

Elements of Scalable Data Processing

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-100510

Version:

Date: 05-27-2010

Björn Andersson

Paulo Gandra de Sousa

Filipe Pacheco

Panayiotis Andreou

Pedro Jose Marron

Umer Iqbal

Vinny Reynolds

Technical Report HURRAY-TR-100510 Elements of Scalable Data Processing

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Elements of Scalable Data Processing
Björn Andersson, Paulo Gandra de Sousa, Filipe Pacheco, Panayiotis Andreou, Pedro Jose
Marron, Umer Iqbal, Vinny Reynolds

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Cooperating objects (COs) is a recently coined termused to signify the convergence of classical embedded
computersystems, wireless sensor networks and robotics and control. Wepresent essential elements of a reference
architecture for scalabledata processing for the CO paradigm.

Elements of Scalable Data Processing
Björn Andersson∗, Paulo Gandra de Sousa∗, Filipe Pacheco∗, Panayiotis Andreou†,

Pedro José Marrón‡, Umer Iqbal‡ and Vinny Reynolds§
∗CISTER Research unit, Polytechnic Institute of Porto, bandersson@dei.isep.ipp.pt

∗CISTER Research unit, Polytechnic Institute of Porto, pag@isep.ipp.pt
∗CISTER Research unit, Polytechnic Institute of Porto, ffp@isep.ipp.pt

†University of Cyprus, panic@cs.ucy.ac.cy
‡University of Duisburg-Essen, pjmarron@uni-due.de
‡University of Duisburg-Essen, umer.iqbal@uni-due.de

§The National University of Ireland, Galway, vinny.reynolds@deri.org

Abstract—Cooperating objects (COs) is a recently coined term
used to signify the convergence of classical embedded computer
systems, wireless sensor networks and robotics and control. We
present essential elements of a reference architecture for scalable
data processing for the CO paradigm.

I. INTRODUCTION
As embedded computer systems increase in importance and

become networked, new concepts emerge to emphasize differ-
ent aspects of them. The concepts of pervasive and ubiquitous
computing emphasize seamless deployment in everyday things
and environments. The concept of wireless sensor networks
(WSNs) emphasizes sensing and networking aspects, whilst
the concept of cyber-physical systems (CPSs) emphasizes the
interaction between information processing (”Cyber”) and the
physical world. The concept of cooperating objects (COs) [1]
has recently gained acceptance in signifying the convergence
of classical embedded computer systems, wireless sensor
networks and robotics and control, whilst emphasizing ad-
hoc, opportunistic cooperation between (often) autonomous
entities. Furthermore, it is currently seen by the European
Commission as the main research direction in networked
embedded computer systems.
Formally speaking, a cooperating object (CO) [2] is a single

entity or a collection of entities consisting of (i) sensors,
(ii) actuators, (iii) information processors or (iv) cooperating
objects. Since the definition of a CO is recursive (a CO may
be a collection of COs), this definition makes it possible to
form arbitrarily complex structures. The concept of a CO is
quite new however and therefore, no general theory for COs
is known and no model or architecture for data processing
concerning COs is known either.
It is possible to co-locate a single sensor, a single informa-

tion processor and a single actuator to a single computer node
and let the information processor perform processing based
on readings from the single sensor and let the actuator enact
commands computed by the single information processor. Har-
nessing the power of cooperating objects requires however that
information processors perform processing of sensor readings
originating from different computer nodes. Sometimes this is
strictly necessary. For example, most methods for estimating
the most likely geographical location of a physical object

depend on sensor readings originating at different computer
nodes. In other cases, an information processor can obtain a
much better image of the physical world, using better resolu-
tion and greater coverage, if the information processor takes
as input sensor readings originating from different computer
nodes. Clearly, many COs need to perform data processing
based on sensor readings originating from different computer
nodes.
Since COs often interact with their physical environment by

