
  

 

 

 

 

Attack Detection in Cyber-Physical Production 
Systems using the Deterministic Dendritic Cell 
Algorithm  

 

 
 

 

Conference Paper 

CISTER-TR-201011 

 

 

Rui Pinto; Gil Gonçalves; Eduardo Tovar; Jerker Delsing  

 



Conference Paper CISTER-TR-201011 Attack Detection in Cyber-Physical Production Systems using  ... 

© 2020 CISTER Research Center 
www.cister-labs.pt   

1 
 

Attack Detection in Cyber-Physical Production Systems using the Deterministic 
Dendritic Cell Algorithm 

Rui Pinto; Gil Gonçalves; Eduardo Tovar; Jerker Delsing 

CISTER Research Centre 

Faculdade de Engenharia Universidade do Porto (FEUP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail:  

https://www.cister-labs.pt 

 

Abstract 

Cyber-Physical Production Systems (CPPS) are key enablers for industrial and economic growth. The introduction 
of the Internet of Things (IoT) in industrial processes represents a new revolution towards the Smart 
Manufacturing oncept and is usually designated as the 4 th Industrial Revolution. Despite the huge interest from 
the industry to innovate their production systems, in order to increase revenues at lower costs, the IoT concept is 
still immature and fuzzy, which increases security related risks in industrial systems. Facing this paradigm and, 
since CPPS have reached a level of complexity, where the human intervention for operation and control is 
becoming increasingly difficult, Smart Factories require autonomic methodologies for security management and 
self-healing. This paper presents an Intrusion Detection System (IDS) approach for CPPS, based on the 
deterministic Dendritic Cell Algorithm (dDCA). To evaluate the dDCA effectiveness, a testing dataset was 
generated, by implementing and injecting various attacks on a OPC UA based CPPS testbed. The results show that 
these attacks can be successfully detected using the dDCA. 
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Abstract—Cyber-Physical Production Systems (CPPS) are key
enablers for industrial and economic growth. The introduction
of the Internet of Things (IoT) in industrial processes represents
a new revolution towards the Smart Manufacturing oncept and
is usually designated as the 4th Industrial Revolution. Despite
the huge interest from the industry to innovate their production
systems, in order to increase revenues at lower costs, the IoT
concept is still immature and fuzzy, which increases security
related risks in industrial systems. Facing this paradigm and,
since CPPS have reached a level of complexity, where the human
intervention for operation and control is becoming increasingly
difficult, Smart Factories require autonomic methodologies for
security management and self-healing. This paper presents an
Intrusion Detection System (IDS) approach for CPPS, based on
the deterministic Dendritic Cell Algorithm (dDCA). To evaluate
the dDCA effectiveness, a testing dataset was generated, by
implementing and injecting various attacks on a OPC UA based
CPPS testbed. The results show that these attacks can be
successfully detected using the dDCA.

Index Terms—CPPS, OPC UA, IDS, DCA, AIS, Network
Attacks

I. INTRODUCTION

The proliferation of machine-to-machine (M2M) commu-

nication devices is leading to an enhanced role played by

smart products and smart services, and to the emergence of

global plant floors and autonomous factories. Industry 4.0

is based on the idea of converging the real and the virtual

worlds, by connecting every physical object to each other,

in order to identify themselves to other devices and be able

to communicate with each other. Also, based on Artificial

Intelligent (AI) principles, it was emphasized the creation

of intelligent machines, which make decisions and react to

changes like human operators. All these ideas paved the way

for the Smart Manufacturing concept.

The premises of the IoT applied in manufacturing processes

is the connectivity of everything. Wireless communication

technologies together with ubiquitous Internet access provide

increasing interaction between machines, devices, sensors and

people. Interconnection of physical devices and people in an

industrial facility is the basis of joint collaboration, in order to

reach common goals when performing tasks. In such complex

systems, although openness in information exchange is de-

sired, not every entity should learn every piece of information

regarding others. There are several levels of entity clearance to

access different types of information, which imply information

privacy and entity access control. Also, trust and identification

are very important, since malicious attacks may take over

or impersonate entities, in order to access confidential infor-

mation, driven by monetary and political interests. Privacy,

access control, trust, identification and authentication are some

aspects to be considered in an IoT cyber security solution.

