

Experimental analysis of RTEMS in multi-core
platforms

BEng Thesis

CISTER-TR-181008

Rúben Gonçalves

Joel Pinto

BEng Thesis CISTER-TR-181008 Experimental analysis of RTEMS in multi-core platforms

© CISTER Research Center
www.cister.isep.ipp.pt

1

Experimental analysis of RTEMS in multi-core platforms

Rúben Gonçalves, Joel Pinto

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

In recent years, the demand for the use of embedded multiprocessor systems in everyday products and in critical
systems has grown exponentially, forcing the real-time community to follow this trend. For this, the development
and adaptation of RTOS (Real-Time Operating System) to multiprocessor platforms became critical. Meanwhile, a
new case of multiprocessor platforms appeared, SMP (Symmetric Multiprocessor), a case that affected the
community and make most of the RTOS to be adapted to this new kind of platform.RTEMS (Real-Time Executive
for Multiprocessor Systems), a free open source real-time operating system designed to support embedded
applications with the most stringent real-time requirements while being compatible with open standards such as
POSIX, was one of those RTOS who was recently adapted to SMP platforms by the community.Unfortunately, this
adaptation is still not perfect, and for the work already done, a lot of testing must be performed, to verify the
correct implementation and behaviour of the protocols and mechanisms that had been adapted to Symmetric
Multiprocessing.So, the aim is therefore to do investigation on RTEMS, making use of QEMU to emulate a SMP
platform. On an earlier phase, this work contemplates studying and understanding the innerworkings of RTEMS,
followed with the creation of a new feature to help on the understanding of the operating system, the development
of samples tests (RTEMS applications) to test the directives implemented for SMP environments, and finally the
implementation of a famous case study.

Experimental analysis of RTEMS in

multi-core platforms

2017/2018

1150785 – Ruben Filipe Gonçalves

1150963 – Joel Oliveira Pinto

Experimental analysis of RTEMS in

multi-core platforms

Cister

2017/2018

1150785 – Ruben Filipe Gonçalves

1150963 – Joel Oliveira Pinto

Bachelor’s Degree i Co puter E gi eeri g

ISEP Supervisor:

• Luis Miguel Nogueira

External Supervisor:

• Luis Miguel Pinho

V

Acknowledgments

We are grateful to CISTER for this amazing opportunity, especially to Luis Miguel Pinho

and Luis Miguel Nogueira who proposed the realization of this project under PESTI, and

Claudio Maia who helped us in almost every step of the project.

Joel and Ruben

A special recognition to everyone who helped me during this last three years, family and

friends.

 Joel Pinto

I want to take this opportunity, to thank my parents and grandmother for always

showing me what real work looks like. Thank you to my friends and girlfriend for being

true to me and for knowing how to have a good time.

Ruben Gonçalves

VII

Abstract

In recent years, the demand for the use of embedded multiprocessor systems in

everyday products and in critical systems has grown exponentially, forcing the real-time

community to follow this trend. For this, the development and adaptation of RTOS (Real-

Time Operating System) to multiprocessor platforms became critical. Meanwhile, a new

case of multiprocessor platforms appeared, SMP (Symmetric Multiprocessor), a case

that affected the community and make most of the RTOS to be adapted to this new kind

of platform.

RTEMS (Real-Time Executive for Multiprocessor Systems), a free open source real-time

operating system designed to support embedded applications with the most stringent

real-time requirements while being compatible with open standards such as POSIX, was

one of those RTOS who was recently adapted to SMP platforms by the community.

Unfortunately, this adaptation is still not perfect, and for the work already done, a lot of

testing must be performed, to verify the correct implementation and behaviour of the

protocols and mechanisms that had been adapted to Symmetric Multiprocessing.

So, the aim is therefore to do investigation on RTEMS, making use of QEMU to emulate

a SMP platform. On an earlier phase, this work contemplates studying and

understanding the innerworkings of RTEMS, followed with the creation of a new feature

to help on the understanding of the operating system, the development of samples tests

(RTEMS applications) to test the directives implemented for SMP environments, and

finally the implementation of a famous case study.

Keywords (Theme): Embedded systems, Real-Time systems, Real-time operating

systems.

Keywords (Technologies): C, RTEMS, QEMU.

IX

Resumo

Nos últimos anos, o uso de sistemas embebidos em plataformas multiprocessadores

para produtos do dia a dia e sistemas críticos tem vindo a crescer exponencialmente

forçando a comunidade ligada aos sistemas de tempo real a seguir essa tendência. Para

isso, o desenvolvimento e adaptação de sistemas operativos de tempo real (Real Time

Operating System) para plataformas de multiprocessador tornou-se crítico.

Enquanto isso, surgiu um novo caso de plataformas multiprocessador, o

multiprocessamento simétrico (Symmetric Multiprocessing), um caso específico de uma

abordagem que pode ser tomada para multiprocessadores e que representa o principal

foco de adaptação dos RTOS a esta plataforma.

O RTEMS (Real Time Executive for Multiprocessor Systems), um sistema operativo de

tempo real, de código fonte aberto, projetado para suportar aplicações embarcadas

com os requisitos mais rigorosos em tempo real e compatível com padrões abertos

como o POSIX, foi um desses RTOS que foi recentemente adaptado para Plataformas

SMP pela comunidade.

Infelizmente, esta adaptação encontra-se longe da perfeição, e para o trabalho já

realizado, muitos testes devem ser realizados, para verificar a correta implementação e

comportamento dos protocolos e mecanismos que foram adaptados para o

multiprocessamento simétrico.

Assim, o objetivo é, portanto, fazer uma investigação sobre o RTEMS, fazendo uso do

QEMU para emular uma plataforma SMP. Numa fase inicial, este trabalho contempla o

estudo e compreensão do funcionamento interno do RTEMS, seguido da criação de uma

nova funcionalidade para ao seu estudo, o desenvolvimento de test-suites (aplicações

RTEMS) para testar as diretivas implementadas para funcionar em ambientes SMP e,

finalmente, a implementação de um famoso caso de uso.

Keywords (Theme): Sistemas embebidos, Sistemas de tempo real, Sistema operativo

de tempo real.

Keywords (Technologies): C, RTEMS, QEMU.

XI

Glossary

This Section shows all the referenced concepts, symbols and acronyms.

Expression

Meaning

CISTER Research Centre in Real-Time and Embedded Computing Systems

RTEMS Real-Time Executive for Multiprocessor Systems

RTOS Real-Time Operating Systems

POSIX Portable Operating System Interface

SMP Symmetric Multiprocessing

AMP Asymmetric Multiprocessing

CPS Cyber Physical Systems

CPU Central Processing Unit

BSP Board Support Package

EDF Earliest Deadline First

DP Deterministic priority

ISR Interrupt Service Routine

SP Simple Priority

FP Fixed Priority

ASR Asynchronous Signal Routine

APA Arbitrary Processor Affinity

NOP No Operation

MrsP Multiprocessor Resource Sharing Protocol

OMiP O(m) Independence Preserving Protocol

XIV

Contents

Index of figures ... 1

1. Introduction .. 1

1.1 Project Context .. 1

1.2 Project Presentation .. 2

1.3 Organization presentation... 3

2. Context .. 5

2.1 The problem .. 5

2.1.1 Circular Buffer ... 6

2.1.2 RTEMS Test Suites ... 6

2.1.3 Real-Time Case Study ... 7

2.2 State of the art .. 8

2.2.1 RTEMS ... 8

2.2.2 (New) SMP capabilities brought to RTEMS ... 10

2.3 Business Areas ... 12

2.3.1 Manufacturing ... 13

2.3.2 Healthcare ... 13

2.3.3 Energy .. 14

2.3.4 Automotive .. 14

2.3.5 Agriculture ... 14

2.3.6 Computer Networks .. 14

3. Working Environment .. 17

3.1 Work Methods .. 17

3.2 Work Planning ... 18

3.3 Technologies ... 20

3.3.1 C (Programming Language) ... 21

3.3.2 QEMU .. 21

3.3.3 SOURCETRAIL .. 22

3.3.4 GNOME Commander ... 23

3.3.5 RSB (RTEMS SOURCE BUILDER) ... 23

XIV

4. RTEMS ... 25

4.1 RTEMS Layers .. 26

4.2 Floating Point .. 27

4.3 Task Manager .. 27

4.4 Timer Manager .. 29

4.5 Interrupt/Signal Manager .. 29

4.6 RTEMS Scheduling ... 29

4.6.1 Earliest Deadline First (EDF) SMP ... 30

4.6.1 Simple Priority SMP .. 31

4.6.2 Deterministic Priority SMP ... 31

4.6.3 Arbitrary Processor Affinity Priority SMP ... 31

4.7 RTEMS SMP Synchronization Mechanisms ... 32

4.7.1 Priority Inversion .. 33

4.7.2 RTEMS Locking protocols ... 34

4.7.2.1 Priority Ceiling Protocol (PCP) ... 35

4.7.2.2 Priority Inheritance Protocol (PIP) .. 35

4.7.2.3 Multiprocessor resource sharing protocol (MrsP) .. 36

4.7.2.4 O(m) Independence Preserving protocol (OMIP) ... 37

4 RTEMS Build, Configuration and Installation .. 39

5.1 Environment Setup .. 40

5.2 Source builder toolchain installation .. 41

5.3 RTEMS configuration/installation ... 41

6 Circular Buffer ... 45

6.1 Creation and Initialization ... 46

6.2 Preemptions .. 50

6.3 Printing .. 52

7 RTEMS test suites ... 55

7.2 Scheduling ... 55

7.1.1 Smpcistertest01.. 55

7.1.2 Smpcistertest02 .. 58

7.1.3 Smpcistertest03.. 60

7.1.4 Smpcistertest04.. 62

7.1.5 Smpcistertest05.. 64

7.2 Communication and Synchronization ... 65

XIV

7.2.1 Semaphores (with MrsP and OMiP protocol) .. 71

7.2.2 Barriers .. 76

7.2.3 Message Queues ... 78

7.2.4 Events.. 81

8 Mine Control Case Study .. 85

8.1 Analysis .. 85

8.1.1 Schedulability ... 86

8.2 Design .. 89

8.3 Deployment ... 95

8.3.1 CH4 ... 98

8.3.2 CO and Air flow ... 100

8.3.3 Water Flow ... 103

8.3.4 HighLow Water ... 104

8.4 Results ... 108

9. Conclusions ... 115

11.1 Gantt Diagram ... 120

XV

Index of tables

Table 1 Project Planning .. 19

Table 2 Employed technologies .. 20

Table 3 Project directories .. 40

Table 4 Tasks priorities .. 56

Table 5 Tasks Ids SMPCISTERTEST01 ... 57

Table 6 Tasks allocation .. 59

Table 7 Tasks ids SMPCISTERTEST03 ... 60

Table 8 Tasks Priorities SMPTESTDEV01 ... 72

Table 9 Locking Protocols .. 76

Table 10 Air Monitoring Devices ... 86

Table 11 Water Control devices .. 86

Table 12 Periodic tasks Information .. 86

XVI

Index of figures

Figure 1 Symmetric Multiprocessor architecture ... 2

Figure 2 Cyber-Physical Systems Map ... 13

Figure 3 Waterfall model representation ... 17

Figure 4 QEMU architecture with guest OS .. 22

Figure 5 the 3 interactive views of Sourcetrail .. 22

Figure 6 POSIX Profile .. 25

Figure 7 RTEMS Organization .. 25

Figure 8 RTEMS layers ... 26

Figure 9 RTEMS Tasks States ... 28

Figure 10 Priority inversion - example .. 34

Figure 11 MrsP schema ... 36

Figure 12 OMiP schema .. 38

Figure 13 Circular Buffer structures .. 45

Figure 14 RTEMS executive initialization .. 46

Figure 15 RTEMS data structures initialization ... 47

Figure 16 Buffer Initialization Sequence Diagram ... 48

Figure 17 Buffer Initialization Class/File Diagram ... 49

Figure 18 Thread allocation ... 50

Figure 19 Add event sequence diagram .. 51

Figure 20 new directive to access to the buffer results .. 52

Figure 21 Buffer result... 52

Figure 22 Sequence diagram of the buffer printing .. 53

Figure 23 Class/File diagram of the buffer printing .. 54

Figure 24 Simple SMP scheduler configuration .. 56

Figure 25 Scheduling diagram SMPCISTERTEST01 .. 57

Figure 26 Buffer result SMPCISTERTEST01 .. 57

Figure 27 Arbitrary Processor Affinity Priority SMP scheduler configuration 58

Figure 28 Change task affinity ... 58

Figure 29 Scheduling diagram SMPCISTERTEST03 .. 59

Figure 30 Buffer result SMPCISTERTEST03 .. 60

Figure 31 Scheduling diagram SMPCISTERTEST04 .. 61

Figure 32 Buffer result SMPCISTERTEST04 .. 62

Figure 33 Buffer result SMPCISTERTEST05 .. 63

Figure 34 Clustered scheduling configuration .. 64

Figure 35 Example of Init task ... 65

Figure 36 Example of Init task - 2 .. 66

Figure 37 Example of RTEMS tasks ... 67

Figure 38 Example of a configuration file ... 68

XVII

Figure 39 configuration file (1) .. 72

Figure 40 configuration file (2) .. 73

Figure 41 configuration file (3) .. 74

Figure 42 TASK1 - code .. 75

Figure 43 Creating of an MrsP semaphore ... 75

Figure 44 Semaphores header file .. 76

Figure 45 Barrier creation ... 77

Figure 46 Task 1 code .. 77

Figure 47 Barrier sample - output ... 78

Figure 48 Message queues configuration ... 78

Figure 49 Message queue creation ... 79

Figure 50 Task1 - Message Queue .. 80

Figure 51 MSQ sample - output .. 81

Figure 52 Event sending .. 82

Figure 53 Event receive ... 82

Figure 54 Event receive ... 83

Figure 55 Events sample - output ... 83

Figure 56 Interaction between the different entities of the case study 90

Figure 57 State diagram – high-low water task turning the pump ON 92

Figure 58 State diagram – high-low water task turning the pump OFF 93

Figure 59 State diagram - CH4 sensor changing pump and ch4 status 94

Figure 60 System configuration .. 95

Figure 61 Protected objects .. 96

Figure 62 MrsP semaphore ... 96

Figure 63 Funtion pointer to initialize data structures ... 96

Figure 64 Task Creation ... 97

Figure 65 Task creation ... 97

Figure 66 Timer ... 97

Figure 67 Timer service routine .. 97

Figure 68 Methane simulation .. 98

Figure 69 CH4 Sequence diagram ... 99

Figure 70 CO sequence diagram ... 101

Figure 71 Air flow sequence diagram .. 102

Figure 72 Water flow sequence diagram .. 103

Figure 73 Water simulation ... 105

Figure 74 HighLow Water Sequence diagram ... 107

Figure 75 CH4 buffer result ... 108

Figure 76 CO buffer result ... 109

Figure 77 Air flow buffer result ... 110

Figure 78 Water buffer result.. 111

Figure 79 HighLow water buffer result ... 111

Figure 80 Mine Control Deadline alarms .. 112

Figure 81 Water Flor Deadline Alarm .. 112

Figure 82 Mine Control output... 121

XVIII

Figure 83 Mine Control output ... 122

Figure 84 Mine Control output ... 123

Figure 85 Mine Control output ... 124

1. Introduction

This chapter begins by presenting the project and the reason for its development, giving

also an insight of its work field, real-time and embedded systems.

1.1 Project Context

With the aim of fulfilling the development of the students on a less academic context,

ISEP (Instituto Superior de Engenharia do Porto) presents the opportunity to realize an

internship in the third and last year of Computer Engineering bachelor's degree for the

curricular unit of PESTI. This curricular unit aims to apply the knowledge learned during

the bachelor's degree, as well as personal, interpersonal and social skills, for the design

of engineering solutions.

The internship was developed by a team of two students, achieved in cooperation with

the Research Centre in Real/Time & Embedded Computing Systems (CISTER) and

focused on the research area of Real-Time and Embedded Systems.

This research field is responsible for studying real-time systems. A real time system is a

system that is developed and analyzed to guarantee a worst-case response time to

critical events, as well as acceptable average-case response time to noncritical events

[1]. To control those devices, Real-Time Operating Systems (RTOS) may be used. The

difference between an Operating System and a RTOS lays in the nature in how they

approach each task. Standard operating system focus on doing as much computation in

the shortest span of time, while RTOS emphasize on having a predictable response time,

offering accuracy to real-time events, allowing a higher deterministic reaction to

external events [2].