giving commands to actuators (these commands are computed
based on sensor readings), it is essential that the response
time of data processing from sensing to actuation is small. A
straightforward approach to perform data processing in COs
is that each actuator has an associated information processor
and all sensors that provide sensor readings that are needed
for the data processing on this information processor send the
sensor readings to this information processor. This approach
is applicable in COs composed of a relatively small number
of sensors. But the trend [3], [4], [5] in COs is towards
a larger number of sensors because (as already stated) this
provides a better image of the physical world. Unfortunately,
performing data processing with the straightforward approach
leads to long response times because of the large amounts of
packets that must be sent from each sensor. This is particularly
problematic when all sensor nodes are in a single broadcast
domain because then at most one sensor can transmit at a time.
Clearly, better methods for data processing are needed; data
processing based on sensor readings originating from different
computer nodes should be performed in a scalable manner; that
is, the response time should grow slowly (or not at all) with
the number of sensor nodes/readings.
Many COs are comprised of sensor nodes belonging to

different organizations with no superior/subordinate relation-
ship between these organizations. Yet, the functioning of the
CO requires that data processing is performed based on these
sensor readings. And this brings an additional challenge to
data processing in COs. Therefore, a core problem in the
design of COs is to perform data processing based on sensor
readings originating from different computer nodes potentially
in different organizations and do so in a scalable manner; we
refer to this as the Scalable Data Processing problem.

In this paper, we present essential elements of a reference
architecture for the Scalable Data Processing problem1. We
believe that developing this reference architecture is significant
because (i) COs with a large number of sensor nodes and
which operates across a large number of organizations will
be built in the future and (ii) there is (as far as we know) no
reference architecture available for the Scalable Data Process-
ing problem. Since COs and CPSs have many commonalities,
we also expect our future work on this reference architecture
to be useful also for CPSs.
The remainder of this document is organized as follows.

Section II presents a usage scenario to motivate the need
for query processing. Section III presents a system overview.
Section IV presents the architecture. Section V presents related
work. Finally, Section VI presents ongoing work.

II. A USAGE SCENARIO

In order to understand the scalable data processing problem,
let us consider a usage scenario.
Europe food safety legislation [6] specifies that when certain

foods are being transported, they must be kept within certain
temperature thresholds for the safe preservation of the food’s
quality. For example, it is necessary to be able to verify that
frozen foods must be kept frozen for the entire duration of
the journey. From a European health and safety perspective,
food that defrosts and is re-frozen is considered unsafe and
this event must be detected and reported. In order to accom-
plish this, many refrigerated vehicles, ”reefers”, now embed
wireless sensor networks in vehicles and in load containers.
Coupled with on board telematics units, this set up allows the
monitoring of these temperature thresholds during the entire
food transportation cycle.

A. Description

Typically, a fleet management company provides clients
(food companies in this scenario) with a fleet administration
tool which allows clients to make a range of queries against
vehicles transporting their load. Each vehicle, shown in Fig-
ure 1, may be connected to the fleet administration tool via a
3G internet connection, and each vehicle administers its own
wireless sensor network, which is monitoring the vehicle’s
load. For larger companies, they may have several hundreds
or even thousands (in the case of supermarket chains) WSN-
enabled vehicles transporting loads across Europe at any one
time. A simple geospatial query requesting the location of
all vehicles at a single point in time, would result in a very
large and costly query being disseminated to potentially all of
these vehicles. In this scenario, minimizing the financial cost
of these queries is very important to the fleet administrators,
and doing this in the presence of large scale systems is a
challenge.

1Due to space limitations, we do not present the entire architecture — only
the essential elements of it.

Fig. 1. A typical query in the fleet management scenario

B. Scenario Characteristics
This scenario has several characteristics that are noteworthy

with the scalable data processing problem. These include:
• Dynamic scale. The total number of sensors (gateways +
wireless sensors) within the entire query system includes
the amount of wireless sensor nodes on each individual
vehicle in addition to the mobile gateway on each vehicle.
Dynamic aspects of typical queries such as geospatial
queries, can result in a very large number of nodes having
to be queried.

