

An extensible framework for multicore
response time analysis

Journal Paper

CISTER-TR-181110

Robert Davis

Sebastian Altmeyer

Leandro Indrusiak

Claire Maiza

Vincent Nelis

Jan Reineke

Journal Paper CISTER-TR-181110 An extensible framework for multicore response time analysis

© CISTER Research Center
www.cister.isep.ipp.pt

1

An extensible framework for multicore response time analysis

Robert Davis, Sebastian Altmeyer, Leandro Indrusiak, Claire Maiza, Vincent Nelis, Jan Reineke

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

In this paper, we introduce a multicore response time analysis (MRTA) framework, which decouples response time
analysis from a reliance on context-independent WCET values. Instead, the analysis formulates response times
directly from the demands placed on different hardware resources. The MRTA framework is extensible to different
multicore architectures, with a variety of arbitration policies for the common interconnects, and different types
and arrangements of local memory. We instantiate the framework for single level local data and instruction
memories (cache or scratchpads), for a variety of memory bus arbitration policies, including: Round-Robin, FIFO,
Fixed-Priority, Processor-Priority, and TDMA, and account for DRAM refreshes. The MRTA framework provides a
general approach to timing verification for multicore systems that is parametric in the hardware configuration and
so can be used at the architectural design stage to compare the guaranteed levels of real-time performance that
can be obtained with different hardware configurations. We use the framework in this way to evaluate the
performance of multicore systems with a variety of different architectural components and policies. These results
are then used to compose a predictable architecture, which is compared against a reference architecture
designed for good average-case behaviour. This comparison shows that the predictable architecture has
substantially better guaranteed real-time performance, with the precision of the analysis verified using cycle-
accurate simulation.

Real-Time Syst (2018) 54:607–661

https://doi.org/10.1007/s11241-017-9285-4

An extensible framework for multicore response time

analysis

Robert I. Davis1,2
· Sebastian Altmeyer3

·

Leandro S. Indrusiak1
· Claire Maiza4

·

Vincent Nelis5
· Jan Reineke6

Published online: 18 July 2017

© The Author(s) 2017. This article is an open access publication

Abstract In this paper, we introduce a multicore response time analysis (MRTA)

framework, which decouples response time analysis from a reliance on context-

independent WCET values. Instead, the analysis formulates response times directly

This paper extends initial research on “A Generic and Compositional Framework for Multicore Response

Time Analysis” presented at RTNS 2015 (Altmeyer et al. 2015).

The additional material includes: Section 4: analysis for warmed-up caches and dynamic scratchpads

(Sects. 4.3 and 4.2). Section 7: extensions to the task model, including RTOS and interrupts, shared

software resources, and open systems and incremental verification. Section 8: presentation of a

cycle-accurate multicore simulator. Section 9: evaluation of different local memory types (Sect. 9.2), a

comparison between predictable and reference architectures (Sect. 9.3), and a verification of the precision

of the analysis using results from the simulator (Sect. 9.4).

B Sebastian Altmeyer

altmeyer@uva.nl

Robert I. Davis

rob.davis@york.ac.uk

Leandro S. Indrusiak

leandro.indrusiak@york.ac.uk

Claire Maiza

claire.maiza@imag.fr

Vincent Nelis

nelis@isep.ipp.pt

Jan Reineke

reineke@cs.uni-saarland.de

1 University of York, York, UK

2 INRIA Paris, Paris, France

3 University of Amsterdam, Amsterdam, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-017-9285-4&domain=pdf
http://orcid.org/0000-0002-2487-7144

608 Real-Time Syst (2018) 54:607–661

from the demands placed on different hardware resources. The MRTA framework is

extensible to different multicore architectures, with a variety of arbitration policies

for the common interconnects, and different types and arrangements of local mem-

ory. We instantiate the framework for single level local data and instruction memories

(cache or scratchpads), for a variety of memory bus arbitration policies, including:

Round-Robin, FIFO, Fixed-Priority, Processor-Priority, and TDMA, and account for

DRAM refreshes. The MRTA framework provides a general approach to timing ver-

ification for multicore systems that is parametric in the hardware configuration and

so can be used at the architectural design stage to compare the guaranteed levels of

real-time performance that can be obtained with different hardware configurations. We

use the framework in this way to evaluate the performance of multicore systems with

a variety of different architectural components and policies. These results are then

used to compose a predictable architecture, which is compared against a reference

architecture designed for good average-case behaviour. This comparison shows that

the predictable architecture has substantially better guaranteed real-time performance,

with the precision of the analysis verified using cycle-accurate simulation.

Keywords Multicore scheduling · Timing analysis · Verification

1 Introduction

Effective analysis of the worst-case timing behaviour of systems built on multicore

architectures is essential if these high-performance platforms are to be deployed in

critical real-time embedded systems used in the automotive and aerospace industries.

We identify four different approaches to solving the problem of determining timing

correctness.

With single-core systems, a traditional two-step approach is typically used. This

consists of timing analysis which determines the context-independent worst-case exe-

cution time (WCET) of each task, followed by schedulability analysis, which uses

task WCETs and information about the processor scheduling policy to determine if

each task can be guaranteed to meet its deadline. When local memory (e.g. cache)

is present, then this approach can be augmented by analysis of Cache Related Pre-

emption Delays (CRPD) (Altmeyer et al. 2012), or by partitioning the cache to avoid

CRPD altogether. Both approaches are effective and result in tight upper bounds on

task response times (Altmeyer et al. 2014, 2016).

With a multicore system, the situation is more complex since WCETs are strongly

dependent on the amount of cross-core interference on shared hardware resources

such as main memory, L2 caches, and common interconnects, due to tasks running

on other cores. The uncertainty and variability in this cross-core interference renders

the traditional two-step process ineffective for many multicore processors. For exam-

4 Universite Grenoble-Alpes, Grenoble, France

5 CISTER, ISEP, Porto, Portugal

6 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

123

Real-Time Syst (2018) 54:607–661 609

ple, on the Freescale P4080, the latency of a read operation varies from 40 to 600

cycles depending on the total number of cores running and the number of competing

tasks (Nowotsch et al. 2014). Similarly, a 14 times slowdown has been reported (Rado-

jković et al. 2012) due to interference on the L2 cache for tasks running on Intel

Core 2 Quad processors. Further, recent work by Valsan et al. (2016) has shown

that in some multicore systems with out-of-order execution, cache partitioning is

insufficient to provide effective isolation, with shared Miss Status Handling Registers

(MSHR) causing up to 20 times slowdown to code allocated its own separate cache

partition.

At the other extreme is a fully integrated approach. This involves considering the

precise interleaving of instructions originating from different cores (Gustavsson et al.

2010); however, such an approach suffers from potentially insurmountable problems

of combinatorial complexity, due to the proliferation of different path combinations,

as well as different release times and schedules.

An alternative approach is based on temporal isolation (Bui et al. 2011). The idea

here is to statically partition the use of shared resources, e.g. space partitioning of cache

and DRAM banks, time partitioning of bus access etc., so that context-independent

WCET values can be used and the traditional two-step process applied. This approach

raises a further challenge, how to partition the resources to obtain schedulability

(Reineke and Doerfert 2014). Techniques which seek to limit the worst-case cross-core

interference, for example by using TDMA arbitration on the memory bus or by lim-

iting the amount of contention by suspending execution on certain cores (Nowotsch

et al. 2014), can have a significant detrimental effect on performance, effectively

negating the performance benefits of using a multicore system altogether. We note

that TDMA is rarely if ever used as a bus-arbitration policy in real multicore pro-

cessors, since it is not work-conserving and so wastes significant bandwidth. This

impacts both worst-case and average-case performance, which are essential for appli-

cation areas such as telecommunications that have a major influence on processor

design.

The final approach is the one presented in this paper, based on explicit interference

modelling. We argue that the strong interdependencies between timing analysis and

schedulability analysis on multicore systems lead to undue pessimism. Thus a more

nuanced and expressive interface is needed to integrate the demands placed on different

resources by each task into schedulability analysis. In our approach, we omit the notion

of WCET per se and instead directly target the calculation of task response times based

on the demands that tasks place on the different hardware resources.

In this work, as a proof of concept, we use execution traces to model the behaviour

of tasks and their resource demands. Traces provide a simple yet expressive way to

model task behaviour, that captures information about the sequence of instructions

and their memory accesses and corresponding types (read/write). Note that relying

on execution traces does not pose a fundamental limitation to our approach as all

required parameters can also be derived using static analysis (Li and Malik 1995;

Ferdinand et al. 1999; Altmeyer 2013); however, traces enable a simple analysis of

resource demands and so allow us to focus on an integrated response time analysis for

multicore systems.

123

610 Real-Time Syst (2018) 54:607–661

The main parameters used are the processor demand and the memory demand of

each task. The latter quantity is used in analysis of the arbitration policy for the common

interconnect, enabling us to upper bound the total memory access delays which may

occur during the response time of a task. By computing the overall processor demand

and memory demand over a relatively long interval of time (i.e. the task response

time), as opposed to summing the worst case over many short intervals (e.g. individual

memory accesses), we are able to obtain much tighter response time bounds.

The Multicore Response Time Analysis framework (MRTA) that we present is exten-

sible to different types and arrangements of local memory, and different arbitration

policies for the common interconnect. We instantiate the MRTA framework assuming

the local memories used for instructions and data are single-level and either cache,

scratchpad, or not present. In the case of caches we consider both cold caches, i.e.

execution from an empty cache, and warm caches, taking advantage of information

that resides in the cache from previous execution. With scratchpads, we consider both

static and dynamic behaviour. Further, we assume that the memory bus arbitration

policy may be TDMA, FIFO, Round-Robin, Fixed-Priority (based on task priorities),

or Processor-Priority. We also account for the effects of DRAM refresh (Atanassov

and Puschner 2001; Bhat and Mueller 2011). The general approach embodied in the

MRTA framework is extensible to more complex, multi-level memory hierarchies,

and to other sources of interference. We outline how the framework and analysis can

be adapted to cover interference due to operation of the real-time operating system

(RTOS) and Interrupt Handlers, we also discuss how to take into account the effects of

policies used to control access to shared software resources, and how the framework

can be used with open systems and for incremental verification.

The MRTA framework provides a general timing verification framework that is

parametric in the hardware configuration (common interconnect, local memories,

number of cores, etc.) and so can be used at the architectural design stage to compare

the guaranteed levels of real-time performance that can be obtained with different

hardware configurations, and also during the development and integration stages to

verify the timing behaviour of a specific system. We use the framework in this way

to evaluate guaranteed performance for multicore systems with a variety of different

architectural components and policies. These results are then used to compose a pre-

dictable architecture, which is compared against a reference architecture designed for

good average-case behaviour. This comparison shows that the predictable architecture

has substantially better guaranteed real-time performance, with the precision of the

analysis verified using cycle-accurate simulation.

While the specific hardware models and their mathematical representations used

in this paper cannot capture all of the interference and complexity of actual hardware,

they serve as a valid starting point. They include the dominant sources of interference

and represent current architectures reasonably well.

1.1 Organisation

The rest of the paper is organised as follows. Section 2 discusses the related work.

Section 3 describes the system model and notation used. Sections 4 and 5 show

123

Real-Time Syst (2018) 54:607–661 611

how the effects of a local memory and the common interconnect can be modelled.

Section 6 presents the nucleus of our framework, interference-aware MRTA. This

analysis integrates processor and memory demands accounting for cross-core inter-

ference. Extensions to the presented analysis are discussed in Sect. 7. Section 8

describes a cycle-accurate simulator used to verify the precision of the analy-

sis. Section 9 provides the results of an experimental evaluation using the MRTA

framework, and Sect. 10 concludes with a summary and perspectives on future

work.

2 Related work

The problem of estimating the response time of software real-time tasks executed on

a multicore architecture is not new. The research community has been active in this

area for the past ten years and an array of solutions have been proposed. Most of these

solutions are, however either single-point solutions applicable to specific software

and hardware models, or they focus exclusively on one particular sub-problem and

abstract the rest by making simplistic assumptions. Only a few research works aim at

designing a holistic analysis technique, typically because the solutions specific to the

various sub-problems are very difficult to combine.

We note that it is challenging to organize the related work, since it is rare to find

papers that share the same assumptions about the application and the hardware model.

We therefore make a simple classification based on the primary focus of the analysis,

whether it is on interference at the shared cache, memory bus, or main memory level,

or on parameterizing WCETs. Further works are also covered that assume distinct

application models and hardware models.

2.1 Related work with a focus on the memory bus

Although listed in this category, some of the works cited below also consider inter-

ference at the cache(s) or main memory level as well. However, they typically make

either pessimistic or simplistic assumptions (like having private caches only) at those

levels in order to simplify the model and thus focus on the contention for the shared

memory bus.

Rosen et al. (2007) proposed an analysis technique for systems in which the shared

memory bus uses TDMA arbitration and the time slots are statically assigned to the

cores. This technique relies on (i) the availability of a user-programmable table-driven

bus arbiter, which is typically not available in real hardware, and (ii) on the knowledge

at design time of the characteristics of the entire workload that executes on each

core.

In the same vein, also relying on TDMA arbitration of the memory bus, Chattopad-

hyay et al. (2010) and Kelter et al. (2011) proposed a response time analysis technique

that considers a shared bus and an instruction cache, assuming separate buses and

memories for both code and data. Their methods have limited applicability though, as

they do not address data accesses to memory.

123

612 Real-Time Syst (2018) 54:607–661

Paolieri et al. (2009) proposed a multicore architecture with hardware that enforces

a constant upper bound on the latency of each access to a shared L2 memory through a

shared bus. This approach enables the analysis of tasks in isolation since the interfer-

ence on other tasks can be conservatively accounted for using this bound on the latency

of each access. Similarly, the PTARM (Liu et al. 2012) enforces constant latencies for

all instructions, including loads and stores; however, both cases represent customized

hardware.

Lv et al. (2010) used timed automata to model the memory bus and the mem-

ory request patterns. Their method handles instruction accesses only and may suffer

from state-space explosion when applied to data accesses. Another method employ-

ing timed automata was proposed by Gustavsson et al. (2010) in which the WCET

is obtained by proving special predicates through model checking. This approach

enables detailed system modelling, but is also prone to the problem of state-space

explosion.

