

Dronemap Planner : A Service-Oriente d Cloud-
Based Manageme nt Syst em fo r the Internet -
of -Drones

Journal Paper

CISTER-TR-181113

Anis Koubaa

Basit Qureshi

Mohamed-Foued Sriti

Azza Allouch

Yasir Javed

Maram Alajlan

Omar Cheikhrouhou

Journal Paper CISTER-TR-181113 Dronemap Planner: A Service-Oriented Cloud-Based Management ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Dronemap Planner: A Service-Oriented Cloud-Based Management System for the
Internet-of-Drones

Anis Koubaa, Basit Qureshi, Mohamed-Foued Sriti, Azza Allouch, Yasir Javed, Maram Alajlan, Omar
Cheikhrouhou, Mohamed Khalgui, Eduardo Tovar

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract
Low-cost Unmanned Aerial Vehicles (UAVs), also known as drones, are increasingly gaining interest for enabling
novel commercial and civil Internet-of-Things (IoT) applications. However, there are still open challenges that
restrain their real-world deployment. First, drones typically have limited wireless communication ranges with the
ground stations preventing their control over large distances. Second, these low-cost aerial platforms have limited
computation and energy resources preventing them from running heavy applications onboard. In this paper, we
address this gap and we present Dronemap Planner (DP), a service-oriented cloud-based drone management
system that controls, monitors and communicates with drones over the Internet. DP allows seamless
communication with the drones over the Internet, which enables their control anywhere and anytime without
restriction on distance. In addition, DP provides access to cloud computing resources for drones to offload heavy
computations. It virtualizes the access to drones through Web services (SOAP and REST), schedules their
missions, and promotes collaboration between drones. DP supports two communication protocols: (i.) the
MAVLink protocol, which is a lightweight message marshaling protocol supported by commodities Ardupilot-based
drones. (ii.) the ROSLink protocol, which is a communication protocol that we developed to integrate Robot
Operating System (ROS)-enabled robots into the IoT. We present several applications and proof-of-concepts that
were developed using DP. We demonstrate the effectiveness of DP through a performance evaluation study using
a real drone for a real-time tracking application.

Accepted Manuscript

Dronemap Planner: A Service-Oriented Cloud-Based Management
System for the Internet-of-Drones

Anis Kouböaa, Basit Qureshi, Mohamed-Foued Sriti, Azza Allouch,
Yasir Javed, Maram Alajlan, Omar Cheikhrouhou, Mohamed Khalgui,
Eduardo Tovar

PII: S1570-8705(18)30681-4
DOI: https://doi.org/10.1016/j.adhoc.2018.09.013
Reference: ADHOC 1768

To appear in: Ad Hoc Networks

Received date: 19 February 2018
Revised date: 21 July 2018
Accepted date: 19 September 2018

Please cite this article as: Anis Kouböaa, Basit Qureshi, Mohamed-Foued Sriti, Azza Allouch,
Yasir Javed, Maram Alajlan, Omar Cheikhrouhou, Mohamed Khalgui, Eduardo Tovar, Dronemap Plan-
ner: A Service-Oriented Cloud-Based Management System for the Internet-of-Drones, Ad Hoc Net-
works (2018), doi: https://doi.org/10.1016/j.adhoc.2018.09.013

This is a PDF Þle of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its Þnal form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.adhoc.2018.09.013
https://doi.org/10.1016/j.adhoc.2018.09.013

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

Dronemap Planner: A Service-Oriented Cloud-Based Management
System for the Internet-of-Drones

Anis Koub̂aa ��xz� , Basit Qureshi�� , Mohamed-Foued Sritik, Azza Allouch {x�

Yasir Javed� , Maram Alajlan��yyz , Omar Cheikhrouhou,y
xi
, Mohamed Khalguizzx

, Eduardo Tovarz

�� Prince Sultan University, Robotics and Internet-of-Things Lab (RIOTU), Saudi Arabia.
xGaitech International Ltd., China.

k Al-Imam Mohammad Ibn Saud Islamic University, Saudi Arabia.
yy King Saud University, Riyadh, Saudi Arabia.

z CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal.
zz LISI Laboratory, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis 1080, Tunisia.

{ LISI Laboratory, Faculty of Mathematical, Physical and Natural Sciences of Tunis (FST), University of El Manar, Tunis, Tunisia.
� Cooperative Networked Intelligent Systems (COINS) Research Group, Saudi Arabia.

y Taif University, Taif, Kingdom of Saudi Arabia.
xi

Computer and Embedded Systems Laboratory, University of Sfax, Sfax, Tunisia.
x

School of Electrical and Information Engineering, Jinan University (Zhuhai Campus), Zhuhai 519070, China.

akoubaa@coins-lab.org, qureshi@psu.edu.sa, mfsriti@ccis.imamu.edu.sa, azza.allouch@coins-lab.org,
yasir.javed@coins-lab.org, maram.ajlan@coins-lab.org, o.cheikhrouhou@tu.edu.sa, khalgui.mohamed@gmail.com,

emt@isep.ipp.pt

Abstract—1 Low-cost Unmanned Aerial Vehicles (UAVs), also
known as drones, are increasingly gaining interest for enabling
novel commercial and civil Internet-of-Things (IoT) applications.
However, there are still open challenges that restrain their real-
world deployment. First, drones typically have limited wireless
communication ranges with the ground stations preventing their
control over large distances. Second, these low-cost aerial plat-
forms have limited computation and energy resources preventing
them from running heavy applications onboard. In this paper,
we address this gap and we present Dronemap Planner (DP), a
service-oriented cloud-based drone management system that con-
trols, monitors and communicates with drones over the Internet.
DP allows seamless communication with the drones over the In-
ternet, which enables their control anywhere and anytime without
restriction on distance. In addition, DP provides access to cloud
computing resources for drones to of�oad heavy computations.
It virtualizes the access to drones through Web services (SOAP
and REST), schedules their missions, and promotes collaboration
between drones. DP supports two communication protocols: (i.)
the MAVLink protocol, which is a lightweight message marshal-
ing protocol supported by commodities Ardupilot-based drones.
(ii.) the ROSLink protocol, which is a communication protocol
that we developed to integrate Robot Operating System (ROS)-
enabled robots into the IoT. We present several applications and
proof-of-concepts that were developed using DP. We demonstrate
the effectiveness of DP through a performance evaluation study
using a real drone for a real-time tracking application.

Keywords—Unmanned aerial vehicle, IoD, MAVLink, ROS,
Cloud.

1Video demonstrations and a video presentation providing a summary of
the paper can be found at https://goo.gl/EDvxhk

I. INTRODUCTION

A. Overview

Internet-of-Things (IoT) and Cloud Computing have been
attracting a lot of interest in the last few years. In this paper,
we address the use of Unmanned Aerial Vehicles (UAVs)
to develop new Internet-of-Things applications (e.g. remote
sensing, smart cities, surveillance, disaster management, pa-
trolling, aerial survey, border security, to name a few) by
leveraging cloud computing, web technologies, and service-
oriented architecture (SOA). In the recent years, there have
been a very few attempts to integrate drones with the Internet
and IoT [1]. In [1], the authors de�ned the concept of
Internet of Drones (IoD) as a layered control architecture that
coordinates the access of drones to controlled airspace and that
provides navigation services between locations of Interest. The
authors proposed an abstract layered architecture and generic
services for IoD that encourages openness, modularity and in-
teroperability. It is based on broadcasting drones' information
to ground stations located at Zone Service Providers (ZSPs).
This work is only limited to a high-level description of the
architecture and generic services and discussion of bene�ts;
however, there is no concrete implementation to demonstrate
its feasibility, nor performance evaluation study to illustrate
the behavior of the system. In the more general context of the
cloud robotics, coined by James Kuffner in 2010, Kehoe et al.
[2] surveyed cloud robotics architectures and existing works
[3], [4], [5], [6] that attempt to integrate robot with the cloud
through the Internet. Reference [3] is one of the �rst papers

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

that speci�ed the concept of Robot as a Service (RaaS). In
[3], Yinong et al. proposed a cloud framework for interacting
with robots in the area of service-oriented computing. In [4],
the authors proposed theDAvinCi system for of�oading
computation from robots to cloud-based distributed computing
system based on Apache Hadoop, but they did not address
reliability and real-time control. In [5], the European project
consortium proposed to build a World Wide Web for Robots
for sharing knowledge about actions, objects, and environ-
ments between robots, and prototypes were implemented for
service robots. In [6], the author proposed a SOAP-based
service-oriented architecture that virtualizes robotic hardware
and software resources and exposes them as services through
the Web. However, the two latter works did not consider the
speci�c use case of controlling drones over the Internet, as we
propose in this paper.

B. Problem Statement and Motivation

This work garners motivation from the limitations of typ-
ical low-cost UAVs having strict processing and storage ca-
pabilities constraints. In fact, low-cost and battery-powered
UAVs are unable to cope ef�ciently with the requirements
of computation demanding applications (e.g. onboard image
processing) encompassing real-time data and reliability con-
straints. Furthermore, taking into account the limitation of
communication range of wireless-based drones even when
using telemetry systems (with a range up to 5 Km), it is
not possible to manage drones missions in large environments
for example at the scale of a city, country or larger. For
instance, in [7], the authors developed an interesting networked
drone system for different types of applications. However,
communication between drones was performed in an ad-hoc
manner and managed by a central ground station within each
other communication range. This restricts the deployment area
of the drone network to the maximum communication range
of the ground station. With Dronemap Planner, drones are
connected to the Internet and thus there is not any kind of
limitation with respect to the communication range. Obviously,
the communication quality will become an issue as Internet
connectivity may not be stable. This is further discussed in
this paper in the experimental evaluation.

On other hand, wireless drone systems typically adopt point-
to-point communication models with a ground station. This
restricts the scalability of such systems and limits them to
be used for managing a single drone. For example, nowa-
days commodities drones like 3DR Solo drone, Dji Phantom,
Erle Copter, etc. use the MAVLink communication protocol
[8] to interact with a ground station (e.g. QGroundControl,
DroidPlanner, Tower) through a UDP, TCP, Bluetooth or
USB network interfaces. These ground stations are standalone
systems and allow to control only a single drone by a single
user. Other ground stations like Universal Ground Control
Station (UgCS) provide multiple drones' support, however,
they share the limitation with other ground stations of being
standalone applications with no option for sharing among
multiple users nor promoting collaboration missions among

drones. In contrast, Dronemap Planner has the objective to
control multiple drones by multiple users by providing seam-
less access to drones' resources through cloud services, and
dynamically manage the mission of drones.