A multitude of everyday products use computing devices, making the demand for those

devices to grow exponentially and always requiring more and more performance. With

this, the industry tried to develop better processor chips, but they faced hardware

physical limitations, since the increase in frequency reached thermal/energy bounds. So,

the transition to multiprocessor systems to amplify computing times and overturn the

physical limitations seemed as the next logical step [3].

A special case of multiprocessor systems is the SMP, Symmetric Multiprocessing, a

computing architecture where two or more processors are attached by the same

Experimental analysis of RTEMS in a multi-core platform

2

access mechanism to a single, shared memory and controlled by a single operating

system instance. The processors share the memory device through a common high-

speed bus and have to contend to access it.

Figure 1 Symmetric Multiprocessor architecture

data source: http://www.rtcmagazine.com/express-logic/

As the real-time systems community started to slowly integrate symmetric

multiprocessing systems in their products, many problems appeared, namely, the grown

of the synchronization overhead, expensive costs of thread migration, (i.e. threads

moving from and to other cores (processor)), the technical troubles for the development

of appropriate locking protocols and scheduling mechanisms for multiprocessor without

an exponential gain of overhead, hence an extremely slow and disquieting transition [4].

Despite the slow change, multiple Real-Time Operating Systems already offer Symmetric

Multiprocessing support, though some of them do not have the expected and correct

behaviour regarding some mechanisms, therefore they must be tightly studied and

tested.

1.2 Project Presentation

Following the context presented on subsection 1.1, this project had as main goal to study

and test RTEMS (Real-Time Executive for Multiprocessor Systems) on a SMP platform,

an ARMV7-A architecture. An extensive, methodological study of RTEMS was imposed

to fully understand it.

The team focused on two critical mechanisms that bring an enormous amount of trouble

when being developed to SMP architectures, the scheduling and

synchronization/communication mechanisms.

Experimental analysis of RTEMS in a multi-core platform

3

The scheduling mechanisms can provide immediate response to specific external events,

particularly the necessity of scheduling tasks, this means assign resources that will be

able to complete the work, doing it within a specified time limit after the appearance of

such tasks.

Besides this, the synchronization mechanisms are one of the most critical, since a

fundamental part of the work that OS practises is controlling which task accesses what,

at which time. Synchronization also allows to modify the scheduling when the control is

taken away from a process when it was not necessarily prepared to give up control.

To acquire a higher comprehension of the operating system, samples were developed,

those samples helped to fully understand the behaviour of the mechanisms. Also, to

verify the correct behaviour, a buffer was implemented in RTEMS kernel, it registered

all the preemptions in all CPUs, this is, a higher priority task gets control of the CPU and

the lower priority task will wait again (goes back to the ready queue),

And finally, with an integral awareness of the operating system, a real time case study

was suggested to be implemented on top of the RTEMS OS, allowing the team to

evaluate their knowledge and to go through the adversity of developing a real time

application for SMP.

1.3 Organization presentation

CISTER (Research Centre in Real-Time and Embedded Computing Systems) [5] is a

research unit created in 1997 based at the School of Engineering (ISEP) of the

Polytechnic Institute of Porto.

Since the beginning, CISTER has grown to become one of the best European research

units, it has well-established roots in Real-Time and Embedded Computing Systems

scientific community and works in a number of subjects such as:

1. Real-Time communication networks and protocols.

2. Distributed embedded systems.

3. Wireless sensor networks (WSN).

4. Cyber-Physical systems (CPS).

5. Real-Time programming paradigms and operating systems.

6. Scheduling and schedulability analysis.

7. Cooperative computing and QoS-aware applications.

As its strategic vision, the unit has been consistently able to identify and

contribute to emerging topic in the area and continues to do so with a strong tradition

of developing foundational work with a vision for the future in areas such as:

Experimental analysis of RTEMS in a multi-core platform

4

• Next generation of computing systems programming paradigms.

• Modelling and analysing temporal behaviour.

• Handling the requirements of mixed-criticalities.

• Resource management in energy-aware computation.

• Real-Time communication protocols that provides mobility, ubiquity and

pervasiveness.

• New demands at all layers of complex systems for better resource QoS

management.

It is important to highlight that CISTER was, in 2004 and 2007 awarded with the

classification of Excellent in the FCT evaluations.

1.4 Document organization

This report is divided into eight main chapters, Context, Work Environment, RTEMS

explanation, the integration of the operating system, Samples description, the circular

buffer, case study and for last, conclusions.

Chapter 2, Context. In this case we start with the description of the problem and

elaborate onto state of the art and business opportunities.

Chapter 3, Working Environment, explains the methodologies and technologies used in

this project, also showing the planning of the project and the meetings to demonstrate

the evolution of the project during his lifetime.

Chapter 4, RTEMS, this chapter explains all the pertinent point of the real-time operating

system.

Chapter 5, Integration on an emulator, this section will explain how the hypervisor

QEMU supports and boots the operating system RTEMS.

Chapter 6, Circular buffer implementation, contains the analysis, design, solution and

results of the kernel buffer.

Chapter 7, Scheduling and Synchronization Samples, starts by explain what has been

tested and the purpose, then presenting the analysis, implementation and results of the

developed samples.

Chapter 8, Mine Control case study, presents the case study implemented and all the

related information,

Chapter 9, Conclusions, summarize the conclusions regarding all aspects of the project.

In a first section, it recaps the work done, enumerating the strengths and positive side

of the work developed and finishing with the future work.

Experimental analysis of RTEMS in a multi-core platform

5

2. Context

On this chapter, the problem of incorporating multi-core processors in safety-critical

systems is presented, followed by an exposition on how the very different parties

involved have been dealing with this process and what is the direction followed. Ending

the chapter with the business opportunities and what benefits from these studies.

The Context is thereby split in 3 sub-sections:

Sub-section 2.1 The Problem, where we address the specific tasks this work looks to

tackle. This chapter is subdivided in 3 sub-sub-chapters. These enter in detail on the

problems introduced right before.

Sub-section 2.2 State of the art, where we introduce the state of development of RTOS

to support SMP environments. Following an analysis on the state of the art of RTEMS.

Sub-section 2.3 Business Areas/Opportunities introduces the reader to cyber-physical

systems and explains the opportunities these devices have on current industries.

2.1 The problem

Even though the concept of a multiprocessor system has been around for decades, only

recently it attained commercial viability as demand for more resources and processing

power grows.

The introduction of SMP platforms brought fundamental changes from the uniprocessor

environments, specifically the scheduling and synchronization processes. It appeared a

new dimension on the scheduling process. Now the scheduler, besides having to choose

which tasks to run, it has to decide where to run them, while still maintaining the

efficiency requirements the same. Adding to this, the resource sharing happening

between tasks gain a, perhaps even critical role due to the appearance of true task

concurrency.

The real-time operating system RTEMS support for multiprocessing is a very recent one,

as available processor platforms for real-time systems have been single-core only, up to

very recently. This means the solutions found and implemented to solve various

problems can still be not very well documented or even present some unexpected

behaviours. By being an open-source RTOS, the RTEMS Projects encourages developers

to help and report bugs or different problems that they might come across.

Experimental analysis of RTEMS in a multi-core platform

6

The lack of test suites targeting the scheduler algorithms implemented and the

synchronization and messaging managers of the RTOS seemed therefore a pertinent

problem to tackle, moreover, the team saw the fitness to develop a feature that would

allow them to check the entrance and leaving threads from the processors, to compare

with the established expected results of the new samples.

Since the leap between the development of uniprocessor-to-multiprocessor-based

architectures, and even the development of operating systems to run on them, is not as

trivial as some would think, the emergence of multiprocessor solutions in critical real-

time systems is yet in an embryonic state. This fermented the suggestion to implement

the rather fa ous, i the a ade i o te t, i e o t ol s ste ase stud [] that
came to be as a mean of showing a multiprocessor architecture running, with a real-

time operating system and put to practise all the research made in this area by the

group.

The problems approached with this work, required a broad understanding of C,

RTEMS operating system, and an in-depth knowledge on the processes of creating and

configuring an RTEMS application. The research on the innerworkings of RTEMS is

exposed in section 4.

2.1.1 Circular Buffer

With the plan of understanding the behaviour of RTEMS on an SMP architecture, the

idea of developing a feature that would register the preemptions appeared, easing the

verification of the new test-suites and help the team to understand the behaviour of the

tested mechanisms.

This feature turn to be a circular buffer that saves the last one thousand preemptions, it

is initiated when a RTEMS application is executed, being supported for any scheduling

algorithm that supports Symmetric Multiprocessing. A new RTEMS directive was also

developed to present the content when requested by the application.

For the development of this buffer, an extensive comprehension of RTEMS kernel was

required.

2.1.2 RTEMS Test Suites

RTEMS, having his code publicly available allows for everybody with interest and

capabilities to be able to study and learn about RTOS, RTEMS, and all sorts of techniques

involved in designing and implementing such a specific system like this one.

Experimental analysis of RTEMS in a multi-core platform

7

The test suites that are also publicly available, found on the RTEMS GitHub page

together with the rest of the source code, are a set of RTEMS applications, created

usually by people that were either involved in the development of this RTOS or that are

in some way related with this field of work and revealed interests in learning and

developing an application that targeted a specific part/functionality of the operating

system.

The development of RTEMS in SMP in an ongoing project and as mentioned before, two

of the most important parts the RTEMS operating system (scheduling and

synchronization) lacked the presence of SMP test suites that targeted its behaviour.

This tests not only attest the behaviours expected or documented but can also be used

as example applications for future developments.

2.1.3 Real-Time Case Study

The i e o t ol s ste is a gua l a suita le use of a e ell-studied case study,

in an ARMV7-A multiprocessor platform. With the multiprocessor platforms being so

fresh on the embedded world, its expected not to find many implementations

thoroughly analysed. We look to address this with the mine control system

implementation which is a case study that represents exquisitely well a typical real-time

system environment.

This case study addresses the supervision of a water pump placed inside of a mine. The

purpose of this pump is to keep the water level on the mine inside a certain threshold.

Besides the water level, there are also certain values regarding the quality of the air that

are being monitored and that interfere with the functioning of the pump (e.g. if the CO

level is above a certain level, the pump cannot be turned on). The whole system is

developed with the intention to correctly operate the water pump, respecting all the

restrictions that one might suffer and meeting all the deadlines imposed.

Experimental analysis of RTEMS in a multi-core platform

8

2.2 State of the art

On the last few years, several real-time operating systems (RTOS) developers have been

working on bringing SMP support to their software. However, taking into consideration

the number of active RTOS, those that support Symmetric Multiprocessing (SMP) are in

a clear numerical disadvantage.

In 2011 it was presented the multicore edition of eT-Ke el, a O“ fo : e t-generation

embedded systems with multi- o e", Ideal fo high pe fo a e e edded s ste s
such as digital home appliances, auto o ile de i es, a d o ile de i es [].

As of the beginning of 2018 there are a few open source operating systems that brought

this support for the embedded systems industry, like the one focused here RTEMS, and

others (I.e., Nuttx, Nucleus RTOS and eCOS). When it comes to non-open-source

software, VxWorks and QnxNeutrin. These are two of the most used RTOS and the ones

with longest history, so it seems natural these were also one of the first to receive SMP

support. (A full list of all depleted RTOS, and those still in use today is available at [7]).

There are currently some RTOS in beta phase. These are all open-source with the main

purpose and characteristics of each varying:

• Simba

• SImpleAVROS

• SOOS Project

• Mark3

This work was meant to be developed on an ARMv7 based board, the next focus of

analysis here is the RTOS RTEMS, which was the chosen operating system to run over

this architecture. It is important to notice what changes the adaptation to SMP brings to

the RTOS.

2.2.1 RTEMS

Before standing for Real-Time Executive for Multiprocessor Systems [8], RTEMS meant

Real-Time Executive for Missile Systems, and before, Real-Time Executive for Military

Systems when it started its activity working for the US Army in 1988, and it was in the

beginning, like all RTOS developed until now, meant to be deployed on Uniprocessor

systems.

The constant demand by applications for processing power along with the physical

limitations faced by the semiconductor industries, fermented the appearance of more

than one CPU and that was transposed to the domains of embedded systems.

Experimental analysis of RTEMS in a multi-core platform

9

Embedded Brains GmbH, one of the companies that is actively involved on the

development of RTEMS, in the years before 2017 started working on the extension of

the OS to support SMP configurations and on May, the same year, the software architect

Sebastian Huber presented it for the first time at DASIA (Data Systems in Aerospace). As

is it found on the RTEMS documentation: The RTEM“ interpretation of real-time on SMP

is the support for clustered scheduling with priority-based schedulers and adequate

locking protocols. [9].

The drive to develop the RTEMS support for SMP was laid on top of fact that traditional

software implemented and designed with a uniprocessor architecture in mind do not

scale and the trend towards the adoption of multicore processor platforms is evident in

embedded systems, and even in the broader cyber-physical systems domain. The

support for Symmetric Multiprocessing (SMP) came to solidify RTEMS as a state-of-the-

art RTOS with the possibility to be implemented in hardware systems with true parallel

processing capabilities.

The increased software and hardware complexity and the presence of true parallelism

(which does not occur in uniprocessor) leads to the application developer having to be

even more careful about mutual exclusion and shared data access. Problems that are

rarely or never found on uniprocessor now appear and must be dealt with.

Experimental analysis of RTEMS in a multi-core platform

10

2.2.2 (New) SMP capabilities brought to RTEMS

→ Partitioned/Clustered Scheduling

In clustered scheduling the set of processors that constitute the system is partitioned

into non-empty disjoint subsets, called clusters. Clusters that only contain one processor

are called partitions and each cluster is owned by one scheduler instance. Unlike

Asymmetric multiprocessing, in SMP there is no physical barrier separating the different

subsets. There is only a logical barrier, but sometimes, in specific situations, tasks can

run on processor subsets that do not belong to it scheduler instance.

Clustered scheduling helps to control the worst-case latencies of a system and reduces

the amount of shared data in the system. Also, it was implemented for RTEMS SMP to

best use the cache topology of a system.

→ Scheduler Helping Protocol (helping hand mechanism)

The schedulers implemented (not all) provide a helping mechanism to support the

necessary locking protocols.

RTEMS is implemented in a way which each task has its own scheduler instance. One

scheduler instance can be running several scheduler nodes (CPUs), consequently, the

scheduler instance the task is attributed to determines the CPUs this task can run on.

This is a clever mechanism but in a multiprocessor platform this can create some

problems. The way RTEMS implementation bypasses these technical hurdles is by having

a helping protocol, which allow for tasks to gain access to CPUs of other scheduler

instances.

For the scheduler helping protocol to be available the following operations must be

implemented by an SMP scheduler:

1. ask a scheduler node for help,

2. reconsider the help request of a scheduler node,

3. withdraw a schedule node.

Even though this helping protocol is necessary due to the locking mechanisms, the

deployment details involve changing the scheduler kernel code, and this is one of the

main reasons why locking protocols are still complex to adapt in different OS.

Furthermore, this is precisely the reason why having locking protocols implemented (not

even in use) causes an overhead on the main scheduling procedures [10].

All u e tl a aila le “MP-aware schedulers use a framework which is customized via

i li e fu tio s. []. This is a way to allow an easier implementation of scheduler

variants.

Experimental analysis of RTEMS in a multi-core platform

11

→ Profiling

The support for profiling of low-level synchronization was added to allow for the

identification of bottlenecks in the system and it is a tool that can be accessed by a build-

time configuration flag. Profiling reports are generated in XML for most test programs

of the RTEMS test-suite and were implemented with an acceptable overhead.

The number of tests already developed give a good sample set for statistics. One can

know for example the maximum interrupt latency, or the lock contention latency.

→ Fine grained locking

Fine grained locking allows for a much less resource contention in a system because

each object has its own lock to protect the object state. With a giant lock, we can have

our example thread performing a certain job that requires mutual exclusion have their

execution time affected by other thread who is on the same critical zone our thread is

trying to access and yet in the end represent no real concurrency. This creates a real

bottleneck in a system and its a problem that is addressed by designing a system of fine-

grained locks, since the more fine-grained the less likely one thread will request a lock

held by other.

In RTEMS fine grained locking was first implemented for events, semaphores and

message queues and it was proven that this implementation scales well with the count

of active tasks even outperforming the old implementation.

→ Time keeping (redesigned)

A solid, high performance timestamp implementation is crucial for the overall system

performance, and specially for safety-critical real-time systems who are so dependent

of time constraints. The extension used to get timestamps was broken by design on SMP,

so a whole new implementation was necessary.