• Mobility. Gateway nodes (on the vehicle) are mobile
as are the wireless sensor networks themselves, but not
with respect to the gateway node. The gateway node is
attached to a mobile telematics unit, (equivalent to a
embedded mobile phone), which can both process one
shot, continuous and event triggered queries. The mobile
telematics unit is equipped with a GPS, so accurate
location data is usually provided.

• Expensive communication costs. The cost of an individual
communication between the client and a vehicle is small
but not zero, as the communication is performed over a
3G internet connection. For example, continuous queries
that push data constantly upwards are cost prohibitive
and may only be executed once an hour, or even less
frequently. Effective management of queries should help
to depress the overall cost of the communication within
the system, which is an important characteristic of this
scenario.

C. Queries
A client sends his query from a non-self administered

website, a portal. Two typical queries would be as follows:
1) Query Q is ”Display the location of all of my vehicles”.
Without any prior information, an uninformed query
planner would have to disseminate this one shot query
to all telematics devices. They would respond with their
location.

2) Query Q2 is a continuous query. ”Raise an event when
the temperature within a vehicle is greater than -2 de-
grees.” In this query, periodic single shot queries are ex-

Fig. 2. An example of a CO that performs scalable data processing. There
are three users (not shown). One user asks a query to Portal 1; another user
asks a query to Portal 2 and a third user asks a query to Portal 3. The former
query requires execution of sensor reading originating in WSN1. The two
latter queries require execution based on sensor readings in the same WSN,
WSN2. The gray arrows show the flow of data when executing the queries.

pensive and inefficient. Events that are triggered locally
by the vehicle’s onboard sensors push the data/event
towards interested parties (the client).

III. SYSTEM OVERVIEW

In this section we will formalize our system model and
the basic terminology which will be used in the subsequent
sections.
Let {SN1, SN2, . . . , SNn} denote a set of individual sens-

ing devices with the ability to communicate in an adhoc
manner wirelessly. These sensing devices have the ability to
acquire physical attributes at discrete time instances t and then
propagate them using a multihop communication mechanism
to some gateway Gatewayi. A gateway has the purpose of
retrieving critical data from individual sensor nodes and has
a larger energy capacity. This setup is typically referred to as
a Wireless Sensor Network (WSN) which is normally owned
by a single organization. Usually, a WSN consists of a single
gateway but there are often cases where more than one gateway
exists to better support the operation of the WSN. For example,
in Figure 2, WSN1 consists of three gateways.
A user/application can specify a query Q directly to a WSN

(i.e., through a gateway) or through a portal. In the former
case, the user must first identify the proper gateway and then
follow specific access routines and protocols to issue Q. On
the other hand, portals offer a transparent way of accessing
a WSN (or multiple WSNs) by providing a set of abstract
interfaces that allow the user to query one or more WSNs
easily in an identical manner. To accomplish this, portals
employ: (i) WSN registries that allow applications to discover
WSNs, and (ii) data transformation mechanisms that enable
communication to (i.e., query) and from (i.e., data) the WSN.
In this work, queries are represented in a declarative SQL-

like syntax. For instance, the following query declares that
each sensing device should recursively collect the node identi-
fier and the temperature from its children every 31 seconds and

communicate the results to the gateway. SELECT nodeid,
temp FROM sensors EPOCH DURATION 31 seconds

IV. ARCHITECTURE
The reference architecture describes the main components

that have to be provided to meet the requirements for scalable
data processing across heterogeneous sensor networks. As
an in-node architecture, the reference architecture omits the
description of specific interfaces and implementations, but
instead presents generic roles that should be met by software
components on each node, regardless of whether the node is a
sensor node, gateway or portal. Within these nodes, different
software and hardware constraints are enforced requiring the
reference architecture to be implemented to meet these con-
straints. Our scalable data processing architecture, shown in
Figure 3, presents six main components. Due to the brevity
of the paper, only those components that relate to the key
elements of scalable data processing are described, and as such
the descriptions of the API layer, and the system management
component are omitted.