In addition, Dronemap Planner offers the opportunity for
developers to seamlessly develop their own cloud applications
using APIs for high-level languages such as Java, Python and
Web programming languages, through web services technolo-
gies. This provides new alternatives for educational frame-
work on drones programming and applications development.
Furthermore, we aim at using the cloud as a “remote brain”
for the UAVs by providing computation and storage services
remotely [9]. The UAV simply acts as a mobile sensor node
and/or sink that collects data from points of interest and
transfer it to the cloud, which, in turn, stores, processes and
provides interpretation for the collected raw data. In addition,
the services provided by the cloud allow clients to connect,
coordinate missions as well as initiate commands to the UAVs
for future missions.

C. Approach and Contributions

Our approach leverages the use of cloud computing
paradigm to address all the aforementioned requirements.
There are two main bene�ts (1)Virtualization: the cloud
infrastructure helps virtualizing UAV resources through ab-
stract interfaces. It provides a mapping of the physical UAVs
to virtual UAVs, so that end-users interact with virtual UAVs
instead of the physical UAVs. This emphasizes the concept
of the Internet-of-Drones (IoD) as a speci�c case of the IoT
where the UAVs represent the things connected to the Internet
through abstract interfaces. (2)Computation of�oading: the
cloud plays the role of a remote brain for the UAVs by
providing storage and computation services [9]. This approach
overcomes the computing and storage resources' limitations
of the UAVs, as intensive computation is not performed on-
board, but rather of�oaded to the cloud. As such, the UAV
will typically act as a mobile sensor and actuator decoupled
from heavy computations. In this paper, we illustrate these two
concepts through the design and development of the Dronemap
Planner. In summary, the main contributions of this paper are
four-folded.

� First, we specify the concept of Internet-of-Drones (IoD),
its requirements, security considerations, challenges, and
importance.

� Second, we propose Dronemap Planner, a cloud-based
management of drones connected through the Internet
with cloud integration.

� Third, we present the software architecture of Dronemap
Planner.

� Fourth, we demonstrate the feasibility and effectiveness
of the Dronemap Planner system in handling drones'
missions using several experimental use cases and appli-
cations to control drones over the Internet and evaluate
its performance.

Parts of this work was published in our conference paper
[10].

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

II. RELATED WORKS

There are several attempts in the literature to integrate
drones with the cloud and IoT. A conceptual model for the
Internet-of-Drones was presented in [1]. The proposed layered
architecture covers three major networks: cellular network, air
traf�c control network and Internet. Several general services
were provided for different UAV applications, namely surveil-
lance, delivery, search and rescue. The paper did not present
any implementation or realization of this architecture and only
outlined general concepts of the IoD. In our paper, we present
both an architecture for IoD and its implementation which are
validated through simulation and real world experimentation.

In [11], the authors proposed a SOA model for collaborative
UAVs. A mapping between cloud computing resources and
UAVs' resources was presented. Furthermore, essential ser-
vices and customized services were proposed. The paper only
provides a high-level description of the system architecture,
components and services without any speci�c details on their
implementation. The same authors extended that work in [12]
and designed a RESTful web services model by following a
Resource-Oriented Architecture (ROA) approach to represent
the resources and services of UAVs. In addition, a broker that
dispatches mission requests to available UAVs was proposed.
The broker is responsible for managing the UAVs, their mis-
sions and their interactions with the client. A small prototype
was implemented on an Arduino board that emulates a UAV
and its resources. However, the experimental prototype is very
limited as it does not demonstrate suf�cient proof of concept
on real drones, but on a simple Arduino board. Thus, the
feasibility of the approach was not effectively demonstrated.

In [13], an experimental testbed for an emulated Arduino
UAV system was used, and several sensors were used (includ-
ing temperature and humidity, ultrasonic for distance measure-
ments). RESTful web services were de�ned and implemented
for manipulating each type of sensor through a Web inter-
face. The authors evaluated the performance of their system.
However, the experimental system remains limited in terms
of validating the scalability issues, and also the experimental
setup only applies to a small local network. In our paper,
we consider real drones communicating with the MAVLink
protocol [8] to validate our architecture.

Bona, Basilio [14] presented a cloud robotic platform called
as FLY4SmartCity that is based on ROS. The proposed archi-
tecture contains basic features to create instances of drones as
nodes where they are handled by platform manager in terms
of planning and event management. The platform manager is
supported by the service manager for the provision of services
in case of events, while the rule manager handles the actions.

The work in [15], presents a cloud robotics platform for
emergency monitoring based on ROS. It allows leveraging the
advantages of the cloud to of�oad the data and computational
capabilities. The layered architecture provides services built on
API provided by applications built of drone capabilities and
adaptation. Drones form the physical layer of the architecture.

Authors in [16] presented an IoT architecture named “VIR-

TUAL RESOURCES”, which allows the developers to relocate
slices of the application to any intermediate IoT device through
the concepts of virtual sensor and virtual actuator using
a RESTFUL interfaces. VIRTUAL RESOURCES provide
several bene�ts to developers, including better utilization of
network resources that results in higher energy ef�ciency and
lower latencies, a simpli�cation of the application logic at
the Cloud, and better separation of concerns throughout the
development process.

Aiming at making the drones available for surveillance
round-the-clock, the work in [17], proposed an IoT-based com-
mand and control mechanism along with automatic landing
system. The system composed of four types of software: 1)
main console server and controller, 2) communication relay
for drones, 3) �rmware of the landing-�eld to control active
gripper and wireless charging, 4) mobile users application
which receives the drones video from the server in real-time.
The drones can communicate directly via the internet with the
main server and each of them has a low-cost LTE module.
The server displays the received videos from the drones to
the administrator and provides the image to the users mobile
device at the same time.

The work in [18], proposed new bi-directional packet ori-
ented communication protocol between the UAV and the base
station named “UranusLink”. UranusLink is designed for only
small data �ow such as control commands to the UAV and
telemetry data from it. Also, it provides both unreliable and
reliable transfer mechanism that allows secure connection and
packet loss detection.

In the context of monitoring crops in agriculture, the work
in [19] presented a vision-based technique that adapts low-cost
commercial camera and can be used with rotatory wings or
�xed-wing drones for visual analysis of the soil to recognize
the �elds plowing type. To achieve high-�delity, the classic
sensor fusion technique involving GPS integrated with Inertial
Navigation Systems (INS) localization estimation adapted to
be used along with standard Extended Kalman Filter solution
for navigation.

We alert the readers who are not aware of the MAVLink and
the ROSLink protocols that a detailed background description
of both is available in the appendices of this paper.

III. I NTERNET-OF-DRONES

A. Overview

The Internet of Drones (IoD) can be de�ned as an ar-
chitecture for providing control and access between drones
and users over the Internet. In fact, Drones are increasingly
becoming commodity items widely available off the shelf, thus
allowing their use by any user to �y various missions using
multiple drones in a controlled airspace. Whereas technology
is helping the miniaturization of a UAV's onboard components
including processors, sensors, storage as well as improving
the battery life, the limitations of these components hinder
the performance and lower the expectations. IoD provides a
vehicle for coupling of Internet of Things as well as cloud
robotics technologies to allow remote access and control of

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

drones as well as the seamlessly scalable computation off-
loading and remote storage capabilities of the Cloud.

There are various challenges associated with the implemen-
tation of IoD. Reliable point-to-point communications, mission
control, seamless wireless connectivity, effective utilization of
onboard resources are just a few of the concerns. Furthermore,
Quality of Service (QoS) stands-up as a crucial issue that
must be considered in the design of the IoD. Security is also
an important challenge as access to drones' resources must
be authenticated and secured. In addition, the IoD system
must be immune to attacks like drone impersonation, �ooding,
snif�ng, etc. Another important aspect is to hide the underlying
technical information from the user which is possible by using
a service-oriented approach, typically implementing SOAP or
REST Web services [20]. Users do not need to be technically
savvy in order to program or develop missions, rather the web
services based system would provide easy access to onboard
resources through various APIs.

B. Objectives

In this paper, Dronemap Planner provides a solution to
seamlessly accessing drones resources over the Internet and
control their mission. We consider Dronemap Planner as a
platform allowing users to access and control multiple drones
over the Internet. Using a web based interface, a user can de-
ploy a virtual drone with speci�c tasks including, (1) assigning
a mission with a planned path over multiple waypoints, (2)
allocating tasks at various waypoints including but not limited
to capturing images, weather sensing information, etc., (3)
transmitting captured data to the cloud for further processing in
addition to (4) continuously updating the location and status
of the drone to the user. At the time of mission initiation,
each virtual drone is mapped to a physical drone available in
a warehouse, which connects to the Dronemap Planner and
performs the associated tasks. Using the Dronemap Planner,
several virtual missions can be planned ahead of time for a
limited number of physical drones available. The IoD provides
a platform for various applications in security, surveillance,
disaster recovery, etc. and promises ef�cient use of limited
resources available.

The main objectives of an IoD management system, like the
Dronemap Planner that we propose in this paper, include:

� to provide seamless access to and real-time control and
monitoring of drones for end-users

� to of�oad extensive computations from drones to the
cloud

� to schedule the missions of multiple drones dynamically
� to provide a collaborative framework for multiple drones
� and to provide cloud-based programming APIs for devel-

opers to develop drones' applications through the cloud.

C. Motivating Scenarios

To motivate the need for IoD and in particular for the
Dronemap Planner cloud-based system, let us consider the
following illustrative scenario: a team of multiple autonomous
UAVs deployed in an outdoor environment in their depot

waiting for the execution of certain missions. A user behind
the cloud de�nes a mission (e.g. visiting a set of waypoints)
and requests its execution. The user may either select one or
more virtual UAVs from the list of available UAVs registered
in the cloud, or may send his request to the cloud to auto-select
one or more UAVs to execute the mission. Each virtual UAV
is mapped to a physical UAV by the cloud using a service-
oriented approach, typically implementing SOAP or REST
Web services [20]. Once the mission request is received, the
selected UAVs execute the mission and report in real-time the
data of interest to the cloud layer, which in turn will store,
process and forward synthesized results to the user.

Another use case is when the user selects locations of
interest to visit on the map and sends them to the drone.
By default, the drone will execute the mission by visiting
the locations according to their sequence number. However,
this might be not the optimal way to visit the waypoint. The
problem becomes even more complex when there is a need
to optimally assign multiple locations to multiple drones. By
default, the drone will execute the mission by visiting the
locations according to their sequence number. The sequence
number is typically de�ned by the order of the waypoint
selection of the end-user. However, this order might not be
optimal in terms of energy, time or traveled distance. This
problem can be seen as the traveling salesman problem (TSP),
where an optimal tour must be determined to optimize the cost
of the mission. This problem is known to be NP-Hard and the
computational time grows exponentially with the number of
target locations. De�nitely, the execution of the TSP algorithm
on the drone is not ef�cient, as low-cost drones have stringent
computation capabilities and thus cannot execute such time-
consuming algorithms. In addition, low-cost drones operate on
batteries, thus, the execution of such resource-demanding and
power-consuming algorithms will quickly consume available
energy. The problem becomes even more complex when there
is a need to optimally assign multiple locations to multiple
drones, which maps to a multiple traveling salesman problem
(MTSP) even harder than the TSP.