Cyber-Physical Production Systems (CPPS) are becoming

increasingly more susceptible to security vulnerabilities, spe-

cially with the introduction of IoT principles. Industrial control

systems and operations should ensure increased availability,

reliability and safety [1]. But, because of current security

weaknesses, IoT may increase the vulnerability of these sys-

tems. The Maroochy Shire water plant control system was

hacked in 2000, flooding the hotel grounds with raw sewage

[2]. In 2008, a CIA report reveals that hackers have penetrated

power systems in several regions outside the United States [3].

According to an Inspector General report sent to the Federal

Aviation Administration in 2009 [4], hackers broken several

times into the air traffic control mission-support systems of

the U.S. Federal Aviation Administration. An Siemens plant-

control system was also hacked by a virus in 2010 [5]. In 2011,

hackers disrupt the Iran’s nuclear system using the Stuxnet
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worm [6]. Hackers grounded ten LOT Polish Airlines flights

at Warsaw’s Chopin Airport in 2015, by attacking ground

computer systems, affecting about 1,400 passengers [7]. More

recently, in 2016 the Ukrainian power grid was attacked, where

30 power substations were taken down for six hours, affecting

around 80,000 people [8].

The security of CPPS is crucial to the development and

acceptance of the IoT technology [9]. One of the key issues

nowadays that affects the full transformation of traditional

manufacturing systems in CPPS is the lack of mature and

complete security models and standards. M2M communication

in CPPS is based on the Internet Protocol (IP), allowing for

IP enabled devices to be monitored and controlled over the

Internet. However, unlike the Internet, an IoT system has more

complex communications, thus the resulting security issues

represent more challenges than any other existing network

system. Several M2M architectures were developed by dif-

ferent standard organizations, being the IEC 62541 a standard

for Open Platform Communication Unified Architecture (OPC

UA), which provides interoperability in process automation

and service-oriented architecture (SOA) for industrial applica-

tions. While traditional Intrusion Detection Systems (IDS) can

be modified and applied to CPPS intrusion detection, these

techniques are limited when used to detect cyber-attacks on

CPPS with high accuracy, since they usually lack sufficient

capabilities to investigate network traffic based on unique

proprietary protocols, such as OPC UA.

In the present paper, authors propose a deterministic Den-

dritic Cell Algorithm (dDCA) based technique for CPPS

protection. This technique uses the danger theory model of the

Human Immune System (HIS), which have been abstracted

into an algorithm, which exists under a field of artificial

intelligence called Artificial Immune Systems (AIS). This

work intends to provide readers a description about an OPC

UA attack detection technique based on the dDCA. Also, an

evaluation of the dDCA is provided, by applying it to an OPC

UA dataset. This dataset was generated while capturing OPC

UA network traffic in a laboratory CPPS testbed, including the

injection of security threats in the CPPS.

In the present paper, authors intend to provide readers a

description about an OPC UA attack detection technique based

on the deterministic Dendritic Cell Algorithm (dDCA). For

this, a dataset was generated while capturing OPC UA network

traffic in a laboratory CPPS testbed, including the injection of

security threats in the CPPS. On the other side, the evaluation

of the dDCA is provided, by applying it to an OPC UA dataset.

This technique uses the danger theory model of the Human

Immune System (HIS), which have been abstracted into an

algorithm, which exists under a field of artificial intelligence

called Artificial Immune Systems (AIS).

There is previous work, such as [10], regarding intrusion

detection in industrial communication scenarios based on the

dDCA. In this case the authors used the DNP3 protocol.

However, there is a gap regarding using the same technique

to analyse OPC UA traffic in related industrial scenarios.

The main contributions of this work are: 1) generation of an

additional CPPS network traffic dataset containing operational

OPC UA traffic in an industrial M2M communication scenario;

2) evaluation of the dDCA as intrusion detection technique for

anomaly-based detection of this industrial M2M network data.

