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Abstract

A recent trend in distributed computer-controlled systems (DCCS) is to interconnect the distributed
computing elements by means of multi-point broadcast networks. Since the network medium is shared
between a number of network nodes, access contention exists and must be resolved by a medium access
control (MAC) protocol. Usually, DCCS impose real-time constraints. In essence, by real-time constraints
we mean that traffic must be sent and received within a bounded interval, otherwise a timing fault is said
to occur. This motivates the use of communication networks with a MAC protocol that guarantees
bounded access and response times to message requests. PROFIBUS is a communication network in
which the MAC protocol is based on a simplified version of the timed-token protocol. In this paper we
address the cycle time properties of the PROFIBUS MAC protocol, since the knowledge of these
properties is of paramount importance for guaranteeing a real-time behaviour of a distributed computer-
controlled system which is supported by this type of network.
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1. Introduction

Local area networks (LANs) are becoming increasingly popular in industrial computer-controlled
systems. LANs allow field devices like sensors, actuators and controllers to be interconnected at low cost,
using less wiring and requiring less maintenance than point-to-point connections [1]. Besides the
economic aspects, the use of LANSs is also reinforced by the increasing decentralisation of control and
measurement tasks, as well as by the increasing use of intelligent microprocessor-controlled devices.

Broadcast LANs aimed at the interconnection of sensors, actuators and controllers are commonly
known as fieldbus networks. In the past, the scope of fieldbuses was dominated by vendor-specific
solutions, which were mostly restricted to specific application areas. Moreover, the concepts behind each
proposed network were highly dependent on the manufacturer of the automation system. Each had
different technical implementations and also claimed to fulfil different application requirements, or to
fulfil the same requirements but with different technical solutions[2]. More recently, vendor-independent
standardised fieldbuses, supporting the open system concept, have started to be commonly used. PROcess
Fleld BUS (PROFIBUS) [3] is one of the most popular fieldbuses, and has recently been granted the
status of areal international standard by CENELEC [4].

In this paper we address the ability of PROFIBUS to cope with the real-time requirements of
distributed computer-controlled systems (DCCS). In essence, by timing requirements we mean that
messages must be sent and received within a bounded interval, otherwise a timing fault is said to occur.
That means, for instance, that a control device must be able to read data from a remote sensor within a
specified interval, whatever the network load.

The PROFIBUS medium access control (MAC) protocol is based on a token-passing procedure, used
by master stations to grant the bus access to each one of them, and a master-slave procedure used by
master stations to communicate with slave stations. The master-slave interaction is called a message
cycle: the master sends a request frame and the addressed slave immediately sends a response frame. If



the token holding time for that master has been exceeded, or the master has no more pending requests, the
token is passed to the next master. Typically, the process-relevant devices (sensors and actuators) are
accessed through a slave network-interface, whereas the distributed control algorithms reside at master
stations. Therefore, in PROFIBUS, the end-to-end communication delay [5] for master-slave transactions
(those that typically deal with real-time traffic) is composed of the following four major components:

1. generation delay: time elapsed between the release of the sender task and the queuing of the
related message request;

2. queuing delay: time taken by a message request to access the communication medium after being
queued;

3. transmission delay: time taken by a message request to be transmitted on the communication
medium and processed at the slave side, added to the time taken by the message response to be
transmitted back to the master;

4. delivery delay: timetaken by the master’ s application task to process a message response.

The generation delay includes the application processing time needed to generate the contents of the
message and the time taken to queue the message. This issue has been extensively addressed in the
literature related with tasks’ worst-case response time analysis in single-processor systems ([6,7] are just
two examples).

The queuing delay is a consequence of the contention not only between message requests from the
same master but also with message requests from other masters. The impact of the first factor in the
overall queuing delay depends on the policy used to queue the message reguests, while the second factor
depends on the behaviour of the token-passing procedure. Therefore, an evaluation of the worst-case
gueuing delay of the message requests is of paramount importance to guaranteeing the messages' timing
requirements. The aggregate value that includes the queuing and transmission delays is referred to, in this
paper, asthe message response time.

In this paper we address the analysis concerning the evaluation of the worst-case message response
times in PROFIBUS networks. As it will be shown, this analysis depends on the knowledge of the
maximum time span between any two consecutive token arrivalsto a master. Thus, the study of the cycle-
time properties of the PROFIBUS timed-token protocol is fundamental to guaranteeing the timing
requirements of messages in PROFIBUS networks.