So, a cloud-based system will de�nitely help in of�oading
such extensive computation from the drone to optimize the
mission execution, and thus extending the energy lifetime of
the drone.

Furthermore, consider a mission being executed by multiple
drones, where one or more drones fail to complete visiting
their locations of interest. In this case, it is important to deal
with such a fault and to make a recovery plan. Using a cloud-
based management system, it is possible to detect these kinds
of faults and to act accordingly by re-scheduling the missions
of the drones in real-time to cover the waypoints not visited
by the faulty drones. The same situation of re-scheduling
happens when a new event occurs and requires the visit of
new locations of interest by the drone. Using a cloud-based
management system has the bene�t to promote a collaborative
environment between the drones through the cloud system so
that to dynamically update their missions in real-time based
on current status of the system.

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

Dronemap Planner considers scalability of service allowing
the system to scale with increased number of UAVs generating
increasingly large sets of data. The use of cloud computing
infrastructure will allow meeting this requirement by adopting
an elastic computing model. Additionally, the correct operation
of the integrated cloud-UAV system does not only depend
on guaranteeing message delivery, but equivalently important
is the delivery of messages within bounded end-to-end time
frames. Excessive delays or jitters on the message may result
in delaying decision making and subsequent actions on critical
events, adversely affecting the QoS. Thus, QoS stands-up as
a crucial issue that must be considered in the design of the
integrated cloud-UAV system.

IV. D RONEMAP PLANNER ARCHITECTURE

In what follows, we present the general system architecture,
then the software architecture of Dronemap Planner, and we
discuss in details its different components. For background
information about the MAVLink and the ROSLink protocols,
the reader may refer to the appendices of this paper.

A. General System Architecture

Figure 1 presents the architecture of Dronemap Plan-
ner cloud system addressing the above functional and non-
functional requirements.

HDFS!

Big Data Tools!C
loud Interfaces

!

W
eb S

ervices!

Applications !

C
lo

ud
 P

la
tfo

rm
 fo

r
S

to
ra

ge
 a

nd

P
ro

ce
ss

in
g

La
ye

r!

Data Analytics Apps !
Data Collector!

UAV Control!

UAV Status
Monitor!

UAV Services
Management!

Network !
Dispatcher !

U
A

V
 C

loud Layer!

Web Services! Network Interfaces!
Hardware!

ROS!

C
loud Interfaces

!

W
eb S

ervices!

Applications !

U
A

V
 Interfaces!

Fig. 1. DroneMap Planner System Architecture: Abstraction Layers

� The UAV Layer: The UAV represents a set of resources
exposed as services to the end-user. The UAV has several
layers of abstractions. On top of the hardware, ROS and
MAVLink provide both two different means as the �rst
layer of abstraction that hides hardware resources (i.e.
sensors and actuators). Robot Operating System (ROS)
is one of the widely used middleware to develop robotics
applications and represents an important milestone in
the development of modular software for robots. In fact,
it presents different abstractions to hardware, network
and operating system such as navigation, motion plan-
ning, low-level device control, and message passing. On
the other hand, MAVLink is a communication protocol
built over different transport protocols (i.e. UDP, TCP,

Telemetry, USB) that allows to exchange pre-de�ned
messages between the drones and ground stations, which
provide a high-level interface for applications developers
to control and monitor drones without having to interact
with hardware. These two alternatives allow software
developers to focus more on the high-level development
without having to deal with hardware issues.

� Cloud Services Layer: Three sets of components are
de�ned:(1) Storage components:This set of components
provides storage for streams of data originated from
UAVs and captured by this layer. Each UAVs environment
variables, localization parameters, mission information,
and transmitted data streams including sensor data and
images with time-stamps are stored in the cloud either
in regular SQL database or in a distributed �le system
(i.e. HDFS, NoSQL database such as HBase), depending
on the application's requirements. Storage in distributed
�le systems helps to perform large-scale batch processing
on stored data using tools like Hadoop Map/Reduce.
There are two types of data processing on cloud comput-
ing infrastructure: (i.) Real-time stream processing: the
cloud processes incoming streams of data for detecting
possible critical events or threats that require immediate
action or performs dynamic computation in a distributed
environment. Examples of real-time stream processing
could include processing sample images received from
the UAV to detect possible threat (i.e. intruder into an
unauthorized area) or also processing sensor data (e.g.
high temperature value in case of �re). Another possible
application real-time processing might be required when
new events are detected and require the dynamic re-
scheduling of drones' missions to ensure the optimality of
the missions' executions after considering the new events.
(ii.) Batch processing: Incoming data is stored in the
HDFS distributed �le system for increased reliability as
well as post-processing using a distributed parallel com-
puting approach. Batch processing can be used to look for
particular events into the log �le, for example, how many
intruders detected in an unauthorized area over a certain
period of time. The cloud services layer implements a
cluster of compute nodes runningHadoop HDFS. All
data is stored in various tables using NoSQL in Hbase. (2)
Computation components:Various computation intensive
algorithms are deployed in the cloud. Image processing
libraries process stored data available in HBase to detect
possible event. In addition, Map/Reduce jobs running
on the Yarn cluster allow applications to run in parallel
reducing the processing time, therefore improving per-
formance. Additionally, Data Analytics algorithms can be
executed on the stored set of large scale data. (3)Interface
components:We de�ned three sets of interfaces as part
of this component. (ii.) Network interfacesimplement
network sockets and Websockets interface on the server
side. These provide listening to JSON serialized messages
sent from UAVs. In particular, Websockets are the most
appropriate protocol to reliably handle streaming appli-

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

cations. In the context of Dronemap Planner, MAVLink
messages are received from the drones through network
sockets (UDP or TCP), and then forwarded to the client
application through Websockets. The reason behind this
strategy design choice is that Websockets are supported
by all programming languages (e.g. Java, Python, C++)
including Web technologies. The use of UDP or TCP
sockets for streaming to the client will induce more re-
strictions to the development of Web clients applications.
(ii.) The Web Services interfacesallow clients to control
the missions of the drones and their parameters. Both
SOAP and REST Web Services are used to provide the
end-users and clients applications different alternative to
control and monitor the drones through invocation of Web
Services. While network interfaces are used to mostly
handle continuous streams, Web Services are used for
sending control commands to the drones and getting
information from the cloud.

� Client Layer : The client layer provides interfaces for
both end-users and drones' applications developers. For
end-users, the client layer runsDronemap client
side Web applications, which provide interfaces to the
cloud services layer as well as the UAV layer. Users
have access to registering multiple UAVs, de�ning and
modifying mission parameters and decision making based
on data analysis provided by the cloud. The application
allows users to monitor and control the UAVs and their
missions remotely. Front-end interfaces provide the func-
tionalities to the user to connect/disconnect, use available
physical UAVs and their services, con�gure and control
a mission and monitors the parameters of the UAV.
For developers, the client layer provides several APIs
for different programming languages to easily develop
drones' applications and interact with their drones.

B. Software Architecture

In this section, we present the Dronemap Planner software
architecture. We adopted a modular component-based software
promoting, where components are loosely coupled and each
component implements a speci�c behavior of the application.
In our architecture, we refer toagent as a drone, user or a
cloud.

1) Architecture Components:: Figure 2 shows the compo-
nent diagram of the software architecture. The software system
is decomposed into four main subsystems (or layers), each of
which contains a set of components. These subsystems are:

� Communication: This subsystem represents the basic
building block for network communications between the
drones, users and the cloud. There are two main compo-
nents, namely (i.) Network sockets and (ii.) Websockets.
On the one hand, Network sockets allow agents (drones,
users, and cloud) to exchange JSON serialized messages
between each other through the network interface using
sockets. The use of JSON message format is bene�cial
for interaction between heterogeneous systems as it is
platform-independent and less verbose than XML. On the

other hand, Websockets interfaces are used to handle data
streaming between the cloud and the user applications.
As explained above, we opted for the use of Websockets
technology because it is supported by different program-
ming languages including Web technologies.

� Proxy: This layer acts on top of the communication
layer and incorporate all the protocol-related operations
including message parsing, dispatching, and processing.
This layer supports two protocols. The �rst protocol is the
MAVLink communication protocol, which is the de-facto
standard for the communication between ground stations
and drones. The MAVLink protocol is based on binary
serialization of messages and operates on different trans-
port protocols, namely, UDP, TCP and serial. The second
protocol is the ROSLink protocol, which is a proprietary
protocol that we developed to ensure interaction between
a robot and a ground or control station. ROSLink is very
much inspired from the MAVLink protocol in the sense
that it implements a client in the robot that keeps sending
JSON serialized messages to the ground station.

� Cloud: The cloud layer is responsible for managing
all the computing, storage and networking resources of
Dronemap Planner. It is composed of four components,
namely (i.) Cloud Manager, (ii.) Storage, (iii.) Web
Services components and (iv.) Cognitive intelligence.
The central of the cloud layer is theCloud Manager
component, which orchestrates all the processes in
Dronemap Planner and links all other components to-
gether. It uses the interfaces provided byMAVProxy and
ROSLinkProxy components, in addition to the storage
component. On the other hand, it provides interfaces to
the Drone and Users components, so that they do have
access toMAVProxy, ROSLinkProxy and Storage
components. The main role of theStorage component
is to provide interfaces to store data in different storage
media including SQL/NoSQL databases and distributed
�le storage, i.e. HDFS. Different types of data need to
be stored, retrieved and accessed. For example, SQL
databases may be used to store information about users,
and their credentials, or also information about drones
and their missions. NoSQL databases (e.g. MongoDB)
are used for more unstructured data such as data collected
from the drones' sensors for further analysis. HDFS
storage can be used to store data that requires further
batch processing using distributed computing techniques,
like Map/Reduce. For example, data related to drones'
missions can be dumped from SQL or NoSQL databases
to HDFS to process it either with batch processing system
like Map/Reduce or real-time processing systems like
Storm, and extract useful information for dumped data.
TheCognitive Engine (CE) component aims at per-
forming computations on cloud data to reason, plan and
solve problems using arti�cial intelligence techniques.
For example, the CE component may include algorithms
for assigning multiple targets locations to multiple drones
or to a single drone to optimize their missions. This is

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

known as an instance or the typical traveling salesman
problem (TSP). Another example would be to process
received images or sensor data from drones using real-
time processing systems (e.g. Apache Storm) to detect
possible events or threats. In general, the CE component
will contain intelligent applications to provide smart
functionalities and reasoning.
The Web Services (WS) component is the main in-
terface between the Dronemap Planner cloud and the
client applications (i.e. users). It provides platform-
independent interfaces to end-users and leverages the
use of the service-oriented architecture (SOA) paradigm.
Both SOAP and REST Web Services are de�ned. The
REST API was designed to allow accessing cloud public
resources through simple HTTP requests. The SOAP API
was designed for a more formal and structured service-
orientation for remote procedure invocation, which is
basically used to send commands to the drone from the
client application. There have been long discussions about
the pros and cons of REST and SOAP Web Services
and the reader may refer to [20] for more details. In
our architecture, we opted for providing both types of
Web Services as interfaces with end-users to give more
�exibility to users.