The paper is organized in six more different sections. In

Section II, a description of the main technologies used is

provided, namely OPC UA as protocol for communications

within CPPS and AIS as field with algorithms inspired on

the HIS for intrusion detection. Also, it gives an overview

of the state-of-the art regarding CPPS security approaches

for intrusion detection and main datasets used to evaluate

algorithms. Section III provides a detailed characterization of

the dDCA algorithm. Section IV describes the CPPS tesbed

experimental setup and the methodology for the OPC UA

dataset creation. Section V provides discussion regarding the

experimental results of using dDCA for intrusion detection

in the generated dataset. Finally, Section VI concludes the

paper, stating final remarks about the generated dataset and the

used intrusion detection algorithm, and provides orientations

for future work.

II. BACKGROUND & RELATED WORK

Considering the industrial context, there have been signif-

icant progress in the development of IDS, specially since

the transformation of classical manufacturing to CPPS and

’openess’ of communications and data access increases the

potential attack surfaces for hackers and other cyber criminals.

Classical manufacturing systems are already lacking proper

security measures [11], leading to huge negative impacts on

the performance of these systems. So, implementing complex

new architectures based on CPPS expose it to much more

vulnerabilities compared to the existing ones.

An IDS is a malicious activity monitoring software appli-

cation, whose goal is simply to detect intrusions by collecting

and analyzing system data. In a CPPS, currently, the OPC UA

is one of the preferred protocols used. Actually, IDS do not

detect intrusions but the evidence of an intrusion presence,

after it occurs or while it is in progress. Also, the nature of

an IDS is classified based on the used intrusion detection

approach, e.g., anomaly-based or signature-based intrusion

detection techniques.

Regarding CPPS, the best approach is using an anomaly-

based intrusion detection technique, since these models are

used to identify a bad behavior by comparison to a predefined

intended behavior, which is considered to be the normal or

baseline behavior. The assumption is that attacks are outliers

in the data set, which differ always from the ordinary behavior

of a regular data set. The main advantage is that previously

unknown attacks can be detected. However, these models are

characterized by their high false positive rate.

Next is provided detail regarding the OPC UA, as a standard

protocol for communication in CPPS and AIS, as alternative

algorithms within the AI field for anomaly-based intrusion

detection.

1553

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on October 29,2020 at 14:41:48 UTC from IEEE Xplore.  Restrictions apply. 



A. OPC UA

OPC UA is an Industrial Automation protocol that integrates

the functionality of the OPC Classic specification into one

modular framework, whose specifications are being standard-

ized as the IEC 62541 norm. It is widely used in industrial

communication, offering a concept of secure data transfer and

a multi-platform interconnection, which means that different

equipments could have an OPC UA client and/or server to

exchange data [12]. The OPC UA specification is a multi-part

specification, organized in three groups, namely Core, Access

Type and Utility specification parts.

Core capabilities define how data is modelled and exposed,

along with the services used to access and manage it, ranging

from Part 1 to Part 7, plus Part 14. Access type capabilities

define how core capabilities and data models access different

types of data, ranging from Part 8 to Part 11. Finally, utility

capabilities describes discovery mechanisms and ways of

aggregating data, including Parts 12 and 13.

Regarding Part 4 - Services, OPC UA follows the design

paradigm of SOA, by defining generic services sets, such

as discovery between Clients and Server’s endpoints, secure

communication channels, application-layer connection in the

context of a session, node management in the address space,

explore and filter the structure of the address space, read-

able/writable node’s attributes, interfaces for invoking methods

attached to an object, monitored attributes or events and

subscription of messages for monitored items

In OPC UA everything is represented as a Node, which is

composed of Attributes (properties with data values charac-

terizing the Nodes) and References (relationships with other

Nodes). Each Attribute has an integer id, name, description,

data type and a mandatory/optional indicator. Clients can

access Attribute values using the referred OPC UA services.

A communication stack is used on client and server-side to

encode and decode message requests and responses, which

supports binary and XML formats. Regarding the transport

layer, the OPC UA protocol can use both TCP and HTTP,

being the TCP format the most widely adopted, since this for-

mat achieves high performance, as it offers less computational

costs when it comes to coding/decoding.

Polge, Robert & Le Traon [13] presented the main OPC UA

threats and the impact of those in OPC UA applications. The

main identified threats are 1) Eavesdropping, 2) Session Hi-

jacking, 3) Rogue Server, 4) Compromising User Credentials,

5) Message Spoofing, 6) Message Alteration, 7) Malformed

Messages, 8) Message Flooding, 9) Message Replay, 10)

Repudiation and 11) Server Profiling. As suggested previously,

this standard has a security specification, so it implements

satisfactory security mechanisms. However, according to the

authors, it can not fill the lack of ’security-by-design’ of legacy

technologies. Also, Neu, Schiering & Zorzo [14] presented a

detailed analysis of denial of service attacks that untrusted

clients may perform against OPC UA servers.

