDX Kernel,” [Online].

Available: https://www.erika.tuxfamily.org/drupal. [Accessed 5 Semptember 2019].

[14] A. Avanzini, P. Valente, D. Faggioli and P. Gai, “Integrating Linux and the real-time

ERIKA OS through the Xen hypervisor,” 10th IEEE International Symposium on

Industrial Embedded Systems (SIES), 2015.

[15] ARAMiS II, “Projekt - ARAMiS II,” [Online]. Available:

https://www.aramis2.org/projekt/. [Accessed 11 May 2019].

[16] ARAMiS II, “Demonstratoren - ARMAIS II,” [Online]. Available:

https://www.aramis2.org/demonstratoren/. [Accessed 11 May 2019].

[17] R. P. Goldberg and G. J. Popek, “Formal requirements for virtualizable third

generation architectures,” Communications of the ACM, vol. 17, no. 7, pp. 412--421,

1974.

[18] R. P. Goldberg, “Architectural Principles for Virtual Computer Systems,” 1972.

[19] T. Abels, P. Dhawan and B. Chandrasekaran, “An overview of xen virtualization,” Dell

Power Solutions, vol. 8, pp. 109--111, 2005.

[20] A. Whitaker, M. Shaw and S. D. Gribble, “Denali: Lightweight virtual machines for

distributed and networked applications,” 2002.

[21] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and

A. Warfield, “Xen and the art of virtualization,” ACM SIGOPS operating systems

review, vol. 37, no. 4, pp. 164--177, 2003.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 51

[22] Xen Project, “Xen Project Software Overview,” [Online]. Available:

https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview. [Accessed 20

March 2019].

[23] P. Jayshri and N. Koli, “A technical review on comparison of Xen and KVM hypervisors:

An analysis of virtualization technologies,” International Journal of Advanced

Research in Computer and Communication Engineering, pp. 8828-8832, 12 2014.

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin and A. Liguori, “kvm: the Linux Virtual Machine

Monitor,” Proceedings of the Linux Symposium, vol. 1, pp. 225--230, June 2007.

[25] M. T. Jones, “Virtio: An I/O virtualization framework for Linux,” IBM White Paper, 29

January 2010.

[26] Red Hat, Inc., “What is KVM?,” [Online]. Available:

https://www.redhat.com/en/topics/virtualization/what-is-KVM. [Accessed 20 March

2019].

[27] J. Kiszka, “[ANNOUNCE] Jailhouse: A Linux-based Partitioning Hypervisor,” 18

November 2013. [Online]. Available: https://www.mail-archive.com/linux-

kernel@vger.kernel.org/msg538651.html. [Accessed 30 April 2019].

[28] S. Valentine, “Understanding the Jailhouse hypervisor, part 1 [LWN.net],” 1 January

2014. [Online]. Available: https://lwn.net/Articles/578295/. [Accessed 30 April 2019].

[29] H. Kopetz, Real-Time Systems Design for Distributed Embedded Applications, 2011.

[30] K. Juvva, “Real-Time Systems,” Topics in Dependable Embedded Systems, no. 28,

1998.

[31] T. Kaldewey, C. Lin and S. Brandt, “Firm real-time processing in an integrated real-

time system,” REPORT-UNIVERSITY OF YORK DEPARTMENT OF COMPUTER SCIENCE

YCS, vol. 398, p. 6, 2006.

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 52

[32] University of California, Los Angeles, “Real Time Scheduling,” 1 April 2016. [Online].

Available: http://web.cs.ucla.edu/classes/spring16/cs111/supp/realtime.html.

[Accessed 30 April 2019].

[33] OSRTOS, “OSRTOS | Erika Enterprise,” [Online]. Available:

https://www.osrtos.com/rtos/erika-enterprise/. [Accessed 30 April 2019].

[34] Evidence, ERIKA Enterprise Minimal API Manual, 2012.

[35] D. John, “OSEK/VDX history and structure,” IEE Seminar on OSEK/VDX Open Systems

in Automotive Networks , 1998.

[36] Autosar, “FAQ - AUTOSAR,” [Online]. Available: https://www.autosar.org/faq/.

[Accessed 30 April 2019].

[37] Autosar, “History - AUTOSAR,” [Online]. Available:

https://www.autosar.org/about/history/. [Accessed 30 April 2019].