� Drone: The Drone subsystem contains all information
related to drones and actions that could be performed
on them. TheDrone component representresourcein
the Dronemap Planner cloud. This resource is basically
accessed by client applications through Web Services. In
addition, theMAVAction component represents all the
MAVLink protocol actions that could be executed on the
drone including taking-off, landing, waypoint navigation,
getting waypoints list, changing operation mode, etc. The
Drone component maintains the status of the drone,
which is updated whenever a new MAVLink message is
received. In addition, it provides an interface to access
and modify the parameters of a drone. Note that the
cloud manager maintains a list of drones into a map data
structure, as mentioned above.

� User: The User subsystem contains information about
users that access the Dronemap Planner cloud. Each user
should be registered to the Dronemap Planner cloud to
have access to drones based on his pro�les and privileges.
A user might be able to control a single drone, or multiple
drones or all drones based on his privileges. The mapping
between drones and users is made through the Cloud
Manager during the registration of the user to the system,
and based on approval of the cloud administrator. There
are different possible strategies of mapping between users
and drones, namely: (i.) Single User / Single Drone,
where one user is allowed to access and control a single
physical drone, (ii.) Single User/Multiple drones, where
one user is allowed to access and control multiple phys-
ical drones, (iii.) Single User / Virtual Drone(s), where
one user is not allowed to control a physical drone, but
sends its request to the cloud, which will decide on which

drone(s) to execute the mission of the user. Each user
should have an access key that allows him to access
a certain drone resource over the cloud or to develop
applications for a particular drone resource. The access
to drone resources on the cloud is given to the users
either through SOAP and REST Web Services to execute
commands, or through Websockets to receive drones'
MAVLink data streams.

Fig. 2. Dronemap Planner Software Architecture: Component Diagram

C. MAVProxy/ROSLink

The MAVProxy is responsible for (i.) processing MAVLink
related messages received from the drones, (ii.) dispatching
messages to users through the Websockets protocol, (iii.)
updating the information of drones objects of theCloud
Manager . It is a multi-threaded server that was designed to
effectively handle MAVLink data streams and messages. At
the reception of a MAVLink message, a new thread will be
created to process that individual message and extract related
information, depending on the message type.

The ROSLinkProxy has the same functionalities as
MAVProxy, but it processes ROSLink messages instead of the
MAVLink message.

If the message received is theHeartbeat message for
a new drone (�rst message received from a drone), the
MAVProxy adds this drone into the map data structure of
drones maintained in the cloud manager. In the drones' map
structure each drone is identi�ed by a key that is composed of
(i.) the IP address of the drone, (ii.) the port number, (iii.) and
its system ID. This composite key will make sure that every
drone is identi�ed uniquely in the cloud, as it might happen
that two drones of different users use the same system ID. In
fact, the system ID is encoded in 8 bits only which allows a

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

total of 255 different system ID for drones, which limits the
scalability of the system, or will induce con�ict in recognizing
a particular drone using the same system ID of another drone.
The use of IP address and port number will de�nitely eliminate
this problem. However, the main drawback of this technique
is that the same drone will have a different key in the drones'
map each time it connects as it will likely have a new different
IP address and/or port number. If the drone already exists,
the MAVProxy updates the drone's attributes and parameters
in the drones' list. In fact, MAVLink messages periodically
carry information about different drone's attributes including
GPS location, heading, battery level, altitude, air speed, ground
speed, etc. Thus, every type of MAVLink message will update
a particular set of attributes of the corresponding drone of the
Cloud Manager.

In addition to processing messages, MAVProxy forwards
incoming messages received from its network interface to the
Websockets interface, which in turn forwards the message to
the corresponding client, with which a connection is open.
When a client connects onto the Websockets server of the
MAVProxy, a new session is de�ned and messages related to
the drone of interest will be forwarded to the client through
that open session. The use of Websockets is very useful in reli-
able streaming of MAVLink packets between the MAVProxy
and the clients. Not only it provides a uni�ed interface for
different programming languages, but also Websockets have
the advantage of handling clients' sessions effectively, natively
supported in the Websockets protocol.

D. Cognitive Engine

The Cognitive Engine embeds the intelligence of the cloud
of drones. It is the core component that reasons, plans and
solves problems. It can be seen as a big “remote brain” for
the drones. At abstract level, the CE is responsible for (i.) per-
forming intelligent mission planning for drones, (ii.) extensive
computations on the cloud, like image processing, (iii.) real-
time monitoring of events, like critical events detections with
Apache Storm, (iv.) batch processing and data analytics on
logged data.

In what follows, we present the design of a dynamic
mission planner (DMP) application and how it is integrated
as a module in the Cognitive Engine. Consider the case of
multiple drones to be assigned to multiple target locations
(i.e. waypoints) to be visited and then go back to their
original locations. This problem is an NP-Hard problem and
is known as the multiple depot multiple traveling salesman
problem (MD-MTSP) and several approaches were proposed
in the literature to solve it [21], [22]). The Cognitive Engine
provides the user with the service that determines the most
optimal allocation of waypoints based on his requirement,
while implementing one or some of the solving algorithms
on the CE component of the cloud. Current mission planners
such as QGroundControl, DroidPlanner, Tower and Universal
Ground Control Station (UgCS) do not incorporate a similar
intelligence functionality. Since the cloud has global knowl-
edge of the drones characteristics including their locations,

battery levels, speed, and the set of waypoints to visit (received
from the user), the dynamic mission planner can determine the
optimal assignment for such a con�guration.

More importantly, the dynamic mission planner incorporates
fault-tolerance and dynamically prepares a recovery plan in
case of a failure in executing the mission. By keeping track of
drones' missions during execution, the dynamic mission plan-
ner detects any anomaly and acts accordingly. For example, a
drone may crash and run out of energy during the execution
of its mission, this requires a real-time re-planning of the
missions of the other drones to visit the waypoints assigned
to the failing drone and not yet visited, and then the new
waypoints assignments will be sent to drones.

V. SECURITY CONSIDERATION

In this section, we will present security threats for Internet-
of-Drones that can affect Dronemap Planner cloud-based
drones management system and we will highlight possible
solutions to them.

Table I summarizes the identi�ed security threats against
our Dronemap Planner system, with the corresponding coun-
termeasures techniques. When drones are connected through
Internet, they are exposed to a multitude of threats and attacks
that may target the drone, the �ight controller, the Ground
Control Station GCS, the wireless data link or any combi-
nation of them [23]. Several risk factors that target the data
integrity, authentication, network availability and information
con�dentiality can complicate their operations and can further
prevent the accomplishment of their missions [24].

Dronemap Planner cloud involves different components.
Thus, attacks can occur at different layers: (1) The Proxy
Layer, (2) The Cloud Layer, (3) The Drone Layer.

A. Proxy layer

The Proxy Layer in the Dronemap Planner software ar-
chitecture supports the MAVLink protocol. It allows the
exchange of pre-de�ned messages between the drones and
ground stations. The MAVLink Protocol does not provide any
kind of security. There is no con�dentiality, nor authentication
mechanisms. The protocol communicates with drones over
an unauthenticated and unencrypted channel. Anyone with
an appropriate transmitter can communicate with the drone.
This means it is possible to inject commands into an existing
session. Thus, the MAVLink protocol is exposed to different
attacks, including:

� Spoo�ng: sending a false wireless control command,
using the data link, that appears to be from the drone
or from the ground control station. The attacker blocks
the communication between the UAV and the GCS and
begins commanding the drone herself. In order to mitigate
the risk of C2 data link spoo�ng, mutual authentication
is important.

� Jamming: An adversary disables the reception of control
signals from the ground control by the drone. The com-
munication between the drone and the GCS is blocked

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

and the aircraft to go into a lost link state. Implementing
fail-safe mechanisms can help mitigate the risks.

� Data interception: the signal messages are able to be
read by unauthorized parties. The data collected by
drones is transmitted back to the user or the cloud. Since
the connection used is not always secured. A hacker can
easily intercept and steal the data. Authentication and
encryption should be used on the link to mitigate this
risk and to guarantee the con�dentiality and integrity of
the exchanged data.

In fact, the MAVLink protocol is not secured and can be
hacked quite easily. It is crucial to design secure mechanisms
for authentication and encryption of MAVLink data streams
to avoid harmful attacks.

B. Cloud Layer

The Cloud Layer (refer to Section VI.B) contains several
components. (i.) Storage componentprovides storage services
for streams of data originated from UAVs. Data is stored in
the cloud either in regular SQL database or in a distributed �le
system (HDFS, NoSQL database). Database injection attacks
can target the cloud layer.

� SQL injection: Hackers exploit the vulnerabilities of
these databases and inject a malicious code in order to
bypass login and gain unauthorized access to backend
databases. If successful, hackers can manipulate the con-
tents of the databases, retrieve con�dential data, remotely
execute commands, or even take control of the web
server.

� NoSQL injections target “big data” platforms. These
platforms are vulnerable to threats because of the lack of
authentication, no support for transparent data encryption
and no support for secure communications. Data is sent
in clear and could easily be sniffed on the network.

(ii.) Web services (WS) component(REST and SOAP) allow
clients to control the missions of the drones and their param-
eters. Web services are also potentially exposed to underlying
vulnerabilities including: DOS attack, Message monitoring and
copying, Message source spoo�ng.

C. Drone Layer

Attacks on drones can potentially lead to taking control of
or crashing them. Examples of attacks are:

� Physical challenges:Drones are vulnerable to a mul-
titude of physical threats that can complicate their op-
eration and further prevent the accomplishment of their
missions. Their presence supposes an extra risk that
should be considered. The interference (animals, hu-
mans), the environmental conditions (wind, temperature)
affect the operation of UAV and may cause accidents.
Dynamic obstacles or the presence of civic constituents
such as trees, electric cables, and buildings are important
examples of such challenges. These threats can be evaded
using technology for recognizing adjacent air traf�c and
collision avoidance techniques

� GPS spoo�ng attacks: The basic idea in GPS spoo�ng is
transmitting fake GPS signal to the control system of the
drone, usually more powerful than the original GPS signal
coming from the satellite. As a result, the victim might
use the faked signals instead of the original ones. GPS
Spoofed signals are providing different wrong location
to the drone and let it changing its trajectory in order
to mislead the drone. GPS enables a drones navigation,
and due to non-encryption of the signals they can be
easily spoofed, which directly in�uences the operator
commands. This can possibly result in a drone crash.
Anti-spoof algorithms can help mitigate GPS spoo�ng
attacks.