B. Artificial Immune Systems

AIS are a category of biology-inspired computational meth-

ods that emerged in the 90s, bridging different areas such

as immunology, computer science and engineering. AIS have

been developed by computationally modeling immunologic

processes know in biology, abstraction of the models into

algorithms and implementation in the context of engineering.

The Human Immune System (HIS) is an immensely rich

system and many immune processes are not well understood

yet, generating discussion and little agreement among immu-

nologists. This leads to a lack of clarity of the functioning of

biologic immune processes and, regarding AIS practitioners,

a difficulty to properly model a computational system. The

vast majority of AIS have been inspired by the main innate

and adaptive biologic immune mechanisms [15], which led to

four main families of AIS algorithms: 1) Negative Selection

algorithms [16]; 2) Artificial Immune Network Models [17],

[18]; 3) Clonal Selection algorithms [19]; 4) Danger Theory

based algorithms [20], where the most known algorithms are

the Dendritic Cell algorithm [21] and the Tolk-like Receptor

algorithm [22].

According to Dasgupta & Nino [23], there are three pos-

sible applications of AIS in computer security, namely virus

detection, network security and intrusion detection systems.

Detecting anomalies in computer systems filled with different

virus resembles the problem of discrimination between self

and non-self, tackled in the Negative Selection algorithms.

Critical information is threatened when networks are exposed

to malicious actions. Negative Selection algorithms can be

used to monitor network traffic, in order to identify uncom-

mon patterns caused by malicious attacks. Intrusion detection

systems are not used to prevent attacks, but rather to detect

attacks that already took place. These systems can be modeled

using several immune algorithms, including the ones based on

the Danger Theory.

Many AIS approaches have been used to develop IDS

over the years. IDS based on AIS are generally used as

anomaly based detection models. Rubio, Alcaraz, Roman &

Lopez [24] characterize IDS for industrial ecosystems in the

last years. These IDS include both commercially available

and novel detection mechanisms and architectures developed

in the academia. Bortoli [25] proposes in his thesis an IDS

based solution to monitor malicious computer attacks on OPC

UA, based on a plug-in for the dynamic Bro Network IDS to

support OPC UA based protocol. However, there are very few

AIS based approaches for IDS in industrial scenarios.

According to Antón, Gundall, Fraunholz & Schotten [26],

being based on AIS or not, there are challenges in imple-

menting industrial IDS, since there are hardly any datasets

publicly available that can be used to evaluate intrusion

detection algorithms. The KDD Cup99 [27], NSL-KDD [28]

and UNSW-NB15 [29] are widely used datasets for benchmark

in IDS. However, these datasets do not contain typical network

traffic based on industrial protocols.

Antón, Gundall, Fraunholz & Schotten [26] propose three
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datasets containing operational OPC UA traffic of an industrial

process, in which several attacks have been introduced. On a

different work [30], they used the generated dataset to evaluate

the performance of Support-vector machine and Random For-

est algorithms. Igbe, Darwish & Saadawi [10] also propose

a dataset for a Smart Grid scenario, containing Distributed

Network Protocol 3 (DNP3) traffic. This dataset was used to

evaluate the effectiveness of an implementation of the dDCA

to detect cyber-attacks targeting Smart Grids that utilize DNP3.

III. THE DENDRITIC CELL ALGORITHM

According to classical immune theories, the HIS is com-

posed of a group of cells that main function is to detect foreign

and potentially dangerous pathogens and respond adequately,

while ignoring harmless substances and own body cells. Its

main capability is to distinguish between self and non-self

cells. The non-self cells are further categorized, in order

to induce an appropriate type of response, while provid-

ing tolerance for self cells. Regarding the Danger Theory,

Matzinger [31] explained that there are several flaws within the

explanations of how an immune response is initiated in classi-

cal theories, such as Negative Selection algorithms. She states

that, on contrary of those, the ‘foreignness’ of a pathogen is not

the important feature that triggers a response, and ‘selfness’

in no guarantee of tolerance. The immune response is initiated

by a co-stimulatory signal from specific dendritic cells, also

known as Antigen Presenting Cells (APCs). Injured cells, such

as those exposed to pathogens, emit danger/alarm signals that

activate APCs. These signals should not be emitted by healthy

cells or by cells undergoing normal physiological death. Once

activated, they provide a co-stimulatory signal to exhibit an

immune response in the danger zone around the injured cell.