Schliecker et al. (2010) proposed a method that employs a general event-based

model to estimate the maximum load on a shared resource. This approach makes few

assumptions about the task model and is thus quite generally applicable; however, it

only supports a single unspecified work-conserving bus arbiter.

Yun et al. (2012) proposed a software-based memory throttling mechanism to explic-

itly limit the memory request rate of each core and thereby control the memory

interference. They also developed analytical solutions to compute proper throttling

parameters that ensure the schedulability of critical tasks while minimising the per-

formance impact of throttling.

Kelter et al. (2014) analysed the maximum bus arbitration delays for multicore

systems sharing a TDMA bus and using both (private) L1 and (shared) L2 instruction

and data caches.

Dasari et al. (2016) proposed a general framework to compute the maximum inter-

ference caused by the shared memory bus and its impact on the execution time of

the tasks running on the cores. This method is more complex than the one pro-

posed in this paper, and may be more accurate when it estimates the delay due to the

shared bus; however, it assumes partitioned caches and therefore does not take cache-

related effects into account, which makes it less general than the framework proposed

here.

Jacobs et al. (2016) proposed a formal framework for the derivation of sound WCET

analyses for multi-core processors. They show how to apply their analysis to account

for interference on shared buses, accounting for cumulative information about the

interference from tasks on other cores.

Huang et al. (2016) presented a response-time analysis that applies to multicores

with one shared resource under fixed-priority arbitration. They give a simple task-

to-core allocation algorithm and show that in conjunction with their response-time

analysis it has a speedup factor of 7. Unlike the work in this paper, their model

neither accounts for cache-related pre-emption delays nor for DRAM refreshes.

Huang et al. (2016) also provide an improved response-time analysis for the case

where tasks suspend from their processing core when accessing a shared resource.

This is a reasonable assumption for DMA transfers, but not for individual memory

accesses.

123

Real-Time Syst (2018) 54:607–661 613

2.2 Related work with a focus on main memory

Most of the related work on memory controllers proposes scheduling algorithms that

improve the controller performance, i.e., the average time to serve a sequence of

requests, by (re)ordering the incoming requests at the controller level. Typically, these

techniques are aimed at reducing the number of transitions between read and write

modes. They seek to get the best performance from an open page policy by exploiting

data locality.

Targeting real-time systems and thus time-predictability rather than performance,

Kim et al. (2014a, 2016) presented a model to upper bound the memory interference

delay caused by concurrent accesses to shared DRAM. Their work differs from this

paper in that they primarily focus on the contention at the DRAM controller, assuming

either fully-partitioned private caches or shared caches. For shared caches, they simply

assume that either task preemption does not incur cache-related preemption delays

(assuming in this case that cache coloring mechanisms are employed), or that the

extra number of memory requests resulting from cache line evictions at runtime is

given. Any further delays from shared resources, such as the memory bus, are simply

assumed to be accounted for in the tasks’ WCETs.

2.3 Related work with a focus on shared caches and scratchpads

Regarding the problem of estimating the WCET of tasks running in systems with shared

caches, Yan and Zhang (2008) proposed a solution assuming direct-mapped, shared

L2 instruction caches on multicores. The applicability of the approach is unfortunately

limited as it makes very restrictive assumptions such as (i) data caches are perfect,

i.e. all accesses are hits, and (ii) data references from different threads will not interfere

with each other in the shared L2 cache.

Li et al. (2009a) proposed a method to estimate the worst-case response time of

concurrent programs running on multicores with shared L2 caches, assuming set-

associative instruction caches using the LRU replacement policy. Their work was later

extended by Chattopadhyay et al. (2010) by adding a TDMA bus analysis technique

to bound the memory access delay.

Regarding flash memory, Li and Mayer (2016) proposed a post-processing analysis

methodology to acquire precise information about task flash memory contentions

based on non-intrusive traces. For scratchpad memory, most of the works aim at

reducing the WCET by proposing optimized stack management techniques (Lu et

al. 2013) or dynamic code management techniques (Kim et al. 2014b), for loading

program code from the main memory to the scratchpad.

Considering shared caches, there are a plethora of works that aim at reducing

the impact of task pre-emptions and hence also the cache related pre-emption delays.

Solutions to that problem are various: some address the problem at the task scheduling

level Davis et al. (2013, 2015) by adding restrictions on the time at which tasks may

be pre-empted, or at the cache management policy level (Ward et al. 2013; Mancuso

et al. 2013; Slijepcevic et al. 2014). It is outside the scope of this paper to discuss all

these research works.

123

614 Real-Time Syst (2018) 54:607–661

2.4 Related work with a focus on parameterized WCETs

Rather than computing a unique upper-bound on the tasks’ context independent WCET,

some works propose solutions to characterize the WCET as a function of the platform

characteristics and environment.

Paolieri et al. (2011) introduced an interference-aware task allocation algorithm

that considers a set of WCET estimations per task, where each WCET estimation

corresponds to a different execution environment (e.g. number of contending cores in

a multicore system). The sensitivity of the WCET estimates to changes in the execution

environment is used to guide the task to core allocation.

Reineke and Doerfert (2014) introduced architecture-parametric WCET analysis,

which determines a function that bounds a task’s WCET in terms of the amount and

speed of resources allocated to that task. If a temporal-isolation approach is taken then

such an analysis is required to partition shared resources in an informed manner. This

analysis can also be adapted to determine WCET bounds in terms of the amount of

interference on shared resources.

2.5 Related work assuming different application models

Most of the related work assumes independent tasks and only a few approaches have

been proposed so far that consider task dependencies to some extent. Among them, the

approach proposed by Li et al. (2009b) analyzes the worst-case cache access scenario

of parallelized applications modeled by Message Sequence Graphs. The approach

suffers from a very high time-complexity and assumes that the cache access behaviors

are known and finite. Choi et al. (2016) used a more general model, comprising an

event stream model for resource access and a task graph model for dependent tasks, in

order to support a wider range of resource access patterns and parallelized execution

of an application.

Schranzhofer et al. (2010) developed a framework based on a TDMA-arbitrated

bus. This was followed by work on resource adaptive arbiters (Schranzhofer et al.

2011). Their work assumes a task model where each task consists of sequences of

super-blocks, themselves divided into phases that represent implicit communication

(fetching or writing of data to/from memory), computation (processing the data), or

both. In contrast to the techniques presented in this paper, their approach requires

major program intervention and compiler assistance to prefetch data. Adopting a

similar model, Pellizzoni et al. (2010) compute an upper bound on the contention

delay incurred by periodic tasks, for systems comprising any number of cores and

peripheral buses sharing a single main memory. Their method does not cater for spo-

radic tasks and does not apply to systems with shared caches. In addition it relies

on accurate profiling of cache utilization, suitable assignment of the TDMA time-

slots to the tasks’ super-blocks, and imposes a restriction on where the tasks can be

pre-empted.

Pellizzoni et al. (2011) introduced the PRedictable Execution Model (PREM)

framework. This framework considers tasks as consisting of memory phases where

they pre-fetch instructions and data, and execution phases where they execute with-

123

Real-Time Syst (2018) 54:607–661 615

out the need to access memory or I/O devices. The aim is to enable more efficient

operation whereby the memory phase of one task overlaps with the execution phase of

another. Yao et al. (2012) presented a TDMA scheduling algorithm for PREM tasks on

a multicore, and Wasly and Pellizzoni (2014) provided schedulability analysis for non-

preemptable PREM tasks on a partitioned multicore. Lampka et al. (2014) proposed a

formal approach for bounding the worst-case response time of concurrently executing

real-time tasks under resource contention and almost arbitrarily complex resource arbi-

tration policies, with a focus on main memory as a shared resource. Global scheduling

of PREM tasks has also been considered by Alhammad and Pellizzoni (2014) and

Alhammad et al. (2015).

2.6 Related work assuming COTS hardware components

COTS multicore processors are typically designed to optimize average-case perfor-

mance and most of their internal mechanisms are usually not documented. For such

multicore platforms, Yun et al. (2015) proposed a worst-case memory interference

delay analysis under the assumptions that (i) multiple memory requests can be simul-

taneously outstanding and (ii) the COTS DRAM controller has a separate read and

write request buffer, prioritizes reads over writes, and supports out-of-order request

processing. In contrast with this work, they assume non-blocking caches (common

in COTS processors) that can handle multiple simultaneous cache-misses and focus

solely on non-shared LLC (last level of cache) and DRAM bank partitioned systems.

Non blocking caches have been the focus a multiple studies recently; however, we do

not cover those techniques here. The main problem with non-blocking caches is that

the miss status holding registers (MSHRs), special hardware registers which track the

status of outstanding cache-misses, can be a significant source of contention (Valsan

et al. 2016).

Trilla et al. (2016) proposed a timing model to predict the performance of

applications at an early design stage. Their approach is based on generating an

execution profile for each application that allows contention analysis on the shared

processor resources. The main difference with our approach resides in their assump-

tion that most of the hardware arbitration mechanisms are undocumented and

therefore the applications’ execution profiles are obtained based on an empirical

analysis.

Most work on response time analysis for multicores, including this paper, assumes

timing compositionality (Hahn et al. 2013). Intuitively, for a timing-compositional

multicore, it is safe to separately account for delays from different sources, such as

computation on a given core, additional cache misses due to preemptions, and inter-

ference on a shared bus. Unfortunately, recent results by (Hahn et al. 2015) indicate

that even simple commercial multicores are non-compositional, rendering most exist-

ing analyses unsound for these architectures. Hahn et al. (2016), however, introduced

an extended WCET analysis that enables compositional response time analysis for

arbitrary, non-compositional multicores.

123

616 Real-Time Syst (2018) 54:607–661

Fig. 1 Multicore platform. A

set of ℓ cores with local

memories connected via a

common bus to a global memory

3 System model

In this paper, we provide a theoretical framework that can be instantiated for a range

of different multicore architectures with different types of memory hierarchy and

different arbitration policies for the common interconnect. Our aim is to create a

flexible, adaptable, and generic analysis framework wherein a large number of common

multicore architecture designs can be modeled and analysed. Inevitably, in this paper

we can only cover a limited number of types of local memory, bus, and global memory

behaviour. We select common approaches to model the different hardware components

and integrate them into an extensible framework.

3.1 Multicore architectural model

We model a generic multicore platform with ℓ timing-compositional cores P1, . . . Pℓ

as depicted in Fig. 1. By timing-compositional cores we mean cores where it is safe to

separately account for delays from different sources, such as computation on a given

core and interference on a shared bus (Hahn et al. 2013).

The set of cores is defined as P. Each core has a local memory which is connected

via a shared bus to a global memory and IO interface. We assume constant delays dmain

to retrieve data from global memory under the assumption of an immediate bus access,

i.e., no wait-cycles or contention on the bus. We assume atomic bus transactions, i.e.,

no split transactions, which furthermore are not re-ordered, and non-preemptable busy

waiting on the core for requests to be serviced. Further, we assume that bus access

may be given to cores for one access at a time. The types of the memories and the bus

policy are parameters that can be instantiated to model different multicore systems.

In this paper we assume write-through caches only and omit consideration of delays

due to cache coherence and synchronization. We also consider write-through and write-

back scratchpads.

3.2 Task model

We assume a set of n sporadic tasks {τ1, . . . , τn}; each task τi has a minimum period

or inter-arrival time Ti and a deadline Di . Deadlines are assumed to be constrained,

hence Di ≤ Ti .

123

Real-Time Syst (2018) 54:607–661 617

We assume that the tasks are statically partitioned to the set of ℓ identical cores

{P1, . . . , Pℓ}, and scheduled on each core using fixed-priority pre-emptive scheduling.

The set of tasks assigned to core Px is denoted by Ŵx .

The index of each task is unique and thus provides a global priority order, with τ1

having the highest priority and τn the lowest. The global priority of each task translates

to a local priority order on each core which is used for scheduling purposes. We use

hp(i) (lp(i)) to denote the set of tasks with higher (lower) priority than that of task

τi , and we use hep(i) (lep(i)) to denote the set of tasks with higher or equal (lower or

equal) priority to task τi .

We initially assume that the tasks are independent, in so far as they do not share

mutually exclusive software resources (discussed in Sect. 7); nevertheless, the tasks

compete for hardware resources such as the processor core, local memory, and the

memory bus.

The execution of task τi is modelled using a set of traces Oi , where each trace

o = [ι1, . . . ιk] is an ordered list of instructions. For ease of notation, we treat the

ordered list of instructions as a multi-set, whenever we can abstract away from the

specific order. We distinguish three types of instruction i t :

i t =

⎧

⎨

⎩

r [mda] read data from memory block mda

w[mda] write data to memory block mda

e execute

(1)

An instruction ι is a triple consisting of the instruction’s memory address m in, its

execution time � without memory delays, i.e., assuming a perfect local memory, and

the instruction type i t :

ι = (m in,�, i t) (2)

We use m to denote a memory block, and the set of memory blocks is defined as M.

M
in denotes the instruction memory blocks and M

da the data memory blocks. m in and

mda are defined accordingly. We assume that data memory and instruction memory

are disjoint, i.e, M
in ∩ M

da = ∅.

3.2.1 Using traces to model the tasks’ behaviour

The use of traces to model a task’s behaviour is unusual as the number of traces is

exponential in the number of control-flow branches. Despite this obvious drawback,

we decided to use traces for a number of reasons:

– Traces provide a simple yet expressive way to model task behaviour. They enable

a near-trivial static cache analysis and a simple multicore simulation to evaluate

the accuracy of the timing verification framework.

– Traces show that the worst-case execution behaviour of a task τi on a multicore

system is not uniquely defined. For example, the highest impact on a task scheduled

on the same core due to task τi may occur when it uses that core for the longest

possible time interval, whereas the highest impact on tasks scheduled on other

cores may occur when task τi produces the largest number of bus accesses. These

two cases may well correspond to different execution traces.