A. Query Manager
The Query manager is responsible for the execution of

queries in our framework. Queries are posted to the query
manager via the Query API. There exists three different groups
of queries in our framework categorized according to the
layer at which they are going to be executed. These are the
(i) Portal, (ii) Gateway and (iii) Broadcast domain levels. Our
framework will support different instantiations of the same
components in order to cope with this diversity.
The Query Manager consists of the following components:
• Parser: Queries executed within a wireless sensor net-
work can be classified using a variety of metrics,
e.g. number of returned results, aggregation mecha-
nisms used, execution frequency, etc. The Parser com-
ponent is responsible for translating queries from a
predefined format to a data structure. In order to do
so, the Parser incorporates a grammar that checks the
query syntax and looks for specific tokens that exist
in the grammar. This process enables the parser to
determine the query semantics and build the appro-
priate data structure that will be used by other com-
ponents for the execution of the query. Our frame-
work supports three query types: (i) Selection Queries,
(ii) Storage/View Queries and (iii) Event based Queries.

• Planner: The Planner component handles the planning
of the queries. Specifically, it considers all possible query
plans for a query Q, calculates a “cost” for each query
plan and then opts for the one with the lower cost.
Typically, “cost” is calculated with regards to response
time performance (I/O operations, memory usage, etc.).
However, in WSNs, “cost” is evaluated with different
metrics that take into account the peculiarities and limi-
tations of WSNs (e.g., limited battery).

• Query Optimizer: The Query Optimizer sub-component
considers all possible query plans and chooses the

Fig. 3. The Scalable Data Processing reference architecture

most cost-efficient, whilst the scheduling sub-component
schedules the execution of the query depending on the
query type.

• Knowledge Engine: The knowledge engine is responsi-
ble for advanced topics in the query execution process
like aggregation. Additionally, it utilizes a caching com-
ponent that enables query instantiations to cache results
locally in order to speed-up operations.

B. Publish/Subscribe
Unlike in traditional networks where the communicating

entities are interested in the actual sender and receiver of data,
data centric networks are less worried about this information
and more concerned with the data transmitted between those
entities. This means that in such networks the entities register
for a particular data type in which they are interested in
and not with particular nodes offering or looking for data.
This is also true for the majority of wireless sensor network
applications where the applications are interested in the data
gathered by the sensor nodes and not in the physical sensor
nodes themselves.
The Publish-Subscribe (Pub/Sub) paradigm is one such

approach in which entities associate or register themselves
to a type of data. It is an asynchronous messaging paradigm
which provides a decoupling between the sender and receivers
of data and provides one of the better abstractions for com-
munication in mobile networks or applications. The Pub/Sub
paradigm is based on the roles of publisher and subscriber,
either or both of which can be assumed by a network entity.
Entities which assumes the role of publishers publish data and
entities subscribed to that type of data receive it. The pub/sub
interaction can be either centralized or have some distributed
mechanism. In the centralized approach, all publishers notify
a central entity or a broker about the data which they would
like to publish and all subscribers make their subscription to

that central entity based on their requirements. The central
entity on having a condition where a subscription request can
be fulfilled by a publisher, forwards the data to the subscriber.
In a distributed approach, every node can assume a role of
a publisher or subscriber or both. In this case, the publish
and subscription requests are sent over the network and are
maintained by every node, which it can use knowledge of what
types of data are available in the network and whether it is
interested in it. Conversely, the type of data published locally
is also known and a list of subscribers to that data within the
network is also maintained.
Usually, publishing and subscription requests are addition-

ally filtered on topics and/or content. In the former, the
association is made on the topic e.g. if there is a temperature
data available for the building then pass this information to the
subscriber, whereas in the latter the approach, association is
based on the contents i.e. if the temperature in the building is
more than 25◦ C then pass this information to the subscriber.
In the proposed reference architecture, publish subscribe