The possible solutions were equated, and the FreeBSD time counters were selected to

achieve the desired solution, as they presented excellent results and are a lock-free

solution.

The aim of development of RTEMS SMP was to maintain a low-overhead operating

system suitable for safety-critical activities. Currently, the implementation presents

some limitations, i.e., lack of support for locking mechanisms in dynamic priority-based

schedulers, (even though is not a problem of the RTEMS SMP development, per se)

nevertheless it presents a solid low-level implementation when it comes to:

• Low-level synchronization,

• thread migration and processor assignment,

Experimental analysis of RTEMS in a multi-core platform

12

• SMP scheduler framework,

• partitioned/clustered scheduling,

• thread queues (building block for objects which may block a thread), and

• thread-local storage.

Making it ready for production systems.

2.3 Business Areas

In very few words, cyber-physical systems are the systems that connect the physical

world with the information processing world of the computer. But if e’ e t i g to e
accurate, what a cyber-physical system really is, is the set of computing elements which

are responsible for or are related to the process of supervising physical sensors and

actuators with the goal of retrieving information from the environment they are in and

respond with certain actions. The wide success of CPS in today's world can be attributed

to the very own embedded device, or embedded system. In fact, these two terms are

almost glued together since in reality, cyber-physical syste s uild upo the olde
technology of embedded systems.

One of the first uses of a modern embedded system with the properties that we are

fa ilia ith s all size, high p o essi g apa ilities, … a e t a ed as fa a k as
1961. This year marked the launch of the famous Apollo program, carried out by NASA,

and it was when Charles Stark Draper started working on the riskiest piece of equipment

of the entire program, the Apollo Guidance Computer.

Embedded safety-critical systems are usually designed to be very small, to have real-

time capabilities and are often incorporated within a larger computer system. The

economic and societal potential of these systems is enormous. The market for this kind

of devices was estimated to be already over 120 billion euros in 2013 and major

investments are constantly being made worldwide to develop the technology.

CPS has been identified as a core enabling and disruptive technology by the German

National Academy of Science and Engineering (acatech) and the impacts and possibilities

these systems bring to our lives are still subject of thorough studies.

Experimental analysis of RTEMS in a multi-core platform

13

Figure 2 Cyber-Physical Systems Map

data source: https://ptolemy.berkeley.edu/projects/cps/

Perhaps the impact these systems have can be better understood by giving out some

examples of the application of these systems in different fields of work:

2.3.1 Manufacturing

CPS are used to improve processes by sharing real-time information

among all different levels of machinery and people working. Furthermore,

CPS can improve these processes by self-monitoring and controlling the

entire production processes and by allowing it to adjust production we

achieve a higher degrev cxjgc,e of visibility and control on supply chains.

2.3.2 Healthcare

CPS are used in real-time and remote monitoring of the physical conditions or to

help disabled and elderly patients. Besides, CPS are widely used in research in the

Experimental analysis of RTEMS in a multi-core platform

14

neuroscience field to better understand human functions. (for e.g. with the

support of brain-machine interfaces and therapeutic robotics.)

2.3.3 Energy

CPS are used to monitor energy expenses. In a smart grid, for example, this

technology is put into practise to allow for a more efficient use of the grid

and to make it overall more transparent and sustainable. The smart cities

are very closely related to this and extend even more the domain of action

of these systems. With CPS you can enable energy monitoring and control

systems usage, or you can determine the extent of damage that buildings

suffer after unexpected events and help prevent structural failures.

2.3.4 Automotive

Individual vehicles can communicate with each other, sharing real-time information

about traffic, location, or other issues and have the main reason behind it to prevent

accidents or congestion, improve safety, and ultimately save money and time.

Nowadays, the automotive industry actually consumes more embedded devices

than any other industry. This is because modern cars dispose of a distributed system

of devices that are used internally to manage all kinds of elements that integrate the

vehicle.

2.3.5 Agriculture

CPS can be used to gather information about different aspects like the climate, the

ground, and such, allowing for an accurate application of agricultural techniques. A

CPS can also be constantly monitoring different resources, such as watering,

humidity, plant health and others, through sensors and, thus, keep the ideal

environmental values without the help a supervisor.

2.3.6 Computer Networks

 CPS can boost cyber environments to better understand systems and users'

behaviours, which can help improve performances and resource management.

Moreover, popular social networks and e-commerce websites store users'

navigation information and users' web content, analyses that information, and then

tries to predict interests and make recommendation for friends, posts, links, pages,

events, or products.

Experimental analysis of RTEMS in a multi-core platform

15

There are many more subtle ways CPS are present in our lives and businesses are already

developing or contributing towards CPS even sometimes without realising it.

There are many parts that constitute a cyber-physical system, this includes the software

needed to run the system(s), the set of sensor and actuators, the communications

technology used. And a CPS often includes components from many different

manufacturers or service providers.

CPS presents a collection of challenges not always found in a classical information or

embedded system. Mastering the engineering of complex and trustworthy cyber-

physical systems is important for allowing our industries to implement CPS-based

business models which could bring unprecedent benefits for companies and consumers.

Current CPS, however, are still very expensive to develop and maintain and sometimes

with unknown repercussions.

Experimental analysis of RTEMS in a multi-core platform

16

Experimental analysis of RTEMS in a multi-core platform

17

3. Working Environment

This chapter relates the timeline and how the project developers worked, explaining the

work methodologies and the technologies used. For a better support the planning and

a Gantt diagram will also be included in this chapter.

3.1 Work Methods

Since the beginning it was considered that the best work method, for his own nature,

should be a linear sequential design approach, specifically waterfall model, being less

iterative and flexible.

Figure 3 Waterfall model representation

data source: https://www.lucidchart.com/blog/pros-and-cons-of-waterfall-methodology

The project was divided in three development phases, in which the waterfall method

was used on the last two. The first one consisted in a deep initial study of the operating

system and in the integration of the same on a hypervisor, QEMU, that allowed the team

to have a total hardware abstraction, the second phase to develop the samples and the

buffer, the third development phase was dedicated to the real-time case study. The

team was unable to make use of, maybe, more modern or flexible approaches as these

put an emphasis on the use of model artefacts (visual representations) and full cycles of

testing phases, that do not fit well with the working of this project.

For the first one, as the waterfall method purposes, the timeline was developed in the

following steps:

1. Analysis: This phase consisted on an extensive studying of the operating system.

2. Design: During this phase the domain analysis was developed, such as the system

architecture of the circular buffer.

Experimental analysis of RTEMS in a multi-core platform

18

3. Implementation: In this phase all requirements both for the buffer and for the

samples were implemented.

4. Verification: End of the first development state, the studying and comprehension

of RTEMS, in this phase the team verified if both the design and implementation

were correct and functional, as well as notify the anomalies of the operating

system.

As this was a research phase and full of unknown technologies and subjects, the analysis

and design steps had a much more meaningful part than in typical software

development.

And for the case study:

1. Requirements Analysis: Comprehension of the case study and all is

requirements.

2. Design: In this phase the physical and logical architecture design were

developed.

3. Implementation: Implementation of the requirements.

4. Testing: End of the project, testing and conclusion of the case study.

For this project it was used bitbucket to manage the source code and its design,

concerning the tasks/issues, the team used Trello as it can be seen in appendix 6.2, these

work methods allowed to see what each member of the team was doing, had done and

what was going to do.

3.2 Work Planning

The project was divided in 9 phases: Studying and the Comprehension of the behaviour

of RTEMS, integration on an emulator, kernel and samples analysis/design, kernel

development, samples development, case study analysis and design, case study

development and Documentation. It was decided to not include the meetings, since they

occurred almost on a daily basis or when doubts appeared, these meetings occurred

with the senior engineers of CISTER.

The most important phases were the comprehension of RTEMS and the kernel and

samples analysis, the first one allowed to almost fully understand the behaviour of the

operating system and in a following phase, the kernel and samples analysis allowed us

to study the code of RTEMS, which gave an overview for a later development of the

circular buffer on the Kernel and the samples. This allowed the team to meet the

established goals for the comprehension of RTEMS.

The shortest phase was the integration phase, that consisted on placing the Operating

System working on an emulator and to enable certain configurations to simulate an

Experimental analysis of RTEMS in a multi-core platform

19

embedded environment, for that, a couple of technologies were used, the QEMU and

RTEMS Source Builder.

And for last, the case study allowed the team to evaluate their knowledge and to gain a

practical overview. In both development phases the team implemented all previous

requirements.

The documentation phase contemplates the writing of the report for PESTI and a paper

for CISTER.

TASK DURATION START FINISH

RTEMS STUDY

4 Weeks

26 February

26 March

INTEGRATION

2 Weeks

26 March

9 April

KERNEL/SAMPLES

ANALYSIS/DESIGN

4 Weeks

9 April

7 May

KERNEL

DEVELOPMENT

4 Weeks

30 April

21 May

SAMPLES

DEVELOPMENT

4 Weeks

21 May

18 June

CASE STUDY

ANALYSIS

3 Weeks

18 June

9July

CASE STUDY

DESIGN

2 Weeks

2 July

16 July

CASE STUDY

DEVELOPMENT

5 Weeks

16 July

20 August

DOCUMENTATION

26 Weeks

19 March

14 September

Table 1 Project Planning

Experimental analysis of RTEMS in a multi-core platform

20

Table 1 reveals the project timeline for the 9 phases of the work, Appendix 11.1 shows

a complete overview of the Gantt Diagram.

3.3 Technologies

A multitude of technologies were used to develop the current work, without those it

ould ’t e possi le to satisf all e ui e e ts, ta le su a izes those e plo ed
technologies.

TECHNOLOGY USE

C

QEMU

SOURCETRAIL

GNOME COMMANDER

RSB

RTEMS

RTEMS Kernel and Samples

Emulator

Indexation of the code

T o-pa e g aphi al file a age

Build RTEMS compiler and OS

Operating System

Table 2 Employed technologies

The following subsections will be a small briefing on what each of these technologies

consists and how they served a use for the project.

Experimental analysis of RTEMS in a multi-core platform

21

3.3.1 C (Programming Language)

C [12] is a general-purpose, imperative computer programming language ideal for

developing firmware, operating systems, language compilers, assemblers, network

drivers and portable applications, supporting structured programming, lexical variable

scope and recursion. It was originally developed by Dennis Ritchie between 1969 and

1973 at Bell Labs and used to re/implement the Unix operating system.

C has several important features such as:

• Fixed number of keywords, including a set of control primitives.

• Multiple logical and mathematical operators, including bit manipulators.

• Multiple assignments may be applied in a single statement.

• Function return values are not always required and may be ignored if

unneeded.

• All data has type but may be implicitly converted.

• Basic form of modularity. And control of function and object visibility to

other file via extern and static attributes.

In this project C was used to develop both the RTEMS Kernel and Samples, taking

advantage of his features and properties.

3.3.2 QEMU

QEMU (Quick Emulator) [13] is a hosted hypervisor that performs hardware

virtualization, it simulates CPUs through dynamic binary translation and provides a set

of devices models, enabling it to run a variety of unmodified guest operating systems,

QEMU has two operating modes, the full system emulation and the user mode.

In the full system emulation, QEMU emulates a full system (such as a PC) including one

or several processors and various peripherals, this mode can be used to launch different

operating system without rebooting the PC or to debug system code, it also has other

features such as: a full software MMU for maximum portability, an in-kernel accelerator

and a symmetric multiprocessing support.

And finally, the user mode emulation allows to launch processes compiled for one CPU

on another CPU or to ease the cross-compilation and cross-debugging, this mode also

allows features such as: a generic Linux system call converter and a signal handling by

remapping host signals to target signals.

In this work QEMU was used to virtualize the hardware allowing to boot the operating

systems RTEMS, the following figure represents the QEMU architecture used in this

project, that is, a guest operating system working on a host operating system.

Experimental analysis of RTEMS in a multi-core platform

22

Figure 4 QEMU architecture with guest OS

3.3.3 SOURCETRAIL

Sourcetrail [14] is an interactive source explorer that simplifies navigation in existing

source code, supporting several languages such as C/C++ and Java, it first indexes the

code and gathers data about its structures and then provides a simple interface

consisting of three interactive views, each of one plays a key role in getting information.

Figure 5 the 3 interactive views of Sourcetrail

data source: https://www.sourcetrail.com/

• Search: allows to quickly find and select indexed symbols in the source code,

instantly providing an overview of all matching results.

• Graph: displays the structure of the source code, focusing in the selected symbol

and directly showing all incoming and outgoing dependencies to other symbols.

Experimental analysis of RTEMS in a multi-core platform

23

• Code: displays all the source location of the selected symbol in a list of code

snippets.

This technology was used to clarify the source code and the dependencies of RTEMS,

which allowed to a faster and better comprehension of the operating system.

3.3.4 GNOME Commander

GNOME Commander [] is a t o pa el g aphi al file a age fo Li u desktop, it
aims to fulfil the demands of more advanced users who like to focus on file management

and has the following features:

• MIME TYPES.

• Network support through FTP, SFTP.

• User defined context menu.

• Plugin support.

• Python scripting.

GNOME Commander was used to simplify the file management of this project, allowing

an easier navigation within the directories and files of RTEMS.

3.3.5 RSB (RTEMS SOURCE BUILDER)

RTEMS Source Builder [16] is a tool to build packages from source, it is used by the

RTEMS project to build its compilers and OS, it helps consolidate the details needed to

build a package from source in a controlled and verifiable way, RSB can also build bare

metal development environments.

RSB has been tested on several OS, such as:

• ArchLinux

• CentOS

• Fedora

• Raspbian

• Ubuntu

• Linux Mint

• openSUSE

• FreeBSD

• NetBSD

Experimental analysis of RTEMS in a multi-core platform

24

• MacOS

• Windows.

The RTEMS Source Builder has two type of configuration data, the first is the build set.

A build set describes a collection of packages that define a set of tools you would use

when developing software for RTEMS, for example the basic GNU tool set is binutils, gcc

and gdb. These are a typical base set of tools needed for an embedded cross-

development type project.

The second type of configuration data is the configuration file and they define how a

package is built, configuration files are scripts loosely based on the RPM spec file format

and they detail the steps needed to build a package.

As is it explain before, the RSB was used in this project to build RTEMS compiler and OS.

Experimental analysis of RTEMS in a multi-core platform

25

4. RTEMS

As mentioned on chapter 2.2, RTEMS Real-Time Executive for Multiprocessor Systems

[8] is a Real-Time Operating System that supports open standard applications

programming interfaces (API) such as POSIX, ADA, native and ITRON. It is used in space,

flight, medical, networking and many more embedded devices using architecture

including ARM, PowerPC, Intel, Blackfin, MIPS, Microblaze, SPARC and many others.

In POSIX terminology, RTEMS implements a single process, multithreaded environment.

With the existence of only one address space, all flows of control (threads) share the

same address, turning it into a closed real-time system, where only one application is

started when the RTEMS is switched on. RTEMS closely corresponds to POSIX Profile 52

hi h is si gle p o ess, th eads, files ste .

Figure 6 POSIX Profiles

data soure: http://www.opengroup.org/testing/testsuites/POSIXProfiles.htm

RTEMS can be considered as a set of layered components that provides services to a

real-time application. The interface presented to the application is formed by joining

directives into logical sets labelled resource managers. The following figure shows the

managers organization.

Figure 7 RTEMS Organization

data source: https://docs.rtems.org/branches/master/c-user

Experimental analysis of RTEMS in a multi-core platform

26

RTEMS Core depends on a small set of processor dependent routines, being part of the

executive core functions such as scheduling, dispatching and object management, that

are used by several managers.

In the following sections, the layers, principal managers and functionalities of RTEMS

will be further explained.

4.1 RTEMS Layers

RTEMS is characterized by three layers: hardware support, kernel and APIs, the user

can develop his application by using available APIs, as it can be seen in figure 8.

Figure 8 RTEMS layers

data source: https://docs.rtems.org/branches/master/c-user

The hardware support layer encompasses the processor and board dependent files as

well as a common hardware library. One aspect that can be noticed is that both the

kernel and the API layers are part of the so called RTEMS executive. The notion of

executive expresses the capability to run applications, implying the use of an API set for

application development, however, from a conceptual level the kernel itself and the APIs

are two distinct ideas.

The kernel layer is the heart of RTEMS and encompasses the super core , the super

API and several portable support libraries. The super core is organized into handlers and

provides a common infrastructure and a high degree of interoperability between APIs.