123

618 Real-Time Syst (2018) 54:607–661

As a remedy for the exponential number of traces, complexity can be reduced by

(i) computing a synthetic worst-case trace or by (ii) deriving the set of Pareto optimal

traces that maximize the task’s impact on a given performance metric or combination

of different performance metrics, see (Li and Malik 1995). (The derivation of the

Pareto front of traces is part of our future work.)

We note that using traces does not reduce the applicability of our approach. We

use traces as a simple model which allows us to describe the computation of resource

demand for various types of architectural component, and to focus on the multicore

response time analysis. We can also completely resort to static analysis to derive

independent upper bounds on the resource demands. For example, a static cache anal-

ysis (Ferdinand et al. 1999) can be used to bound the number of bus and also DRAM

accesses. Static pre-emption cost analyses (Altmeyer 2013) are also available to bound

the impact of pre-emptions, and we can use implicit path enumeration (Li and Malik

1995) to derive an upper bound on the purely computational demand of a task. These

independently derived upper bounds can then be represented by a single, synthetic

trace that maximizes each type of resource demand. Using static analyses in this way

strongly reduces the computational complexity, but may lead to pessimism. These

static analyses are, however, outside the scope of this paper, and an evaluation of the

trade-off in terms of pessimism is left for future work.

3.3 Pre-emption cost model

We now extend the task model introduced above to include pre-emption costs. These

costs occur when the pre-empting task evicts cache blocks of the pre-empted task

that have to be reloaded after the pre-empted task resumes. To analyse the effect of

pre-emption on a pre-empted task, Lee et al. (1998) introduced the concept of a useful

cache block. Applying this concept to traces, a memory block m is referred to as a

useful cache block (UCB) at a program point corresponding to instruction ι on trace

o, if (i) m is cached at that program point and (ii) m is reused by a later instruction

in the trace without prior eviction. In the case of pre-emption at the program point

corresponding to instruction ι on trace o, only the memory blocks that (i) are cached

and (ii) will be reused, may cause additional reloads. Hence, the number of UCBs at

a program point gives an upper bound on the number of additional reloads due to a

pre-emption at that point in the trace. A tighter definition is presented by Altmeyer

and Burguière (2009); however, in this paper we need only the basic concept.

The worst-case impact of a pre-empting task is given by the number of cache

blocks that the task may evict during its execution. A memory block accessed during

the execution of a trace o is referred to as an evicting cache block (ECB). Accessing

an ECB may evict a cache block of a pre-empted task. The intersection of UCBs of

the pre-empted tasks with ECBs of the pre-empting task provides a tight upper bound

on the cache-related pre-emption costs.

In this paper, we represent the sets of ECBs and UCBs as sets of integers with the

following meaning:

123

Real-Time Syst (2018) 54:607–661 619

s ∈ UCBι,o ⇔ the program point ι in trace o has a useful cache block in cache-set s

s ∈ ECBo ⇔ trace o may evict a cache block in cache-set s

We note that a separate computation of the pre-emption cost is restricted to archi-

tectures without timing anomalies (Lundqvist and Stenström 1999) but is independent

of the type of cache used, i.e. data, instruction or unified cache. For examples of the

use of UCBs and ECBs to compute pre-emption costs, see the work of Altmeyer et al.

(2012).

3.4 Table of notation

Table 1 provides a quick reference for the notation used in this paper. Much of this

notation is introduced and defined in later sections. Note we do not include in this

table notation that is only used locally for the purpose of simplifying expressions.

4 Memory modelling

In this section we show how the effects of a local memory can be modelled via a MEM

function which describes the number of accesses due to a task which are passed to the

next level of the memory hierarchy, in this case main memory. The MEM function is

instantiated for both cache and scratchpads. We model the effect of a (local) memory

using a function of the form:

MEM : O → N × 22N

× 2N (3)

where O is the domain of traces and MEM(o) = (MDo, UCBo, ECBo) computes, for

a trace o, three quantities: (i) the number of bus accesses i.e., the number of mem-

ory accesses which cannot be served by the local memory alone, referred to as the

memory demand MDo; (ii) a multiset UCBo containing, for each program point ι

in trace o, the set of Useful Cache Blocks (UCBs), which may need to be reloaded

when trace o is pre-empted at that program point, i.e. UCBo =
⋃

ι∈o{UCBι o}; (iii)

the set ECBo of Evicting Cache Blocks (ECBs) corresponding to the set of all cache

blocks accessed by trace o which may evict memory blocks of other tasks from the

cache. MD does not just cover cache misses, but also has to account for write accesses.

In the case of write-through caches, each write access will cause a bus access, irre-

spective of whether or not the memory block is present in cache. (We leave integration

of analysis for write-back caches (Davis et al. 2016) as future work).

MD assumes non-preemptive execution. With pre-emptive execution and caches,

more than MD memory accesses can contribute to the bus contention. In this paper, we

make use of the CRPD analysis for fixed-priority pre-emptive scheduling introduced

by Altmeyer et al. (2012) to upper bound the additional memory accesses needed to

reload cache blocks evicted due to pre-emption.

We now derive instantiations of the function MEM(o) for a trace o = [ι1, . . . , ιk]

for instruction memories and data memories for systems (i) without cache, (ii) with

123

620 Real-Time Syst (2018) 54:607–661

Table 1 Notation

Set of cores P = {P1, . . . , Pℓ}

Number of cores ℓ

Core index x ,y

Task set Ŵ = {τ1, . . . , τn}

Number of tasks n

Task index i, j

Tasks on core Px Ŵx

Task worst-case execution time with no interference Ci

Task period Ti

Task deadline Di

Task response time Ri

Task memory demand MDi

Task processor demand P Di

Tasks with higher priority than τi hp(i)

Tasks with higher or equal priority to τi hep(i)

Tasks with lower priority than τi lp(i)

Tasks with lower or equal priority to τi lep(i)

Tasks τ j may pre-empt within the response time of τi aff(i, j)

Bus accesses from tasks in hep(i) on core Px in time t

Where τi is the task under analysis Sx
i
(t)

Bus accesses from tasks in hep(j) on core Py in time t A
y
j
(t)

Bus accesses from tasks in lp(j) on core Py in time t L
y
j
(t)

Memory block m

Set of memory blocks M

Instruction type i t =

⎧

⎨

⎩

r [m]

w[m]

e

Instruction ι = (m,�, i t)

Execution trace o = [ι1, . . . ιk]

Set of traces of task τi Oi

Memory demand of trace o MDo

ECBs of trace o ECBo

ECBs of task τi ECBi

UCBs at instruction ι of trace o UCBι,o

Multi-set of UCBs of trace o UCBo

Memory blocks cached after executing trace o Cached(o)

Cache lines that may be evicted by tasks other than τi POT-EVICTEDi

Definitely cached memory blocks at the start of τi DEF-CACHEDi

Cost of a pre-emption by τ j during response time of τi γi, j,x

Bus function BUS : N × P × N → N

Memory function MEM : O → N × N × 2N × 2N

123

Real-Time Syst (2018) 54:607–661 621

Table 1 continued

Scratchpad function SPM : M → {true, f alse}

Cache hit function Hit : I × M → {true, f alse}

Number of bus access slots assign to each core v

Global memory delay dmain

DRAM refresh delay drefresh

DRAM refresh period Trefresh

Processor interference on task τi on core Px in time t I PROC(i, x, t)

Bus interference on task τi on core Px in time t I BUS(i, x, t)

DRAM interference on task τi on core Px in time t I DRAM(i, x, t)

scratchpads, and (iii) with direct-mapped or LRU caches. In the following, the super-

scripts indicate data (da) or instruction memory (in), and the subscripts the type of

memory, i.e., uncached (nc), scratchpad (sp), or caches (ca).

4.1 Uncached

Assuming a system with no cache, considering instruction memory, the number of bus

accesses MDo for a trace o is given by the number of instructions k in the trace. The

sets of UCBs and ECBs are empty, as pre-emption has no effect on the performance

of the local memory, since there is none.

MEMin
nc(o) = (k,∅,∅) (4)

Considering data memory, we have to account for the number of data accesses, irre-

spective of whether they are read or write accesses. The number of accesses MDo is

thus equal to the number of data access instructions.

MEMda
nc(o) =

(

∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (_, _, r/w[mda])
}
∣

∣

∣
,∅,∅

)

(5)

4.2 Scratchpads

Scratchpads are explicitly managed local memories that exhibit higher predictability

and less dynamic behavior than caches. Hence, scratchpads are commonly advocated

for embedded multicore systems.

Scratchpads can implement a write-back or, less commonly, a write-through pol-

icy for write accesses. Furthermore scratchpad management may be either static or

dynamic. With a static scratchpad management, the scratchpad contents remain con-

stant throughout operation, whereas with dynamic scratchpad management, scratchpad

blocks can be reloaded as needed, for example on pre-emptions, which makes better

use of the available scratchpad memory (Whitham et al. 2012, 2014).

123

622 Real-Time Syst (2018) 54:607–661

4.2.1 Static scratchpads

A static scratchpad memory is defined using a function SPM : M → {true, f alse},

which returns true for memory blocks that are stored in the scratchpad.

For an instruction scratchpad, each access to a memory block which is not stored

in the scratchpad causes an additional bus access. Thus for each trace o, we have:

MEMin
sp(o) =

(

∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (m in, _, _) ∧ ¬SPM(m in)

}
∣

∣

∣
,∅,∅

)

(6)

For a data scratchpad, we have to distinguish between a write-through (wt) policy,

where each write-access results in a bus access:

MEMda
sp-wt(o) =

(

∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (_, _, r [mda]) ∧ ¬SPM(mda)
}

∣

∣

∣

+
∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (_, _, w[mda])
}

∣

∣

∣
,∅,∅

)

(7)

and a write-back (wb) policy, where each accessed memory block only results in one

bus access at job completion, irrespective of the number of reads and writes to it:

MEMda
sp-wb(o) =

(

∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (_, _, r [mda]) ∧ ¬SPM(mda)
}

∣

∣

∣

+
∣

∣

∣

{

ιi |m
da ∈ o ∧ ιi = (_, _, w[mda])

}

∣

∣

∣
,∅,∅

)

. (8)

As with other forms of local memory, the aim of a scratchpad is to reduce the num-

ber of bus accesses. An effective scratchpad configuration is obtained by storing the N

most frequently used memory blocks, where N is the maximum number of memory

blocks that the scratchpad can hold. With execution traces, identifying the most fre-

quently used memory blocks is nearly trivial; however, in general more sophisticated

optimization techniques have to be used (Falk and Kleinsorge 2009).

4.2.2 Dynamic scratchpads

A scratchpad can be dynamic in two respects: (i) tasks can share the scratchpad space

with other tasks, and (ii) a task can reload and change the scratchpad contents during

its own execution. In the first case, the scratchpad configuration has to be loaded at

the beginning of a task’s execution and restored after each pre-emption. In the second

case, different scratchpad contents are used for different sub-traces of the task. In the

following, we only present the implementation of MEM for the first case, i.e., where

the scratchpad is shared among different tasks. Extension to the second case is trivial.

In a slight abuse of notation, we model the pre-emption overhead in the case of

shared scratchpads using sets of UCBs and ECBs. These are used to represent the

memory blocks of a task that are stored in the scratchpad. A tighter integration, which

123

Real-Time Syst (2018) 54:607–661 623

requires dedicated hardware support is described by Whitham et al. (2012, 2014);

however, analysis for it is beyond the scope of this paper. As in the static case, a

scratchpad memory is defined using a function SPM : M → {true, f alse}, which

returns true for memory blocks that are stored in the scratchpad.

For an instruction scratchpad, for each trace o we define the set of memory blocks

that are accessed by the trace and are stored in the scratchpad as follows:

ECBin
o =

{{

m in|(m in, _, _) ∈ o ∧ SPM(m in)
}

shared scratchpad

∅ dedicated scratchpad
(9)

Similarly for a data scratchpad:

ECBda
o =

{{

mda|(_, _, r/w[mda] ∈ o ∧ SPM(mda)
}

shared scratchpad

∅ dedicated scratchpad
(10)

The set of UCBs is then defined using the set of ECBs, i.e, UCB
in/da

o = {ECB
in/da
o }

In the case of an instruction scratchpad, each memory access to a memory block

which is not stored in the scratchpad causes an additional bus access:

MEMin
sp(o) =

(

∣

∣

∣
ECBin

o

∣

∣

∣
+
∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (min, _, _) ∧ ¬SPM(min)

}
∣

∣

∣
, UCB

in
o , ECBin

o

)

(11)

The term
∣

∣ECBin
o

∣

∣ in (11) accounts for the initialization of the scratchpad at the start

of the task in the case of a shared scratchpad. (The set ECBin
o is empty in case of a

dedicated scratchpad memory).

In the case of a data scratchpad, we again have to distinguish between a write-

through (wt) policy and a write-back (wb) policy. Assuming a write-through policy,

each write-access results in a bus access:

MEMda
sp-wt(o) =

(

∣

∣ECBda
o

∣

∣+
∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (_, _, r [mda]) ∧ ¬SPM(mda)
}

∣

∣

∣

+
∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (_, _, w[mda])
}

∣

∣

∣
, UCB

da

o , ECBda
o

)

(12)

Whereas assuming a write-back policy, each memory block that is written to causes

only one bus access at job completion:

MEMda
sp-wb(o) =

(

∣

∣ECBda
o

∣

∣+
∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (_, _, r [mda]) ∧ ¬SPM(mda)
}

∣

∣

∣

+
∣

∣

∣

{

mda|(_, _, w[mda]) ∈ o
}

∣

∣

∣
, UCB

da

o , ECBda
o

)

. (13)

123

624 Real-Time Syst (2018) 54:607–661

4.3 Caches

Caches are commonly used in multicore systems to bridge the performance gap

between processor and main memory speeds. Unlike scratchpads they require no

explicit management, rather the eviction of cache blocks is determined by the cache

replacement policy. In this section, we consider both cold caches, representing the

pessimistic case where the cache is empty or contains no useful blocks when a job of

task starts to execute, and warm caches, where some useful blocks may persist from

the execution of previous jobs of the same task.