Fig. 1 illustrates the Danger Theory functionality.

Fig. 1. Illustration of the Danger Theory. [23]

The Dendritic Cell Algorithm (DCA) is an abstraction of

the Danger Theory, based on the known functionalities of

the biologic dendritic cells of the inate immune system. The

function of dendritic cells [32], first identified by Steinman

& Cohn [33], in these type of algorithms is inspired by

the innate immunity. Dendritic cells are derived from the

bone marrow and circulate in the blood to be distributed

in different tissues. In the tissue, when dendritic cells are

stimulated by antigens and danger signals, they mature and

differentiate accordingly to the specific tissue. After capturing

the antigens, they migrate to local lymphoid nodes, where

they present captured antigens to lymphocytes, inducing an

immune response. Immature dendritic cells are not capable of

inducing an immune response, which is influenced by the level

of maturation of dendritic cells. The level of maturation of a

dendritic cell is facilitated by the detection of signals within

the tissue, namely danger signals (caused by damage to tissue

cells), pathogenic associated molecular patterns (PAMPs),

which can be seen as pre-defined bacterial signatures, safe

signals (caused by regulated cell deaths) and inflammatory

signals (general tissue distress).

The DCA is a population-based algorithm inspired by the

interaction between dendritic cells (agents in the system) and

their environment, i.e., the DCA has the ability to combine

multiple input signals to assess the current context of the

environment. The original implementation of the DCA was

a highly stochastic algorithm, due to the number of random-

based elements. Hence, in order to analyze better its per-

formance, eliminating most of stochastic parameters in the

algorithm, Greensmith et al. [34] propose the deterministic

version of the DCA (dDCA). The correlation between the

context and the antigen is used as the basis of anomaly

detection in this algorithm. Input signals to the dDCA are

pre-categorized based on their origin, and can be:

• Danger signals (Ds) - The presence of danger sig-

nals may indicate an anomalous situation. However, the

probability of an anomaly is higher than under normal

circumstances.

• Safe signals (Ss) - This signal increases in value in

conjunction with observed normal behavior. Hence, the

presence of safe signals almost certainly indicates that

no anomalies are present.

Regarding the output signals, there are the co-stimulatory

signal csm and the context output value k, which represents

the concentration of semi-mature and mature signals. These

output signal concentrations are derived based on the input

signals, using (1) and (2).

csm = Ds+ Ss (1)

k = Ds− 2Ss (2)

In (1), the csm output signal is used to determine when a

DC has exceeded its lifespan and hence, ready for migration.

The k output signal is used to determine the context of the

DC. If the value of k is greater than 0, then the DC is assigned

a context value of 1, meaning that its collected antigens may

be anomalous. Else, if the value of k is less than 0, the DC

is assigned a context of 0 indicating that its collected antigen

is likely to be normal. Pseudocode for the dDCA is given in

Algorithm 1.

Despite having less random-based variables, there are still

some parameters to be specified for the dDCA, namely the
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Algorithm 1 dDCA Pseudocode.

1: Input numDCs, numIter,At
2: Generate Ags,Ds, Ss
3: for i ≤ numDCs do

4: Initialize dc()

5: end for

6: for j ≤ numIter do

7: for all Ags do

8: Update cumulative csm, k
9: for all dc do

10: Update dc profile()

11: end for

12: if lifespan ≤ 0 then

13: Migrate dc
14: reset dc
15: if k ≥ 0 then

16: dc migrates as ’Mature’

17: else

18: dc migrates as ’Semi-Mature’

19: end if

20: end if

21: end for

22: end for

23: for all Ags do

24: Classify Ag()

25: for all Migrated dc do

26: Count sampled Ags

27: if dc migrated as ’Mature’ then

28: Count cells

29: end if

30: end for

31: mcav ← numCells/numAntigen
32: if mcav ≥ At then

33: context← 1

34: else

35: context← 0

36: end if

37: end for

numDCs - number of DCs in the population, numIter -

mumber of iterations of the algorithm, and At - anomaly

threshold used in the classification phase.