mechanism can be used for both or either of the actual sensor
data and metadata regarding the sensor network. Examples
of actual sensor data include temperature, humidity, light etc.
whereas metadata can include network performance parame-
ters such as number of subscriptions, position of sensor nodes,
number of active nodes etc. The choice of using publish
subscribe mechanism for a particular type of data depends
upon the usage scenario. Depending upon usage scenario, it is
also possible to use publish subscribe mechanism for regular
sensor data at one part of the network and for transferring
metadata for some other part of same network. An example
could be a usage scenario mentioned in Section II, where
publish subscribe mechanism can be used for transferring
metadata information between different containers and also for
transferring regular sensor data within a network in a single
container.

C. Communication
In order to achieve scalable data processing, it is clearly nec-

essary for nodes to communicate. The need for communication
is however a major source of energy consumption (because
transceivers are left on) and delay (because of contention for
the medium) and therefore it is crucial that the architecture
makes efficient use of the communication system.
Our use of the communication system is quite different from

that of many typical address centric networks. For example,
the pub/sub component receives a packet and its filtering
module may inspect it and decide whether the packet should
be forwarded. Execution of queries typically requires that
in-network processing is used; typically many packets are
received from child-nodes and a computation based on their
data payload is performed and the result is transmitted. And
query processing in a single broadcast domain may need the
communication system to simply perform contention for the
medium. For example MAX and MIN of sensor readings in a
single broadcast domain can be computed efficiently using a
prioritized medium access control protocol. Because of these
reasons, the communication component must expose details
rather than hiding them.
Our architecture follows these principles in the following

way. The communication abstraction layer exposes primitives
for other parts of the architecture to use in innovative ways in
order to achieve scalable data processing. And the component
”execution” provides address-centric services.
We note that the components Timeslot assignment and clus-

ter formation configure the communication system. These can
be used to optimize the execution of an ongoing continuous
query, for example, if node N1 and node N2 transmits packets
to node N3 and N3 aggregates this information and forwards
this aggregate to N4 then it is desirable (from the perspective
of attaining low latency) that the transmissions from N1 and
N2 has a lower timeslot id than the transmission from N3.
The timeslot assignment can also consolidate timeslots so
that one node has a long wakeup time instead of two short
wakeup times in a TDMA cycle. The functionality of these
components can also be used by the query optimizer to setup
the timeslot assignment and cluster formation when a new
query (especially for a continuous query) is setup.

D. Repositories
The Cross-Layer Repository (XLR) is the location for the

storage of meta data generated by local instantiations of
the reference architecture and also meta data generated by
remote instantiations. The purpose of maintaining this meta
data is that it may be used by several other components
within the architecture in order to achieve optimizations and
scalability that would otherwise not be possible. For example,
knowledge of the physical location of leaf instantiations of the
reference architecture may be used to optimally direct certain
spatial queries to some leaf nodes, and not others. It cannot
be assumed that this information is known a-priori or that
this information is even static. For example, node mobility
may influence the outcome of certain types of queries, and

being able to maintain certain types of meta-data at parent
instantiations of the reference architecture may make better
optimizations possible.
Query based meta-data In order to be able to plan and

execute queries dynamically, it is necessary to know and store
what types of queries can be executed at other instantiations of
the reference architecture. To achieve effective query planning,
it is also required that some additional information such as the
cost of the query, be maintained, and that cost information may
be dependent on how the query is implemented at that node.
For example, a certain query might have one cost when the
overall query is executed in such a way as to ensure a very
timely response, but may have a different cost when the query
is executed in such a way to minimize the amount of messages
required to execute that query, i.e. optimize based on energy
consumption. The cross layer repository is responsible for the
consistent storage of meta-data that captures this information.
One proposed solution is that the XLR maintains a tuple set

(Ni, Qi, Ci, Oi) capturing this information, where Ni is the
node where the query is to be executed at, Qi is that query, Ci

is the cost of that query given that it is optimized according
to Oi.
Sensor node meta-data Additional information pertaining

to the nodes themselves may also be maintained as meta-data.
This would include information such as routing tables and also
the physical topology of the network, for example the location
of nodes.