4.3.1 Cold caches

We assume a function Hit : I × M → {true, f alse}, which classifies each memory

access at each instruction as a cache hit or a cache miss. This function can be derived

using cache simulation of the access trace starting with an empty cache or by using

traditional cache analysis (Ferdinand et al. 1999), where each unclassified memory

access is considered a cache miss. This allows us to upper bound the number of

cache misses. For each possible program point ι on trace o (i.e. for each possible pre-

emtion point), the set of UCBs is derived using the corresponding analysis described

in the thesis of Altmeyer (2013, Chap. 5, Sect. 4): a forward cache analysis derives

for each program point the set of cached memory blocks, and a backward cache

analysis provides the set of memory blocks that will be reused before they may be

evicted. The set of UCBs per program point ι is then given by the intersection of

the result of the forward and the backward cache analyses at ι. For the purpose of

our analysis, it is sufficient to store only the cache sets that useful memory blocks

map to. The multiset UCBo contains, for each program point ι in trace o, the set of

UCBs for that program point, i.e, UCBo =
⋃

ι∈o{UCBι,o}. The set of ECBs is the

set of cache sets that memory blocks accessed in trace o map to. Finally, the memory

demand of trace o is given by the number of instructions in the trace that are not cache

hits.

In the case of an instruction cache, we have:

MEMin
ca(o) =

(

∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (m in, _, _) ∧ ¬Hit(m in, ιi)
}

∣

∣

∣
, UCB

in

o , ECBin
o

)

(14)

For a data cache, since we assume a write-through policy, each write access contributes

a bus access, thus:

MEMda
ca(o) =

(

∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (_, _, r [mda]
)

∧ ¬Hit(mda, ιi)
}

∣

∣

∣

+
∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (_, _, w[mda])
}

∣

∣

∣
, UCB

da

o , ECBda
o

)

(15)

123

Real-Time Syst (2018) 54:607–661 625

4.3.2 Warmed-up caches

Previously, we pessimistically assumed that each job of each task starts its execution

with an empty cache. In reality, starting from the second job of a task, some of its

instructions and data may still be cached when the job starts, reducing its execution

time and memory demand. In order to capture this phenomenon, we propose an analysis

that can be used to bound the response time of jobs after each task has run at least

once, for example during a separate start-up phase.

We now consider which memory blocks can safely be assumed to be cached at

the start of a job of task τi , when another job of that task has run before. This set of

memory blocks is determined by what must be cached at the end of the job’s execution

when it runs in isolation, minus those memory blocks that may be evicted by a job of

any task τ j that can run between the two jobs of task τi . Since task τi is not active

during this time, evicting jobs can belong to any task τ j with higher or lower priority

than τi .

Let, Cached(o) be the set of memory blocks that are cached after executing trace o

of task τi starting from an empty cache. For a given trace o, this set can be determined by

simulation. The set of blocks that are definitely cached at the end of one run of the task

in isolation is given by
⋂

o∈Oi
Cached(o), where Oi is the set of traces representing

the task. The set of memory blocks that are guaranteed to be cached after executing

one job of a task could similarly be approximated by must-cache analysis (Ferdinand

and Wilhelm 1999).

Let Px be the core that task τi executes on. The set of cache lines that may be

evicted by tasks other than τi is determined as follows:

POT-EVICTEDi =
⋃

τ j ∈Ŵx \{τi }

⋃

o∈O j

ECBin
o ∪ ECBda

o . (16)

Given the sets defined above, we can compute the set of definitely cached memory

blocks DEF-CACHEDi of task τi as follows:

DEF-CACHEDi =

⎧

⎨

⎩

b ∈
⋂

o∈Oi

Cached(o)

∣

∣

∣
line(b) /∈ POT-EVICTEDi

⎫

⎬

⎭

, (17)

where line(b) determines the cache line that memory block b maps to.

To take information about definitely cached memory blocks into account, we assume

the function Hit from Sect. 4.3.1 is extended to take into account which blocks are

guaranteed to be cached initially. The MEM functions for warmed-up instruction and

data caches are hence:

MEMin
ca,w(o) =

(

∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi = (m in, _, _) ∧ ¬Hit(m in, ιi , DEF-CACHEDi)
}

∣

∣

∣
,

UCB
in

o , ECBin
o

)

(18)

123

626 Real-Time Syst (2018) 54:607–661

MEMda
ca,w(o)=

(

∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi =(_, _, r [mda]
)

∧ ¬Hit(mda, ιi , DEF-CACHEDi)
}

∣

∣

∣

+
∣

∣

∣

{

ιi |ιi ∈ o ∧ ιi =(_, _, w[mda])
}

∣

∣

∣
, UCB

da

o , ECBda
o

)

(19)

Note, in order to avoid any interference effects from the start-up or warm-up phase

into regular operation, we assume the following protocol:

1. In the warm-up phase, a single job of each task is run non-preemptively on its

allocated core. The order of task execution is arbitrary.

2. When the final job of the warm-up phase has finished, regular operation com-

mences, and tasks are scheduled by fixed-priority preemptive scheduling.

Apart from the above protocol no further changes to the scheduling policy or anal-

ysis are needed to account for warmed-up caches.

4.4 Memory combinations

To allow different combinations of local memories, for example scratchpad memory

for instructions and an LRU cache for data, we define the combination of instruction

memory MEMin and data memory MEMda as follows

MEM(o) =
(

MDin
o + MDda

o , UCB
in

o ∪ UCB
da

o , ECBin
o ∪ ECBda

o

)

(20)

with MEMin(o) =
(

MDin
o , UCB

in

o , ECBin
o

)

being the result for the instruction memory

and MEMda(o) =
(

MDda
o , UCB

da

o , ECBda
o

)

the result for the data memory.

5 Bus modelling

In this section we show how the memory bus delays experienced by a task can be

modelled via a BUS function of the form:

BUS : N × P × N → N (21)

where BUS(i, x, t) denotes an upper bound on the number of bus accesses that can

delay completion of task τi on core Px during a time interval of length t . This

abstraction covers a variety of bus arbitration policies, including Round-Robin, FIFO,

Fixed-Priority, and Processor-Priority, all of which are work-conserving, and also

TDMA which is not work-conserving.

We now introduce the mathematical representations of the delays incurred under

these arbitration policies. We note that the framework is extensible to a wide variety of

different policies. The only constraints we place on instantiations of the BUS(i, x, t)

function is that they are monotonically non-decreasing in t .

123

Real-Time Syst (2018) 54:607–661 627

Let τi be the task of interest, and x the index of the core Px on which it exe-

cutes. Other task indices are represented by j , k etc. while y, z are used for core

indices.

Let Sx
i (t) denote an upper bound on the total number of bus accesses due to τi and

all higher priority tasks that run on the same core Px during an interval of length t ,

while one job of task τi is active, i.e. within its response time. Let A
y
j (t) be an upper

bound on the total number of bus accesses due to all tasks of priority j or higher

executing on a different core Py
= Px during an interval of length t . (Note, j may not

necessarily be the priority of a task allocated to core Py). In Sect. 6.3 we show how

the values of Sx
i (t), A

y
j (t) and L

y
j (t) , defined below, are computed and explain why

Sx
i (t) and A

y
j (t) are subtly different and hence require distinct notation.

As memory bus requests are typically non-preemptive, one lower priority1 memory

request may block a higher priority one, since the global shared memory may have

just received a lower priority request before the higher priority one arrives. To account

for these blocking accesses, we use L
y

j (t) which denotes an upper bound on the total

number of bus accesses due to all tasks of priority lower than j executing on some

other core Py
= Px during an interval of length t .

In the following equations for the BUS(i, x, t) function, we account for blocking

due to one non-preemptive access from lower priority tasks running on the same core

Px as task τi (this is the +1 in the equations). This holds because such blocking can

only occur at the start of the priority level-i (processor) busy period.

For a fixed-priority bus with memory accesses inheriting the priority of the task

that generates them, we have:

BUS(i, x, t) = Sx
i (t) +

∑

∀y
=x

A
y
i (t) + min

⎛

⎝Sx
i (t),

∑

∀y
=x

L
y
i (t)

⎞

⎠+ 1 (22)

Here, the term Sx
i (t) covers the accesses from task τi and higher priority tasks running

on core Px . The term
∑

∀y
=x A
y

i (t) is the interference due to accesses from higher pri-

ority tasks running on other cores. The term min
(

Sx
i (t),

∑

∀y
=x L
y
i (t)

)

upper bounds

the blocking due to tasks of lower priority than τi running on other cores. (The number

of blocking accesses is limited to one per access made by task τi and higher priority

tasks running on core Px during time t i.e. Sx
i (t), and also restricted to the maximum

number of accesses made by tasks of lower priority than τi running on other cores

i.e.
∑

y
=x L
y
i (t)). Finally, the +1 accounts for a single blocking access from a task of

priority lower than that of τi on core Px .

For a Processor-Priority bus with memory accesses inheriting the priority of the

core rather than the task, we have:

BUS(i, x, t) = Sx
i (t) +

∑

y∈H P(x)

A
y
n(t) + min

⎛

⎝Sx
i (t),

∑

y∈L P(x)

A
y
n(t)

⎞

⎠+ 1 (23)

1 Here we mean priorities on the bus, which are not necessarily the same as task priorities.

123

628 Real-Time Syst (2018) 54:607–661

where H P(x) (L P(x)) is the set of cores with higher (lower) priority than that of

Px , and n is the index of the task with the lowest priority. The summation term
∑

y∈H P(x) A
y
n(t) captures the interference from all tasks (independent of their task

priority) running on cores which have a higher processor priority than Px . The term

min
(

Sx
i (t),

∑

y∈L P(x) A
y
n(t)

)

upper bounds the blocking due to tasks running on

cores which have a processor priority lower than that of Px .

A Round-Robin bus and a TDMA bus both make use of a pre-determined cycle of

slots, where a slot is a time interval during which a single access can be serviced. Slots

in the cycle are assigned to cores. With TDMA, the bus arbiter iterates over the cycle,

taking the same time for each slot regardless of whether there is an access pending

from the associated core, or not (i.e. the slot is empty). In contrast, a Round-Robin

bus skips any empty slots, immediately moving to the next one with a pending access.

For a Round-Robin bus with v adjacent slots per core in a cycle of length ℓ · v, we

have:

BUS(i, x, t) = Sx
i (t) +

∑

∀y
=x

min
(

A
y
n(t), v · Sx

i (t)
)

+ 1 (24)

The worst-case situation for each access in Sx
i (t) from core Px occurs when it just

misses its last slot in the cycle and is therefore delayed by v accesses by each core

Py
= Px . This leads to interference of at most v · Sx
i (t) from each core Py
= Px ;

however, the overall interference from each core Py is also bounded by the number of

accesses A
y
n(t), hence the min

(

A
y
n(t), v · Sx

i (t)
)

term. Again, as we already account

for all possible accesses from all other cores, there is no separate contribution to

blocking.

For a TDMA bus with v adjacent slots per core in a cycle of length ℓ · v, we have:

BUS(i, x, t) = Sx
i (t) + ((ℓ − 1) · v) · Sx

i (t) + 1 (25)

Since TDMA is not work-conserving, the worst case corresponds to each access in

Sx
i (t) just missing the last slot in the cycle for core Px and hence having to wait

((ℓ − 1) · v + 1) slots to be serviced. Effectively, there is additional interference from

the (ℓ − 1) · v slots reserved for other cores on each access, irrespective of whether

these slots are used or not (in contrast to Round-Robin). Note that when v = 1, Eq.

(25) simplifies to BUS(i, x, t) = ℓ · Sx
i (t) + 1.

It is interesting to note that while TDMA provides more predictable behaviour, this

is at a cost of significantly worse guaranteed performance over long time intervals

(e.g. the response time of a task) due to the fact that it is not work-conserving. Effec-

tively, this means that the memory accesses of a task may suffer additional interference

due to empty slots on the bus. Nevertheless, Round-Robin behaves like TDMA when

all other cores create a large number of competing memory accesses.

We note that the equal number of slots per core for Round-Robin and TDMA, and

the grouping of slots per core are simplifying assumptions to exemplify how TDMA

and Round-Robin buses can be analysed. An analysis for more complex configurations

(patterns of slots) is reserved for future work.

123

Real-Time Syst (2018) 54:607–661 629

For a FIFO bus, we assume that all accesses generated on the other cores may be

serviced ahead of the last access of τi , hence we have:

BUS(i, x, t) = Sx
i (t) +

∑

∀y
=x

A
y
n(t) + 1 (26)

Note that accesses from other cores do not contribute to blocking since we already

pessimistically account for all these accesses in the summation term.

We note that the above analysis for a FIFO bus is potentially very pessimistic. If

we assume that tasks busy wait on accesses and therefore only one access request per

core can be in the FIFO queue at any given time then the worst-case situation for each

access in Sx
i (t) from core Px occurs when it finds the FIFO queue already contains

one access request from each of the other cores. This case can be analysed using (24)

for a Round-Robin bus assuming that v = 1 i.e. one slot per core in the cycle. We note

that some architectures may permit multiple requests to be queued by a single core

(e.g. 8 in the case of the Kalray MPPA). Again, the bound on the number of requests

in the queue means that the worst-case analysis equates to that for a Round-Robin bus

assuming that v = 8 i.e. 8 slots per core in the cycle. We include pure FIFO behaviour

here to illustrate the degraded performance in this case.

6 Response time analysis

In this section, we present the nucleus of our timing verification framework:

interference-aware MRTA. This analysis integrates the processor and memory

demands of the task of interest and higher priority tasks running on the same core,

including CRPD. It also accounts for the cross-core interference on the memory bus

due to tasks running on the other cores.

A task set is deemed schedulable, if for each task τi , its response time Ri is less

than or equal to its deadline Di :

∀i : Ri ≤ Di ⇒ schedulable

The traditional response time calculation (Audsley et al. 1993; Joseph and Pandya

1986) for fixed-priority pre-emptive scheduling on a uniprocessor is based on an upper

bound on the WCET of each task τi , denoted by Ci . By contrast, our MRTA framework

dissects the individual components (processor and memory demands) that contribute

to the WCET bound and re-assembles them at the level of the worst-case response time.