[38] OSRTOS, “OSRTOS | FreeRTOS,” [Online]. Available:

https://www.osrtos.com/rtos/freertos/. [Accessed 30 April 2019].

[39] FreeRTOS Team, “FreeRTOS - The Free RTOS configuration constants and

configuration options - FREE Open Source RTOS for small real time embedded

systems,” [Online]. Available: https://www.freertos.org/a00110.html. [Accessed 30

April 2019].

[40] WITTENSTEIN, “SAFERTOS, the safety certified RTOS - available pre-certified to IEC

61508,” WA&S Ltd, [Online]. Available:

https://www.highintegritysystems.com/safertos/. [Accessed 30 April 2019].

[41] P. McKenny, “A realtime preemption overview [LWN.net],” 10 August 2005. [Online].

Available: https://lwn.net/articles/146861. [Accessed 27 June 2019].

[42] The Linux Foundation, “Intro to Real-Time Linux for Embedded Developers - The Linux

Foundation,” 2019 March 2013. [Online]. Available:

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 53

https://www.linuxfoundation.org/blog/2013/03/intro-to-real-time-linux-for-

embedded-developers/. [Accessed 27 June 27].

[43] W. Denk, “History < U-Bootdoc < DENX,” [Online]. Available:

http://www.denx.de/wiki/view/U-Bootdoc/History. [Accessed 11 May 2019].

[44] W. Denk, “Geocrawler.com - ppcboot-users - [PPCBoot-users] Halloween release of

PPCBoot: 2.0.0 - the Final Release.,” [Online]. Available:

https://web.archive.org/web/20040127050919/http:/www.geocrawler.com/archives

/3/4205/2002/10/0/10043434/. [Accessed 11 May 2019].

[45] K. Yaghmour, J. Masters, G. Ben-Yossef and P. Gerum, Building Embedded Linux

Systems, 2008.

[46] Xen Project, “Xen ARM with Virtualization Extensions whitepaper - Xen,” [Online].

Available:

https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepap

er. [Accessed 30 July 2019].

[47] R. Mortier, “xen-arm-builder/u-boot.sh at master · mirage/xen-arm-builder · GitHub,”

17 November 2016. [Online]. Available: https://github.com/mirage/xen-arm-

builder/blob/master/u-boot.sh. [Accessed 12 August 2019].

[48] Xen Project, “Mainline Linux Kernel Configs - Xen,” 26 January 2017. [Online].

Available: https://wiki.xenproject.org/wiki/Mainline_Linux_Kernel_Configs. [Accessed

12 August 2019].

[49] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Observer,” in Design Patterns

Elements of Reusable Object-Oriented Software, Westford, Massachusets, Addison-

Wesley, 2009, pp. 293-296.

[50] YanqingWu, “Master - ROS Wiki,” Open Source Robotics Foundation, 15 January 2018.

[Online]. Available: wiki.ros.org/Master. [Accessed 26 August 2019].

Exploring Xen/KVM in prototyping an automotive use-case

Johann Knorr (1160996) 54

[51] Evidence, “Misra compliance - ErikaWiki,” [Online]. Available:

https://www.erika.tuxfamily.org/wiki/index.php?title=Misra_compliance. [Accessed

11 September 2019].

[52] Evidence, “OSEK VDX certifications - ErikaWiki,” [Online]. Available:

https://www.erika.tuxfamily.org/wiki/index.php?title=OSEK_VDX_certifications.

[Accessed 11 September 2019].

[53] Open Source Robotics Foundation, “ROS.org | Powering the world's robots,” [Online].

Available: https://www.ros.org. [Accessed 28 August 2019].

[54] Encyclopaedia Britannica, “Student's t-test | statistics ! Britannica.com,” 20 July 1998.

[Online]. Available: https://www.britannica.com/science/Students-t-test. [Accessed

12 September 2019].

[55] A. Geiger, P. Lenz, C. Stiller and U. Raquel, “Vision meets Robotics: The KITTI Dataset,”

International Journal of Robotics Research (IJRR), 2013.

[56] T. Krejci, “GitHub - tomas789/kitti2bag: Convert KITTI dataset to ROS bag file the wasy

way!,” [Online]. Available: https://github.com/tomas789/kitti2bag. [Accessed 26

August 2019].

[57] Xen Project, “Support statement for this release,” [Online]. Available:

https://xenbits.xen.org/docs/4.11-testing/SUPPORT.html#memory-sharing. [Accessed

7 July 2019].