The super API contains the code for services that are beyond any standardization, such

as API initialization and extensions support.

http://rtemscentre.edisoft.pt/index.php?module=ContentExpress&file=index&func=display&ceid=23&meid=39

Experimental analysis of RTEMS in a multi-core platform

27

The API layer makes the bridge between the kernel and the application. The Classic,

POSIX and ITRON APIs are implemented in terms of super core services. Each API is

organized into managers (the right side of the image illustrates that). The Ada API is a

direct mapping of the Classic interface.

4.2 Floating Point

RTEMS provides software and hardware floating-point support, the presence or absence

of the RTEMS floating-point unit (FPU) attribute in the creation of a task determines

whether it is floating-point enabled or not. When creating a task with the FPU attribute

flag results in additional memory being allocated for the task control block (TCB) to store

the state of the numeric coprocessor during task switches.

Saving and restoring the context of a task with FPU takes longer than a task that does

not have FPU defined, mainly because of the relatively large amount of time required

for the numeric coprocessor to save and restore its computational state.

If the supported processor type does not have hardware floating capabilities or a

standard numeric coprocessor, a FPU emulation software library must be utilized for

floating-point operations, or else all the task will be defined as no floating-point.

4.3 Task Manager

This manager provides a comprehensive set of directives to create, delete and

administer tasks. But for the real understanding of this manager several definitions must

be explained, for start, what is a RTEMS task?

A task, in RTEMS perspective, is the smallest thread of execution which can compete on

its own for system resources, moreover, each task is established by the existence of a

task control block (TCB). TCB is defined as a data structure which contains all the proper

information to the execution of the task, it is allocated upon the creation of the task and

released when the task is deleted.

The directives offered by this manager, allows the application to create tasks, by

allocating the TCB, stack and floating-point context area. All created tasks are initially

placed in the dormant state. The start operation places a dormant task into the ready

state, ei g i itialized the task’s sta k upo the task’s i itial e e utio ode a d sta t
address, meanwhile the restart directive restarts a task at its initial starting address with

its original priority and execution mode, but with a possibly different argument. When

suspending a task, it is passed to a blocked state until the resume directive is called,

placing it into the ready queue.

Experimental analysis of RTEMS in a multi-core platform

28

To remove all references to the task, RTEMS provides a directive, this operation frees

the task’s o t ol lo k, e o ing it from resource wait queues, and deallocates its stack

as well as the optional floating-point context.

All the states transition associated with the directives from this manager are shown in

figure 9.

Figure 9 RTEMS Tasks States

data source: https://docs.rtems.org/branches/master/c-user

For the creation of tasks with periodic fashion, I.e., jobs of a task appear in the system

with a regular interval, the Rate Monotonic Manager is used, it helps creating tasks with

periodicity by defining a period with an operation from this manager. It also gathers

information about the execution of those periods and can provide statistics to the user

which can be used to analyse and tune the application. The services provided by this

manager may be used by any application which requires periodic tasks.

Experimental analysis of RTEMS in a multi-core platform

29

4.4 Timer Manager

A timer is an RTEMS object which allows the application to schedule operations to occur

at specific times in the future. For the use of timers, it is required the use of a clock tick.

User supplied timer service routines are invoked by either a clock tick directive or a

special Timer Server task when the timer fires. Timer service routines may perform any

operations or directives which normally would be performed by the application code

which invoked a clock tick directive.

4.5 Interrupt/Signal Manager

RTEMS, as any other real-time operating system, provides mechanisms for response to

generated interrupts. For that, it offers the Interrupt Service Routine (ISR) and the

Asynchronous Signal Routine (ASR), both formats are extremely similar.

ISR represents hardware interruptions, a software process is invoked by a hardware

device, it allows the application to connect a function to a hardware interrupt vector,

when an interrupt occurs, the processor will automatically vector to RTEMS, saving and

restoring all registers which are not preserved by the C calling convection, giving the

control to the ISR, meanwhile, ASR, represents software interrupts. In other common

o ds, as h o ous sig al outi e is to a task hat a I“R is to a appli atio ’s set of
tasks, he a sig al is se t to a task, the task’s e e utio path ill e ha ged the
ASR.

There are several differences between those software and hardware interruptus, such

as:

• While ASR are scheduled by RTEMS and can invoke any directive, ISR are

scheduled by the processor hardware and can invoke only a set of directives.

• ISR are immediately handled, while the ASR are only handled when the receiver

task enters the processor.

4.6 RTEMS Scheduling

As mentioned before, for real-time systems, the scheduling dictates the ability to

provide immediate response to external events. Scheduling functions do not have a

specific manager, belonging to the RTEMS core.

Experimental analysis of RTEMS in a multi-core platform

30

RTEMS provides a plugin framework which allows it to support multiple scheduling

algorithms, both for uniprocessor and for SMP, the application can select at link-time

which of these to use, being more appropriated to the specific use case.

As the project focused on SMP, only SMP scheduling algorithms will be further

explained. All SMP schedulers are priority based, the processors managed by a scheduler

instance are allocated to the highest priority tasks allowed to run, the SMP scheduler

are the followings:

• EDF, Earliest Deadline First.

• Deterministic Priority

• Simple Priority

• Arbitrary Processor Affinity Priority.

4.6.1 Earliest Deadline First (EDF) SMP

Earliest deadline First is a dynamic priority scheduling algorithm used in real-time

systems, where the priority of the threads can change during its execution, it is also the

default scheduler in SMP configuration if more than one processor is configured.

The concept of a deadline shorter than the period, or explicit deadline, do not exist

within RTEMS, only implicit deadline are admissible, so, when creating a periodic task,

the given periodicity will correspond to its deadline, maximum time where a response

must be guaranteed.

 With EDF for RTEMS there is an attribution of two kind of priorities to tasks, to the

background tasks, that is, tasks that do not have any periodicity, the maximum priority

is given as min � � � , − and its attributed by the application being a fixed

priority. Meanwhile, tasks with an active period have higher priority than the

background tasks, being defined a higher priority to the tasks with closest deadlines,

that is, the priority is inversely proportional to its deadline.

EDF RTEMS supports task processors affinities of one-to-one and one-to-all, in common

words, it associates the tasks with the processors, allowing a task to run uniquely on one

processor or in all.

Experimental analysis of RTEMS in a multi-core platform

31

4.6.1 Simple Priority SMP

Simple Priority SMP is a fixed-priority preemptive scheduler which uses a sorted chain

for the ready tasks, placing in the processor the task with the highest priority. This

scheduler and all the other fixed priority schedulers are more controllable and

predictable than the EDF scheduler.

By convention, the maximum priority level is 255, but in RTEMS the implementation

limit is − .

4.6.2 Deterministic Priority SMP

The Deterministic Priority SMP is a fixed priority preemptive scheduler commonly used

in real-time systems, it executes the highest priority task of all the tasks that are in the

ready state.

This scheduler is extremely similar to the Simple Priority SMP Scheduler, but diverge

with the chain that is used, while the Simple uses a unique chain, the Deterministic uses

table of chains, with one chain per priority level for the ready tasks, then applying FIFO

in each chain.

The maximum priority level is configurable, nevertheless, by default the maximum

priority level is 255.

4.6.3 Arbitrary Processor Affinity Priority SMP

Arbitrary Processor Affinity Priority SMP is just like the Deterministic Priority SMP, a

fixed-priority scheduler which uses a table of chains with one chain per priority level, it

also as the same maximum priority level and configurability as the Deterministic. The

main difference between both, is that, this scheduler supports arbitrary task processor

affinities, allowing a task to execute only on certain processors, depending on the

configuration.

The affinity is changed through the variable cpu_set_t that represents the affinity set,

each bit corresponds to a processor, a set bit means the task can execute on this

processor and a cleared bit means the opposite.

Experimental analysis of RTEMS in a multi-core platform

32

4.7 RTEMS SMP Synchronization

Mechanisms

The capacity for synchronization and communication between the different running

tasks in a system is a fundamental requirement to be able to control the execution of

said tasks, and thereby, the system.

In uniprocessor, RTEMS offers different mechanisms that have been thoroughly

analyzed and designed to allow an efficient way for thread synchronization and

communication. These are:

• Semaphore Manager

• Message Manager

• Event Manager

• Signal Manager

The semaphore manager supports mutual exclusion capabilities, involving the

synchronization of access to one or more shared user resources. The message manager

supports both communication (tasks can send messages to each other) and

synchronization (tasks can be put on hold, waiting for a message to arrive). The event

manager primarily provides a high-performance communication (through event

sending) and synchronization mechanism (through putting a task waiting for a certain

event to arrive). The signal manager supports only asynchronous communication and is

typically used for exception handling. The low-level synchronization primitives used on

RTEMS were implemented using C11 atomic operations.

The SMP lock, a ticket-lock, implemented in RTEMS uses FIFO ordering, since this is

meant for systems in which high predictability is a necessary quality, even more than

high throughput. The RTEMS API is also capable of supporting MCS locks, with the

purpose of allowing the OS to support more than 32 cores (in the future).

The following options are provided by:

• Events,

• message queues,

• semaphores

▫ mutexes using OMIP,

▫ mutexes using MrsP,

▫ binary and counting semaphores.

The main differences in terms of synchronization from the uniprocessor platforms, are

centered around the use of semaphores. As memory is shared among the different CPUs

Experimental analysis of RTEMS in a multi-core platform

33

of a system it is imperative to provide safe ways to do it (meaning: no corrupted data,

provide mutual exclusion primitives). However, having the same semaphore being

accessed from different CPUs leads to a noticeable worst-case execution time increment

when performing the schedulability analysis.

Not only that, when working in multitasking, preemptive environments and shared

resources, there is the possibility of a problem called priority inversion. In

multiprocessor platforms this problem is exacerbated by the introduction of true task

parallelism.

So, the operating system must implement a mechanism to deal with this. (what is known

as a locking protocol.)

4.7.1 Priority Inversion

Most real-time operating systems employ priority-based preemptive scheduling

algorithms as this is a good way to encode in a system the priority of tasks (we control

the order in which tasks must be ran). These schedulers attribute a priority level

(number) to each task, and the higher priority tasks expect to run as soon as they are

made ready to run.

Priority Inversion is the name given to a famous problem, that happens when the

execution of a high priority task is interrupted by the execution of a lower priority task.

This is how the situation can happen in a multiprocessor environment:

Tasks need to share resources to communicate and process data, and often times the

shared resource must have a mechanism to grant mutual exclusion, (usually a

semaphore) since the value of one variable cannot be changed at the same time, by two

different tasks. There is a possibility that a low priority task – Task1, running on one

processor, is made ready and accesses the shared resource used by a high priority task

– Task2, running on another processor, and so Task2 must now wait for the low priority

task to finish running (at least, on the critical zone). The time spent in the critical zone

does not usually extend much in time, so it does not seem a very serious for Task1 to

interfere with Task2 (even though it can be).

But the real problem happens when Task1 is preempted by a medium-priority task –

Task3, at this moment, a priority inversion problem is said to occur. This would leave the

higher-priority task in a pending state, waiting for other tasks with lower priority to run.

Experimental analysis of RTEMS in a multi-core platform

34

Figure 10 Priority inversion - example

Figure 10 illustrates the example of a typical priority inversion problem. We can see that

when Task2 is ready to run, Task1 is executing the critical section. Task3 then enters the

processor to run and since it does not make use of the resources shared, it will simply

preempt the low priority task and run, leaving Task1, and consequently Task2 – high

priority- on hold. Which is an unanticipated behavior when designing the system.

4.7.2 RTEMS Locking protocols

If priority inversion problems were to happen in real-time systems, as they sometimes

do (a very notorious example was the 1997 Mars Pathfinder mission), the consequences

would be fatal. Having no mechanism to go around this problem, it would not be

possible to grant that higher priority tasks would run when they should, keeping up to

their deadlines. In critical real-time systems this might mean a total system failure.

Research on this problem has been made and the shared resource protocols (locking

protocols) are well studied and documented for uniprocessor solutions. For

multiprocessor platforms there have been a large variety of protocols proposed, but

most present serious setbacks. Besides the inherently high complexity of their

implementation, either the protocol would impose restrictions to the synchronization

primitive (i.e., Multiprocessor Priority Ceiling Protocol (MPCP) no possibility for nested

resources) and/or it would bring significant run-time overhead, to systems that are

usually very latency-sensitive [17]. It is important to mention that currently, no locking

protocol was proposed that deals with dynamic priorities. The multiprocessor

Experimental analysis of RTEMS in a multi-core platform

35

semaphore locking protocols are usually designed having in mind a specific scheduling

policie.

One first approach taken was to stop tasks, that are running on critical sections, to be

preempted. However, this is not anywhere near an optimal solution, as it would lead to

high priority tasks to be blocked more times than necessary (locket mechanism with big

granularity).

During the RTEMS-SMP development only two locking protocols were found to have

optimal characteristics for real-time multiprocessor environments [18]. They were

developed for fixed-priority based schedulers and they are the Multiprocessor Resource

Sharing Protocol (MrsP) and O(m) Independece-preserving protocol (OMIP). These

protocols were published in 2013, the concept being generalizing the principles adopted

by the Priority Ceiling Protocol (PCP) and Priority Inheritance Protocol (PIP). This report

focuses in more detail on the earlier mentioned.

4.7.2.1 Priority Ceiling Protocol (PCP)

Priority Ceiling Protocol, also known as, Immediate Ceiling Priority Protocol (ICPP)

attributes a ceiling priority to a mutual exclusion semaphore at creation time.

Subsequent tasks that will acquire the mutex will have their priorities raised to the

ceiling priority of the mutex. The ceiling priority must not be attributed randomly. This

value should be set to the highest priority of the task that will ever attempt to obtain

the mutex. Even though this protocol is beneficial for schedulability analysis, the need

to identify the highest priority task that will ever attempt to obtain the mutex might

prove very difficult in a more complex system.

4.7.2.2 Priority Inheritance Protocol (PIP)

With the priority Inheritance Protocol, the task that holds the mutex inherits the priority

of the higher priority task that is trying to obtain the mutex. This inheritance is transitive,

which means, if it happens to be a case where exists nested access between 3 tasks:

Task1 is waiting for Task2, and Task2 is waiting for Task3 and Task1 has the highest

priority, then Task3 will inherit the priority of Task1. This protocol does not however

prevent the appearance of deadlocks completely.

Experimental analysis of RTEMS in a multi-core platform

36

4.7.2.3 Multiprocessor resource sharing protocol (MrsP)

 The MrsP (stylised with lower-case not to be confused with the other, older protocol –

MRSP) was published on a paper from 2013. Even though the aim of the people that

o ked o this p oto ol as to eate a ge e al-purpose protocol that is applicable to

(...) globally scheduled systems using fi ed p io ities, EDF o a othe desig atio [17]

when published in July, their considerations were kept to fully partitioned systems using

fixed-priorities.

At the time of writing, there is no protocol as developed as the MrsP or OMIP for the

EDF scheduler, hence the lack of protocol implementation for this default scheduler in

RTEMS. This protocol takes some characteristics of MRSP and builds upon it.

MrsP was developed to not block tasks that wait for a resource, instead, they perform a

busy wait, as the alternative (suspension-based waiting) could mean longer waiting

queues for tasks. Even though it is clear in the paper written that MrsP is supposed to

have different ceiling priorities for each processor in the system with tasks that access

the resource, currently RTEMS only allows for users to define a single priority ceiling

(that is the same across all processors).

Figure 11 MrsP schema [18]

Image 11, taken from the RTEMS SMP final report depict how the connection and wait

mode of the tasks waiting for the primitive, from different partitions is made.

The research made lead to the following protocols characteristics: When tasks ask to

access a resource, they will have their priorities raised to the ceiling priority of the

synchronization primitive they were trying to obtain. If the resource is in use by another

task, then tasks wait in a FIFO queue, spinning at local ceiling priority. Note the detail.

Experimental analysis of RTEMS in a multi-core platform

37

At first glance it may seem to go against the good practices learnt to have tasks busy-

waiting for a resource, but, here lies the distinctive feature of MrsP - a helping

mechanism that allows for tasks to service the resource they are trying to use. This

means, while tasks are busy-waiting for, let’s sa , Task to elease the ute , the o ’t
leave the processor, and if it happens for Task1 to be preempted by a higher priority

task, these asted les of othe ute o te de s a e used to u Task o its
critical section and release the synchronization primitive. When returning to the

processor, T1 will have their execution resumed after the mutex release part.

4.7.2.4 O(m) Independence Preserving protocol (OMIP)

OMIP is an Independence preserving protocol. This means tasks that are contending to

a ess the ute p i iti e o ’t e dela ed due to u elated iti al se tio s a esses.
This is a very desirable feature for real-time systems. And is not granted for example on

the MrsP protocol. This protocol is aimed at clustered job-level fixed priority schedulers

and, again, unlike MrsP which as a spin base waiting discipline, this has suspension-

based locking.