It thus avoids the over-approximation inherent in using context-independent WCET

bounds.

In the following, we assume that τi is the task of interest whose schedulability

we are checking, and Px is the core on which it runs. Recall that there is a unique

global ordering of task priorities even though the scheduling is partitioned with a

fixed-priority pre-emptive scheduler on each core.

123

630 Real-Time Syst (2018) 54:607–661

6.1 Interference on the core

We compute the maximal processor demand PDi for each task τi as follows:

PDi = max
o∈Oi

∑

(_,�,_)∈o

� (27)

where � is the execution time of an instruction without memory delays. Task τi suffers

interference I PROC(i, x, t) on its core Px due to tasks of higher priority running on

the same core within a time interval of length t starting from the critical instant:

I PROC(i, x, t) =
∑

j∈Ŵx ∧ j∈hp(i)

⌈

t

T j

⌉

PD j (28)

6.2 Interference on the local memory

Local memory improves a task’s execution time by reducing the number of accesses

to main memory. The memory demand of a trace gives the number of accesses that

go to main memory and hence the bus, despite the presence of the local memory. The

maximal memory demand MDi of a task τi is defined by the maximum number of bus

accesses of any of its traces:

MDi = max
o∈Oi

{

MD
∣

∣MEM(o) = (MD, _, _)

}

(29)

Note that the maximal memory demand refers to the demand of the combined instruc-

tion and data memory as defined in Eq. (20).

The memory demand MDi is derived assuming non-preemptive execution, i.e. that

the task runs to completion without interference on the local memory. The sets of

UCBs and ECBs are used to compute the additional overhead due to pre-emption. In

the computation of this overhead, we use the sets of UCBs per trace o to preserve

precision,

UCBo = UCB with MEM(o) = (_, UCB, _) (30)

and derive the maximal set of ECBs per task τi as the union of the ECBs on all traces.

ECBi =
⋃

o∈Oi

{

ECB
∣

∣MEM(o) = (_, _, ECB)

}

(31)

We use γi, j,x (with j ∈ hp(i)) to denote the overhead (additional accesses) due to

a pre-emption of task τi by task τ j on core Px .

We use the ECB-Union (Altmeyer et al. 2011, 2012) approach as an exemplar

of CRPD analysis, as it provides a reasonably precise bound on the pre-emption

overhead with low complexity. (Other CRPD analysis techniques (Altmeyer et al.

2012; Lee et al. 2001) could also be integrated into this framework). The ECB-Union

123

Real-Time Syst (2018) 54:607–661 631

approach first computes the union of all ECBs that may affect a pre-empted task. The

intuition here is that direct pre-emption by task τ j is represented by the pessimistic

assumption that task τ j has itself already been pre-empted by all of the tasks of higher

priority and hence may result in evictions due to the set
⋃

h∈hep(j)∧h∈Ŵx
ECBh . Note

that a CRPD analysis has to correctly account for all pre-emption scenarios including

nested pre-emption, as it otherwise may compute optimistic bounds on the CRPD

(Altmeyer et al. 2011). The ECB-Union approach considers the maximum impact of

these evicting cache blocks on any job of a task τk that could be running during the

response time of task τi , where τi is the task of interest in the response time analysis.

Such a task τk must have a priority equal to or higher than that of task τi (otherwise

it could not run in the busy period), but lower than that of the pre-empting task τ j

(otherwise it could not be pre-empted). These are referred to as the set of affected tasks

aff(i, j) = hep(i) ∩ lp(j). Further, task τk must also be on core Px . Thus the set of

potentially pre-empted tasks is therefore indicated by k ∈ aff(i, j) ∧ k ∈ Ŵx . Further,

pre-emption may take place at any program point in any trace of task τk . Putting all

this together, the follow expression upper bounds the pre-emption cost by determining

the maximum intersection between the evicting cache blocks of task τ j and higher

priority tasks and the useful cache blocks at any program point in any trace of any task

that can be pre-empted by task τ j during the response time of task τi .

γi, j,x = max
k∈aff(i, j)∧k∈Ŵx

⎛

⎝max
o∈Ok

⎛

⎝ max
UCBι∈UCBo

∣

∣

∣

∣

∣

∣

⎧

⎨

⎩

UCBι ∩

⎛

⎝

⋃

h∈hep(j)∧h∈Ŵx

ECBh

⎞

⎠

⎫

⎬

⎭

∣

∣

∣

∣

∣

∣

⎞

⎠

⎞

⎠

(32)

For dynamic shared scratchpads, our slight abuse of notation in defining ECBs

and UCBs enables the above analysis of pre-emption costs to be used. Recall that for

dynamic shared scratchpads, (9) and (10) define the ECBs for a trace as all of the

memory blocks that the trace stores in the scratchpad. The UCBs are then defined as

equal to the ECBs. With these definitions, the pre-emption cost analysis effectively

assumes that at any program point in any trace in any pre-empted task, all of the

UCBs (i.e. memory blocks stored in the scratchpad) for that trace are useful and will

need reloading if they are evicted by the ECBs (i.e. memory blocks transferred to the

scratchpad) by a pre-empting task.

6.3 Interference on the bus

In this section, we instantiate the functions Sx
i (t), A

y
j (t), and L

y
j (t) that count the

number of accesses from the cores and are used as input to the BUS function (see

Sect. 5), which we use to derive the maximum bus delay that task τi on core Px can

experience during a time interval of length t :

I BUS(i, x, t) = BUS(i, x, t) · dmain (33)

where dmain is the bus access latency to the global memory.

123

632 Real-Time Syst (2018) 54:607–661

We first compute Sx
i (t), an upper bound on the total number of bus accesses that

can occur due to tasks of priority i or higher running on core Px during an interval of

length t , while one job of task τi is active, i.e. within its response time. Since lower

priority tasks cannot execute on Px during the response time of task τi (a priority level-

i processor busy period), the only contribution from those tasks is a single blocking

access as discussed in Sect. 5. The maximum number of accesses is computed assuming

task τi is released simultaneously with all higher priority tasks that run on Px , and

subsequent releases of those tasks occur as soon as possible, while also assuming that

the maximum possible number of pre-emptions occur.

Sx
i (t) =

∑

k∈Ŵx ∧k∈hep(i)

⌈

t

Tk

⌉

(

MDk + γi,k,x

)

(34)

MDk denotes the memory demand of task τk and γi,k,x accounts for the pre-emption

costs on core Px due to jobs of task τk .

In the appendix, we show that in the context of the response time analysis given in

this paper, it is correct to compute Sx
i (t) assuming synchronous release with higher

priority tasks on the same core.

Recall that we use A
y
j (t) to denote an upper bound on the total number of bus

accesses due to all tasks of priority j or higher executing on core Py
= Px during

an interval of length t . A special case is A
y
n(t): since τn is the lowest priority task,

this term includes accesses due to all tasks running on core Py . In contrast to the

derivation of Sx
i (t), for A

y
j (t) we can make no assumptions about the synchronisation

or otherwise of tasks on core Py with respect to the release of task τi on core Px .

The value of A
y
j (t) is therefore obtained by upper bounding, for each task τk running

on some other core Py , the number of memory accesses that it could produce in an

interval of length t , considering only the time constraints on when jobs of that task

can execute. The worst-case scenario is illustrated in Fig. 2. The first job of task τk

executes as late as possible, i.e. just prior to its worst-case response time, while the

next and subsequent jobs execute as early as possible. Further, we assume that the first

job of task τk has all of its memory accesses in a region as late as possible during its

execution, while for subsequent jobs we assume the opposite is true, with execution

and a region of memory accesses occurring as early as possible after release of the job.

This scenario maximizes the number of memory accesses from task τk in an interval

of length t , as shown in Fig. 2. This is similar to the concept of carry-in interference

used in the analysis of global multiprocessor fixed-priority scheduling (Bertogna and

Cirinei 2007; Davis and Burns 2010). Effectively due to local interference from higher

priority tasks on its core, the memory accesses of the first job are carried-in to the

interval of interest leading to increased interference on the bus during the interval.

In the following, the number of memory accesses in each region, shown in dark grey

in Fig. 2, is given by MDk +γ j,k,y and thus the length of each region is (MDk +γ j,k,y) ·

dmain. We now upper bound the largest number of memory accesses in an interval of

length t due to task τk executing on core Pk along with its cache related pre-emption

effects. The next job release of task τk after the carried-in memory accesses (first dark

grey region) occurs at a time (MDk + γ j,k,y) · dmain + Tk − Rk after the start of the

123

Real-Time Syst (2018) 54:607–661 633

Fig. 2 Illustration of the carry-in interference analysis

interval of length t . Subsequent jobs of τk are then released periodically every Tk . The

number of complete periods (by this we mean from the start of one memory access

region to the start of the next one) that contribute memory accesses in the interval of

length t is given by:

N
y

j,k(t) =

⌊

t − ((MDk + γ j,k,y) · dmain + Tk − Rk)

Tk

⌋

+ 1

=

⌊

t + Rk − (MDk + γ j,k,y) · dmain

Tk

⌋

(35)

The remaining incomplete period in which further memory accesses can occur is

therefore of length t + Rk − (MDk + γ j,k,y) · dmain − N
y
j,k(t) · Tk . In this time at most

one memory access can occur every dmain, up to MDk +γ j,k,y accesses in total. Putting

all this together, the total number of accesses possible in an interval of length t due to

task τk (on core Py) and its cache related pre-emption effects is given by:

W
y
j,k(t) = N

y
j,k(t) · (MDk + γ j,k,y)

+ min

(

MDk +γ j,k,y,

⌈

t+Rk −(MDk +γ j,k,y) · dmain−N
y

j,k(t) · Tk

dmain

⌉)

(36)

We note that W
y
j,k(t) is sustainable (Baruah and Burns 2006) with respect to a

reduction in the number of memory accesses per job, and also to the spreading out

of memory accesses within a job. Neither can cause the value of W
y

j,k(t) to increase.

This can be seen graphically by considering, in Fig. 2, what happens if the number of

memory accesses is reduced i.e. the size of the grey regions is reduced, or if the memory

accesses are spread out within the jobs. W
y
j,k(t) is also monotonically non-decreasing

with respect to t .

Using W
y

j,k(t), we obtain an expression for A
y

j (t), an upper bound on the total

number of bus accesses due to all tasks of priority j or higher executing on core

Py
= Px during an interval of length t , as follows:

A
y
j (t) =

∑

k∈Ŵy∧k∈hep(j)

W
y
j,k(t) (37)

The value of L
y

j (t) is obtained in a similar way to A
y

j , but considering accesses with

lower priority than j :

123

634 Real-Time Syst (2018) 54:607–661

L
y

j (t) =
∑

k∈Ŵy∧k∈lp(j)

W
y

n,k(t) (38)

We note that the carry-in interference was not accounted for in the analysis given by

Kim et al. (2014a) (Eqs. (5) and (6) in that paper), resulting in potentially optimistic

bounds on the number of competing memory requests.

6.4 Global memory—DRAM

Global memory is usually realized based on dynamic random-access memory

(DRAM), which needs to be refreshed periodically. During a refresh, memory accesses

cannot be serviced by the DRAM, and hence DRAM refreshes cause interference

on tasks. Now, we show how to take into account delays imposed by refreshes. We

assume a DRAM controller with a First Come First Served (FCFS) scheduling pol-

icy so that memory accesses cannot be reordered within the controller. Further, we

assume a closed-page policy to minimize the effect of the memory access history on

access latencies. We consider two refresh strategies (Micron Technologies, Inc. 1999):

distributed refresh where the controller refreshes each row at a different time, at reg-

ular intervals, and burst refresh where all rows are refreshed immediately one after

another.

Under distributed refresh, an upper bound on the maximum number of refreshes

within an interval of length t in which m memory accesses occur is given by:

DRAMdist(t, m) = min

(

m,

⌈

t · #rows

Trefresh

⌉)

(39)

where #rows is the number of rows in the DRAM module, and Trefresh is the interval

at which each row needs to be refreshed. Trefresh is usually 64 ms for DDR2 and

DDR3 modules. This formula holds, since at most one memory access can be delayed

by each of the refreshes, whereas under burst refresh, a single memory access can

be delayed by #rows many refreshes. Under burst refresh, the upper bound is given

by:

DRAMburst(t, m) =

⌈

t

Trefresh

⌉

· #rows (40)

Note that the parameter m is redundant in (40); however, we keep it to retain the same

signature for the function.

As the number of memory accesses within t is equal to the number of BUS accesses,

we can bound the interference due to DRAM refreshes on task τi on core Px as follows:

I DRAM(i, x, t) = DRAM(t, BUS(i, x, t)) · drefresh (41)

where drefresh is the refresh latency.

123

Real-Time Syst (2018) 54:607–661 635

6.5 Multicore response time analysis

The response time Ri of task τi is given by the smallest solution to the following

recurrence relation:

Ri = PDi + I PROC(i, x, Ri) + I BUS(i, x, Ri) + I DRAM(i, x, Ri) (42)

where PDi is the processor demand for task τi given by (27), I PROC(i, x, Ri) is the

interference due to processor demand from higher priority tasks running on the same

core assuming no misses on the local memory, given by (28), I BUS(i, x, Ri) is the

delay due to bus accesses from tasks running on all cores and includes MDi , given by

(33), and I DRAM(i, x, Ri) is the delay due to DRAM refreshes, given by (41).

Since the response time of each task can depend on the response times of other

tasks via the functions (37) and (38) describing memory accesses A
y

j (t) and L
y

j (t), we

use an outer loop around a set of fixed-point iterations to compute the response times

of all the tasks, and so deal with the apparent circular dependency. Iteration starts with

∀i : Ri = PDi + MDi · dmain and ends when all the response times have converged

(i.e. no response time changes w.r.t. the previous iteration), or the response time of a

task exceeds its deadline in which case that task is unschedulable. See Algorithm 1 for

the pseudo-code of the response time calculation. Since the response time Ri of a task

τi is monotonically increasing w.r.t. increases in the response time of any other task,

convergence or exceeding a deadline is guaranteed in a bounded number of iterations.