The remainder of this paper is organised as follows. In Section 2 we provide a methodology for the
evaluation of the worst-case PROFIBUS messages' response time. The section presents an improved
version of the analysis previously proposed in [8,9], which assumes the worst-case scenario for the token
cycle time. In Section 3 we survey previous relevant works addressing the evaluation of the token cycle
time in other network protocols based on the timed-token protocol [10], such as the IEEE802.4 [11] and
the FDDI [12]. PROFIBUS uses a simplified version of the timed-token protocol. We highlight the
differences to the original timed-token protocol and justify why it is not possible to apply the results
available for the case of other timed-token based networks. In Section 4, we derive an accurate result for
the PROFIBUS token cycle time, which is the basis for the evaluation of the worst-case messages
response time. Finally, in Section 5 we show how the methodology and the results provided in this paper
can be used to set the target token rotation time (Ttg) parameter of a PROFIBUS network, in a way that
the real-time requirements of a DCCS application are guaranteed.

2. Real-time analysis for PROFIBUS networks

2.1. Abrief description of the PROFIBUStimed-token protocol

In PROFIBUS, messages belong to one of the two following categories: high-priority messages and
low-priority (including cyclic, non-cyclic and management) messages. For the approach we propose in
this paper, real-time traffic is supported by PROFIBUS high-priority messages.

The PROFIBUS MAC protocol is based in asimplified version of the timed-token protocol [10]. We
describe now its basic timing characteristics.

After receiving the token, the measurement of the token rotation time begins. This measurement
expires at the next token arrival and resultsin the real token rotation time (Trg), Which is a measure of the
token cycletime. A target token rotation time (Trg) must be defined in a PROFIBUS network. The value
of this parameter is common to all masters, and is used as follows. When a master receives the token, the
token holding time (Tty) timer is given the value corresponding to the difference, if positive, between T
and Trr. If at the arrival, the token is late, that is, the real token rotation time (Trg) is greater than the



target rotation time (Ttgr), the master may execute, at most, one high-priority message cycle. Otherwise,
the master may execute high-priority message cycles while Tr>0. Ty is always tested before starting the
execution of a message cycle. It follows that once a message cycleis started it is always completed, even
if during message cycle execution the master's Tty reaches the value 0. We call this situation an overrun
of the Tty overrun timer. The low-priority message cycles are executed if there are no high-priority
message requests pending, and while T14>0 (also evaluated before starting the message cycle execution,
thus also leading to a possible overrun of the master's T timer).
Below we give a pseudo-code description of the PROFIBUS token-passing algorithm:

/* Initialisation procedure */
At each master k, DO
Tm- 0
Ter = 0 ;
Start Tw ; /* count-up tiner */
/* Run-time procedure */
At each naster k, at the Token arrival, DO
T~ Tr- T ;
Ter = 0 ;
Start Te; /* count-up tiner */
IF Tm > 0 THEN
Start Tm /* count-down tiner */
ENDI F;
IF waiting H gh-priority nessages THEN:
Execute one H gh-priority nessage cycl e
ENDI F;
VWH LE Tw > O AND pending H gh-priority nessage cycles DO
Execute H gh-priority nessage cycles
ENDVHI LE;
VWH LE Tw > 0 AND pending Lowpriority message cycles DO
Execute Low priority nessage cycles
ENDWHI LE;
Pass the token to master (k + 1) (nodulo n);

Fig. 1 illustrates a scenario in which the it real token rotation time, as seen by master 4 (T*gg),
corresponds to the time of the network token rotation when none of the masters use the token to transmit
messages. At that it" token visit, master 4 uses part of its available token holding time (T*y) to transmit
two message cycles.
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Fig. 1. An example of token usage in amaster

In PROFIBUS, a message cycle consists on a master’s action frame (request or send/request frame)
and a responder’s immediate acknowledgement/response frame. User data may be transmitted in the



action frame or in the response frame. Note that a PROFIBUS master is allowed to send up to a limited
number of retries, in case the response does not come within a predefined time. Thus, for the analysis, the
message cycle time length must also include the time needed to process the allowed number of retries.

2.2. Worst-caseresponsetime for the high-priority messages

We consider abustopology withn PROFIBUS masters, with addresses ranging from 1 to n. A special frame, the
token, circulates between the masters, resulting in alogical token ring. Each master accesses the network according
to the token passing sequence; hence, first master 1, then masters 2, 3, ... until master n, and then again masters 1, 2,
... . Slaves will have network addresses higher than n.