This protocol aims at fulfilling the most desirable characteristics a real-time semaphore

protocol must have, (according to the algorithm developers):

• The delays brought to tasks regarding the locking mechanism to be kept as low

as possible

• keep high priority tasks unaffected by unrelated critical sections of lower priority

ones.

The waiting queues that OMIP implements are more complex than the ones MrsP uses,

but on clustered scheduling the behavior of both protocols is quite similar.

It is referenced on the RTEMS SMP final report that, even though OMIP offers promising

characteristics, it is a recent, complex protocol and most usually known schedulability

tests do not support its analysis. Even though MrsP has a much simpler design, the

helping mechanism implemented has in practice some limitations [19].

Experimental analysis of RTEMS in a multi-core platform

38

Figure 12 OMiP schema [18]

On figure 12 we can better have an idea on how OMIP operates. Note that, when tasks

are waiting for the resource, they are suspended and put on a priority queue.

The defining characteristic of OMIP, is based on other protocol, the multiprocessor

bandwidth inheritance protocol (MBWI) and is that lock-holding tasks may migrate

freely among other processors where other tasks are waiting for the lock. The argument

made on the paper [20] is that priority boosting is not very well suited for latency-

sensitive systems, and they complement that with a small example. And so, another

mechanism is proposed. This was the way found to get around that problem.

Following this approach, it was proven, when developing OMIP that it is impossible for

a protocol to preserve the independence of the tasks, while still maintaining the priority

inversion lock times acceptable and avoiding inter-cluster migrations.

This means the inheritance protocol is extended to clustered scheduling by introducing

the concept of migratory priority inheritance. This works by keeping preempted, lock-

holding tasks moving among clusters and leaving them in a cluster where a task is

waiting to access the resource. The lock-holding task will then inherit the priority of the

waiting-task and run on the foreign cluster, releasing the lock. Hence the utility of the

FIFO queue present on the left side of the image.

Experimental analysis of RTEMS in a multi-core platform

39

4 RTEMS Build, Configuration and

Installation

The initial project proposition contemplated, as mentioned before, the use of the RTEMS

operating system dressing a multiprocessor platform. For this end, the RealView PBXA-

9 board, based on a ARMv7-A architecture, was chosen as this is a fast platform choice

for multiprocessor software development.

The lack of a physical board where we could implement the solutions never represented

a deterrent for this project, as the number of emulation tools nowadays grows bigger as

time passes. By accepting the suggestions made by our guiding teachers and after some

research the group chose the open-source QEMU as the emulation platform for this

work. This is a very famous emulation software/project that is even used by other

emulation apps like VirtualBox. Furthermore, it offers some interesting features, making

it a fast, robust application and offering support to a large number or architectures.

QEMU was used over 64 bits, Ubuntu 14.04 LTS operating system, this means the host

machine is Linux. The targeted architecture, as stated before, is the ARM-V7 developed

by the company Arm Holdings and licensed to a vast number of companies.

In order to run RTEMS we need to check out the source-code and compile it. To do this

we make use of a tool already touched upon earlier, called RTEMS Source Builder, that

downloads, builds and installs the compiler. Before that though, we needed to make

sure that the source builder dependencies were all present and that every tool that we

will be using later is installed. All configurations and installations were made using a

Linux terminal.

To make way for an easier understanding of the code that will follow and that starts to

be more technical, the directory tree of our project is now presented:

Project Directory Tree

$HOME/dev The base directory used for software

development

$HOME/dev/rtems This project will be developed on the

rtems folder

$HOME/dev/rtems/src The rtems source code will be cloned

here

$HOME/dev/rtems/compiler/5 Where the source builder source code

will be checked out.

Experimental analysis of RTEMS in a multi-core platform

40

$HOME/dev/rtems/realview_pbx_a9_smp Where the configuration for this

specific board will be

Table 3 Project directories

5.1 Environment Setup

We start by installing QEMU, which, being available in the default repositories of

Ubuntu, can be installed with:

$ sudo apt-get install qemu.

After that, it is necessary to make sure the system has a C/C++ compiler installed

$ sudo apt-get install build-essential.

Next, git is used to check-out the RTEMS and source-builder source code from the

respective repositories, so we must guarantee that is installed. Python-dev contains the

header files needed to build Python extensions. And the last command installs the basic

GNU tool set which ??.

$ sudo apt-get install git

$ sudo apt-get install python-dev

$ sudo apt-get build-dep binutils gcc g++ gdb unzip git

Besides this, as a final step it is necessary to consult:

$ software-properties-gtk

This command will open a window on Ubuntu and the Source Code checkbox must be

checked.

At this point, the host machine has all the tools ready to download and install the RTEMS

toolchain. So, from the command line, we move to /dev/rtems and clone the source

builder source code from the repository (this will put the source code on the folder

/dev/rtems/rtems-source-builder):

$ git clone https://github.com/RTEMS/rtems-source-builder.git

Finally, we move to the folder that was just cloned /dev/rtems/rtems-source-builder and

perform one last check, to see if the environment was correctly setup.

$ source-builder/sb-check

This should return the message:

RTEMS Source Builder environment is OK.

https://github.com/RTEMS/rtems-source-builder.git

Experimental analysis of RTEMS in a multi-core platform

41

5.2 Source builder toolchain installation

After the environment is correctly set up and we have the source builder code checked

out, we can proceed to its build and installation.

$. /source-builder/sb-set-builder --log=build-log.txt --

prefix=$HOME/dev/rtems/compiler/5 5/rtems-arm

We remember that we are working with the version 5 of RTEMS. After this step, which

is one of the longest parts of the process, (depending on the computer specs, can take

from 10 up to 30 mins) the toolchain is installed under /dev/rtems/compiler/5 and as a

final step the bin directory created must be added to our path before we can download

and build RTEMS. In linux this is done by editing the .profile file and adding

PATH=$HOME/dev/rtems/compiler/5/bin:$PATH to it. Or it can be done directly from

the terminal, by running:

$ export PATH=$HOME/dev/rtems/compiler/5/bin:$PATH

5.3 RTEMS configuration/installation

Since we now have the toolchain ready it's time to create the directory where the RTEMS

source code will be checked out.

$ mkdir /dev/rtems/src

$ cd src

$ git clone https://github.com/RTEMS/rtems.git

The code will be found on /dev/rtems/src/rtems. The next step is to run the bootstrap

script to produce the automatically generated files by autoconf and automake (load the

operating system).

After the first clone of the RTEMS repository to run the bootstrap script the following

commands are used:

$./bootstrap -p

$./bootstrap

(with the –p option, bootstrap generates preinstall.am files)

O e RTEM“ is ootst apped, it’s ti e to u the o figu e s ipt. This spe ializes de

makefile.in files, created by bootstrap, for a specific development host and target.

https://github.com/RTEMS/rtems.git

Experimental analysis of RTEMS in a multi-core platform

42

We start by creating the configure folder. For reasons related with how RTEMS

configuration script is made, this folder must have the same name as the target board

we are trying to configure, so:

$ mkdir realview_pbx_a9_qemu_smp

$ cd realview_pbx_a9_qemu_smp

The options passed to the configure script will determine which tools will be included

on the installation of RTEMS. We use:

$ $HOME/dev/rtems/src/rtems/configure --target=arm-rtems5 --enable-

rtemsbsp=realview_pbx_a9_qemu_smp --enable-tests=yes --enable-

networking --enable-posix --enable-smp --prefix=$HOME/dev/rtems/bsps/5

The command enables the testsuites framework (--enable-tests=yes), the networking (-

-enable-networking), posix development support (--enable-posix), and the fundamental

smp support (--enable-smp). The prefix attribute is where the operating system for the

configured target board will be installed. This process makes it easier for developers to

work on different target architectures on the same host, as you can easily configure and

install different architectures on different directories.

At this point we have the RTEMS operating system configured to run on the arm

architecture board, the RealView PBX-A9 baseboard. The only thing left is run the

command:

$ make

inside the dev/rtems/realview_pbx_a9_smp directory and next:

$ make install.

This will call the Makefile scripts, compile and install the operating system.

The code present on the RTEMS repository has the testsuites folder which contain the

set of sample applications already implemented and that can be ran once the installation

is complete. At this moment we can use QEMU to run rtems applications by calling:

$ qemu-system-arm -no-reboot -nographic -M realview-pbx-a9 -m 256M -

kernel $HOME/dev/rtems/bsps/5-a/arm-

rtems5/realview_pbx_a9_qemu_smp/lib/rtems-5/tests/ticker.exe -smp 2

And this is our setup for the development of new test-suites and study of the RTEMS

kernel.

(Note: we do not need graphical interfaces to run the samples so that option is disabled.

The target board must also be specified and 256mb is the memory allocated for the

Experimental analysis of RTEMS in a multi-core platform

43

applications. What comes after the flag -kernel is the path of the application that we

wish to run, followed by -smp X in which X is the number of cores we wish to emulate.

Experimental analysis of RTEMS in a multi-core platform

44

Experimental analysis of RTEMS in a multi-core platform

45

6 Circular Buffer

As mentioned before, the team had the idea to develop a feature that would help verify

the correct behaviour of the scheduling mechanisms. It would register all the

preemptions, which allowed us to see if both the samples and the scheduler were

correct, checking with the design of the samples established before its implementation.

After a deep research and study of RTEMS kernel, mainly the scheduling files, we

decided that the appropriated feature would be a circular buffer implemented directly

on RTEMS kernel, with the capacity to store 1000 preemptions, when full, it would store

the new preemption over the first one that was stored and so on. It runs with any SMP

scheduler, the buffer code was developed in the files, cpustats.h and cpustats.c, both of

them stored directly with the other kernel files.

This circular buffer is represented by two structures as it can be seen in figure 13, being

the first one, thread_cpu, the information related to the preemption, storing the ids of

both threads, the moment and in which CPU it occurred. The Cpu_buffer is responsible

to manage the one thousand instances of thread_cpu, its initialization with the flag

e a led, that ill at the egi i g a oid e eptio s, a d a flag all elated late to the
printing.

Figure 13 Circular Buffer structures

The analysis phase of the development of this kernel buffer consisted on, as already

mentioned, the studying of the scheduling mechanism in the kernel, but also a

comprehension of the initialization manager of RTEMS, due to the necessity to initialize

the structure. To ease the development of this buffer we decided to divide it in tree

Experimental analysis of RTEMS in a multi-core platform

46

steps: its creation and initialization, the storing of the preemptions and finally the

printing.

6.1 Creation and Initialization

In the first phase, we studied the RTEMS initialization mechanism, due to the need to

initialize the buffer as soon as possible to register the firsts preemptions, this

initialization would be call by the executive initialization, as it can be seen in figures 14

and 15.

Figure 14 RTEMS executive initialization

Experimental analysis of RTEMS in a multi-core platform

47

Figure 15 RTEMS data structures initialization

First the structure is initialized by the function _Buffer_dispath_initialization, allowing it

to handle the preemptions and the exceptions if the semaphore is still waiting to be

created. The semaphore cannot be created in this moment due to its manager has not

been still initialized. The semaphore is used to synchronize the access to the buffer, this

synchronization is necessary, once that N threads can access it at the same time, being

N corresponded to the number of processors configured. It is created by the call of the

function _Init_Sem_Buffer in a moment where the semaphore manager has already

been initialized.

The figures 16 and 17 illustrates the sequence and class diagram of the

creation/initialization of the new feature.

48

Figure 16 Buffer Initialization Sequence Diagram

49

Figure 17 Buffer Initialization Class/File Diagram

50

6.2 Preemptions

For the second phase, the registration of the preemptions, after a deep research we

decided that our code will be called when the operating system is allocating a processor

to the entering thread, as it can be seen in figure 18.

Figure 18 Thread allocation

The function _Scheduler_Node_get_user() allows to get the Thread_Control, that is, all

the pertinent information of the entering and leaving threads, followed by

_AddEvtThread() that sends the information relative to the threads, time and the CPU

into the developed code to then store the preemption.

Once the information related to the preemption sent to the buffer code, a semaphore

is acquired to guarantee synchronization, the information is stored into the structures

that represents the circular buffer, followed by the release of the semaphore.

51

Figure 19 Add event sequence diagram

52

6.3 Printing

For the final part, the printing, we decided to create a new RTEMS directive,

print_Buffer_CPU_Stats, that would be called by the RTEMS application as it can be seen

in figure 20. The code has been developed in the file printbuffer.c and the header

test_support is used by the RTEMS application to import the buffer printing function.

Figure 20 new directive to access to the buffer results

When the printing of the buffer is called, a semaphore is acquired to avoid other threads

to odif the uffe hile e’ e a edi g it to sho the p ee ptio s, the se apho e
is released at the end of the printing, this sequence and relationship between files and

directories is demonstrated in figures 22 and 23.

Figure 21 shows an example of the buffer, with the ids of both threads, the processor

and the time in ticks since the boot of the operating system.

Figure 21 Buffer result

53

Figure 22 Sequence diagram of the buffer printing

Experimental analysis of RTEMS in a multi-core platform

54

Figure 23 Class/File diagram of the buffer printing

55

7 RTEMS test suites

F o the RTEM“ offi ial do u e tatio Real-time application systems are a special

lass of o pute appli atio s. si e i this ase, the o e t ess of the s ste
depends not only on the results of the computations but also on the time at which they

are made. One that is familiar with the design of software systems must be aware, when

designing such systems, about the possibility of it being overwhelmed with large

numbers of interdependent, asynchronous or cyclical event streams.

The test suites implemented are not bounded by any temporal constraint, unlike the

case study implemented later in section 8, that has much more characteristics of a

safety-critical application system.

7.2 Scheduling

For the scheduling mechanisms, several new test suites were implemented to verify the

correct behaviour of the schedulers. For this verification we developed previously a

diagram of the scheduling according with our expectations, that will dictate the

development of the RTEMS application.

Then, with the use of the new feature that we developed (circular buffer), we compare

the preemptions with our diagram to check if the behaviour occurred has expected.

7.1.1 Smpcistertest01

In this new testsuite we developed a simple RTEMS application to understand, cover and

verify the behaviour of the SIMPLE SMP algorithm, a fixed priority scheduler with only

one chain for the ready tasks. We configured the scheduler to work on a quad-core

platform.

We started by configuring the scheduler, as it can be seen in figure 24, indicating which

scheduler we were going to use, to calculate the per-thread overhead introduced.

Registering the scheduler in the system via the scheduler table and for last assign the

processors to the scheduler.

Experimental analysis of RTEMS in a multi-core platform

56

Figure 24 Simple SMP scheduler configuration

In this sample four tasks were created besides the Init task, that was configured to start

the application. This init task is non-preemptable, so, it was always allocated to a

processor.

Task Priority

TA0 10

TA1 10

TA2 15

TA3 5

Table 4 Tasks priorities

In table 4 , we can see the four tasks created, the first three tasks were created at the

beginning of the application, so they were directly allocated to the processors, later, TA3

task is created and should preempt TA2, that is the task with lower priority. Figure 25 is

the scheduling diagram that represents the expected scheduler behaviour.

Experimental analysis of RTEMS in a multi-core platform

57

Figure 25 Scheduling diagram SMPCISTERTEST01

We also had to develop the code with the attention that during the execution receive

the identifier of the task, to later, when comparing with the result of our new feature,

be able to identify which task is which. It can be seen in table 5 the identifiers attributed

by RTEMS.

Task Id

INIT 167837697

TA0 167837698

TA1 1687837699

TA2 167837700

TA3 167837701

Table 5 Tasks Ids SMPCISTERTEST01

After executed the sample, we received the result of the buffer, figure 26, and we

verified that the scheduler ran has expected, since the first tree tasks are directly

allocated and TA3 preempts TA2, the task with lower priority.

Figure 26 Buffer result SMPCISTERTEST01

Experimental analysis of RTEMS in a multi-core platform

58

7.1.2 Smpcistertest02

With the sample smpcistertest03 we wanted to test the core affinity of the Arbitrary

Processor Affinity Priority SMP scheduler, this scheduler allows the task to run on certain

processors, depending on the processor owned by the scheduler instance. So, to start,

we configured the scheduler to own all processors configured, as it can be seen in figure

27.

Figure 27 Arbitrary Processor Affinity Priority SMP scheduler configuration

To change tasks affinity, it was used the diretive rtems_task_set_affinity, this directive

receives the task id, the size of the cpu_set_t and the variable cpu_set_t, that indicates

with which core there's an affinity. Two functions were used to clear and set bits,

CPU_ZERO was used to clear all the bits of cpu_set_t and CPU_SET to set the desired

bits.