The dDCA starts by generating the antigens and input

signals Ds and Ss, according to the type of data available.

The antigen refers to the data tuple to classify and the input

signals represent the features of that data tuple. The dDCA

proceeds by initializing every DC in an Imature state, which

includes initializing the DC profile, such as the output signals

csm and k as 0, the lifespan (expected time to live of the DC)

as a random value according to a normal distribution, and an

empty pool of sampled antigens.

Then, every antigen generated will be sampled by every

DC, in a phase known as DC Migration. In this phase, the

cumulative output signals are calculated, using (1) and (2),

and every DC profile is updated, namely incrementing each

own csm and k with the cumulative output signal results, the

lifespan is decreased by csm and the pool of sampled antigens

is updated accordingly.

During this process, if the lifespan of a given DC reaches

0, then the DC migrates, which means it leaves the Imature

state. In order to know if the DC goes to a Mature or Semi-

Mature state, its k value is analysed. If k is positive, then the

DC migrates as Mature, otherwise as Semi-Mature. The DC

Migration is repeated along all specified iterations.

In the end, the final phase of the dDCA is the actual antigen

classification. For each antigen generated, it is counted the

number of times the respective antigen was sampled by a

migrated DC. Of those, it is also counted the number of DCs

that are in a Mature state. Finally, the mcav is calculated,

where the number of Mature cells is divided by the number

of sampled antigens. If the mcav is greater then the specified

anomaly threshold (At), then the antigen sampling context

is 1, which means that the respective antigen is likely to

be anomalous. Otherwise, the context is 0, which means the

antigen is likely to be normal.

IV. EXPERIMENTAL SETUP

The generation of the dataset containing OPC UA traffic was

possible due to the setup and execution of a laboratory CPPS

testbed. This CPPS uses OPC UA standard for horizontal

and vertical communications, and was designed and deployed

using the Dinasore tool [35]. Regarding the CPPS testbed

setup, it consists on seven nodes in the network, as represented

in Fig 2.

Fig. 2. CPPS Experimental Setup.

Each network node consist on a Raspberry Pi device, run-

ning the Python FreeOpcUa implementation [36]. In this con-

figuration, there are two production units, each one containing

three devices, and one node representing a Manufacturing

Execution System (MES). Each device implements both OPC

UA server and client, where the server publish to a OPC

UA variable updates regarding sensor readings and the client

subscribes all OPC UA variables from all other devices in

the same production unit. On the other side, the MES only

implements the OPC UA client, which subscribes all OPC

UA variables from all devices in both production units. Also,

connected to this network is an attack node, as it is assumed

that the attacker already gained access to the CPPS network.

After setting up the CPPS testbed, a Python script that

implements Tshark was used to capture OPC UA packets and
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export this traffic to a csv file format dataset. This traffic

includes both normal and anomalous behaviour. Anomalous

behaviour is achieved with the malicious node, which injects

attacks into the CPPS network, targeting one or more legit

device nodes and the MES. The attacks injected by the

malicious activities are:

• Denial of Service(DoS), which have the purpose to elim-

inate device’s capability to perform its expected function.

This type of attacks may target not only at the physical

level, but also the network level, by interfering with the

network protocol, preventing measured data to arrive at

the destination, or cause battery exhaustion, because of

packet re-transmissions. DoS attacks are characterized by

collisions and exhaustion at the link layer, black holes

and misdirection at the network layer, malicious flooding

and time synchronization disruption at the transport layer.

This specific DoS occurred in a HELLO Flood attack

fashion, where the malicious node broadcasts or send to

a specific device HELLO messages at a high rate.

• Eavesdropping or Man-in-the-middle (MITM), which

target the privacy of CPPS, by monitoring and gath-

ering information, through remote access mechanisms.

An attacker may monitor the information passively, by

listening to the transmission medium and understanding

unprotected messages, or can do an active traffic analysis,

where the attacker initiates specific processes by sending

control data as queries, in order to identify sensitive

information. In this case, the malicious node eavesdrop

unprotected messages exchanged between devices and

MES.