� GPS jamming attacks: A drone which uses GPS could
be attacked by jamming the GPS signal, making it unable
for the drone to �x its position. Jamming aims to disrupt
all communication. Anti-jamming antenna selection and
orientation can help mitigate jamming attacks.

� Eavesdropping: A successful man-in-the-middle attack
against a drone allows an attacker to know all of the
commands sent from the GCS to the drone, and enables
the attacker to monitor all telemetry sent by the drone
because of the violation of the con�dentiality of the
drone.

� Hijacking: A successful man-in-the-middle attack
against a drone would also enable an attacker to transmit
unauthorized commands to the drone and take control
of it from the GCS (i.e., hijacking) due to the integrity
violation of the drone.

� Denial-of-Service: A Denial-of-Service (DoS) attack
against a drone results in the UAV becoming unresponsive
to the GCS, or vice versa, due to the violation of the
system's availability.

Finally, these attacks can be classi�ed into four general cate-
gories: Interception (Attacks on con�dentiality), Modi�cation
(Attacks on integrity), Interruption (Attacks on availability)
and Fabrication (Attacks on authenticity). Interception can be
achieved by eavesdropping on channels. This facilitates traf�c
analysis and disclosure of message contents. The Dronemap
planner system should employ mechanisms to mitigate unau-
thorized disclosure of the telemetric and control information.
Different encryption standards such as AES [25] can be used
for encryption of the data link. Modi�cation means replacing
an original message to a particular service with a modi�ed
one. Integrity can be checked by the use of hash functions,
message authentication code and Authenticated encryption
cryptographic primitives [26]. Interruption means that a mes-
sage from/to a particular service is blocked. It includes Routing
attack, Channel jamming, Denial of service. Countermeasures
against these type of attacks are Strong authentication and
incident detection and reporting mechanisms [26]. Fabrication
includes message forgery, UAV spoo�ng, and base station
spoo�ng. Authenticity is ensured by the use of passwords,
which may involve a certi�cation agent [24].

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

TABLE I
SECURITY THREATS AGAINSTDRONEMAP PLANNER AND COUNTERMEASURES

Categories Threats Countermeasures

Attacks on Con�dentiality Eavesdropping Encryption of the data link, AES
Man-in-the-middle attack End-to-end encryption

Attacks on Integrity,availability

GPS spoo�ng and jamming attack Anti-spoo�ng techniques,Anti-jamming antenna
C2 Data link jamming Fail-safe mechanisms, authentication

Denial of service Anomaly-based intrusion detection systems, fail-safe mechanisms
C2 Data link spoo�ng Mutual authentication, (PKI) certi�cates

Attacks on availability Obstacles and civic challenges Collision avoidance techniques, air traf�c management
Environmental conditions AI approaches

Attacks on Con�dentiality,availability,authenticity,integrity Vulnerabilities of MAVLink Authentication and encryption mechanisms
Attacks on integrity Hijacking Hash functions, MAC, Authentication, encryption

Attacks on authenticity UAV spoo�ng or jamming Authentication and encryption of the data, password
Attacks on con�dentiality and integrity C2 data link interception Authentication and encryption

VI. A PPLICATIONS WITH DRONEMAP PLANNER

Dronemap Planner supports different types of applications
of drones/robots over the Internet. We have developed several
real-world applications with Dronemap Planner to demonstrate
the effectiveness of DP in enabling new IoT applications.

For all applications that follow, DP was deployed into
a DreamCompute cloud instance provided by DreamHost
service provider. It is also possible to deploy it in any other
cloud or public IP server like Amazon AWS or Azure. We
used a minimal instance of the DreamCompute with 80 GB
of storage, 4GB of RAM, and 2 Virtual CPU. As Dronemap
Planner is launched, all of its services are deployed and are
accessible from a public IP address with at a pre-de�ned port
number.

A. Web-based Control and Monitoring of MAVLink Drones

The primary objective of Dronemap Planner is to control
drones and monitor them through the Internet. A video demon-
stration of Web-based drone mission control and planning is
available in [27].

We developed a Web client interface that interacts with DP
using Web Services and Websockets interfaces. Web Services
calls were used to invoke remote services on the cloud, like
getting the list of available drones connected to the cloud.
Figure 3 presents the list of active drones for an administrator
user. The �gure shows three active drones that the user can
control and monitor. The drone list interface provides the
user with information of every connected drone including the
IP address, port number, and the MAVLink System ID. In
addition, the physical address of each drone is shown based
on its GPS coordinates. Google Geolocation Web Services API
were used to map the physical location addresses with GPS
coordinates. The following video demonstration [28] shows the
drones' automatic detection and removal feature of DP. When
a drone connects to the Internet, it is automatically displayed
in the web interface that periodically invokes the SOAP web
service methodgetDronesList() . On the cloud side, the
Watchdog process is keeping track of connected drones by
checking theirheartbeat messages. If a certain number
of consecutiveheartbeat messages do not reach the cloud
from a drone, the latter is considered as disconnected and is
automatically removed from the drone list. The time interval

for listening to consecutive lostheartbeat messages is set
by the DP administrator in the DP con�guration �le to decide
about whether the drone is still active or disconnected. We
used 5 seconds in our experiments.

Once the user connects to a drone from the list of available
drones, he will be redirected to the drone control interface
illustrated in Figure 4. Figure 4 depicts the Dronemap Web
graphical user interface.

The web interface contains all information about the drone,
including altitude, air/ground speeds, heading, battery level,
location address based on GPS coordinates, and GPS �x
status. These real-time data are received through the JavaScript
Websockets client interface that connects to the Websockets
interface of the DP. This ensures real-time updates of the
Web interface with the status of the drone, and a reliable bi-
directional communication between the Web ground station of
MAVLink streams and the MAVProxy through the Websockets
protocol. A comprehensive JavaScript/Ajax library was devel-
oped to parse and process incoming MAVLink messages and
update the Web interface in real-time.

In what concerns control commands, the Web ground station
allows the user to change the �ight mode, arm/disarm the
drone, take-off and landing, navigate to a waypoint in a
guided mode, load and save a mission, execute a mission in
autonomous mode, and return to launch. A mission refers to
visiting a set of waypoints. The Web ground station allows
to add and remove waypoints to a mission and save it to the
drone, through DP. All these control actions are performed
through the SOAP Web Services interface using remote
method invocation. For example, to take-off, a Web service
client invokes the take-off method of the DP Cloud Man-
ager Web Services calledMAVLinkControllerService .
Figure 5 presents an excerpt from the WSDL (Web Service
Description Language) document.

The use of Web Services provides much �exibility consid-
ering that it is platform-independent. In fact, it is possible to
access DP cloud resources through Web Services using any
programming language such as Java, C++, Python, etc.

Technical note: :For security purposes, current browsers
do not allow to use JavaScript for directly invoking remote
SOAP Web Services methods. This is a known issue that
prevents from directly invoking Web Services methods through

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

Fig. 3. List of Drones on Web Ground Station

Fig. 4. Dronemap Web-based Ground Station

client-side scripting. We overcome this problem by developing
using PHP a proxy SOAP client interface that invokes the
SOAP Web Services of the DP Cloud Manager. As such, the
parameters of the remote methods are sent from the browser in
JavaScript using a typical Ajax GET request to the PHP SOAP
client page, which prepares the corresponding SOAP message
using the received parameters, invokes the Web service and
returns the result to the browser through Ajax response.

The Web ground station allows to de�ne missions for the
drones in real-time, change the mission dynamically by adding
and/or removing waypoints as required, navigate to a particular
waypoint inGuided mode.

It also to be noted that Dronemap Planner is able to track
the communication quality between the drone and the cloud
and visualizes it in the web interface. Two types of link
quality estimators are used, namely, short-term and long-
term link quality estimators, using an exponentially weighted
moving averages over different time windows. The link quality
information is important to make sure about the reliability of
the drone-cloud connection before starting any mission and
allows the cloud to select drones with good communication
qualities, and also to take preventive actions if a drone
communication quality drops over time and more generally
ensures contingency management.

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

Fig. 5. Dronemap Web-based Ground Station

B. DroneTrack: Real-Time Tracking using Drones

DP cloud offers great potential for developing new Internet-
of-Drones applications thanks to its open software interfaces
and service-oriented architecture design.

DP was used to develop, DroneTrack, a follower application
which performs real-time tracking of moving objects through
the cloud using their GPS coordinates. The application consists
in a moving target object (e.g. person, vehicle, etc.) that is
being tracked in real-time by a drone. The moving object
periodically sends GPS coordinates using a mobile application
to the DP server, which forwards it to the drone.

The DroneTrack follower application was developed as
an extended software component into DP cloud architecture.
The Follower component de�nes software Web service
interfaces to expose its functionalities as SOAP Web Services
to the client application from which it receives commands and
GPS coordinates of the target object. In addition, it interacts
with the Drone and MAVProxy components of DP to send
GPS navigation commands to the drone. The Follower Web
Services methods are exposed in theApplicationWS com-
ponent, which as a SOAP Web service module that exposes
all applications services, including the Follower application.

Figure 6 presents the DroneTrack Follower application
sequence diagram, and Figure 7 shows the follower client
mobile application.

More speci�cally, the follower application has �ve Web
Services methods available for the end-user client applications,
which are as follow:

� Follow Request web service method:this method allows
a user to send a follow request to the cloud. The request
has as parameter the current location of the user to
track. Once the request is received, the follower cloud
application will search for an available drone among all
drones registered in the cloud and select the one that
will minimize the cost of the mission and with suf�cient
energy. In our current implementation, we consider the
cost as the distance to the person to follow; i.e. the closest
drone to the person will be selected and allocated for the
tracking mission. It is possible to consider other metrics
for the cost to select a drone namely the remaining energy,
the type of drone, availability, ...

Moving object Cloud Drone

SendFollowRequest

Drone Allocated

SendStartTracking

SendNewGPSLocation

SendNewGPSLocation

Stop Motion

SetGuideMode

sendTakeoff

forwardLocationToDrone

forwardLocationToDrone

returnToHome

Fig. 6. Follower Application Sequence Diagram

� Cancel Follow Request web service method:The user
can cancel the request at anytime before the tracking is
started, which release the allocated drone and make it
available.

� Start Tracking web service method:When the user starts
the tracking, the drone switches to theGUIDED �ight
mode, arms its motors (if not), and �ies to the speci�ed
altitude, then heads towards the location of the moving
object. As long as the user moves, new GPS coordinates
are sent to the drone in real-time to track it, if the
tracking is enabled. Technically, the mobile follower
client application opens a Websockets connection with
DP cloud to exchange the GPS coordinates in real-time.
On the follower client application side, the Websockets
inbound stream receives the GPS location of the drone
in real-time, and updates it in the Web interface using
Google Maps so that the user can track the location of
the drone.