Figure 28 Change task affinity

We divided this sample in two phases, in the first one we played with the Init task,

moving it from processor to processor. Init begins in the fourth processor, we then move

Experimental analysis of RTEMS in a multi-core platform

59

it to the first, second, third and for last to the fourth again consecutively. Meanwhile, in

the second phase we created three tasks with the same priority: TA0, TA1 and TA2.

The first two tasks were created at first, with core affinity to the two first processors,

TA0 with the first processor and TA1 with the second one. At this moment, we should

have our tasks distributed through the processors as shown in table 6.

Task Processor

TA0 CPU 0

TA1 CPU 1

Init CPU 3
Table 6 Tasks allocation

After both tasks were allocated, we created TA2 and set its affinity to CPU 0, CPU1 and

CPU 3. As those tree processors were already occupied by tasks with same and/or higher

priority and we cleared the bit affinity for the only unoccupied processor CPU 2, TA2 was

not able to execute at its starting point. To execute TA2 we had to set its priority to a

higher one, after the priority changed, the task should preempt TA1 and finally run.

Figure 29 Scheduling diagram SMPCISTERTEST03

In figure 30 we can verify that the init task moved from processor to processor, and we

can also check the that TA2 started on tick 31 and do not entered the unoccupied CPU,

Experimental analysis of RTEMS in a multi-core platform

60

it only enters on CPU 1 at time 71, that was when its priority changed and it could

preempt TA1.

At the end we compared the expected behavior, figure 31, with the results from our

buffer and we were able to conclude that the migrations from the init task, the allocation

of TA0 and TA1 in the respective processors and the late preemption of TA1 to TA2

occurred as expected.

Task Id

Init 167837697

TA0 167837698

TA1 167837699

TA2 167837700

Table 7 Tasks ids SMPCISTERTEST03

Figure 30 Buffer result SMPCISTERTEST03

7.1.3 Smpcistertest03

In our fourth sample, we wanted to work with EDF, a dynamic priority scheduler.

Verifying how the scheduler behaves when a background task and a periodic task are

executed in the same processor. We did not have the necessity to configure the

scheduler since EDF is the default scheduler for SMP configurations.

To create and use periodic tasks we had to resort to the rate monotonic manager, we

created the period id using the directive rtems_rate_monotonic_create, the task

periodicity was later attributed with the use of rtems_rate_monotonic_period, this

directive initiates the period id with a length of period ticks, if the period id is running,

then the calling task will block for the remainder of the period before initiating.

In this sample the init task created both tasks with different priorities, to the periodic

TA0 we attributed a priority of 10 and to the background task TA1, 2, and set their

affinity to processor CPU 2, meaning they only could be executed on this processor.

Experimental analysis of RTEMS in a multi-core platform

61

Since the creation and period attribution must be done by the own periodic task, at the

beginning both tasks were saw by the scheduler as two background tasks, and as TA1

had higher priority comparing with TA0, it would enter the CPU and would not free him

again.

So, to avoid it, we decided to synchronize the start of both tasks with the use of RTEMS

events, we only started TA1 when TA0 would have its periodicity active, allowing TA0 to

enter the processor when the periodic task would block waiting for its next period. With

that in mind we created the scheduling diagram, figure 32, that would represent the

expected behaviour.

Figure 31 Scheduling diagram SMPCISTERTEST04

After executing the sample, we studied and compared the buffer results. TA1 would

always preempt the background task when its period id was unblocked, period of 50

ticks, and when blocked, it was preempted by TA1.

Experimental analysis of RTEMS in a multi-core platform

62

Figure 32 Buffer result SMPCISTERTEST04

7.1.4 Smpcistertest04

This sample is extremely similar to smpcistertest03 sample, described in section 7.1.3,

it also tests the dynamic scheduler, but it differs on the proprieties of the tasks. While

smpcistertest04 analysed the behaviour of a background task and periodic one fighting

for one processor, this sample tests the behaviour of two periodic tasks on the same

processor.

Tasks priorities were attributed by the rate monotonic priority assignment policy, I.e.

they were inversely to the period, a shorter period has a higher priority. We created two

different periods, TA0 with a 50 period ticks and TA1 with a period ticks of 30. Our main

aim was to verify the priority assignment behaviour by checking who entered the

processor on critical moment.

The scheduling diagram would also be extremely similar to the one from

smpcistertest04, in figure 34 we can see the buffer results and confirm that TA1

preempts TA0 when its period became active.

Experimental analysis of RTEMS in a multi-core platform

63

Figure 33 Buffer result SMPCISTERTEST05

Experimental analysis of RTEMS in a multi-core platform

64

7.1.5 Smpcistertest05

In this sample we only tested the clustered scheduling configuration, defining a

processor to each SMP scheduler. We only executed the init task with nop instructions

to check if a configuration error occurred.

Figure 34 Clustered scheduling configuration

Experimental analysis of RTEMS in a multi-core platform

65

7.2 Communication and Synchronization

The set of test suites present in the repository already contemplated some

synchronization and communication mechanisms. The subsection 7.2.1 presents the

names and a brief description of what the applications aim to test.

Images 36, 37 and 38 present the structure followed to develop the synchronization

test-suites (identical structure to the scheduling samples).

Figure 35 Example of Init task

Experimental analysis of RTEMS in a multi-core platform

66

Figure 36 Example of Init task - 2

Experimental analysis of RTEMS in a multi-core platform

67

Figure 37 Example of RTEMS tasks

The I it task, hi h a ts as a ai fu tion starts all other tasks that will interact in

the system.

We can have the code related with the different tasks on different .c files but to follow

the practises of the official samples on the RTEMS repository each of the scheduler and

synchronization samples where created on the same file (the Init function and task

routines are written on the same file). The system.h is the header file where the

configurations are stored.

Experimental analysis of RTEMS in a multi-core platform

68

Figure 38 Example of a configuration file

(Note: The file is not fully printed due to the lack of necessity in occupying more space

already. The point, as referred earlier, was to give a broad idea on the structure of this

test-suites)

Experimental analysis of RTEMS in a multi-core platform

69

SMP test suites already Implemented

These samples can be found on the official RTEMS github page. Our team had nothing

to do with the development of such. Since they already test some synchronization

mechanisms, it was important to make reference to them.

Semaphores

test name: smppsxmutex01

directives tested: pthread_mutex_lock()

objectives:

• Ensure that priority ceiling mutexes work only in their dedicated scheduler

instance.

test name: smpmutex01

directives tested:

• Thread_queue_Priority_do_enqueue()

• Thread_queue_Priority_do_extract()

• Thread_queue_Priority_first()

objectives:

• Ensure that the thread queue priority discipline enforces FIFO fairness among

the highest priority thread of each scheduler instance.

Locking protocols: MrsP

test name: smpmrsp01

directives tested:

• _MRSP_Initialize()

• _MRSP_Obtain()

• _MRSP_Timeout()

• _MRSP_Release()

• _MRSP_Get_ceiling_priority()

• _MRSP_Set_ceiling_priority()

objectives:

• Ensure that rtems_semaphore_flush() returns an error status for MrsP

semaphores.

• Ensure that rtems_semaphore_create() for an initially locked semaphore

returns an error status for MrsP semaphores.

Experimental analysis of RTEMS in a multi-core platform

70

• Ensure that a nested obtain rtems_semaphore_obtain() returns an error status

for MrsP semaphores.

• Ensure that a rtems_semaphore_obtain() leading to a deadlock returns an error

status for MrsP semaphores.

• Ensure that it is possible to obtain multiple MrsP semaphores.

• Ensure that a timeout on MrsP semaphores works.

• Ensure that heavy usage of multiple MrsP semaphores works.

test name: smpmutex02

directives tested: rtems_semaphore_obtain()

 rtems_semaphore_release()

objectives:

• Ensure that arbitrary mutex obtain sequences carried out by multiple threads

on multiple processors work.

Barriers: No tests implemented

Message Queues

test name: smpipi01

directives tested: _SMP_Send_message()

objectives:

• Ensure that SMP message delivery works in the context of an SMP message

handler.

• Ensure that a flood of inter-processor interrupts works as expected.

Events: No tests implemented

Signals

test name: smpsignal01

directives tested: rtems_signal_catch()

rtems_signal_send()

objectives:

• Ensure that signal handlers are called with interrupts enabled.

• Ensure that Classic Signals work on SMP.

We can see above that, smpmutex02 already tests, in multiple processors, the directive

used to obtain and release semaphores. And barriers and events have no sample

application implemented so this must be adressed. Focusing on the locking protocols,

all the directives that are implemented on the kernel for MrsP are tested in smpmrsp01.

Connected with the locking protocols is the helping hand protocol, that was discussed

on section 4, and involves the helping mechanism implemented to deal with priority

inversion. Since there was no sample regarding the latter, we created it.

Experimental analysis of RTEMS in a multi-core platform

71

After gathering the information about the directives that were already tested, what

those that were not, we started the design of our own.

7.2 SMP test-suites to Implement

The following subsections presents the details of the test-suites implemented to target

the synchronization and communication mechanisms of RTEMS.

These tests focus mainly on the Semaphore Manager, Barrier Manager and Message

Manager.

7.2.1 Semaphores (with MrsP and OMiP protocol)

test name: smptestdev01

directives tested: -

objectives:

• Ensure that the task in ownership of the mutex migrates to another scheduler

instance in case it is preempted. (helping protocol)

The purpose of this sample was to test the helping mechanism the locking protocols

provide when a task that currently owns a mutex is preempted (discussed on section 4.).

This simulates an environment where the system has tasks running, or ready to run that

can preempt the locked-holding task.

The application was developed by configuring two instances of the

Dete i isti P io it “MP “ hedule . luste ed s heduli g. We’ll all the SCHED_A

and SCHED_B. SCHED_A is responsible for scheduling tasks on CPU 1 and 2, and SCHED_B

on CPU 2 and 3.

• On SCHED_A we have the Task Init, Task 1 (T1) and Task 2 (T2) scheduled.

(Preemption is disabled for the Init task.)

•

• On SCHED_B we have Task 3 (T3) that has the highest priority of all the tasks in

the system and will be contending to obtain the mutex.

Task Priority

 Priority Ceiling - 9

Init 5

Task 3 10

Task 2 8

Experimental analysis of RTEMS in a multi-core platform

72

Task 1 20

Table 8 Tasks Priorities SMPTESTDEV01

Table 8 gives a visual representation on how the tasks are running on CPU 1 and 3.

T3 arrives at the processor when T1 is already running the critical section of the code,

so T3 will have to wait.

At time B, T1 is preempted by T2, which is not a contendant to obtain the semaphore

and has a higher priority than the priority ceiling. At this point, T3 gives the possibility of

the job of T1 to be ran on the CPU 3, where T3 is on, on another scheduler instance.

At instance C, T1 finished running the critical section, and so T3 can start its execution,

which otherwise would only begin sometime later.

T2 finishes on instant D, where T1 returns to the processor. At this moment, T1 starts its

execution right after the critical section.

The configuration information on system.h is visible on the following images.

Figure 39 configuration file (1)

The names of the different schedulers are defined here (image 40). In this case we will

configure two.

Experimental analysis of RTEMS in a multi-core platform

73

Figure 40 configuration file (2)

Everything on RTEMS must be defined. On this case we used an MRSP semaphore first

so we must declare how many we will use (red arrow on figure 40). Also note the

priorities defined, as mentioned before.

Experimental analysis of RTEMS in a multi-core platform

74

Figure 41 configuration file (3)

The scheduler assignments are made on the following manner (as seen on figure 42).

The numbers 0 and 1 correspond to the entrances on the table designated

RTEMS_SCHEDULER_TABLE_PRIORITY_SMP. And each entrance on the table named

CONFIGURE_SCHEDULER_ASSIGNMENTS correspond to one processor in the system.

Since we have 4 processors we will have 4 lines on the table. (typical example of

clustered scheduling configuration).

The challenge here was to make the tasks enter at the right times to simulate a problem

like the one described. Task3 must be scheduled to enter right after Task1 obtained the

semaphore.

Experimental analysis of RTEMS in a multi-core platform

75

Figure 42 TASK1 - code

So, while Task1 is running the for loop seen on figure 43, Init will start Task3 and Task2.

Task3 will start by calling rtems_semaphore_obtain() directive to start its execution on

the critical section and will have to wait. Task2 will preempt Task1, sending it to another

scheduler instance (thanks to the helping protocol).

The output supports this expected behavior.

To test the OMiP protocol the only changes made to this sample test are present on the

rtems_semaphore_create() directive.

Figure 43 Creating of an MrsP semaphore

Experimental analysis of RTEMS in a multi-core platform

76

Instead of using the attribute set:

RTEMS_BINARY_SEMPAHORE | RTEMS_MULTIPROCESSOR_RESOURCE_SHARING

we used:

RTEMS_BINARY_SEMPAHORE | RTEMS_INHERIT PRIORITY

The OMiP protocol is not at all addressed on the semaphore manager of the RTEMS

documentation. Also, on the entire documentation there is not one example of this

protocol in use even though it is clear it is implemented. The way RTEMS makes available

the two different protocols and even the table of available attribute sets that is present

on the semaphore manager web-page are quite misleading, he e’s h :

Locking protocol Flag

Priority Ceiling (uniprocessor) RTEMS_PRIORITY_CEILING

Priority Inheritance (uniprocessor) RTEMS_INHERIT_PRIORITY

MrsP (multiprocessing) RTEMS_MULTIPROCESSOR_RESOURCE_SHARING

OMiP (multiprocessing) RTEMS_INHERIT_PRIORITY
Table 9 Locking Protocols

So, the RTEMS user is left to guess that the same flag used for uniprocessor

configurations is re-used on the multiprocessor ones. This problem was brought up on

an e-mail sent to the RTEMS users mailing lists and Sebastian Huber from embedded

brains acknowledged the documentations should be made clearer.

7.2.2 Barriers

test name: smptestdev02

directives tested:

• rtems_barrier_create()

• rtems_barrier_wait()

objectives:

• Ensure that classic barrier configuration works properly on SMP.

design/Implementation:

This small sample represents a classic RTEMS configuration of a barrier that

automatically opens when a certain number of tasks are blocked at it. We designed a

simple application with 3 tasks that will call rtems_barrier_wait() directive to wait at the

barrier.

Figure 44 Semaphores header file

The configuration settings on the header file must specify the maximum number of

barriers used (1). There are 2 semaphores declared, one is used for the

Experimental analysis of RTEMS in a multi-core platform

77

locked_print_f() function, in order to synchronize the console writing between tasks,

and the other is the barrier.

Figure 45 Barrier creation

It is on the Init task that the barrier is created, right before the creation of the other

tasks, that will wait at it. RTEMS directive rtems_barrier_wait() receives the

configuration parameters. In this case, we will have a barrier that opens automatically

when the third task arrives.

The Barrier Manager section of the RTEMS official documentation provides a good

description on the configuration details of said mechanism.

Figure 46 Task 1 code

Experimental analysis of RTEMS in a multi-core platform

78

The three tasks have roughly the same code. The function PrintTaskInfo(const char

*task_name) prints the information on the console. Each task prints the ID before calling

rtems_barrier_wait(), and after being released.

Figure 47 Barrier sample - output

It is visible on the output on image 48, each task printing they have arrived at the barrier,

and only after the three printed, they all finalize. It is important to note the barrier

implementation on RTEMS offers only a FIFO blocking order on the waiting queue. This

is because the tasks are released as a set, and it is expected for them to compete for the

processors based upon their priority levels.

7.2.3 Message Queues

test name: smptestdev03

directives tested:

• rtems_message_queue_create()

• rtems_message_queue_receive()

• rtems_message_queue_send()

objectives:

• Ensure message queue synchronization mechanisms work correctly on an SMP

configuration. (FIFO and priority ordering)

design/Implementation:

The configuration part of this sample contemplates the definition of how many message

queues the application will require and the size of those queues.

Figure 48 Message queues configuration

Experimental analysis of RTEMS in a multi-core platform

79

The macros seen on figure 49 configure two message queues (one with FIFO ordering,

other with priority order) that can hold 50 messages each.

The size of one message is equal to the size of the Task_message variable, which is a

structure that holds a char array of size 40. This means the application will require 2 *

50 * 40 = 4000 bytes of memory to be allocated for this message queue configuration.

The message queues are identified by their ids, that are returned when Init calls the

rtems_message_queue_create() directive.