• Impersonation or Spoofing, which consist on the im-

personation of node, where the malicious node (bigger

and powerful machine) is used as a server or gateway.

The attacker may steal the received information and also

create new messages or modify the received ones, in order

to deliver different content compared to the one received

in the first place.

A. Dataset Creation

To perform the attacks mentioned, a Python script is used,

which implements the Scapy [37] module for packet sniffing,

injection and modification. Regarding the dataset generation,

another Python script, that implements Tshark (in this case

Pyshark [38], was used to capture only OPC UA packets and

export this traffic to a csv file format dataset. Actually, the

OPC UA packets are converted to bidirectional communication

flows, which are characterized by the following 32 features:

• srcip - Source IP address;

• srcport - Source port;

• dstip - Destination IP address;

• dstport - Destination port;

• flags - TCP flag status;

• pktTotalCount - Total packet count;

• octetTotalCount - Total packet size;

• avgps - Average packet size;

• proto - Protocol;

• service - OPC UA service call type;

• serviceerrors - Number of service errors in OPC UA

request responses;

• statuserrors - Number of status errors in OPC UA

request responses;

• msgsize - OPC UA message transport size;

• minmsgsize - Minimum OPC UA message size;

• flowStart - Timestamp of flow start;

• flowEnd - Timestamp of flow end;

• flowDuration - Flow duration in seconds;

• avgf lowDuration - Average flow duration in seconds;

• flowInterval - Time interval between flows in seconds;

• count - Number of connections to the same destination

host as the current connection in the past two seconds;

• srvcount - Number of connections to the same port

number as the current connection in the past two seconds;

• samesrvrate - The percentage of connections that were

to the same port number, among the connections aggre-

gated in Count;
• dsthostsamesrcportrate - The percentage of connec-

tions that were to the same source port, among the

connections having the same port number;

• fpktTotalCount - Total forward packets count;

• foctetTotalCount - Total forward packets size;

• ff lowStart - Timestamp of first forward packet start;

• frate - Rate at which forward packets are transmitted;

• bpktTotalCount - Total backwards packets count;

• boctetTotalCount - Total backwards packets size;

• bf lowStart - Timestamp of first backwards packet start;

• label - Binary label classification;

• multilabel - Multi classification labeling.

The generated dataset has 33.567 normal instances, 74.013

DoS attack instances, 50 impersonation attack instances, and 7

MITM attack instances. This gives a total of 107.634 instances.

Since the dDCA is a binary classification technique, all attacks

were grouped into one class (anomaly) and the rest of the

instances belong to the normal class. The dataset [39] is

available for research purposes and can be accessed from the

link 1.

B. Data Pre-Processing

In order to apply the dDCA on the dataset generated, the

data IDs of each tuple were used to form an antigen instance,

while a pre-processed subset of attributes were used to form

the signals input signals. Despite having 32 features, there was

the need to perform dimension reduction, in order to reduce

the number of features under consideration by obtaining a set

of principal features of the dataset, which represent best the

CPPS tesbed functionality.

Firstly, the feature values were normalized to fall between

the range of 0 - 100%. Then, for dimension reduction, the

Pearson correlation coefficient (PCC) was calculated for each

feature, by measuring the linear correlation between the fea-

ture itself and the label. According to the Cauchy–Schwarz

1https://digi2-feup.github.io/OPCUADataset/
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inequality, the PCC has a value between +1 and -1, where 1

is total positive linear correlation, 0 is no linear correlation,

and -1 is total negative linear correlation.

In this case, only features with correlations (absolute values)

higher then 0.5 were selected. Of those, the most posi-

tive linear correlated features with label are the count and

srvcount. On the other side, the most negative linear corre-

lated features are flags, pktTotalCount, octetTotalCount,
avgps, msgsize, minmsgsize, foctetTotalCount, frate,

bpktTotalCount, boctetTotalCount and bf lowStart. The

rest of the features are very poor correlated, since the absolute

correlations are lower then 0.5.