Algorithm 1 Response Time Calculation

1: function MultiCoreRTA

2: ∀i : R0
i

= 0

3: ∀i : R1
i

= PDi + MDi · dmain
4: l = 1

5: while ∃i : Rl
i

= Rl−1

i
∧ ∀i : Rl

i
≤ Di do

6: for all i do

7: R
l,0
i

= Rl−1
i

8: R
l,1
i

= Rl
i

9: k = 1

10: while : R
l,k
i

= R
l,k−1
i

∧ R
l,k
i

≤ Di do

11: R
l,k+1
i

= PDi + I PROC(i, x, R
l,k
i

) + I BUS(i, x, R
l,k
i

) + I DRAM(i, x, R
l,k
i

)

12: k = k + 1

13: end while

14: end for

15: ∀i : Rl+1
i

= R
l,k
i

16: l = l + 1

17: end while

18: if ∀i : Rl
i
≤ Di then

19: return schedulable

20: else

21: return not schedulable

22: end if

23: end function

123

636 Real-Time Syst (2018) 54:607–661

We note that the analysis is sustainable (Baruah and Burns 2006) with respect to the

processor PD j and memory demands MD j of each task, since values that are smaller

than the upper bounds used in the analysis cannot result in a larger response time.

This sustainability extends to traces; if any trace of task execution results in practice

in a lower processor or memory demand than that considered by the analysis, then

this also cannot result in an increase in the response time. Similarly, a decrease in the

set of UCBs or ECBs such that they are a subset of those considered by the analysis

cannot increase the worst-case response time.

Note that the definitions of MDi , PDi and ECBi completely decouple the traces

from the response time analysis. This comes at the cost of possible pessimism, but

strongly reduces the complexity of the analysis. Different traces may maximize dif-

ferent parameters, meaning that the combination of the parameters in this way may

represent a synthetic worst-case that cannot occur in practice. An alternative solution is

to define a multicore response time analysis that is parametric in the execution traces.

In the extreme, completely expanding the analysis to explore every combination of

traces from different tasks would be intractable. However, as a first step in this direc-

tion, response times could be computed for each individual trace of the task of interest

τi , using combined traces for all other tasks. The maximum such response time would

then provide an improved upper bound.

We note that the presented analysis framework is not fine-tuned to specific hard-

ware features or execution scenarios such as burst accesses, since this counteracts its

extensibility and generality.

7 Extensions to the task model

In the previous section we instantiated the multicore response time analysis (MRTA)

framework for a relatively simple task model. In the section, we briefly discuss exten-

sions including: RTOS and interrupts, sharing software resources, and open systems

and incremental verification.

7.1 RTOS and interrupts

The analysis presented so far only considers tasks and their execution, as represented

by traces. We now outline how the MRTA framework can be extended to cover RTOS

and interrupt handler behaviour.

We assume that task release is triggered via interrupts from a timer/counter or other

interrupt sources. When an interrupt is raised, the appropriate handler is dispatched

and may pre-empt the currently executing task.2 When the interrupt handler returns,

then if a higher priority task has been released, the scheduler will run and dispatch that

task, otherwise control returns to the previously running task. When a task completes,

then the scheduler again runs and chooses the next highest priority task to execute.

2 Or interrupt handler if multiple interrupt priority levels are supported.

123

Real-Time Syst (2018) 54:607–661 637

The behaviour of each interrupt handler is represented by a set of execution traces

similar to those for tasks. Thus interrupt handlers can be included in the MRTA frame-

work in a similar way to tasks, but at higher priorities. (We note that there may be some

differences if all interrupts share the same interrupt priority level; however due to the

wide variety of possible arrangements of interrupt priorities, we do not go into details

here). In some cases, interrupt handlers may be prohibited from using the cache, have

their own cache partition, or have their code permanently locked into a scratchpad.

All of these possibilities can be covered using variants of the analysis described in

Sect. 6.

The RTOS is different from interrupt handlers and tasks in that it is not a schedu-

lable entity in itself, rather RTOS code is run as part of each task, typically before

and after the actual task code, and interleaved with it in the form of system calls.

Similarly with interrupt handlers that release tasks, RTOS code is typically called as

the handler returns. With our representation of tasks and interrupt handlers as sets of

traces, execution of the RTOS can be fully accounted for by a concatenation of the

appropriate sub-traces for the RTOS onto the start and end of the traces for tasks and

interrupt handlers.

7.2 Sharing software resources

The analysis presented in Sect. 6 assumes that tasks are independent in the sense that

they do not share software resources that must be accessed in mutual exclusion, rather

the only contention is over hardware resources. We now consider how that restriction

can be lifted.

We assume that tasks executing on the same core may share software resources

that are accessed in mutual exclusion according to the stack resource protocol (SRP)

(Baker 1991). Under SRP, a task τi may be blocked from executing by at most a single

critical section where a task of priority lower than i locks a resource shared with task

τi or a task of higher priority. Further, under SRP, blocking only occurs before a task

starts to execute, thus SRP introduces no extra context switches. We assume a set of

traces O B
i for all of the critical sections that may block task τi .

In the MRTA framework, the impact of blocking needs to be considered in terms of

both processor and memory demand. This can be achieved by considering the traces

O B
i as belonging to a single virtual task with higher priority than τi . Thus we obtain

a contribution P DB
i to the processor demand which is added into Ii (i, x, t) and a

contribution M DB
i to the memory demand which contributes to Sx

i (t).

Accounting for the CRPD effects due to blocking are more complex, here we make

use of the approach given by Altmeyer et al. (2012) to extend the ECB-Union approach

to accounting for pre-emption costs to take account of blocking.

Specifically, we extend the formula for the pre-emption cost (32) to include the

UCBs of tasks in the set b(i, j), where b(i, j) is defined as the set of tasks with

priorities lower than that of task τi that lock a resource with a ceiling priority higher

than or equal to the priority of task τi but lower than that of task τ j . These tasks can

block task τi , but can also be pre-empted by task τ j . Hence they need to be included in

the set of tasks aff(i, j) whose UCBs are considered when determining the pre-emption

cost γi, j,x due to task τ j :

123

638 Real-Time Syst (2018) 54:607–661

aff(i, j) = (hep(i) ∩ lp(j)) ∪ b(i, j) (43)

Tasks in b(i, j) have lower priorities than task τi and so cannot pre-empt during the

response time of task τi , hence their ECBs do not need to be considered when comput-

ing γi, j,x . Using (43) extends the ECB-Union approach (32) to correctly account for

pre-emption costs when tasks share resources according to the SRP. We note that the

simplest form of resource locking, sometimes called critical sections has the resource

accesses at the highest priority. In that case, there is no additional pre-emption cost,

since no tasks can pre-empt the critical sections, and so b(i, j) is empty.

Blocking due to software resources accessed by tasks on other cores does not affect

the term A
y
n(t) since SRP introduces no additional context switches, and at the lowest

priority level n, there are no extra tasks to include in the CRPD computation (b(n, j)

is empty, since there are no tasks of priority lower than n). The value of A
y

j (t) used in

the analysis of a Fixed-Priority bus is also unchanged due to resource accesses, since

we assume that the bus access priority reflects only a task’s base priority, rather than

any raised priority as a result of SRP.

We note that accounting for resources that are shared between tasks on different

cores using for example the MSRP (Gai et al. 2001) or MrsP (Burns and Wellings

2013) protocols is beyond the scope of this paper.

7.3 Open systems and incremental verification

The basic analysis for the MRTA framework given in the paper assumes that we

have information (i.e. traces etc.) for all of the tasks in the system. There are a

number of reasons why this may not be the case: (i) the system may be open, with

tasks on one or more cores loadable post deployment, (ii) the system may be under

development and the tasks on another core not yet known, (iii) incremental verifi-

cation may be required, so no assumption can be made about the tasks executing

on another core, (iv) the system may be mixed criticality and tasks on another core

may not be developed to the same criticality level, and hence cannot be assumed

to be well behaved. Instead we must assume they may exhibit the worst possible

behaviour.

For a core Py where we have no information, or need to assume the worst, we

may replace A
y
j (t) and A

y
n(t) with a function that represents continual generation of

memory accesses at the maximum possible rate. In practice, this may be equivalent

to simply setting A
y
j (t) = A

y
n(t) = ∞. We note that analysis for TDMA and Round-

Robin bus arbitration still results in bounded response times in this case, while the

analysis for FIFO and Fixed-Priority arbitration will result in unbounded response

times. With arbitration based on processor priority, then bounded response times

can only be obtained if Py is a lower priority processor than Px . We note that the

use of memory throttling mechanisms may result in a bounded number of memory

accesses from a core Py in any given time interval, independent of the tasks running

on that core. Such a bound can be used to define an appropriate interference function

A
y

j (t).

123

Real-Time Syst (2018) 54:607–661 639

8 Multicore simulator

In this section, we present a Discrete Event (DE) multicore simulator that implements

the system model presented in Sect. 3. The simulator serves two purposes. Firstly, it

validates the soundness of the response time analysis from Sect. 6: all task sets deemed

schedulable by the analysis must not incur a deadline miss under simulation. Secondly,

it enables us to investigate the precision of the analysis. The precision of timing

analyses in general, and in particular timing analyses for multicore systems, is often

unknown. Due to the inherent complexity and the large state-space, determining the

ground-truth, i.e., a task’s worst-case execution time or the exact determination of the

schedulability of a task set, is computationally infeasible. Simulation cannot provide

precise schedulability results; however, it can be used as a necessary test or over-

approximation of task set schedulability. It can also provide an under-approximation

of the amount, and thus the impact, of the interference on shared resources.

In this paper, we are only concerned with the timing behaviour of the multicore

system, so a fully-functional simulation is not needed, hence we do not need to simulate

the contents of registers or the precise arithmetic and logic operators of the cores.

Therefore, we opted for a so-called transaction-level modelling (TLM) approach, as

proposed by (Cai and Gajski 2003). With this approach, the interactions between

different components are modelled separately from the computation that is performed

by them, and each component can be modelled at a different level of detail and timing

accuracy if required. For our simulator, we modelled the complete multicore system

in a cycle-accurate way, implementing the exact task and system model assumed by

the analysis.

The simulation needs to be capable of detecting any possible deadline miss in a

given simulation run, therefore the model includes the detailed timing behaviour of

bus arbitration, cache policies, core scheduling and memory accesses, but it abstracts

away the individual functional behaviour of the cores (i.e. the computation they do),

the bus (i.e. the data it carries) and the memory (i.e. the data it stores). According to

Cai and Gajski’s TLM taxonomy, this is known as a TLM implementation model.

Hardware, and in particular a multicore system is inherently parallel, whereas

a DE simulator executes sequentially. To model the parallelism of the hardware,

we follow the simultaneous event handling approach used in most DE simulation

languages (Muliadi 1999), assuming that all actions within one cycle happen instan-

taneously, but ordered by infinitesimally small delays; and that signals also propagate

within the same cycle to all receiving components, but ordered from upstream to

downstream components. Once all signals have been propagated and processed, the

simulator proceeds with the next cycle. To eliminate cyclic dependencies between

the hardware components, the behaviour of the cores and the bus are each modeled

within two functions, a pre-computation function and a post-computation function.

The DRAM function is implemented using a single process. The dependencies of the

processes and the process order of the simulator are depicted in Fig. 3.

In the following, we sketch the simulation procedure for a single execution cycle.

Each core stores the set of currently active jobs that are ready to execute, and for

each of these jobs a trace index. The trace index indicates how much of the trace has

already been executed. The execution of a trace, and thus of a job, finishes once the

123

640 Real-Time Syst (2018) 54:607–661

Fig. 3 Illustration of hardware dependencies and process order of the multicore simulator

final instruction of the trace is reached. The job is then set to completed. Further, each

core has a boolean flag indicating whether or not the core is currently stalled waiting

for a memory access to be serviced.

1. The local scheduler on each core is simulated and scheduler events such as job

releases or a deadline miss are handled. If the core is not stalled, the execution of

the next instruction of the currently active job with the highest priority is simulated.

If the execution of this instruction incurs any memory accesses to memory blocks

that are not stored in the local memory then a bus request to that memory block

is issued and added to a global bus request queue, and the boolean flag is set to

stalled. This step is repeated for each core.

2. The simulation proceeds with the bus controller. The bus also features a boolean

flag indicating if the bus is busy or idle. If the bus is busy, the simulation immedi-

ately proceeds to the next step. If the bus is idle, the next bus access from the access

queue is taken and the internal bus counter is set to the global memory latency

dmain. The access which is taken from the queue depends on the bus arbitration

policy.

3. The DRAM process counts the number of cycles and served bus accesses until

a DRAM refresh is required. When a refresh is needed, the DRAM is stalled for

drefresh cycles.

123

Real-Time Syst (2018) 54:607–661 641

4. Next, the simulator executes the bus post-processing, which decrements the bus

counter. If the bus counter is equal to zero, a memory request is served and the

post-processing for the corresponding core is invoked.

5. The post-processing for the core associated with a served memory request sets the

boolean flag of the core from stalled to ready.

6. Goto step 1.

The simulation stops either after a pre-defined number of cycles, or when a deadline

miss is detected. In the first case, the task set executed on the multicore system is

deemed schedulable, in the second case, it is deemed unschedulable, thus providing a

necessary test of schedulability.

Note that we assume sporadic task releases. Consequently, no initial release offsets

can be assumed and all possible task interleavings are permissible. Due to the large

number of release patterns full coverage of all possibilities cannot be achieved. Further-

more, the precision decreases with increasingly dynamic behaviour of the multicore,

similarly, increasing the number of cores, tasks, or the size of the cache, increases the

size of the state space and hence reduces the proportion of it which can be covered by

simulation.

We note that one drawback of our simulator is that it does not account for any

overlapping between the execution of processor instructions and memory accesses.

Effectively each core always stalls waiting for its memory accesses to be serviced.

Overlapping of execution and memory accesses is an area which we aim to explore in

future work, both in terms of analysis and simulation.