� Stop Tracking web service method:When the user cancels
the tracking, the drone will stop the tracking mission and
then returns to its home location and becomes available
for other missions.

� Enable/Disable Tracking web service method:this com-
mand allows the user to enable or temporarily disable
the tracking without completing the mission. When the
mission is disabled, the drone will still be �ying and
allocated to the user, but it will not track its new GPS
locations until the tracking is enabled again.

C. Drone Programming API

The development of drones' applications is typically re-
stricted to embedded systems' engineers who should have
suf�cient knowledge of drones hardware, drivers, and their

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

User Cloud Gapter

SendLinkRequest

Drone Linked

SetGuideMode

sendTakeoff

sendCommand

SetGuideMode

sendTakeoff

sendCommand

Send ROSLink messages

Send ROSLink messages

Send ROSLink messages

Send ROSLink messages

Fig. 10. ROSLink and Gapter

its performance. The experimental scenario of the tracking
application consists in tracking a moving person with a real
drone at the Football �eld in Prince Sultan University as shown
in Figure 11.

We used our custom built drone, a 450 mm quadcopter
with DJI F450 Frame equipped with a Navio2 autopilot on
top of a Raspberry PI 3 single board computer. Raspberry PI
3 has Quad Core 1.2GHz Broadcom 64-bit CPU, with 1GB
of RAM and MicroSD card for storage. It has an embedded
WiFi and Bluetooth interfaces. Navio2 autopilot board is a
drone controller hardware that is equipped with the UBlox
NEO-M8N embedded GNSS receiver to track GPS signals
with an external antenna, while allowing the connection of
external GPS devices in its UART port. It has a dual IMU with
two 9 degree-of-freedom IMUs, namely the MPU9250 and
LSM9DS1. Each IMU contains an accelerometer, a gyroscope,
and a magnetometer which are fused together to estimate drone
acceleration and speed. The video demonstration of this proof-
of-concept is available at [32].

The drone connects to Dronemap Planner through a 3G
WiFi router to which its streams its status and receives
command through MAVLink messages. The user is connected
to the cloud using a mobile device with 3G connection,
sends tracking requests, and updates its GPS locations at 1Hz
frequency.

It has to be noted that commercially-available drones typi-
cally create their own ad-hoc network. In this case, the client
application needs a point-to-point connection with the drone,

and this prevents it to connect to the Internet. In our case,
we have changed the network con�guration of the Navio2
autopilot (similar to other autopilots like Erle Brain) so that
it connects to an infrastructure network (i.e. a 3G/4G WiFi
router), to guarantee Internet connectivity. This is one of the
reasons why we used Navio2 as autopilot since it enables
connection with the Internet. For a comprehensive tutorial
on how to set the network con�guration of the autopilot, the
reader may refer to our tutorial in [33].

Drone

moving person with
mobile phone

tracking distance

Google Map View

Mobile App

Fig. 11. Experimental environment

!"#$%&

!#!'&

!!#$(&

)#'!&

!*#'$&

*#$%&

+%#*%&

0

5

10

15

20

25

30

35

40

1 11 21 31 41 51

,-./0123&!4&52670/-.&8.79../&513/.&0/:&;0<=2/>&?.163/&@A.7.1B&

Initial state
Drone moves

towards the target
from home

Start Tracking Mission
Drone starts tracking

the walking/running person

walking
window

running
window

stopping
window

Network
disconnection

window

tracking
window

End Tracking
Mission

Time

D
is

ta
nc

e
| S

pe
ed distance (m)

speed (km/h)

Fig. 12. Tracking Distance vs. Time

B. Results

Figure 12 shows the results of the experiments. Initially, the
drone was located at home location 20 meters away from the
moving person. Then, when it received the tracking request, it
moved towards the moving person until �ying on top of him
at the same location. When the moving person was walking
at slow speed, the tracking distance was below 4 meters in
average, and during the running time window, it increased to
11.82 m. It is observed that speed (blue curve) and tracking
distance (black curve) are correlated. The loss of connection
in the stopping window was due to the mobile phone going
into a sleep mode. This resulted in interrupting the tracking
mission and tracking distance reached 34 meters.

Figure 12 shows the tracking window of Scenario 1 involv-
ing a walking person and a real drone. Figure 13 shows the
cumulative distribution function of the tracking distance during
the tracking window shown in Figure 12.

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

0 2 4 6 8 10 12
Tracking Distance

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

f T
ra

ck
in

g
D

is
ta

nc
e

Empirical CDF of the Tracking Distance

CDF User Speed
CDF Tracking Distance

Fig. 13. CDF of the Tracking Distance

The correlation between the speed and the distance can be
clearly observed when comparing the blue curve of the speed
and the black curve of the tracking distance in Figure 12.

At �rst, the person starts walking in the football �eld, he
abruptly starts running for a short period and then resumes
walking. The running window in Figure 12 shows an increase
of the distance up to 11.82 meters, then abruptly, the distance
decreases to 5.71 meters as soon as the moving person starts
walking back, �nally the distance goes back to 10.78 meters
when running. The gap between the two curves represents the
network delay as the drone will respond to new location and
move towards it as soon as a new GPS location is received by
the drone. The coef�cient of variation of the tracking distance
is as high as 0.86 which is due to the variation of the speed
in walking and running during the experiments.

We conducted other experiments with a person moving
with a slow constant speed (below 5 km/hour) and results
are illustrated in Figure 14, which presents the CDF of the
tracking distance.

It can be clearly observed that the tracking distance is
strictly lower than 4 meters in 90%, with an average tracking
distance of 3 meters.

In summary, the results demonstrate that Dronemap Planner
is a cloud robotics solution that is able to provide an acceptable
quality of service for soft real-time applications. The tracking
accuracy can further be improved by increasing the frequency
of updating GPS coordinates of the moving person and con-
trolling more the end-to-end delays.

We note that it is possible to improve the accuracy of
tracking application and compensate more the delays by
adding additional sensors like cameras and using �ltering
techniques (like extended Kalman �lters) for sensor fusion to
reduce the measurement noise and use predictions in addition
to measurements.

0 1 2 3 4 5 6 7 8 9 10
Distance (meters) and Speed (Km/H)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f T
ra

ck
in

g
D

is
ta

nc
e

(A
ll

R
un

s)

Empirical CDF of the Tracking Distance for Slow Speed Scenario

User Speed (Slow Speed)
Distance (Slow Speed)

Fig. 14. CDF of the Tracking Distance at Slow Constant Speed

C. Discussions on Real-Time Challenges of the Internet-of-
Drones

Controlling any real-time system over the network will
impose that the network provides a reliable quality of service,
otherwise, the real-time system will not operate correctly. This
is a common fact for all networked control systems, including
the Internet-of-Drones.

When it comes to controlling drones over the Internet,
the same challenges remain open for such a control, but we
differentiate between two situations: (1) hard real-time control,
(2) soft real-time control. Hard real-time control will require
zero fault and zero deadline misses, otherwise the system may
crash. These constraints impose the usage of a very reliable
and high quality-of-service network. For example, controlling
a drone using a joystick over the Internet may be very risky
as missing one command, or having a command with an
excessive delay may result in crashing the drone against a
wall. This can be overcome by implementing a smart onboard
autonomous system on the drone to take appropriate actions to
avoid crashes when a command is not received (e.g. collision
avoidance systems).

On the other hand, the control of drones over the Internet
may impose soft real-time constraints or even no real-time
constraints. For example, sending a list of waypoints to the
drone, and then �ying it in autonomous navigation mode with
passive monitoring, does not impose any real-time constraints,
as the Internet will be used simply to deliver of�ine commands
to the drone. Another example, would be the tracking appli-
cation that we presented in the paper which involves soft real-
time constraints, as missing some messages will just result
in a temporary increase of the tracking error, but will not
cause any harm or crash to the drone system. In summary,
the impact of the latencies and delays on the performance
of the Internet of drones depend on different parameters
including the strictness of the real-time constraints, the type of

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

application, the quality of service provided by the network, and
the cloud processing delays. With the exponential evolution
of networking infrastructure, the use of cloud robotics for
hard real-time control applications will become possible in
the future. This area is an open research topic which requires
more investigations.

VIII. CONCLUSIONS

In this paper, we proposed Dronemap Planner, a cloud-based
management system for robots and drones over the Internet-
of-Things. Dronemap Planner is a comprehensive framework
that over the horizon for multiple IoT applications using
drones. We presented several applications, namely real-time
tracking, and controlling and monitoring drones and robots
over the Internet. We also discussed the concept of Internet-of-
Drones and its security aspects. The performance of Dronemap
Planner was also evaluated in terms of real-time guarantee.
It was demonstrated that Dronemap Planner exhibits good
performance for real-time applications.

One of the potential usages of Dronemap Planner is in the
context BVLOS (Beyond Visual Line of Sight) operations of
drones which represents the next major challenge for commer-
cial applications using drones, such as delivery, surveillance,
In fact, Dronemap Planner allows to remotely control and
monitor the drones anywhere and anytime without having to
be in the visual light of sight with the drone. However, this
induces security threats and safety risks that must be taken into
account. One of the initiatives in this respect is that NASA
has established UAS Traf�c Management (UTM) system to
ensure safe operation of drones. Dronemap Planner helps
in implementing these UTM regulations to ensure the safe
operation of drones. In fact, Dronemap Planner maintains real-
time status data about drones during their missions and can
apply law enforcement and regulations on drones while �ying.
For example, it is possible to control the airspace where the
drone is allowed to �y and apply geofencing constraints on the
drone mission in real-time. It is even possible to adopt adaptive
geofencing based on the feedback received from drones and
current circumstance during �ight operations.

Furthermore, the integration of blockchain technology with
drones for the authentication of drones is a promising research
direction as authentication and privacy of drones messages is
still an open problem, in particular since Dronemap Planner
operates on cloud premises.

We are currently working towards extending Dronemap
Planner in several aspects. First, we aim at using DP for multi-
drone task allocation by coordinating the tasks of multiple
drones during critical missions. We are also investigating how
to secure the access to drones and to the Dronemap Planner
cloud to mitigate security threats that might compromise the
safety of operations of drones during their mission. In fact, the
current speci�cation of the MAVLink and ROSLink protocols
are totally insecure and this imposes a serious problem towards
the deployment of drones in real applications.