The logical ring latency (token walk time, including node latency delay, media propagation delay, etc.) is
denoted with the symbol t.

We consider nh* high-priority message streams in each master k. A message stream corresponds to a
temporal sequence of message cycles related, for instance, with the reading of a process sensor or the
updating of aprocess actuator.

We denote the i (i = 1, 2, ..., nh¥) high-priority stream associated to a master k as Sh¥. A high-
priority stream Sh¥is characterised as:

sh* = (ch, Th*,Dh¥) (1)

where Chi¥ is the maximum amount of time required to perform a message cycle of Shi¥, and Dh¥ is the
stream'’s relative deadline. In other words, the relative deadline is the maximum admissible end-to-end
communication delay a stream Shik may tolerate. Th¥ is the minimum inter-arrival time interval between
any two consecutive requests of a stream Sh;¥.

As we do not mean to guarantee deadlines for the low-priority traffic, a low-priority stream S¥is
characterised as:

9 =(ci¥) 2

where Cl;¥is the maximum amount of time required to perform a message cycle of stream S;*.

As previously said, one of the main characteristics of the PROFIBUS timed-token protocaol, is that it
guarantees that a master may always transmit at least one high-priority message per token visit,
independently of the real token rotation time. Assuming the worst-case scenario (the token is aways
arriving late), if there are mpending high-priority messages, it will take mtoken visits to execute all those
high-priority message cycles. It is obvious that the queuing delay depends on how the master's high-
priority queue is implemented. In PROFIBUS communication queues operate in a first-come-first-served
(FCFS) basis.

Conseguently, for the queuing delay analysis, it is important to note that the maximum number of
pending messages will be nh¥, corresponding to one message per each Sh* stream. Indeed, if at any time
there are two pending message requests belonging to the same stream, then it would mean that a deadline
for that message stream was missed. It also follows that for all streams Sh¥ Thi* must be greater or equal
to Dh;

Therefore, the upper bound for the message queuing delay in amaster k is:

Q“=nh*" TS, (©)
where chyde is the upper bound for the token inter-arrival time at a master k (the worst-case real token
rotation time (TkRR)). Theoretically, Ttr can be set to avalue smaller than t. In the limit it can be set to 0.
If thisis the case, the token will always arrive late to a master, as Ttr Will be at least t. Note also that
under our assumptions the queuing delay for a message request in one master is independent of the
particular message stream in that master (Q/*=Q¥, " i=1,. nnk). For obvious reasons this does not applies for
the definition of the worst-case message response time, which is:

R =Q"+Ch =nh*" T, +Ch* (4)

Defining the end-to-end communication delay as the aggregation of the g (generation delay), Q
(queuing delay), C (transmission delay) and d (delivery delay) components, then, the deadline of a high-
priority message cycleisguaranteed if and only if the following condition is satisfied:

D2 gg +nh" T+ Ch* +dg, ©)



The main focus of this paper is on the evaluation of the chyde parameter, which in the context of this
paper is defined as the worst-case time span between any two consecutive visits of the token to a
PROFIBUS master.

3. Previous reevant work

The basic idea of the timed-token protocol was presented by Grow [10]. In this protocol, messages are
distinguished in two types. One concerns synchronous messages, which are periodic messages that come to the
system at regular intervals and have delivery time constraints. The other concerns asynchronous messages, which
typically are non-periodic messages, and have no time constraints. Equival ence to PROFIBUS message types can be
easily drawn: high-priority and low-priority are equivalent to synchronous and asynchronous messages, respectively.

When a network isinitialised, all the stations negotiate a common value for the Tyg parameter, which
gives the expected token rotation time. The Tyg parameter must be chosen small enough to meet
responsiveness requirements of all stations, i.e., the token must circulate fast enough to satisfy the most
stringent timing requirements. Each station is assigned a fraction of Ttg, known as its synchronous
capacity (H;), which is the maximum time each station is allowed to transmit its synchronous messages, if
any, every time it receives the token. The asynchronous messages can be transmitted, but only if the token
has rotated fast enough, that is, the token is“ahead of schedule” with respect to itstarget rotation time.

In the timed-token protocol, the time interval between two consecutive token arrivals at a specific
station is upper bounded by 2" Ttg and the average token rotation time is no more than Ttr. An intuitive
explanation of these two timing properties can be found in [10] and aformal proof can be found in [13].