V. RELATED WORK

There is currently no reference architecture specifically fo-
cusing on scalable data processing. There are however related
architectures.
RM-ODP [7] is a Reference Model for Open Distributed

Processing. It shares our goal of addressing heterogeneity and
interaction between objects in different organizations. But it
does not address scalability in terms of data processing.
Ultra-Large Scale Systems (ULS) [8] is a study made by

Software Engineering Institute at Carnegie-Mellon University
for the US Department of Defense. The study discusses how
to design software systems comprising more than one billion
lines of code and where these software systems are highly
distributed and deployed across different organizations. The
report about ULS differs from our paper in that ULS pro-
vides a roadmap whereas we provide a reference architecture.
Also, ULS focuses on interoperability and negotiation between
different systems and suggests the use of mechanism design.
These issues are not in the scope of our paper.
Scalable Querying of Sensor Networks from Mobile Plat-

forms Using Tracking style Queries (SENSTRAC) proposed in
[9] is an approach with some similarities to the our proposed
architecture. SENSTRAC aims at querying sensors through
mobile nodes (mobile phones, PDAs) using publish subscribe
mechanisms. SENSTRAC assumes resource rich sensor nodes
integrated in to the infrastructure. Due to the mobility aspects
of applications, SENSTRAC instead of in-network aggregation
of query results, suggests transformation of queries into the

subscriptions to the topics published by the sensor nodes
to incorporate increasing number of querying nodes to meet
the scalability requirements. This aggregation at the subscrip-
tion level is proposed by a separate algorithm periodically
computing sensors of interest. SENSTRAC uses leased based
subscriptions in which subscription is valid for a limited time
period and does not require unsubscription procedure mainly
because of the mobility aspect. SENSTRAC has two types
of mapping, one from query to the topics and one from
topics to the sensor nodes. The sensor network architecture
proposed by SENSTRAC is a broker based architecture in
which subscriptions and publish offers are sent to the broker
nodes in a static grid-cell network structure. In addition to
intra-cell communications, the broker nodes are also used for
inter-cell communications to avoid redundancy of sensed data.
Scalability, in terms of the number of nodes within a

Cooperating Objects Network, has also been studied in the
context of the IPAC project [10]. IPAC aims at delivering a
middleware and a service creation environment for developing
embedded, collaborative and context-aware services in mobile
nodes equipped with sensing devices. IPAC relies on short
range communications for the ad hoc realization of dialogs
among collaborating nodes. The networking capabilities of
IPAC are based on rumour spreading techniques, a stateless
and resilient approach, and information dissemination among
embedded nodes. One of the key advantages of this scalable
ad-hoc network construction/communication mechanism is
the ability to integrate new mobile nodes and new sensing
elements in an efficient manner. However, in contrast to the
reference architecture proposed in this paper, scalability with
regards to multiple gateways has not been considered.
TAG [11] is a query processor for WSN. It allows the

execution of restricted SQL queries and it uses in-network
aggregation by creating an aggregation tree (called routing
tree in [11]) to improve scalability. Our architecture differs
from the one in TAG in that (i) our architecture may take
advantage of query processing in a broadcast domain using
the MAC to improve scalability, (ii) we consider queries that
may span multiple WSNs and (iii) our architecture considers
query optimization (for example by taking knowledge of the
network topology into account).