APPENDICES

A. The MAVLink Protocol

Micro Air Vehicle Link (MAVLink) is a communication
protocol for small unmanned vehicles. MAVLink was released
by Lorenz Meier in 2009 under LGPL license. It speci�es a
set of messages that are exchanged between a small unmanned
vehicle and a ground station. One of the main reasons for the
wide use of MAVLink by many ground stations and autopilots
is that it has a stable message format. One of the most
advanced and reliable autopilots that support the MAVLink is
Ardupilot. This autopilot is capable of controlling any vehicle
system, from airplanes, multirotors, and helicopters, to boats
and even submarines. Ardupilot supports several �ight modes
for drones, including:

� STABILIZE (MANUAL): allows to control the vehicle
manually using an RC controller.

� ALT HOLD: known asaltitude hold mode, where
the drone maintains a �xed altitude, while the user
controls the roll, pitch and yaw.

� LOITER: attempts to maintain the current location,
heading and altitude. Loiter means ``stand or wait around
idly or without apparent purpose''. This mode requires
either a GPS (for outdoor navigation) or optical �ow
sensor (for indoor navigation) to get and maintain the
position.

� LAND: allows the drone to land to ground.
� RTL: also known asReturn-To-Launch . It navigates

the drone from its current location to hover above the
home location, and then to land.

� GUIDED operatesonly with a GPS and allows to send
the drone to a GPS coordinate dynamically through the
ground station.

� AUTO: in Auto mode the drone follows a pre-
programmed �ight path stored in the autopilot, which
consists of a set of waypoints to visit.

All MAVLink messages contain a header appended to every
data payload of the message. The header contains information
about the message while the payload contains the data carried
out by the message. The total MAVLink message has a length
of 17 bytes, which includes 6 bytes for the header, 9 bytes for
the payload and 2 bytes for the checksum. The checksum is
intended to verify the integrity of the message and that it was
not altered during its transmission. The MAVLink message
header format is as follow:

� Start-of-frame: The header contains a packet start sign
encoded into 1 byte, which indicates the start of the
packet.

� Payload-length: The byte with index 1 corresponds to
the payload length, which is encoded on one byte for a
value between 0 and 255.

� Packet sequence:one Byte with index 2 refers to the
packet sequence, which indicates the incremental se-
quence number of the packet by a value between 0 and
255. If the sequence number reaches 255, it is reset back
to zero.

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

� System ID: The system ID is an important parameter,
which identi�es the system that can be a drone or any
vehicle running the autopilot. The fact it is encoded
in 8 bits restricts the total number of vehicles on one
ground station to 256, including the ground station. The
MAVLink protocol imposes that the ground station has a
system ID equal to 255. This is how it is recognized in
the autopilot running in the monitored vehicle.

� Component ID: The component ID is the identi�er of
the component sending the message inside the system.
For the moment, there is no subsystem or component, so
it will be of no use.

� Message ID: The message ID is an important �eld.
It indicates the type of message being carried out in
the payload. For example, if the message ID is 0, this
means that the message is of typeHEARTBEAT, which
is periodically, every 1 second, sent to indicate that the
system is active. Another example, if the message ID
is 33, this indicates that the payload carries out GPS
coordinate of the system.

� Payload: The data into the message, depends on the
message ID.

� CRC: Check-sum of the packet. To ensure message
integrity and to ensure the sender and receiver both agree
in the message that is being transferred.

The payload from the packets are MAVLink messages.
Every message is identi�able by the ID �eld on the packet,
and the payload contains the data from the message. Several
control and state messages are de�ned in MAVLink
protocol. In what follows, we present a sample of the main
MAVLink messages. For a complete set of messages, the
reader may refer to [34].

TheHEARTBEATmessage is the most important message in
MAVLink (refer to Listing 2). It indicates the presence of the
vehicle system and that it is active. A vehicle should send the
HEARTBEATmessage periodically (generally every second)
to the ground station to tell the latter that it is alive. This is a
mandatory message.

f "type" : uint 8_t ,
"autopilot" : uint 8_t ,
"base_mode" : uint 8_t ,
"custom_mode" : uint 32_t ,
"system_status" : uint 8_t ,
"mavlink_version" : uint 8_t , g

Listing 2. MAVLink Heartbeat Message Structure

The System Status message (refer to Listing 3) with a
message ID equal to 1 carries information about the onboard
control sensors present in the drone, and which one are enabled
or disabled. It also provides information about the battery
status and the remaining voltage. In addition, it provides
information about the communication errors.

f "onboard_control_sensors_present" : uint 32_t ,
"onboard_control_sensors_enabled" : uint 32_t ,
"onboard_control_sensors_health" : uint 32_t ,

"load" : uint 16_t ,
"voltage_battery" : uint 16_t ,
"current_battery" : int 16_t ,
"battery_remaining" : int 8_t ,
"drop_rate_comm" : uint 16_t ,
"errors_comm" : uint 16_t ,
"errors_count 1" : uint 16_t ,
"errors_count 2" : uint 16_t ,
"errors_count 3" : uint 16_t ,
"errors_count 4" : uint 16_t , g

Listing 3. MAVLink System Status Message

TheGlobal Position message (refer to Listing 4) with
an id equal to 33 represents the �ltered GPS location given by
the GPS. The important information carried in this message is
the latitude, longitude, and the altitude, all of them encoded
into 4 bytes (32 bits). The values of latitude and longitude
are multiplied by107, so to get the real value we divide by
107. The altitude is expressed in millimeters. It also provides
information about the speed of the drone around the 3 axes in
addition to orientation referred to as heading.

f "time_boot_ms 7" : uint 32_t ,
"lat" : int 32_t ,
"lon" : int 32_t ,
"alt" : int 32_t ,
"relative_alt" : int 32_t ,
"vx" : int 16_t ,
"vy" : int 16_t ,
"vz" : int 16_t ,
"hdg" : uint 16_t , g

Listing 4. MAVLink Global Position Message

B. The ROSLink Protocol

ROSLink [29] is a lightweight communication protocol
that allows the control of ROS-enabled robots through the
Internet. The integration of robots with the Internet is essential
to advance new sorts of cloud robotics applications where
robots are virtualized and controlled through the Internet. For
example, in our previous work [35], we developed a personal
assistant robot for providing home and of�ce services using
ROS. However, the communication between the robot and the
end-user was constrained to the scope of a local area network
(LAN), which presented a limitation. We designed ROSLink
to allow Internet connectivity of ROS-enabled robots.

ROSLink makes a complete abstraction of ROS by provid-
ing all information about the robot through ROS topics/ser-
vices without exposing ROS ecosystem to the users. It de�nes
a set of interfaces for the users to interact with the robot,
and a set of messages to exchange between them. ROSLink
provides asynchronous communication as 3-tier architecture
between the robots and the end-users through the cloud. It is
composed of (1)ROSLink Bridge client in the robot side,
(2) ROSLink Proxy acts as a server in the ground station,
and (3) client application at the user side which interacts with
the robot through the ROSLink protocol. ROSLink Bridge is
a ROS node that accesses all topics and services of interest in
ROS, and sends selected information in ROSLink messages,
serialized in JSON format.

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

ROSLink messages contain information about the com-
mand and its parameters. To standardize the type of messages
exchanged, we speci�ed a set of ROSLink messages that are
supported by the ROSLink Proxy. These messages can be
easily extended based on the requirements of the user and
the application. There are two main categories of ROSLink
messages: (i.) State messages: these are message sent by the
robot and carry out information about the internal state of
the robot, including its position, orientation, battery level, etc.
(ii.) Command messages: these are messages sent by the client
application to the robot and carry out commands to make
the robot execute some actions, like for example moving,
executing a mission, going to a goal location, etc.

The most basicROSLink message is theHeartbeat
message, which is sent periodically from the robot to the
ROSLink proxy server, and vice-versa. EveryROSLink
Bridge should implement the periodic transmission of the
Heartbeat message. The objective of theHeartbeat
message is for the proxy server to ensure that the robot is
active and connected, upon reception of that message. In the
same way, a robot that receives aHeartbeat message from
the ROSLink Proxy server ensures that the server is alive.
This message increases the reliability of the system when it
uses a UDP connectionless protocol, such that both ends make
sure of the activity of the other end. Failsafe operations can
be designed when the robot loses reception ofHeartbeat
messages from the user such as stopping motion or returning
to start location until connectivity is resumed.

The Heartbeat message structure is de�ned in JSON
representation in Listing 5. In the ROSlink protocol, the
message_id of the Heatbeat message is set to zero.

f "roslink_version" : int 8,
"ros_version" : int 8,
"system_id" : int 16,
"message_id" : 0,
"sequence_number" : int 64,
"payload" : f "type" : int 8
"name" : String ,
"system_status" : int 8,
"owner_id" : String ,
"mode" : int 8g
g

Listing 5. ROSLink Heartbeat Message Structure

TheRobot Status message contains the general system
state, like which onboard controllers and sensors are present
and enabled in addition to information related to the battery
state. Listing 6 presents theRobot Status message struc-
ture, which has amessage_id equal to 1.

f "roslink_version" : int 8,
"ros_version" : int 8,
"system_id" : int 16,
"message_id" : 1,
"sequence_number" : int 64,
"payload" : f "onboard_control_sensors_present" : uint 3 -

2,
"onboard_control_sensors_enabled" : uint 32,
"voltage_battery" : uint 16,

"current_battery" : int 16,
"battery_remaining" : int 8, g
g

Listing 6. ROSLink Robot Status Message Structure

TheGlobal motion message represents the position of
the robot and its linear and angular velocities. This information
is sent to the ROSLink client at high frequency to keep track
of robot motion state in real-time. An instance of theGlobal
motion message structure is expressed in Listing 7:

f "roslink_version" : int 8,
"ros_version" : int 8,
"system_id" : int 16,
"message_id" : int 8,
"sequence_number" : int 64,
"payload" : f "time_boot_ms" : uint 32
"x" : float 64,
"y" : float 64,
"z" : float 64,
"vx" : float 64,
"vy" : float 64,
"vz" : float 64,
"wx" : float 64,
"wy" : float 64,
"wz" : float 64,
"pitch" : float 64,
"roll" : float 64,
"yaw" : float 64, g
g

Listing 7. ROSLink Global Motion Message Structure

Listing 8 presents theRange Finder Data message,
which carries out information and data about laser scanners
attached to the robot. TheRange Finder Data sensor
information enables to develop control application on the
client through the cloud, such as obstacle avoidance reactive
navigation, SLAM, etc.

f "roslink_version" : int 8,
"ros_version" : int 8,
"system_id" : int 16,
"message_id" : int 8,
"sequence_number" : int 64,
"payload" : f "time_usec" : int 64
"angle_min" : float 32,
"angle_max" : float 32,
"angle_increment" : float 32,
"time_increment" : float 32,
"scan_time" : float 32,
"range_min" : float 32,
"range_max" : float 32,
"ranges" : float 32[] ,
"intensities" : float 32[] , g
g

Listing 8. Range Finder Data Message Structure

ACKNOWLEDGMENTS

This work is supported by the Research and Initiative Center
at Prince Sultan University. It is also supported by Gaitech
Robotics. This work was initially supported by the Dronemap
project entitled “DroneMap: A Cloud Robotics System for

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

Unmanned Aerial Vehicles in Surveillance Applications” un-
der the grant number 35-157 from King Abdul Aziz City for
Science and Technology (KACST).