In order to guarantee the deadlines of synchronous messages, the existence of an upper bound to the
token rotation time is a necessary but not a sufficient condition. A node with inadequate synchronous
capacity may be unable to guarantee messages deadlines, and, on the other hand, allocating excess
amount of synchronous capacities to the nodes increases Trg, which may also cause messages deadlines
to be missed. Therefore, synchronous capacities must be properly allocated to individual nodes. As a
consequence, synchronous capacities allocated to the nodes must satisfy a protocol constraint and a
deadline constraint [15,16].

The protocol constraint states that the total sum of the allocated synchronous capacities should not be
greater than the available portion of T, i.€.,

{f{Hi£TTR—t (6)

i=1

Theoretically, the total available time to transmit synchronous messages, during a complete token
rotation, can be as much as Trg. However, factors such as ring latency and other protocol or network
overheads reduce the total available time and are denoted astt.

The deadline constraint states that the allocation of synchronous capacities to the nodes should be
such that synchronous messages are always transmitted before their deadlines.

As a result, a message set can be guaranteed by an allocation scheme once the protocol and the
deadline constraints are satisfied. Several allocation schemes have been proposed in the literature [17-19].

Both FDDI and IEEE802.4 are examples of network protocols based on the timed-token protocol.
Upper bounds for the time elapsed between two consecutive token arrivals can be found in [13] and [14].
These results cannot however be applied to PROFIBUS, as significant differences to the timed-token
protocol exist. We consider the following two differences as the most relevant ones.

1. In PROFIBUS there is no synchronous capacity allocation (H;). If a station receives a late token
(Trr is greater than Ttgr), then, at most, only one high-priority message may be transmitted.
Contrarily, in the original timed-token protocol the station can transmit synchronous (high-
priority) messages during H; time, even if the token arrived late to that station.

2. In PROFIBUS, both high-priority and low-priority message cycles may overrun the Ty timer. As
previously stressed, in PROFIBUS a message cycle can be initiated with aresidual Tt value and
the message cycle will be performed until the end. In the timed-token protocol this only happens
with asynchronous (low-priority) messages, as synchronous messages transmission can only be
started if they fit within the time allocated for synchronous transmission.

Concerning the PROFIBUS protocol, in [20] the authors propose the use of the cyclic services to

support real-time communication. In their approach, these cyclic services support the polling of slaves,
and messages' deadlines are guaranteed since the token cycle timeis bounded.



The major drawback of their approach is that, in order to evaluate the token cycle time, nor high-
priority neither low-priority traffic (other than the cyclic services) are allowed. This prevents the transfer
of high-priority event-driven messages, such as alarms. Furthermore, remote management services (which
in PROFIBUS are mapped into low-priority non-cyclic services) are also not covered by their approach.

In our approach, we propose the use of high-priority services to support the real-time communication,
instead of the cyclic low-priority services. The major advantage is that the timing requirements of the
high-priority traffic are guaranteed whatever the load of low-priority messages.

In the following section, we derive an accurate upper bound for the token cycle time, valid for
PROFIBUS networks supporting all types of traffic.

4. Analysis of the token cycletimein PROFIBUS networks

In PROFIBUS, the real token rotation time (TkRR) will always be smaller than T, except when one or
more masters in the logical ring induce the token to be late. Two reasons justify alate token arriving to a
master k.

1. As once a message cycle is started, it is always completed, even if the Ty, timer has expired
during its execution, a late token may be transmitted to the following masters. We define this
occurrence as an overrun of the TkTH overrun timer.

2. If amaster receives alate token, it will still be able to transmit one high-priority message, which
may further increase the token lateness in the following masters. This case is not considered to be
an overrun of the Ty timer.

4.1. Analysisof thetoken lateness

In this sub-section, we analyse causes and conseguences of the token lateness. We will introduce and prove three
theorems. Theorem 1 states that the token is never late unless an overrun of T, occurs in one of the masters that
form the logical token-passing ring. Theorem 2 states that even if more than one master overruns its T, in a token
cycle, only the last one (as seen from the master for which Tgs is being measured) will contribute to the token delay.
Finally, Theorem 3 states that, in a specific situation, all masters may contribute to the token lateness. These three
theorems are the basis for the evaluation of T« (an upper bound for T¥), which is later on discussed in Section
4.2.