Figure 49 Message queue creation

There are 4 intervening tasks. (counting with Init) Task3 is the speake . Task a d
Task a e liste e s . This ea s Task ill e the o l o e iti g o the essage
queues. Task1 is the higher priority task between the two:

• Priority of Task1: 10

• Priority of Task2: 20

We create two message queues. On MSG_QUEUE_1 tasks wait on a first-in-first-out

manner. On MSG_QUEUE_2, The first task serviced is the higher priority one, among the

tasks waiting.

Task3 will be sending messages where Task1 and 2 are waiting to proceed.

Experimental analysis of RTEMS in a multi-core platform

80

Figure 50 Task1 - Message Queue

When the directive rtems_message_queue_receive() is called, we specify the behavior

of the task when waiting for a message. This is visible on figure 40. Since we defined

RTEMS_WAIT and RTEMS_NO_TIMEOUT the tasks will wait forever on a message to

arrive on the message queue specified by ctx->msq1_id (a structure where the variable

ID’s a e sto ed .

Task1 and 2 have approximately the same code. They execute with the same behavior.

First wait for a message on MSG_QUEUE_2 (priority-based waiting), print the message

received and then wait on MSG_QUEUE_1.

Task3 must send 2 messages for each message queue as each message will unblock each

of the tasks waiting.

Experimental analysis of RTEMS in a multi-core platform

81

Since Task1 has a higher priority than Task2, it will unblock first, reaching the second call

of rtems_message_queue_receive() first too. So, at end we will see that Task1 always

prints the messages first (as it should).

Figure 51 MSQ sample - output

7.2.4 Events

test name: smptestdev04

directives tested:

• rtems_event_send()

• rtems_event_receive()

objectives:

• Ensure that classic events work properly on an SMP configuration

• Ensure that RTEMS_EVENT_ALL works.

design/Implementation:

In SMP events can be pretty much kept without a complete re-design of its

implementation, and they are developed to be used as simple synchronization

mechanisms.

In RTEMS tasks can wait on more than one event simultaneously and event flags are

used to manage event sets. The set of valid events goes from the macro

RTEMS_EVENT_0 to RTEMS_EVENT_31.

On this sample, we have 3 tasks that will be using events, the following design was

implemented:

• Task 3 will be sending events to Task 1 and 2.

• Task 1 is waiting on events 6 and 7.

• Task 2 is waiting on event 7.

In order to build the event set, on Task 3 we call the directive rtems_event_send() and

pass the configurations by parameter.

Experimental analysis of RTEMS in a multi-core platform

82

Figure 52 Event sending

Task 3, before waking Task 2 which is waiting to receive EVENT_7, sends an event to

Task 1, only with the flag RTEMS_EVENT_6. This is expected not to wake Task 1, as the

latter is waiting on both event 6 AND 7. The first parameter on rtems_event_send() is

the task ID to which the event is meant to be sent.

Figure 53 Event receive

The image 54 is the directive Task 1 calls, rtems_event_receive(), in order to wait for the

specified events. We can choose if the task waits or not for the events by specifying

RTEMS_WAIT or RTEMS_NO_WAIT. We also decide if we want to wait for any one of the

events or if both are required. We require both to proceed by using the

RTEMS_EVENT_ALL flag. Last, the task will wait forever since we defined the macro

RTEMS_NO_TIMEOUT on the parameter used to specify the time Task 1 will be waiting

for the events.

Experimental analysis of RTEMS in a multi-core platform

83

Figure 54 Event receive

Task 2 will have pretty much the same configuration, as it is visible on image 55. The

only difference being the event this task is waiting for.

Figure 55 Events sample - output

Experimental analysis of RTEMS in a multi-core platform

84

Experimental analysis of RTEMS in a multi-core platform

85

8 Mine Control Case Study

At the end, we wanted to develop a real-time system on a dual-core SMP configuration

to evaluate our knowledge, test the behaviour and analyse the performance of RTEMS

with a complex system, and as there are not many available case studies that explore

the capabilities of SMPs, it was proposed to adapt the academic case study, Mine

Control. It is concerned with the development of an embedded system software that

controls and monitors a simplified pump system for a mining environment with several

safety requirements.

8.1 Analysis

The first aspect was to understand the point and all the specific requirements of this

case study. The system controls the water level in a sump, if the water reaches a certain

level, a sensor will inform the system and if the safety requirements allow, it enables the

pump motor to pump water out of the sump.

 A device will also verify if the water is flowing, allowing to check if the pump is correctly

working. The motor can be stopped in two situations, if the water drops to a certain

limit, or when a failure exists within the safety requirements.

Since it is not safe to cut coal or operate the pump with certain levels of methane and

carbon monoxide in the air, safety requirements must be guaranteed. They are achieved

by the environment monitoring that is responsible for detecting the level of methane,

carbon monoxide in the air and the air flow. the values are gathered from readings of

external sensors.

In case of a reading from the methane level that exceeds a critical threshold, the pump

must be disabled to avoid explosions, to this pump shutdown, a deadline must be

respected. It is described by the relationship of the methane period T, the rate at which

methane can accumulate R, the safety margin between the level of methane regarded

as critical M and the level at which it explodes D, being expressed by the following

inequality: R � + < M

Experimental analysis of RTEMS in a multi-core platform

86

So, until now, five external devices were identified, three of them to air monitoring table

10, and the other two to the water control table 11.

Table 10 Air Monitoring Devices

Device

Methane Sensor

Carbon Monoxide Sensor

Air-Flow Sensor

Table 11 Water Control devices

The devices have a legislated period to cap the information from the outside world, so,

all of them have a defined periodicity, worst case execution time (WCET), priority and a

constrained deadline. As the methane was the most critical reading, it logically has the

shortest period and deadline, while the High-Low Water has the longest period and

deadline.

The priorities are assigned with a deadline-monotonic priority assignment policy, that

is, the priorities are assigned inversely to the deadline, tasks with shortest deadline have

a higher priority. The information is showed in table 12.

Device Period Deadline Priority WCET

Methane Sensor 80 35 10 12

Carbon

Monoxide

Sensor

100

60

12

10

Air-Flow Sensor 100 100 13 10

High-Low Water

Sensor

6000 200 14 40

Water-Flow

Sensor

1000 40 11 20

Table 12 Periodic tasks Information

8.1.1 Schedulability

As mentioned before, there are still several problems with the use of locking protocols

with dynamics priority scheduling algorithms, so we had to discard the use of EDF to

develop the case study. We chose Deterministic Priority scheduler, a fixed priority

preemptive scheduler.

Device

High-Low Water Sensor

Water-Flow Sensor

Experimental analysis of RTEMS in a multi-core platform

87

Before going forward with the development of the case study, we had to verify if the

system was schedulable, that is, if all tasks were able to run without the failure of any

deadline. So, for this test we used the famous sufficient, but overly pessimistic, RTA-

Based schedulability test for Multiprocessor systems scheduled with fixed priority [].

Being sufficient means if the test passes, the task set is schedulable. Otherwise it would

be necessary to find another schedulability test less pessimistic.

Rkmax  ←  ∁k +   m ∑ ����Τ ∁ + ∁� ∈ℎ�

Whit this equation, a task set � scheduled with a fixed priority. A bound on the maximum

response time ���� of a task � ∈ � is derived by the fixed point reached, by iteratively

repeating the equation ,where ℎ� � is the set of tasks with priority higher then � ′�,

with initial value of ���� = ∁ , being ∁ = � . The system is schedulable if the

condition ���� ≤ is met for every � ∈ �.

The m on the formula stands for the number of processors in the system (in this case,

2). On iteration n+1, for each task, the Rk
max value inside the brackets is replaced by the

Rk
max calculated on iteration n. The Cj stands for the WCET of the tasks ∈ ℎ� � .

According to this test, since we are working on a dual-core system the first two tasks

with the higher priority (CH4 sensor, water-flow sensor) will not have their execution

interfered by other tasks, so their maximum response time is there actual worst-case

execution time. � ��� = � ��� =
On following iterations, when trying to calculate the response time of a task we will have

in consideration all the higher priority tasks existing (since they can interfere with the

execution of lower priority ones). We reach a result on each iteration (max. response

time for the task) when the results from the two last iterations converge OR if the

response time calculated exceeds the deadline of the task. In the last case the

schedulability of our task set would not be possible to prove. (It would be needed

another less pessimistic test). Following this analysis, we go on to CO sensor task:

� = + [(⌈8 ⌉ ∗ +) + (⌈ ⌉ ∗ +)] =

� = + [(⌈8 ⌉ ∗ +) + (⌈ ⌉ ∗ +)] =

Experimental analysis of RTEMS in a multi-core platform

88

On the second iteration we can see the result is the same as that on first iteration. And

since this value is below the task deadline we go on to test the next task.

� = + [(⌈8 ⌉ ∗ +) + (⌈ ⌉ ∗ +) + (⌈ ⌉ ∗ +)] =

� = + [(⌈8 ⌉ ∗ +) + (⌈ ⌉ ∗ +) + (⌈ ⌉ ∗ +)] =

The above calculations made for the response time of Air-flow sensor task converge

again, this time on value 42. Since 42 is less than 100 (deadline) it’s still possible to

schedule our task set until this point.

� = + [(⌈8 ⌉ ∗ +) + (⌈ ⌉ ∗ +) + (⌈ ⌉ ∗ +)+ (⌈ ⌉ ∗ +)] = 8

� = + [(⌈88 ⌉ ∗ +) + (⌈ 8 ⌉ ∗ +) + (⌈ 8 ⌉ ∗ +)+ (⌈ 8 ⌉ ∗ +)] = 8

On the last task to be evaluated, High-low water sensor, its visible that the values still

converge, and the calculated result also lies below the constrained deadline (200) so,

we can now guarantee the schedulability of our task set, with the properties defined

above, on a dual-core environment.

Experimental analysis of RTEMS in a multi-core platform

89

8.2 Design

The design process of a real-time application is a complex task, that is further

complicated by the spreading of this activity to a set of processors, instead of just one.

When making the adaptation decisions for designing this use case we had in attention

the use of standard RTEMS software components, as this significantly reduces the time

required to develop real-time applications.

In this case the whole system of sensors and actuators is meant to be implemented on

a single RTEMS application. This is possible by creating RTEMS tasks that simulate the

readings of the sensors. The team was faced with several adaptation problems due to

our execution environment, this includes the programming language used, (Because of

the limitations C impose i.e., lack of interfaces, the operating system and the hardware.

On top of that, the RTEMS real-time multitasking executive allows an application to be

cast into a set of logical, autonomous processes/tasks which become easily manageable,

on the design and implementation steps. For these reasons, the HRT-HOOD design

method does not fit quite right. Yet, the approach of our design method is fundamentally

based on it.

Initially this adaptation was proposed to be implemented on an actual physical, dual-

core board, this plan however never came to be. So, we were left with using the, now

familiar, QEMU to simulate our board (note: the decision was to keep two cores).

After the requirements gathered during the analysis phase, we already knew the

existence of five RTEMS tasks, that represented the simulation of external devices. So,

the next step was to think on all the other tasks, and how we were going to represent

the pump and methane monitoring and the relationship between them.

We came up with the following interaction between all the entities of our system, figure

57, the pump and the CH4 status on the environment represent the critical objects of

our system, requiring a careful synchronization when accessing it.

90

Figure 56 Interaction between the different entities of the case study

91

All the tasks referred as sensors send information to the operator console when

dangerous values are simulated. This task will later print that information into the

terminal.

The decision was to make the high-low water sensor also responsible for simulating the

water level readings, as creating dedi ated pe iodi si ulatio task fo the ate
would change our schedulability analysis (and making our application unschedulable on

the targeted machine).

The tasks CH se so a d High-lo ate se so ill ha e the espo si ilit of
turning the pump on or off, accordingly. The first idea was to use the RTEMS software

signals (ASR) and handlers to manage the pump. This solution however proved to be

non-feasible for our real-time constraints, as RTEMS signals are implemented in a way

that the task will only handle the signal sent when entering a processor, which would

ost likel ause the failu e of the shutdo pu p deadli e.

So, the only solution found without losing any real-time capabilities and overloading the

hardware was the use of structures that held the pump and methane state.The High-

low water task will make changes to the pump state: ON or OFF, if the safety

requirements are met.

92

Figure 57 State diagram – high-low water task turning the pump ON

93

The check for safety is made to our protected object, CH4status. To turn the pump off,

the task only needs to check the pump state on the protected object (as turning the

pump off represents no danger, this action does not require previous validations).

Figure 58 State diagram – high-low water task turning the pump OFF

The changes CH4 sensor task makes to the objects state are a little more complex than

the previous presented.

94

Figure 59 State diagram - CH4 sensor changing pump and ch4 status

95

This sensor will manage the CH4 state: SAFE or NOT SAFE and can also turn the pump

OFF. If the pump is working while a new ch4 level reading above the critical threshold

enters de system this task will change the pump state to OFF and the CH4 state to NOT

SAFE. For performance reasons, the ch4 state is checked first at points 2 and 3 on the

image, before making the changes.

8.3 Deployment

When starting the implementation, we first developed the system configuration.

Selecting the scheduler, Deterministic Priority SMP, to then allocate it to the available

processors, we also had to configure the floating-point unit and extra stack size needed,

as it can be seen in figure 60

Figure 60 System configuration

We continued our case study, whit the implementation of the header files and

structures that would represent the protected objects, pump and environment

(ch4status). Those objects were mainly used to store several states and the tick period

on which occurred the last state change.

Experimental analysis of RTEMS in a multi-core platform

96

Figure 61 Protected objects

As in the others RTEMS application, the init task was configured to be the first one to be

executed in our system, she had the responsibility to create other tasks and to setup the

environment. The fundamental parts of the environment setup were:

• Creation of semaphores with MrsP protocol -> those semaphores are crucial to

synchronize the access to the protected objects, one to access the pump and

other to control the ch4status.

Figure 62 MrsP semaphore

• Data structures initialization -> initialization of the protected objects and other

structures who are responsible to store other readings.

Figure 63 Funtion pointer to initialize data structures

• Creation of a barrier -> to synchronize the periodicity creation for the simulated

external devices tasks.

• Creation of a message queue -> used to send alarms when required.

Experimental analysis of RTEMS in a multi-core platform

97

When creating the tasks that would represent the external devices, we had to be careful

with the task's attributes, since some had to use the floating-point unit to have decimal

values.

Figure 64 Task Creation

Figure 65 Task creation

When we started to implement the periodic tasks with the help of the rate monotonic

manager, we were confronted with a deadline issue since RTEMS does not offers the

possibility to apply constrained deadline, it only accepts implicit deadlines (relative

deadline = period). So, we had to find a way to turn around this problem. A solution

found was the use of timers, at the beginning of the periodic code, a timer was set to

fire when reached the tick moment correspondent to the absolute deadline. if reached,

a specific routine was invoked, and sent an alarm through the message queue informing

the deadline failure, figure 67. If the periodic code ends without reaching the deadline,

the timer is cancelled to be reinitialize in the next job, figure 66.

Figure 66 Timer

Figure 67 Timer service routine

All the tasks communicated with the operator, sending alarms of dangerous readings

and deadline failures through a message queue. We used a message queue since it

Experimental analysis of RTEMS in a multi-core platform

98

already offers synchronization and in case of deadline failure we could send the alarm

as urgent, it would go directly to the front of the queue to then be handled.

 On the next chapters all tasks will be further explain.

8.3.1 CH4

The methane task starts by simulating a new ch4 value, according with the probability,

followed by a call to the environment where it alters the ch4status.

Figure 68 Methane simulation

After simulating, the ch4 task verifies if the new value was safe or not, a value between

5% and 15% of methane in the air was considered not safe. If the new reading was not

safe, it informs the operator through the function alarm that uses a message queue, in

this case it also has the responsibility to shut down the pump to avoid an explosion going

directly to the pump through the function turn_pump_off(). The sequence described can

be seen in figure 69.

99

Figure 69 CH4 Sequence diagram

100

8.3.2 CO and Air flow

The carbon monoxide task was easier to develop compared with the methane task, since

this one does not have any relationship with the pump, it only simulates the new co

value, storing it the environment, and in case of dangerous reading it sends an alarm to

the operator.

Meanwhile, the job of the air flow was extremely similar to the monoxide carbon task,

it only simulates the new value and if it was considered dangerous it sends it to the

operator, this sequence can be verified in figure 71.