9 Experimental evaluation

In this section we describe the results of an experimental evaluation using the MRTA

framework.3 We define a reference architecture, which serves as the baseline for the

experimental evaluation. In the first set of experiments, we vary the bus architecture,

and in the second set of experiments, we vary the type of local memory used. In

the third experiment, we compare three distinct multicore architectures: a predictable

architecture tailored towards optimizing the guaranteed real-time performance, an

architecture that implements full temporal and spatial isolation, and the reference

architecture. Finally, we evaluate the precision of the MRTA framework using the

multicore simulator presented in Sect. 8.

Reference Architecture We model a multicore system based on an ARM Cortex

A5 multicore4 and use this as a reference architecture. As this work is intended to

provide an overview of the MRTA framework, we do not model all the details of

the specific multicore architecture; however, the ARM Cortex A5 provides the cache

configuration, and memory and bus latencies. The reference architecture depicted in

Fig. 4 is configured as follows: It has 4 ARMv7 cores connected to the global memory

and I/O over a shared bus assuming a Round-Robin arbitration policy and a core

3 The software is available on demand by contacting the first author.

4 http://www.arm.com/products/processors/cortex-a/cortex-a5.php.

123

http://www.arm.com/products/processors/cortex-a/cortex-a5.php

642 Real-Time Syst (2018) 54:607–661

Fig. 4 Multicore architecture

case study: m = 4 cores with

local caches connected via a

common bus to a global memory

frequency of 200 MHz. Each core has separate instruction and data caches, both direct-

mapped with 512 cache sets each and a block size of 32 Bytes. The global memory

latency dmain and the DRAM refresh latency drefresh are both 5 cycles. The DRAM

refresh period Trefresh is 64 ms. We assume the DRAM implements the distributed

refresh strategy (see Sect. 6.4).

Trace Generation For the evaluation, we use the Mälardalen benchmark suite (Gustafs-

son et al. 2010) to provide traces. The traces for the benchmarks were generated

using the gem5 instruction set simulator (Binkert et al. 2011) and contain statically

linked library calls. As the benchmark code corresponds to independent tasks, no

data is shared between the tasks. Table 2 shows information for all 39 benchmark

programs used to provide traces including the total number of instructions (which is

equal to the processor demand), the number of read/write operations, the memory

demand, and the maximum number of UCBs and ECBs on the reference multicore

architecture. Each benchmark is assigned only one trace, which is sufficient due

to the simple structure of the benchmark suite: The benchmarks are either single-

path by design or the input is provided as part of the benchmark suite. Despite

the rather simple structure of the benchmarks, the tasks show a strong variation

in processor and memory demand. As all benchmarks exhibit only one trace, the

worst-case processor and memory demand coincide. Evaluation for multi-path bench-

marks is left for future work, and will require a more realistic set of benchmarks

than those currently available. (The Mälardalen benchmark suite contains mostly

single-path benchmarks, or benchmarks with little variation between the execution

paths).

Task Set Generation We evaluated the guaranteed performance of various architec-

tural configurations as computed using the MRTA framework on a large number of

randomly generated task sets. The task set parameters were as follows:

– The default task set size was 32, with 8 tasks per core.

– Each task was randomly assigned a trace from Table 2.

123

Real-Time Syst (2018) 54:607–661 643

Table 2 Benchmark traces

Name # Instr. (PD) Read/Write MD UCB ECB

adpcm_dec 627, 553 123, 641 38, 575 144 332

adpcm_enc 628, 795 124, 168 38, 729 155 346

binarysearch 678 293 229 20 118

bsort100 272, 715 1, 305, 613 25, 464 31 135

bs 658 201 226 19 117

cnt 7765 1573 573 33 150

compressdata 3166 1040 494 22 134

compress 8793 3358 993 74 174

countnegative 34, 860 7861 2240 74 181

cover 3661 1495 696 19 231

crc 67, 359 20, 452 6656 44 162

duff 3121 1484 553 24 130

edn 164, 596 73, 857 15, 383 104 306

expint 8058 2221 716 27 118

fac 1096 411 274 17 108

fdct 5923 3098 1088 67 193

fft1 92, 289 11, 229 4766 133 231

fibcall 1194 571 319 19 106

fir 6938 3585 1207 39 140

insertsort 2218 1317 415 18 121

janne_complex 1038 390 254 18 113

jfdctint 7771 2987 1086 63 198

lcdnum 794 326 240 22 116

lms 3, 023, 813 373, 874 120, 821 150 276

loop3 10, 539 4412 1820 16 351

ludcmp 8278 3004 768 59 189

matmult 384, 140 78, 058 11, 923 123 272

minver 16, 256 3627 1437 121 284

ndes 107, 957 50, 632 13, 186 96 252

nsichneu 8648 4841 1582 397 589

ns 25, 494 7238 1219 23 186

petrinet 2272 1206 438 160 250

qsort-exam 535 219 202 18 109

qurt 8663 1351 735 75 182

recursion 5564 1949 907 19 113

select 7211 2183 986 58 173

sqrt 26, 167 3185 1438 62 151

statemate 62, 188 51, 792 13, 360 117 235

st 1, 498, 482 125, 946 31, 969 341 429

123

644 Real-Time Syst (2018) 54:607–661

– The base WCET per task τi (needed solely to set the task periods and deadline),

was defined as

Ci = PDi + MDi · dmain + DRAM(PDi + MDi · dmain, MDi) · drefresh

Ci denotes the execution time of the task without any interference from any other

task.

– The task utilizations were generated using UUnifast (Bini and Buttazzo 2005) with

an equal utilization assumed for each core.

– Task periods were set based on task utilization and base WCET, i.e., Ti = Ci/Ui .

– Task deadlines were implicit.

– Priorities were assigned in deadline monotonic order.

– Tasks were assumed to be independent, i.e. no shared software resources.

– The tasks were assumed to be located in memory sequentially in priority order.

(We note that improvements in layout can reduce CRPD (Lunniss et al. 2012);

however, such optimisations were not considered here).

The utilization per core was varied from 0.025 to 0.975 in steps of 0.025. For each

utilization value, 1000 task sets were generated and the schedulability was determined

for each architectural configuration.

We note that the processor utilization is often not the limiting factor on a multicore

system, but rather the memory utilization, defined as follows is:

U BUS =
∑

i

MDi · dmain

Ti

(44)

Note the task set utilization is determined for the reference architecture and we use

the same task sets throughout all experiments. Since we adapt the reference architecture

and assume varying types of local memories, task set utilizations that are notionally

larger than 1 can be deemed schedulable.

9.1 Bus arbitration policies

In our first set of experiments, we examine derivatives of the reference architecture

assuming the different bus arbitration policies presented in Sect. 5 and also a hypo-

thetical perfect bus which eliminates all bus interference if the bus utilization is ≤1.

Figure 5 shows the number of schedulable task sets plotted against the core uti-

lization (computed using the base WCETs on the reference architecture) and Fig. 6

against the bus utilization U BUS.

Most traces from Table 2 have a high memory demand, which results in a large

number of bus accesses even at low core utilizations. Consequently, many task sets

are not schedulable even with a perfect bus. The Fixed-Priority bus (green line) where

the memory accesses inherit the task priority shows the best performance, followed

by Round-Robin (black line) and then TDMA (purple line). Note for TDMA and

Round-Robin, we assume a cycle with 2 slots per core.

123

Real-Time Syst (2018) 54:607–661 645

Fig. 5 Number of schedulable task sets versus core utilization: varying bus arbitration policy

Fig. 6 Number of schedulable task sets versus bus utilization: varying bus arbitration policy

The FIFO bus shows the lowest performance, closely followed by the Processor-

Priority bus (PP). The worst-case arrival pattern for a FIFO bus (yellow line) assumes

that each potentially co-running task has issued bus requests just before the release of

the task of interest, which results in a very pessimistic bus contention and response

times. The analysis for the Processor-Priority bus (light blue line) assumes that only

accesses due co-running tasks assigned to a core of higher priority cause interfer-

ence, which explains the improved performance compared to the FIFO bus. We note

that the task set generation does not optimize the task assignment with respect to the

Processor-Priority bus. Such an optimization could greatly improve the relative per-

formance of this policy by assigning tasks with shorter deadlines to a core with higher

priority.

The difference between the Fixed-Priority and Round-Robin/TDMA policies shows

the MRTA framework is able to guarantee good real-time performance even if the bus

policy does not provide a tightly bounded bus latency for single accesses, as is the

case with TDMA and Round-Robin.

123

646 Real-Time Syst (2018) 54:607–661

Fig. 7 Weighted schedulability: varying bus latency

9.1.1 Weighted schedulability measure

Figures 5 and 6 provide results for different bus policies, showing how guaranteed

performance varies with the core and bus utilization. In our second set of experi-

ments, we examine how other parameters including: the main memory latency, the

number of cores, and the DRAM refresh latency impact schedulability. We use the

weighted schedulability measure (Bastoni et al. 2010) Wφ(p) for schedulability test φ

to show how schedulability varies across a range of values for each of these parameters

p. For each value of p, this measure combines results for the task sets τ gener-

ated for all of a set of equally spaced utilization levels (0.025–0.975 in steps of

0.025).

Let 	φ(τ, p) be the binary result (1 or 0) of schedulability test φ for a task set τ

with parameter value p:

Wφ(p) =

∑

∀τ (u(τ) · 	φ(τ, p))
∑

∀τ u(τ)
(45)

where u(τ) is the utilization of task set τ .

As the memory demand of the benchmark traces is high, the bus latency dmain has

a tremendous impact on overall schedulability (see Fig. 7). The bus latency affects

all bus arbitration policies similarly. By increasing the number of cores, the number

of tasks also increases, assuming a fixed number of tasks per core, and so does the

bus utilization. The performance of all configurations therefore decreases with more

cores, as shown in Fig. 8, since fewer task sets are deemed schedulable irrespective of

the bus policy used. As might be expected, longer DRAM refresh latencies also have

a significant detrimental effect on schedulability for all policies, as shown in Fig. 9.

9.2 Local memory types

In our third set of experiments, we examine derivatives of the reference architecture

assuming the different types of local memory as presented in Sect. 4, a hypothetical

123

Real-Time Syst (2018) 54:607–661 647

Fig. 8 Weighted schedulability: varying number of cores

Fig. 9 Weighted schedulability: varying DRAM refresh latency

perfect cache which eliminates all memory accesses, and a configuration without any

caches. Local caches are either partitioned per task, with a uniform partition size, or

unconstrained, meaning that all tasks on the same core share the same local cache and

can potentially use all of it. The scratchpads are partitioned per task and are configured

statically to store the most frequently used memory blocks. We present results for the

partitioned and unconstrained cases assuming either a cold cache, or a warmed-up

cache where memory blocks have been loaded into the cache by running all tasks once

during a warm-up phase (see Sect. 4). Irrespective of the type of local memory, its size

remains constant at 16kB.

Figure 10 shows the number of schedulable task sets plotted against the core uti-

lization (computed using the base WCETs on the reference architecture), and Fig. 11

the number of schedulable task sets plotted against the bus utilization U BUS.

Except for uncached architectures, traditional cache architectures, i.e. both parti-

tioned (yellow line) and unconstrained (black line), exhibit the lowest performance: at

a core utilization of 0.275 and a bus utilization of 0.3 less than half of the task sets are

schedulable. Accounting for a warm-up phase has an insignificant impact for uncon-

strained caches (light blue line), and a visible, but still somewhat limited impact on

123

648 Real-Time Syst (2018) 54:607–661

Fig. 10 Number of schedulable task sets versus core utilization: varying types of local memory

Fig. 11 Number of schedulable task sets versus bus utilization: varying types of local memory

partitioned caches (purple line). With 8 tasks per core, the combined set of ECBs often

exceeds the cache size, thus the simple analysis accounting for warmed-up caches is

not able to guarantee the presence of cache blocks from a previous job of the same

task. Like partitioned caches, static scratchpads reduce the size of the available local

memory per task. The evaluation shows, however, that the simple policy of storing the

N most frequently used memory blocks in the scratchpad reduces the overall number

of bus accesses significantly compared to partitioned caches. The scratchpad archi-

tecture with write-back caches (green line) offers the best performance: more than

half of all task sets at a core utilization of 0.55 and at a bus utilization of 0.65 are

still schedulable. The difference in performance between using a scratchpad with a

write-through policy (dark blue line) compared to a write-back policy (green line)

shows the substantial impact of write-accesses on the overall system performance.

9.2.1 Weighted schedulability measure

Figures 10 and 11 show the results for different types of local memory against the core

and bus utilization. Using the weighted schedulability measure defined in (45), we also

123

Real-Time Syst (2018) 54:607–661 649

Fig. 12 Weighted schedulability: varying bus latency

Fig. 13 Weighted schedulability: varying number of cores

examined how the main memory latency (Fig. 12), the number of cores (Fig. 13), and

the DRAM refresh latency (Fig. 14) impact schedulability.

In all these cases, the performance benefit of using scratchpad memory with a

write-back policy is clear, retaining its relative advantages as overall schedulability

decreases.

9.3 Predictable multicore architecture

In our third set of experiments, we compare the reference architecture with two alter-

natives. The first, referred to as the full-isolation architecture is a derivative of the

reference architecture that implements complete spatial and temporal isolation. The

local caches are partitioned with an equal partition size for each task and the bus

uses a TDMA arbitration policy. All other parameters remain the same as for the

reference architecture. Performance on the isolation architecture corresponds to the

traditional two-step approach to timing verification with context-independent WCETs.

In addition, we note that the isolation architecture can be considered as a software

123

650 Real-Time Syst (2018) 54:607–661

Fig. 14 Weighted schedulability: varying DRAM refresh latency

Fig. 15 Number of schedulable task sets versus core utilization

configuration of the reference architecture. The second alternative, referred to as the

predictable architecture, has been designed to maximize the guaranteed real-time

performance. From the previous evaluation, we found that using scratchpad memory

with a write-back policy and a Fixed-Priority bus outperforms all other configurations

in terms of guaranteed real-time performance. These components and policies were

therefore chosen for the predictable architecture.