Theorem 1:

In PROFIBUS networks, if the master holding the token releases it before the expiration of TkTH, then,
the following master in the logical ring will receive an early token.
Proof:

We denote AX(l) as the time instant when the token arrives to the master k for its "™ visit, and R¥(!) as
the time instant when master k releases the token in that I visit.

If master k releases the token before the expiration of T<py then, R{(1)-A%(I-1)<Ttr. Note that the real
token rotation time is measured between token arrivals. Therefore, at the time instant A1), T is given
the value Trr-TRs, @ positive value (the token do not arrives late). If at the time instant R(I) master k
releases the token and the T<p timer has not yet reached 0, then R¥(1)-A%(I-1)<Ttr. This equation is the
starting assumption for the remainder of the proof.

We denote the successor of master k as master k** (with k**=(k+ 1) mod n). We want to prove that if
RY)-AX(1-1)<Tr is true, then A 1(1)-A*1(1-1)<Tr is also true; that is, after releasing the token at time
instant R¥(1), the successor of k will receive an early token.

As Ak+1(l —1):Rk(l—1)+t/n (since t denotes the total logical ring latency, k** will receive the token t/n
time after the release of the tokenin k) and asAk+1(I)=Rk(I)+t/n then, combining these two expressions, it
follows that A" 1(1)-A (1-1)=R¥(1)-R¥(-1).

The starting assumption is that R¥(1)-AX(I-1)<Trr. As R{(I-1)=A(I-1)+t/n, it is true saying that
R{(1-1)>AX(I-1). Therefore, if R{(1)-A(-1)<Trg then R¥(1)-R¥(I-1)<T+r.

As ACYD-AY(1-D)=RY)-RE(I-1), if RY()-R¢(-1)<Trr then AI(1)-AY(1-1)<Trx is true; that is, the
successor of k receives an early token.

a

Fig. 2 illustrates Theorem 1, where master 2 releases the token before the expiration of T2r(l), and so
master 3 receives an early token.
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Fig. 2. Anillustrative examplefor Theorem 1

From Theorem 1, two lemmas result.

Lemma 1.1
In PROFIBUS, amaster k receives an early token, if master k™ releases it before the T< 1y, expiration,
no matter if there were any overrun of a Tryin mastersk? k=, ...

Lemma 1.2
In PROFIBUS, if none of the masters overrun their Ty, the token will never be late.

Theorem 2:

In a PROFIBUS network, in a specific token cycle, only one overrun of Try contributes to the token
lateness.
Proof:

Assume that a token delay isinduced in the I token cycle. Hence the token arrives late in the next
token cycle. Consider the analysis focused on master k, and the measurement of the time el apsed between
A1) and AX(1+ 1), that is, between two consecutive token arrivals to master k (Tzg).

If k* 1, then the masters that may induce a delay in the token are, in sequence of token holding, the
master k itself and all other masters up to master n, in the I token rotation, and master 1 and all masters
up to master ktinthe (I+ 1)th token rotation. If k=1, then the masters that may induce a delay in the token
are, in sequence of token holding, the master k itself and all other masters up to master n, al in the I™
token rotation.

For simplification of this proof, and without loss of generality, we assume that k=1. In this case, the
last master, before the (I+1)" visit of the token to master 1, which may produce an overrun of the Try, is
master n, hence an overrun in T'ry(l).

If in the ™ visit to master n an overrun of T'ry occurs, then A"(1)-A"(I-1)£ Trg; that is, the token arrived
early to master n. If we denote B'(1) as the time instant when T"r4 expires during the 1™ visit to master n,
then, as A"(1)>A"(1-1), it follows that b"(1)-A()£Tr, no matter if other overruns have occurred in the I
rotation of the token in any of the predecessors of master n. Thus, only one overrun may contribute to the
token lateness.

|th

a

Fig. 3 illustrates Theorem 2, where n is set to 4 and k is set to 1. In this illustrative example, two

overruns occur in the |™ token rotation, in master 1 and in master 4. Only the last one before A'(I+1), the
one that took place in master 4, contributes to the lateness of the token arriving to master 1 at A'(I+1).
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Theorem 3:
If a PROFIBUS master k holds the token for an interval greater than Trr-t, al the following masters

up to master k™ will receive alate token.
Proof:

Due to the token-passing time and other network latencies, it follows that A%(1)-A“(-1)3 ((n-1)/n)" t;
that is, the difference between the token arrival to a master k and the token arrival to its successor in the
previous token cycleisat least ((n-1)/n)" t (corresponding to n-1 token-passing times).