101

Figure 70 CO sequence diagram

102

Figure 71 Air flow sequence diagram

103

8.3.3 Water Flow

This task was responsible to verify if there occurred any unexpected behaviour with the

water flow, we done it by simulating a value within a probability, and if the pump was

on, it means that the water was not flowing but should be, and the opposite if the pump

was off. This sequence is represented in figure

Figure 72 Water flow sequence diagram

Experimental analysis of RTEMS in a multi-core platform

104

8.3.4 HighLow Water

This external device had the burden to simulate the water and then verify if its level was

above or under a certain level. To simulate the water, as it can be seen in figure 73, we

first started by checking if we had a uniform period, that is, if there was a change in state

of the pump in the last period. If no change occurred, we could simply increment or

reduce the water level according with the defined rates. If a changed happened, we had

to calculate the amount of water retrieved when the pump was on and the amount

gained when the pump state was off.

105

Figure 73 Water simulation

106

After simulating a new value, this task had to check if the water reached certain levels.

If the level was above a maximum value, it had to verify through the function is_safe() if

the methane was not considered dangerous, if not, the pump could be turned on. And

if the level was under the minimum value, the highlowwater task turned the pump off

with the function turn_pump_off(). The sequence diagram in figure 74 describes the

connection of this task with the pump and the environment.

107

Figure 74 HighLow Water Sequence diagram

108

8.4 Results

For this section, we initially started by only printing the preemptions to verify if no

period failures occurred, that is, if all the periodic tasks entered the processor when they

should according with the defined periodicity. But first, we configured the circular buffer

to only store the preemptions related to the task we indicated, this eased our job of

verifying if the tasks had the correct periodicity behaviour.

In the figure 75, we can verify that there was no period failure with the methane task,

known by the system as thread 167837698, it enters a CPU each 80 ticks. In figures 76

and 77 is presented the preemptions of the threads 1678376989 and 167837700, they

represents the monoxide carbon and air flow tasks respectively, both do not present any

period failure as they enter the processor each 100 ticks.

.

Figure 75 CH4 buffer result

Experimental analysis of RTEMS in a multi-core platform

109

Figure 76 CO buffer result

Experimental analysis of RTEMS in a multi-core platform

110

Figure 77 Air flow buffer result

And for last, the water flow, 167837701, and the highlow water, 167837702, behaved

as expected, since both of them do not presented any periodic failure, the water flow

entered a processor every 1000 ticks, figure 78, and the highlow water task entered each

6000 ticks, figure 79.

Experimental analysis of RTEMS in a multi-core platform

111

Figure 78 Water buffer result

Figure 79 HighLow water buffer result

Despite the scheduling test affirmed that no deadline failure was expected to occur, we

decided anyway to test if any deadline failure could occur within our system, so, we

removed the output related to the dangerous readings to isolate the deadline alarms.

And as it can be seen in figure 80, no alarm related to the deadline failure was received

by the operator.

Experimental analysis of RTEMS in a multi-core platform

112

Figure 80 Mine Control Deadline alarms

To also test the behaviour of the system, we decided to introduce a deadline failure in

one task and verify what could be the sequels. So, for that, we provoked an error in the

water flow task. In figure 81 are presented the results, and we can see the alarms sent

to the operator, as we introduced a short failure it had no implication on the execution

of the other tasks.

Figure 81 Water Flor Deadline Alarm

On the appendixes section 11, it’s possible to check the output that result from the

execution of our application. We looked to increase the number of alarms raised due to

the levels of methane, as this is the more critical value to have in consideration. It is

visible that no alarm is raised due to the missing of deadlines.

There is a i po ta t disti tio to e ade et ee the o e t a d the a tual
ti e olu s. The o e t efe s to the ti e at hi h the alarm was sent. The actual

time refers to the time in which the operator received the alarm. Note that the

maximum deviation that ever occurs between the two values is in the magnitude of 1

tick, which means there is almost no delay between the raise of the alarm and the reach

of this to the console.

Experimental analysis of RTEMS in a multi-core platform

113

If this system were to communicate via a network interface to the ope ato ’s terminal,

this would most likely have a much larger delay.

Experimental analysis of RTEMS in a multi-core platform

114

Experimental analysis of RTEMS in a multi-core platform

115

9. Conclusions

The current day situation regarding symmetric multiprocessor environments is starting

to look promising. Only now, solutions that allow us to efficiently, and correctly harness

the larger processing power of multiprocessors are arriving to the embedded systems

world.

This project aims of exploring the area of study by allowing us to test the RTEMS

mechanisms in SMP proved to be a real challenge for a team that was just finishing the

current computer engineering degree. The test-suites idea served to make sure the

directives offered by RTEMS worked as intended. Since the SMP platform already brings

enough challenge as it currently is, it is of extreme importance to make sure the

functions of the RTOS do not show unpredictable behaviours.

The i ula uffe deplo e t does ’t i g u h o e head to the s ste , e e
though it is the e, it’s uite negligible. In a simple manner, the project can be split in 3

main objectives that are tightly related: The test-suites, the circular buffer and the use

case development. The test-suites and buffer development really helped us get an

understanding on what a RTOS should support, and what are its main concerns. Mainly

because this required quite a long investigation though the RTEMS docs. The final step

that contemplated the mine drainage case study, put us in contact with the

schedulability analysis of a system and the much more task and time constrained

environments this kind of programming takes.

9.1 Accomplished Objectives

In the end, the main objectives touched on section 2 were accomplished.

First, the test-suites original proposed. All the schedulers implemented on RTEMs were

targeted during the development of these samples. The synchronization mechanisms

that were missing samples (Events, Message Queues) were tested, as well as the MrsP

(helping protocol), OMIP and the barrier directives. The value of the samples developed

lies on the possible use they can bring to support future RTEMS applications. The header

files of each test-suite can be consulted when dealing with the same or similar

configurations.

The work related with the buffer deployment on the RTEMS kernel incentivised our

research on the innerworkings of the RTOS and brought a better understanding of its

behaviour. The changes we came up with allows to get access to the thread preemptions

happening on the processors at runtime, specifically where and when they happen. This

feature is only available for SMP configurations.

Experimental analysis of RTEMS in a multi-core platform

116

The development of the mine drainage use case represented an important objective

achieved by the group. The solution implemented resulted on a small RTEMS application

for SMP systems with real-time capabilities.

In the end, the application is capable of simulating readings from water and air sensors

and then managing the state of the pump motor, turning it on or off. This management

to the motor is made according to the water level and CH4 read. Despite the late arrival

of SMP systems to the real-time world, this work looked to contribute to this field by

researching the topic and going for a new adaption of an old case study. The

schedulability analysis allow us to prove the system is schedulable, and this can be

attested empirically on subsection 8.4 where it is visible that no task misses its imposed

deadline.

9.2 Limitations and Future Work

One interesting extension of this work related with the use case that immediately pops

out is using real sensors communicating with the application to obtain the readings. This

would result on a much more cohesive application and would leave us with more

schedulability options to try out different designs.

Another interesting suggestion would be testing the performance of our solution so

than, it would be possible to compare it against the original [22]. This would mean

e o e the hole se so si ulatio too efo eha d of ou se, othe ise the esults
would be meaningless. It would be possible to gather some interesting information

about the operating system.

Regarding the sample tests, we would like to see them uploaded along with the rest of

the samples present on the RTEMS official github page. From there, they would reach a

much larger number of people and who knows could serve some purpose to anyone

interested.

Even though the overall positive balance made, every academic work is bounded by

some limitations. The fact that we had no chance to implement and test the case study

on a physical board was a missed opportunity.

The limitations on our knowledge of embedded systems proved to make the writing of

this report quite a challenging one. But one of the main purposes of this project was also

to familiarize us with this field of study, and that was an accomplished goal. The

approach taken to solve several design issues regarding the case study we think reflect

this exactly and we end feeling like the main goals were attained.

Experimental analysis of RTEMS in a multi-core platform

117

10. Bibliography

[1] Real-Time Systems. (2018, May). Retrieved from

https://www.cse.unsw.edu.au/~cs9242/08/lectures/09-realtimex2.pdf

[2] Difference Between RTOS and OS. (2018, June). Retrieved from

http://www.differencebetween.net/technology/difference-between-rtos-and-os/

[3] Multiprocessors. (2018. May). Retrieved from

https://www.cs.vu.nl/~ast/books/mos2/sample-8.pdf

[4] IEEE Xplore. (2018, June 3). Retrieved from

https://ieeexplore.ieee.org/document/5347560/

[5] CISTER. (2018. May). Retrieved from

http://www.cister.isep.ipp.pt/

[6] Burns, A; Wellings, March 2009, A. Real-Time Systems and Programming Languages

(Fourth Edition), (pag. 547). Addison Wesley.

[7] RTOS comparison (2018. May). Retrieved from

https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems

[8] RTEMS Real Time Operating System (RTOS). (June). Retrieved from:

https://www.rtems.org/

[9] RTEMS Classic API Guide 5.0.0 (2018, September). Retrieved from

https://docs.rtems.org/branches/master/c-user/index.html

[10] Challenges in programming multiprocessor platforms. (June). Retrieved from

http://www.mpsoc-forum.org/previous/2004/slides/goodacre.pdf

[11] Multiprocessing with real-time operating systems, (2018, June). Retrieved from:

https://www.embedded.com/design/prototyping-and-

development/4024574/Multiprocessing-with-real-time-operating-systems

[12] C programming language (2018. June). Retrieved from:

http://www.dipmat.univpm.it/~demeio/public/the_c_programming_language_2.pdf

[13] Qemu (2018. June). Retrieved from:

https://www.qemu.org/

[14] Sourcetrail (2018. June). Retrieved from:

https://www.sourcetrail.com/

[15] Gnome commander (2018. June). Retrieved from:

https://gcmd.github.io/

[16] RTEMS source builder (2018. June). Retrieved from:

https://devel.rtems.org/wiki/Developer/Tools/RSB

[17] A Schedulability Compatible Multiprocessor Resource Sharing Protocol – MrsP.

(September 2018). Retrieved from https://www-

users.cs.york.ac.uk/burns/MRSPpaper.pdf

[18] Development Environment for Future LEON Multi-Core (Semptember 2018). Retrieved

from http://microelectronics.esa.int/gr740/RTEMS-SMP-FinalReport-

SpaceBelEmbeddedBrainsUnivPadova.pdf

[19] Reliable Software Technologies – ADA Europe 2015 (pag. 190). Retieved from:

https://goo.gl/ZDwvw7

http://www.differencebetween.net/technology/difference-between-rtos-and-os/
https://ieeexplore.ieee.org/document/5347560/
http://www.cister.isep.ipp.pt/
https://www.rtems.org/
https://docs.rtems.org/branches/master/c-user/index.html
http://www.mpsoc-forum.org/previous/2004/slides/goodacre.pdf
http://www.dipmat.univpm.it/~demeio/public/the_c_programming_language_2.pdf
https://www.qemu.org/
https://www.sourcetrail.com/
https://gcmd.github.io/
https://www-users.cs.york.ac.uk/burns/MRSPpaper.pdf
https://www-users.cs.york.ac.uk/burns/MRSPpaper.pdf
http://microelectronics.esa.int/gr740/RTEMS-SMP-FinalReport-SpaceBelEmbeddedBrainsUnivPadova.pdf
http://microelectronics.esa.int/gr740/RTEMS-SMP-FinalReport-SpaceBelEmbeddedBrainsUnivPadova.pdf
https://goo.gl/ZDwvw7

Experimental analysis of RTEMS in a multi-core platform

118

[20] A Fully Preemptible Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time

Applications (September 2018). Retrieved from

https://ieeexplore.ieee.org/document/6602109/

[21] Multicore Processing in the Avionics Industry. (2018, June 3). Retrieved from http://rtsl-

edge.cs.illinois.edu/CMAAS17/media/talk_5.pdf

[22] Reliable Multicore Processors for NASA Space Missions. (2018, June 3).Retrieved from

https://trs.jpl.nasa.gov/bitstream/handle/2014/41793/11-0119F.pdf?sequence=3

[23] The Use of Multicore Processors in Airborne Systems (MULCORS). (2018, June

3).Retrieved from https://www.easa.europa.eu/document-library/research-

projects/easa20116

[24] Assurance of Multicore Processors in Airborne Systems (2018, June 3).Retrieved from:

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/TC-16-

51.pdf

[25] T-Kernel, Multi-core edition. (2018, July). Retrieved from:

https://www.esol.com/embedded/download/pdf/datasheet_et-kernel_mce_mpo.pdf

[26] https://ptolemy.berkeley.edu/publications/cps.htm

[27] A Structured Design Method for Hard Real-time Systems (2018, August 10). Retrieved

from http://beru.univ-brest.fr/~singhoff/ENS/UE_SEE/TP-AADL/PRJ-2017/hrt-hood.pdf

[28] Symmetric Multiprocessing (RTEMS). (2018, September). Retrieved from:

https://docs.rtems.org/branches/master/c-

user/symmetric_multiprocessing_services.html

[29] ASU Library | Digital Repository. (2018, June). Retrieved from:

https://repository.asu.edu/attachments/137367/content/Bulusu_asu_0010N_14279.pd

f

[30] Difference between Multiprogramming, Multitasking, Multithreading and

Multiprocessing (June 2018) .Retrieved from

https://www.8bitavenue.com/2012/10/difference-between-multiprogramming-

multitasking-multithreading-and-multiprocessing/

[31] New schedulability analysis for MrsP (Agust 2018). Retrieved from

http://eprints.whiterose.ac.uk/131970/1/RTCSA_2017_paper_6.pdf

[32] A New Configurable and Parallel Embedded Real-time Micro-Kernel for Multi-core

platforms (June 2018) .Retrieved from https://people.mpi-

sws.org/~bbb/events/ospert15/pdf/ospert15-p25.pdf

[33] What Is Priority Inversion (And How Do You Control It)? (June 2018). Retrieved from

http://www.drdobbs.com/jvm/what-is-priority-inversion-and-how-do-yo/230600008

[34] Real-time programming with RTEMS (August 2018). Retrieved from http://beru.univ-

brest.fr/~singhoff/ENS/USTH/TP/tp.html#Ref1

[35] How Hard is Partitioning for the Sporadic Task Model? (September 2018). Retrieved

from https://ieeexplore.ieee.org/document/5366870/

[36] What really happened to the software on the Mars Pathfinder spacecraft? (August

2018). Retrieved from https://www.rapitasystems.com/blog/what-really-happened-to-

the-software-on-the-mars-pathfinder-spacecraft

https://ieeexplore.ieee.org/document/6602109/
http://rtsl-edge.cs.illinois.edu/CMAAS17/media/talk_5.pdf
http://rtsl-edge.cs.illinois.edu/CMAAS17/media/talk_5.pdf
https://trs.jpl.nasa.gov/bitstream/handle/2014/41793/11-0119F.pdf?sequence=3
https://www.easa.europa.eu/document-library/research-projects/easa20116
https://www.easa.europa.eu/document-library/research-projects/easa20116
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/TC-16-51.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/TC-16-51.pdf
http://beru.univ-brest.fr/~singhoff/ENS/UE_SEE/TP-AADL/PRJ-2017/hrt-hood.pdf
https://docs.rtems.org/branches/master/c-user/symmetric_multiprocessing_services.html
https://docs.rtems.org/branches/master/c-user/symmetric_multiprocessing_services.html
https://repository.asu.edu/attachments/137367/content/Bulusu_asu_0010N_14279.pdf
https://repository.asu.edu/attachments/137367/content/Bulusu_asu_0010N_14279.pdf
https://www.8bitavenue.com/2012/10/difference-between-multiprogramming-multitasking-multithreading-and-multiprocessing/
https://www.8bitavenue.com/2012/10/difference-between-multiprogramming-multitasking-multithreading-and-multiprocessing/
http://eprints.whiterose.ac.uk/131970/1/RTCSA_2017_paper_6.pdf
https://people.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-p25.pdf
https://people.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-p25.pdf
http://www.drdobbs.com/jvm/what-is-priority-inversion-and-how-do-yo/230600008
http://beru.univ-brest.fr/~singhoff/ENS/USTH/TP/tp.html#Ref1
http://beru.univ-brest.fr/~singhoff/ENS/USTH/TP/tp.html#Ref1
https://ieeexplore.ieee.org/document/5366870/
https://www.rapitasystems.com/blog/what-really-happened-to-the-software-on-the-mars-pathfinder-spacecraft
https://www.rapitasystems.com/blog/what-really-happened-to-the-software-on-the-mars-pathfinder-spacecraft

Experimental analysis of RTEMS in a multi-core platform

119

11. Appendixes

120

11.1 Gantt Diagram

121

11.2 Mine Control Output

Figure 82 Mine Control output

122

Figure 83 Mine Control output

123

Figure 84 Mine Control output

124

Figure 85 Mine Control output

125