REFERENCES

[1] M. Gharibi, R. Boutaba, and S. L. Waslander, “Internet
of drones,” IEEE Access, vol. 4, pp. 1148–1162, 2016,
doi:10.1109/ACCESS.2016.2537208.

[2] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,”IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, pp. 398–409, April 2015,
doi:10.1109/TASE.2014.2376492.

[3] Y. Chen, Z. Du, and M. Garca-Acosta, “Robot as a service in cloud
computing,” inProceedings of the 2010 Fifth IEEE International Sym-
posium on Service Oriented System Engineering, USA, June 2010, pp.
151–158, doi:10.1109/SOSE.2010.44.

[4] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran,
F. F. Kong, A. S. Kumar, K. D. Meng, and G. W. Kit,
“Davinci: A cloud computing framework for service robots,” in
Proc. Int. Conf. Robot. Autom.(ICRA), May 2010, pp. 3084–3089,
doi:10.1109/ROBOT.2010.5509469.

[5] M. Waibel, M. Beetz, J. Civera, R. D'Andrea, J. Elfring, D. Glvez-Lpez,
K. Hussermann, R. Janssen, J. M. M. Montiel, A. Perzylo, B. Schiele,
M. Tenorth, O. Zweigle, and R. V. D. Molengraft, “Roboearth,”IEEE
Robotics Automation Magazine, vol. 18, no. 2, pp. 69–82, June 2011,
doi:10.1109/MRA.2011.941632.

[6] A. Koubâa, “A service-oriented architecture for virtualizing robots in
robot-as-a-service clouds,” inInternational Conference on Architecture
of Computing Systems ARCS. Lbeck, Germany: Springer International
Publishing, 2014, pp. 196–208.

[7] E. Yanmaz, S. Yahyanejad, B. Rinner, H. Hellwagner, and C. Bettstet-
ter, “Drone networks: Communications, coordination, and sens-
ing,” Ad Hoc Networks, vol. 68, pp. 1–15, January 2018,
doi:https://doi.org/10.1016/j.adhoc.2017.09.001.

[8] The MAVLINK Protocol. [Online]. Available: http://qgroundcontrol.
org/mavlink/start

[9] E. Guizzo, “Robots with their heads in the clouds,”
IEEE Spectrum, vol. 48, no. 3, pp. 16–18, March 2011,
doi:10.1109/MSPEC.2011.5719709.

[10] A. Koubâa, B. Qureshi, M.-F. Sriti, Y. Javed, and E. To-
var, “A service-oriented cloud-based management system for the
internet-of-drones,” in17th IEEE Int. Conf. on Autonomous Robot
Systems and Competitions (ICARSC), April 2017, pp. 329–335,
doi:10.1109/ICARSC.2017.7964096.

[11] S. Mahmoud and N. Mohamed, “Collaborative uavs cloud,” inPro-
ceedings of the International Conference on Unmanned Aircraft Sys-
tems (ICUAS 14), Orlando, Fla, USA, May 2014, pp. 365–373,
doi:10.1109/ICUAS.2014.6842275.

[12] ——, “Broker architecture for collaborative uavs cloud computing,” in
2015 International Conference on Collaboration Technologies and Sys-
tems (CTS), June 2015, pp. 212–219, doi:10.1109/CTS.2015.7210423.

[13] S. Mahmoud, N. Mohamed, and J. Al-Jaroodi, “Integrating uavs into the
cloud using the concept of the web of things,”The Journal of Robotics,
vol. 2015, p. 10 pages, jan 2015, doi:10.1155/2015/631420.

[14] G. Ermacora, “Advances in human robot interaction for cloud
robotics applications,” Ph.D. dissertation, Politecnico di Torino, 2016,
doi:10.6092/polito/porto/2643059.

[15] G. Ermacora, A. Toma, B. Bona, M. Chiaberge, M. Silvagni,
M. Gaspardone, and R. Antonini, “A cloud robotics architecture for
an emergency management and monitoring service in a smart city
environment,” in IEEE/RSJ International Conference of Intelligent
Robots and Systems, Tokyo (Japan), Nov 2013. [Online]. Available:
http://porto.polito.it/2520899/

[16] A. Azzar and L. Mottola, “Virtual resources for the internet of things,”
in In Proceedings of the IEEE 2nd World Forum on Internet of
Things (WF-IoT), Milan, Italy, Dec 2015, pp. 245–250, doi:10.1109/WF-
IoT.2015.7389060.

[17] H. Chae, J. Park, H. Song, Y. Kim, and H. Jeong, “The iot based
automate landing system of a drone for the round-the-clock surveil-
lance solution,” in IEEE International Conference on Advanced In-
telligent Mechatronics (AIM), Busan, July 2015, pp. 1575–1580,
doi:10.1109/AIM.2015.7222767.

[18] V. Kriz and P. Gabrlik, “Uranuslink-communication protocol
for uav with small overhead and encryption ability,”13th
IFAC and IEEE Conference on Programmable Devices and
Embedded Systems, vol. 48, no. 4, pp. 474 – 479, 2015,
doi:https://doi.org/10.1016/j.ifacol.2015.07.080.

[19] P. Tripicchio, M. Satler, G. Dabisias, E. Ruffaldi, and C. A. Aviz-
zano, “Towards smart farming and sustainable agriculture with drones,”
in Proceedings of the 2015 International Conference on Intelligent
Environments IE, Prague, Czech Republic, July 2015, pp. 140–143,
doi:10.1109/IE.2015.29.

[20] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. ”big”' web services: Making the right architectural decision,” in
Proceedings of the 17th International World Wide Web Conference
(WWW 2008). New York, NY, USA: ACM, 2008, pp. 805–814,
doi:10.1145/1367497.1367606.

[21] A. Koubâa, O. Cheikhrouhou, H. Bennaceur, M.-F. Sriti, Y. Javed,
and A. Ammar, “Move and improve: a market-based mechanism for
the multiple depot multiple travelling salesmen problem,”Journal of
Intelligent & Robotic Systems, vol. 85, no. 2, pp. 307–330, Feb 2017,
doi:10.1007/s10846-016-0400-x.

[22] S. Trigui, O. Cheikhrouhou, A. Koubaa, U. Baroudi, and H. Youssef,
“Fl-mtsp: a fuzzy logic approach to solve the multi-objective multiple
traveling salesman problem for multi-robot systems,”Soft Computing,
vol. 21, no. 24, pp. 7351–7362, Dec 2017, doi:10.1007/s00500-016-
2279-7.

[23] R. Altawy and A. M. Youssef, “Security, privacy, and safety aspects
of civilian drones: A survey,”ACM Transactions on Cyber-Physical
Systems, vol. 1, no. 2, pp. 7:1–7:25, nov 2016, doi:10.1145/3001836.

[24] D. He, S. Chan, and M. Guizani, “Drone-assisted public safety networks:
The security aspect,”IEEE Communications Magazine, vol. 55, no. 8,
pp. 218–223, 2017, doi:10.1109/MCOM.2017.1600799CM.

[25] J. Daemen and V. Rijmen,The Design of Rijndael: AES - The Ad-
vanced Encryption Standard, ser. Information Security and Cryptogra-
phy. Springer Berlin Heidelberg, 2013.

[26] N. M. Rodday, R. d. O. Schmidt, and A. Pras, “Exploring security
vulnerabilities of unmanned aerial vehicles,” inIEEE/IFIP Network
Operations and Management Symposium (NOMS), April 2016, pp. 993–
994, doi:10.1109/NOMS.2016.7502939.

[27] (2017) Autonomous Mission with GoPro Camera View on Drone
using Dronemap Planner. [Online]. Available: https://www.youtube.
com/watch?v=QqtnLHKJl2k

[28] (2017) Drones'auto-detection in Dronemap Planner. [Online]. Available:
https://www.youtube.com/watch?v=MjW01sRdDds

[29] A. Koubaa, M. Alajlan, and B. Qureshi,ROSLink: Bridging ROS with
the Internet-of-Things for Cloud Robotics. Cham: Springer International
Publishing, May 2017, vol. 2, pp. 265–283, doi:10.1007/978-3-319-
54927-9 8.

[30] (2018) Gapter EDU Drone. [Online]. Available: http://edu.gaitech.hk/
gapter/

[31] (2018) Gapter EDU ROSLink Control Video. [Online]. Available:
https://www.youtube.com/watch?v=eGYOH7akp-Q

[32] (2017) Video demonstration of the follower application the football
�eld of prince sultan university with a real drone. [Online]. Available:
https://www.youtube.com/watch?v=9a8Gn0BDe8U

[33] (2018) Gapter EDU, Autopilot Network Con�guration. [Online].
Available: http://edu.gaitech.hk/gapter/network-con�guration.html

[34] “MAVLink Common Message set speci�cations,”
https://pixhawk.ethz.ch/mavlink/, accessed: 2017-06-03.

[35] A. Koubâa, M. F. Sriti, Y. Javed, M. Alajlan, B. Qureshi, F. Ellouze,
and A. Mahmoud, “Turtlebot at of�ce: A service-oriented software
architecture for personal assistant robots using ros,” inProceedings
of 2016 International Conference on Autonomous Robot Systems and
Competitions (ICARSC), Bragana, Portugal, May 2016, pp. 270–276,
doi:10.1109/ICARSC.2016.66.

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

Anis Koubâa received his B.Sc. in Telecommunications Engineering from Higher School of
Telecommunications (Tunisia), and M.Sc. degrees in Computer Science from University Henri
Poincare (France), in 2000 and 2001, respectively, and the Ph.D. degree in Computer Science
from the National Polytechnic Institute of Lorraine (France), in 2004. He was a faculty member
at Al-Imam University from 2006 to 2012. Currently, he is a Professor in the Department of
Computer Science, Advisor to the Rector, and Leader of the Robotics and Internet of Things
Research Lab, in Prince Sultan University. He is also R&D Consultant at Gaitech Robotics in
China and Senior Researcher in CISTER/INESC TEC and ISEP-IPP, Porto, Portugal. He
becomes a Senior Fellow of the Higher Education Academy (SFHEA) in 2015. He has
published over 190 refereed journal and conference papers, and one patent. His research
interest covers mobile robots, cloud robotics, robotics software engineering, Internet-of-
Things, Robot Operating System (ROS), cloud computing and wireless sensor networks. Dr.
Anis received the best research award from Al-Imam University in 2010, and the best paper
award of the 19th Euromicro Conference in Real-time Systems (ECRTS) in 2007. He is the
head of the ACM Chapter in Prince Sultan University. His H-Index is 31.

ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