AX(D)-AY(1-1)3 ((n-1)/n)” t can be re-written as A““Y(I-1)EA()-((n-1)/n)” t. As the master k holds the
token for an interval greater than Trg-t, then RE(1)>A (1) +Trx-t.

It is also evident that the arrival of the token to master k** occurs at A“*Y(1)=R{(1)+t/n, that is at the
time the token is released in k added to the time to pass the token to k**.

Thus, if we replace R() in the equation (A“}(1)=R¥(1)+t/n) with the inequality (R{(1)>AX(1)+Trg-t), it
follows that A<Y(1)>A(1)+Tr-((n-1)/n) t. Hence, using this last inequality and knowing that
AD-AY1-13 (n-)/n) t O ACY-DEAYD-((n-1)/n) t, it follows that AY(1)-A1(1-1)>AK(1)+Trg-
((n-1)/n)” t-A*(1)+((n-1)/n)" t=Trr.

Obviously this result extends to all the following masters which range from master k*2 up to master
kL. The starting assumption is that the token holding time in master k is Rk(l)-A"(I)>TTR-t. As the token
arrived in the other masters before A (1), and after its release from master k at time instant R¥(1) it will
arrive at the other masters after Rk(l), the token rotation time as measured in the other masters will give,

for al of them, avalue greater than T1r.
a

Fig. 4 illustrates Theorem 3, where k isset to 1.
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4.2, T 4.asanupper bound for T

By using Theorem 3, we can define the token lateness in a master k (T%) as the maximum excess to T of a
token arrival to the master k. The maximum time elapsed between two consecutive token arrivals to a master k
(T*yue) isthen given by:

k
Tcycl e

=T +TY (7)

Assuming, for simplification, that all the message cycle have the same duration (represented by Cy)
then, the worst-case token lateness in a master k would result from the simultaneous occurrence of the
three following conditions.

1. Theactual token holding time in master k is greater than Trr-t.

2. The master k itself causes an overrun of Ty, and this overrun starts with aresidual value of T¢.

3. All thefollowing masters (until the master k™) transmit, each one, one high-priority message cycle,
having received alate token.

Observed these three conditions, in the next token cycle, TkRR reaches its upper bound, which is chyde.
In the case of equal length for all the message stream cycles, dee| =n" Cs, and thus:

Tct/cle = TTR + n, Cs ’ ! master k (8)

In the general case (message cycles with different duration), the worst-case token lateness may result
not from an overrun of the Ty in master k but from one occurring in one of the following masters (k**
until k™).

Using Fig. 5 as an illustrative example, assume that master 1 do not overrunsits Tr. Then, master 2
may use its available token holding time and produce an overrun of its T2y overrun timer. If this overrun
is longer than the sum of the longest overrun of T4 added to the |longest Ch?, then this would led to a
higher value for T 4« (Fig. 5b). Similarly, if the longest overrun of T3y, is longer than the longest overrun
of Tr added to the longest Ch®, then thiswould led to a higher value for T 4.

Note that by Theorems 2 and 3, for the evaluation of token lateness in master k, we can only consider
one overrun in master j (with j ranging from master k to master k™), and one high-priority message cycle
per each master whose address is between j and k™.
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Fig. 5. A comparison between two scenarios with overrunning of Ty

Consequently, we conclude that the evaluation of chyde depends on which is the master that produces
the worst-case overrun of its Tty and on its relative position within the logical ring sequence of token-
passing.

For the evaluation of T¢, we introduce the following parameters. H¥, L* and A H¥ is the longest
high-priority message cycle that can be requested by a master k:

k — k 9
H im%{Ch } 9)
L*isthe longest low-priority message cycle that can be requested by amaster k:
L* = max {Clik} (10)
i=1,..,n %

Finaly, Afisthe longest message cycle that can be requested by a master k (including both low and
high-priority message cycles):
A = max{H*, L} (1)
Using the analysis outlined in this section, we can thus define the maximum token lateness in a
PROFIBUS master k (T%;) as being:

1 o U
TdI:al :rqfaXi Al +a H'Y (12
Mg iif,
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where f; is defined as being the following set of values:

. :‘:,{k,...,n}, if k=1 (13)
Vkeond. k-1 if k>1

and f, isdefined as being the following set of values:

i{i+g.on ifk=1 (14)

' T+l k-1 if k>l

Conseguently, the worst-case token cycle time in a PROFIBUS fieldbus network may be defined as
follows:

T o .U
Tjoe =T + Maxi Al + 3 1Y @)

ycle — i
Mg i,

Then, we can now re-write the deadline condition (5) as follows:

Dhik : gSmk + nhk ’ (TTR +Tdt| )+ Chk + dsn" ;- master k, streamSh< (16)
and, the following condition for setting the T+g parameter can be used:
k _ k _
0ET £ Dh' - Ch*-dg. x k a7
nhk master k, stream S

where daggregates both the generation and delivery delays of message stream Shi¥.