VI. ONGOING WORK

The next steps of our ongoing efforts are now to focus on the
development of a prototype implementation of the complete
architecture, i.e. the query manager, publish subscribe engine,
communication layer, system management layer, cross layer
repositories, etc. As part of the requirements specification
phase, different real world scenarios were identified and for
the first prototype, we will implement one of them. The first
challenge in this regard is the selection of an appropriate sim-
ulation platform which can provide the required functionalities
for implementing the proposed architectural components. The
simulation platforms that we have investigated so far do not
completely fulfill our requirements. Therefore, additional fea-
tures will be added to the existing platform(s) for developing

the prototype. For example, the prototype implementation will
have to be executable at the different levels of the network
namely the portal, gateway and broadcast domain levels. This
is not supported by any existing simulator. In parallel, we
will be refining the architecture with more low level details
on architectural components, interaction between the different
layers and addressing open issues identified in the design
phase such as data models for the cross layer repository and
syntax/semantics rules of query language(s). In addition to
the prototype, an evaluation methodology for the reference
architecture will be devised to validate that the proposed
architecture achieves its goals. The validation process will
ensure the conformance of the specified requirements with the
prototype.

Acknowledgements
This work was partially supported by CONET, the Cooperating

Objects Network of Excellence, funded by the European Commission
under FP7 with contract number FP7-2007-2-224053, ARTISTDesign
Network of Excellence on Embedded Systems Design, funded by
the European Commission under FP7 with contract number ICT-
NoE-214373 and the Portuguese Science and Technology Founda-
tion (Fundação para Ciência e Tecnologia - FCT) and SmartSkin
project supported by ISEP and by the European Union under the
project IPAC (#224395) and the Cyprus national project MELCO
(#TΠE/OPIZO/0308/(BIE)/14) and by Science Foundation Ireland
under Grant No. SFI/08/CE/I1380 (Lion-2).

REFERENCES
[1] P. Marrón, D. Minder, and The Embedded WiSeNts Consortium, “Em-

bedded WiSeNts research roadmap,” IST/FP6 (IST-004400), 2006.
[2] S. Karnouskos, “Research roadmap on cooperating objects, section 2.1:

Definitions, available at http://www.cooperating-objects.eu/roadmap,”
2009.

[3] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Ku-
lathumani, H. Zhang, H. Cao, M. Sridharan, N. Seddon, C. Anderson,
T. Herman, N. Trivedi, C. Zhang, R. Shah, S. Kulkarni, M. Aramugam,
and L. Wang, “Exscal: Elements of an extreme scale wireless sensor
network,” in RTCSA ’05: Proc. of the 11th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications,
2005, pp. 102–108.

[4] A. Rowe, M. Berges, G. Bhatia, E. Goldman, R. Rajkumar,
L. Soibelman, J. Garrett, and J. M. F. Moura, “Sensor Andrew:
Large-scale campus-wide sensing and actuation,” Carnegie-Mellon
University, Pittsburgh, PA, Tech. Rep., 2008, available at project
website: http://www.ices.cmu.edu/censcir/resources/SensorAndrew-
Tech-Report.pdf.

[5] “ARTEMIS EMMON project web page, http://www.artemis-
emmon.eu/objectives.html,” 2009.

[6] “Article I of Regulation (EC) No 852/2004 of
29 April 2004 on the hygiene of foodstuffs,
http://www.fsai.ie/uploadedfiles/consol reg852 2004.pdf.”

[7] “RM-ODP, http://www.rm-odp.net/,” 2010.
[8] P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T. Longstaff,

R. Kazman, M. Klein, L. Northrop, D. Schmidt, K. Sullivan, K. Wallnau,
and B. Pollak, Ultra-Large-Scale Systems: The Software Challenge of
the Future, 2006.

[9] S. Pleisch and K. P. Birman, “SENSTRAC: scalable querying of SENSor
networks from mobile platforms using TRACking-style queries,” Int. J.
Sen. Netw., vol. 3, no. 4, pp. 266–280, 2008.

[10] “IPAC integrate platform for autonomic computing,
http://ipac.di.uoa.gr/,” 2009.

[11] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a
Tiny AGgregation service for ad-hoc sensor networks,” in OSDI ’02:
Proceedings of the 5th symposium on Operating systems design and
implementation. New York, NY, USA: ACM, 2002, pp. 131–146.