For Ds and Ss signal selection, the guidelines provided by

Greensmith were followed [21] in her PhD thesis, regarding

the specification of the original DCA. Since the Ss is a

’stronger’ signal then the Ds, i.e., it is a more reliable indicator

of safe context then Ds is indicative of danger context, Green-

smith suggests to use the attribute that has the lowest standard

deviation in the attribute subset to derive the safe signal,

making it the “most certain” signal. In this case, the feature

with lowest standard deviation was the bpktTotalCount. The

rest of the features are combined to derive the danger signal.

The Ss signal derivation process is: 1. Select a suitable

attribute - in this case, bpktTotalCount is chosen; 2. Calculate

the median of all the selected attribute’s values across both

classes of data (normal and anomaly); 3. For each attribute

value, if value greater then the mean, then the safe value equals

to the absolute distance between mean and value. Otherwise,

it is 0.

For the Ds signal derivation process: 1. Mean values across

all values for each attribute are calculated just for the normal

class (not including anomaly class attribute’s values); 2. Take

each attribute value in turn and calculate the absolute distance

between the attribute values and the respective means; 3. The

mean of all calculated absolute distance values is used to form

a single value for the Ds signal.

V. RESULTS AND DISCUSSION

Since this is a classification problem, it was used the area

under the receiver operating characteristic Curve (AUC - ROC)

curve for dDCA performance measurement (ability for binary

classification), by plotting the true positive rate (TPR) against

the false positive rate (FPR) at various threshold settings. Fig 3

represents the ROC curve for the dDCA setup of numDCs -

100, numIter - 10, and At - 0.688 (derived anomaly threshold

by calculating the rate of anomaly tuples within the whole

dataset. The calculated AUC is 0.99.

Based on the AUC - ROC curve for performance measure-

ment, the calculated AUC is very near to 1, which means the

proposed algorithm has a good measure of separability, i.e.,

it is very capable of distinguishing between the normal and

anomaly classes. The authors believe that the high AUC is due

to have so many highly correlated features with the label, since

from the feature subset, the lowest absolute PCC calculated

was of 0.82, which represents a very strong correlation. So,

this means that the input signals Ds and Ss define very

Fig. 3. ROC curve.

well the actual context of each sampled antigen. In order to

understand if the PCC influence greatly the performance of the

dDCA in the dataset, the same test is performed, but instead

of using the highly correlated features, it is used features with

PCC lower then 0.5. In this case, poor positive correlated fea-

tures are dsthostsamesrcportrate and samesrvrate, while

the poor negative correlated features are srcport, flowEnd,

flowStart, ff lowStart, flowInterval, avgf lowDuration,

flowDuration, dstport and fpktTotalCount.

According to the guidelines provided by Greensmith for Ss
and Ds signal calculation, the feature with lowest standard

deviation was the fpktTotalCount. The rest of the features

of the poorly correlated subset are combined to derive the

danger signal. With the same dDCA setup, i.e., numDCs -

100, numIter - 10, and At - 0.688 , the calculated AUC is

0.5. This means that, with the wrong features, the dDCA has

the same capability of distinguishing between the normal and

anomaly classes as a random selection.

VI. CONCLUSION AND FUTURE WORK

This paper analyzed various threats and vulnerabilities in a

CPPS using OPC UA as standard communication. An OPC

UA dataset was generated, containing normal traffic within

the CPPS and anomalies, which resulted from the security

penetration tests, injecting in the network multiple attack sce-

narios including DoS, MITM and Spoofing. In this research,

the dDCA was used to detect the cyber-attacks. The generated

dataset was used to evaluate the DCA’s effectiveness, and it

was shown that the dDCA performed very well, not only in

detecting the attacks, but also clearly distinct those from the

normal system behaviour, as the calculated AUC is 0.99. The

dDCA classification performance is greatly dependent on the

feature selection process, which will be used to generate the

danger and safe signals. From the tests performed, one can

conclude that features poorly correlated with the classification

label have a very negative impact in the dDCA classification,
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and highly correlated features result in an almost perfect

classification.

For future work, it will be explored and analysed how the

dDCA can be used for classification of data streams in a real-

time detection scenario, instead of using a dataset. This mainly

concerns the dDCA’s great dependency of data pre-processing

and selection. Because anomaly detection is typically an online

and unsupervised nature problem, robustness of dDCA may

be achieved by embedding techniques for unsupervised signal

generation, which don’t rely on application dependent data

engineering performed manually by human experts.
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