5. Numerical examples
Consider a PROFIBUS network scenario with 3 masters, each one with the following message streams:

Table 1: A numerical example

Master 1 | Master 2 | Master 3
Ch!=8 ms Ch;?=8 ms Ch;*=8 ms
Ch,'=6 ms Ch,*=15 ms Ch,°=18 ms
Chs'=7 ms - -
Cl,*=10 ms ‘ Cl,>=30 ms ‘ -

- Cl,?=18 ms -

For this numerical example, the results for each T are (using 12):

Table 2: T¥4 evaluation for the numerical example (case of Trr > t)

Master 1 | Master 2 | Master 3

Hl:8 ms H2 =15ms H3 =18 ms

Al:].O ms A2 =30ms A3 =18ms
Tldei:A2+H3:48 ms T2, =A2+H3+H!=58 ms | T3, =A%+H“+H>=41 ms

For simplification, assume that the generation and delivery delays have a value equal to 10% of the
message cycle duration. Consider also that t=1ms. If we assume that the minimum value for T+g should
be marginally greater than t (otherwise low-priority traffic would not be transferred at all and), then (17)
can be re-written as:

Dh*- 11" Ch* _, .
t <TTR £ nhk - Tdd’ master k, stream Shf (18)

-11-



Then, to evaluate the shortest value for each message's deadline we can use the following inequality:

DK - 1.1° Ch¥

k
" - Ty >t (19

which can be re-written as:
Dht > {t +TX) nh*+1.1" Ch¥ (20)

Using (20), the minimum deadline supported for each high-priority stream shown in Table 1 would be
asshownin Table 3.

Table 3: Minimum admissible deadlinesfor (case of TR =1)

Master 1 M aster 2 Master 3
Dh;1>155.8 ms Dh,%>126.8 ms Dh;*>103.8 ms
Dh,*>153.6 ms Dh,?>134.5 ms Dh,>>103.8 ms
Dhg'>154.7 ms - -

From (16), it is obvious that Ttr can be set to a value as small as 0. In this case however the low-
priority traffic would not be transferred at al. It also follows that in this non-realistic situation, the low-

priority traffic would not be considered for the evaluation of dee|. In fact, if Ttgr is smaller than t, then
(21) must be used to eval uate each Ty e, instead of (12):

4w @

i=1

which would mean that chyde would have the same value for all masters. Using the same scenario as
shown in Table 1, each T¢q would then be:

Table 4: T¥ evaluation for the numerical examplefor (case of Trr = 0)

Master 1 | Master 2 | Master 3
H'=8 ms H?=15 ms H3=18 ms
Tlde|=41 ms Tzdd=41 ms TadeI=41 ms

and the minimum deadline supported for each high-priority stream, would be as shownin Table 5.

Table 5: Minimum admissible deadlinesfor (case of T = 0)

Master 1 | Master 2 | Master 3
Dh;>134.8 ms Dh;*>92.8 ms Dh;°>>103.8 ms
Dh,>132.6 ms Dh,?>100.5 ms Dh,3>103.8 ms

Dh;'>133.7 ms

6. Conclusions

In this paper, we have drawn a comprehensive study on how to use PROFIBUS to support real-time
communications for distributed computer-controlled systems. The major contribution is to provide an accurate
evaluation of the maximum PROFIBUS token cycle time, considering that all types of traffic are allowed, whereasin
previous related worksimportant traffic typeswere not considered. Thisresult isof paramount importance asit isthe
basisfor the setting of the T.x parameter in PROFIBUS networksin order to guarantee the timing requirements of the
high-priority messages.

We have shown that the maximum token cycle time is a consequence of the overrun of the token
holding timer in a master and have also shown how such overrunning impacts the cycle time properties of
the PROFIBUS timed-token protocol.
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