Figure 15 shows the number of schedulable task sets plotted against the core uti-

lization (computed using the base WCETs on the reference architecture).

For the reference architecture and the full-isolation architecture, we assumed

warmed-up caches as detailed in Sect. 4.

We observe that the predictable architecture, tailored towards guaranteed real-time

performance, accumulates the performance benefits of both scratchpads and a Fixed-

Priority bus; its performance far exceeds that of the full-isolation architecture, which

uses partitioned caches and a TDMA bus, and that of the reference architecture, which

uses shared caches and a Round-Robin bus.

123

Real-Time Syst (2018) 54:607–661 651

Fig. 16 Number of schedulable task sets versus core utilization: MRTA framework (solid lines) and mul-

ticore simulator (dashed lines)

9.4 Precision

Based on our experiments, we were able to identify three main sources of over-

approximation (pessimism) in the MRTA framework: The number of memory accesses

on the same core cannot be precisely estimated due to imprecision in the pre-emption

cost analysis. The interference due to bus accesses may be pessimistic as not all tasks

running on another core can simultaneously access the bus. The DRAM refreshes

are assumed to occur too frequently if the number of main memory accesses are over-

approximated. In this section, we examine the precision of the analysis for the different

architectures using the simulator described in Sect 8.

In the previous experiments, we investigated architectures and configurations

assuming a total of 32 tasks distributed over 4 cores. Since all tasks are assumed

to be sporadic with no relationship between their release times, we cannot reduce the

state space of possible scenarios that could be simulated. Consequently, the multicore

simulator is only able to cover a negligibly small fraction of the total state space. In

order to achieve a meaningful level of coverage, we reduced the number of tasks in

the system to 8. The simulation runs for 109 cycles or until it detects a deadline miss.

Further, we use the WCET in isolation on the predictable architecture, instead of on

the reference architecture for the task-set generation.5

The results are shown in Fig. 16. The dashed lines indicate results from the simulator

and solid lines results from the MRTA analysis.

The predictable architecture not only provides the highest level of guaranteed real-

time performance, but also the tightest results. Both lines, the solid line for the results of

the analysis and the dashed line for results from the simulator are close, which indicates

a high precision in the analysis. For the other two architectures, i.e., the reference

architecture and the full-isolation architecture, we cannot draw the same conclusion.

5 We did this since using WCETs based on the reference architecture would mean that the predictable

architecture could schedule some task sets with utilization >1 which makes the differences more difficult

to comprehend.

123

652 Real-Time Syst (2018) 54:607–661

In these cases, there are large differences between the lower and upper bounds on the

number of schedulable task sets. We note that this could be due to imprecision in the

necessary test formed by the simulation, imprecision in the sufficient test given by the

MRTA framework, or both.

The reference architecture is optimized towards achieving good average case perfor-

mance, whereas the predictable architecture is optimized towards guaranteed real-time

performance. From the results of the simulation, we observe that the optimization tar-

gets may have been achieved. The upper bound on the number of schedulable task sets

for the reference architecture is well above the upper bound for the predictable archi-

tecture. On the other hand, the predictable architecture provides significantly better

guaranteed performance. The results provide an indication that multicore architectures

should be tailored towards their intended use.

10 Conclusions

In this paper, we introduced the Multicore Response Time Analysis framework (MRTA).

This framework is extensible to different multicore architectures, with various types

and arrangements of local memory, and different arbitration policies for the common

interconnects. In this paper, we instantiated the MRTA framework assuming single

level local data and instruction memories (cache or scratchpads), and for a variety

of memory bus arbitration policies, including: Round-Robin, FIFO, Fixed-Priority,

Processor-Priority, and TDMA.

The MRTA framework decouples response time analysis from a reliance on context-

independent WCET values. Instead, the analysis formulates response times directly

from the demands on different hardware resources. Such a separation of concerns

trades different sources of pessimism. The simplifications used to make the analysis

tractable are unable to take advantage of overlaps between processing and memory

demands; however, this compromise is set against substantial gains acquired by con-

sidering the worst-case behaviour of resources, such as the memory bus, over long

durations equating to task response times, rather than summing the worst case over

short durations such as a single accesses, as is the case with the traditional two-step

approach using context-independent WCETs.

While the initial instantiation of the MRTA framework given in this paper cannot

capture every source of interference or delay exhibited in actual multicore processors, it

captures the most significant effects. Importantly, the framework can be: (i) extended to

incorporate effects due to other hardware resources, and different scheduling/resource

access policies, (ii) refined to provide tighter analysis for those elements instantiated

in this paper, (iii) tailored to better model the implementation of actual multicore

processors.

The MRTA framework provides a general timing verification framework that is

parametric in the hardware configuration (common interconnect, local memories, num-

ber of cores, etc.) and so can be used at the architectural design stage to compare the

guaranteed levels of real-time performance that can be obtained with different hard-

ware configurations, and also during the development and integration stages to verify

the timing behaviour of a specific system.

123

Real-Time Syst (2018) 54:607–661 653

We used the framework to first model, analyse and evaluate the effectiveness of

different local memory components (cache and scratchpads) and bus arbitration poli-

cies with respect to a reference architecture based on a 4-core ARM Cortex A5. The

evaluation utilised software from the Mälardalen benchmark suite as code for the tasks

in this case study. These results were then used to compose a predictable architecture

using scratchpads with a write-back policy and a Fixed-Priority bus arbitration policy,

which was compared against a reference architecture designed for good average-case

behaviour, and also a full isolation architecture. This comparison showed that the pre-

dictable architecture has substantially better guaranteed real-time performance than

either the reference or the full isolation architecture, with the precision of the analysis

verified using cycle-accurate simulation.

Our results show that while a full-isolation architecture may be preferable with

the traditional two-step approach to timing verification, the MRTA framework can

leverage the substantial performance improvements that can be obtained by using

dynamic bus arbitration policies and components such as scratchpads designed with

worst-case performance in mind.

In future, we aim to extend our work by instantiating the analysis for more

complex behaviours and architectures. Examples include: (i) covering processor

clusters and multi-level bus/network-on-chip (NoC) arbitration policies. Initial work

in this area is reported in (Rihani et al. 2016). (ii) covering processor scheduling

policies where analysis of cache-related pre-emption delays already exists, such

as fixed-priority scheduling with pre-emption thresholds (Bril et al. 2014, 2017),

and EDF (Lunniss et al. 2013). (iii) covering write-back caches, following recent

work in this area (Davis et al. 2016; Blass et al. 2017). Further, we aim to eval-

uate the impact of multi-path benchmarks on the precision of the framework, and

explore the optimal selection of a Pareto front of traces. We also aim to integrate

the approach with the M/C task model (Melani et al. 2015, 2016) to leverage the

improvements in performance that can be obtained by accounting for the overlap-

ping of memory accesses and execution. We would also like to analyse a more

complex case study with an application made up of multiple tasks running on dif-

ferent cores, with locally shared software resources and a simple RTOS. Our analysis

framework could also be used as a means of optimising the allocation of tasks to

cores.

Acknowledgements This work was supported in part by the COST Action IC1202 TACLe, by the NWO

Veni Project ’The time is now: Timing Verification for Safety-Critical Multi-Cores’ by the Deutsche

Forschungsgemeinschaft as part of the project PEP, by National Funds through FCT/MEC (Portuguese

Foundation for Science and Technology) and co-financed by ERDF (European Regional Development

Fund) under the PT2020 Partnership, within project UID/CEC/04234/2013 (CISTER Research Centre), by

FCT/MEC and the EU ARTEMIS JU within project ARTEMIS/0001/2013—JU Grant No. 621429 (EMC2),

by the INRIA International Chair program, and by the EPSRC projects MCC (EP/K011626/1) and MCCps

(EP/P003664/1). EPSRC Research Data Management: no new primary data was created during this study.

This collaboration was partly due to the Dagstuhl Seminar on Mixed Criticality http://www.dagstuhl.de/

15121.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://www.dagstuhl.de/15121
http://www.dagstuhl.de/15121
http://creativecommons.org/licenses/by/4.0/

654 Real-Time Syst (2018) 54:607–661

Appendix: priority level-i busy periods and the validity of S
x

i
(t)

In this paper, Sx
i (t) is used to denote an upper bound on the total number of bus

accesses that can occur due to tasks running on core Px during the worst-case response

time of the task of interest τi . In this appendix, we show that it is sound to compute

Sx
i (t) assuming that the job of τi that exhibits the largest upper bound response time

(according to our analysis) is released simultaneously with all higher priority tasks on

core Px , and that these tasks are re-released as soon as possible. This is referred to as

a synchronous arrival sequence.

In the following, we use the concept of a busy period defined with respect to the

method used to compute an upper bound response time for task τi . A priority level-i

busy period is defined as an interval of time during which the notional system is busy

with activities (processor demand, memory accesses, DRAM refreshes etc.) which

are required by the analysis to be finished before a job of task τi can complete its

execution. (In other words, all interference is assumed to be serialised). Let
i (t) be

the total load in a time interval of length t that can delay the completion of τi , including

any execution (processor demand) and memory accesses of τi itself. The system is

considered busy with respect to τi (i.e. a priority level-i busy period) starting at some

arbitrary time (for simplicity redefined as time zero) until time e iff ∀t < e
i (t) > t .

It follows from this definition that release and completion of any specific job of task

τi must occur within a single priority level-i busy period. Further, since all tasks have

constrained deadlines, only at most one job of τi can execute in a single priority level-i

busy period, which ends with the completion of that job. (Note, the next priority level-i

busy period may start at the next discrete time instant that follows the completion of

the job of τi).

We consider contributions to
i (t) from two sources (i) external to core Px on

which τi executes, (ii) internal to core Px .

In case (i), we assume the maximum possible load due to memory accesses that can

be generated in an arbitrary interval of length t . This leads to the definition of A
y
i (t)

given in (37). We do this because for tasks on another core Py only their memory

accesses can directly impact τi . Their processor demand does not directly interfere

with τi , but may do so indirectly by delaying memory accesses emanating from tasks

on core Py .

In case (ii) we assume the maximum possible load due to memory accesses in a

specific priority level-i busy period in which a single job of τi exhibits the worst-case

response time for the task. We now show that this worst-case response time occurs

assuming a synchronous arrival sequence for tasks executing on the same core. This

leads to the definition of Sx
i (t) given in (34).

1. As τi is preemptable in terms of its processor demand (execution), some of which

can be considered as occurring after all memory accesses and other activities which

delay its completion, then since all interference on τi is considered serialised, there

can be no interference emanating from or caused by a previous job of τi which

impacts the job of interest. This is because, due to constrained deadlines, no two

jobs of τi can occur within the same priority level-i busy period.

123

Real-Time Syst (2018) 54:607–661 655

2. By definition of a priority level-i busy period, there must exist some such busy

period and pattern of task releases that results in the job of task τi in that busy

period assuming the worst-case response time for the task. Consider moving the

release of the job of τi back to the start of this busy period. This has no effect

on the length of the busy period, or on the completion time of the job, hence its

computed response time cannot decrease.

3. For any task τk ∈ hp(i) executing on core Px , then the computed response time

of τi for the above busy period cannot be decreased by moving the release of each

job of τk as early as possible within the busy period. Further, it cannot be impacted

by any release of a job of τk that takes place prior to the start of the busy period.

(This is the case because both the processor demand and memory accesses of τk

interfere with τi and therefore form part of any priority level-i busy period).

From the three points above, it follows that in the context of our analysis, for fixed-

priority preemptive (partitioned) scheduling of tasks with constrained deadlines,

the computed worst-case interference (due to both processor demand and memory

accesses) from tasks on the same core occurs assuming a synchronous arrival sequence,

hence the definition of Sx
i (t) given in (34).

The difference between Sx
i (t) and A

y
i (t) comes from the fact that the total inter-

ference, both processor demand and memory accesses, from tasks on the same core

is maximised by synchronous arrival; whereas for tasks on a different core (which do

not cause direct interference due to their processor demand) it is not.

We note that the contribution of CRPD in Sx
i (t) is over-approximated similar to

existing analysis (2012) by counting each release in the synchronous arrival sequence

as a potential pre-emption.

References

Alhammad A, Pellizzoni R (2014) Schedulability analysis of global memory-predictable scheduling. In:

Proceedings of the international conference on embedded software (EMSOFT), pp 20:1–20:10

Alhammad A, Wasly S, Pellizzoni R (2015) Memory efficient global scheduling of real-time tasks. In:

Proceedings of the real-time and embedded technology and applications symposium (RTAS), pp 285–

296

Altmeyer S (2013) Analysis of preemptively scheduled hard real-time systems. epubli GmbH. http://www.

ebay.de/itm/Analysis-of-Preemptively-Scheduled-Hard-Real-time-Systems-Sebastian-Altmeyer-/

142397905969

Altmeyer S, Burguière C (2009) A new notion of useful cache block to improve the bounds of cache-related

preemption delay. In: Proceedings of the euromicro conference on real-time systems (ECRTS), pp

109–118

Altmeyer S, Davis RI, Maiza C (2011) Cache related pre-emption aware response time analysis for fixed

priority pre-emptive systems. In: Proceedings of the real-time systems symposium (RTSS), pp 261–271

Altmeyer S, Davis RI, Maiza C (2012) Improved cache related pre-emption delay aware response time

analysis for fixed priority pre-emptive systems. Real-Time Syst 48(5):499–526

Altmeyer S, Douma R, Lunniss W, Davis RI (2014) Evaluation of cache partitioning for hard real-time

systems. In: Proceedings of the euromicro conference on real-time systems (ECRTS), pp 15–26

Altmeyer S, Davis RI, Indrusiak L, Maiza C, Nelis V, Reineke J (2015) A generic and compositional

framework for multicore response time analysis. In: Proceedings of the international conference on

real time networks and systems (RTNS), pp 129–138

Altmeyer S, Douma R, Lunniss W, Davis RI (2016) On the effectiveness of cache partitioning in hard

real-time systems. Real-Time Syst. doi:10.1007/s11241-015-9246-8

123

http://www.ebay.de/itm/Analysis-of-Preemptively-Scheduled-Hard-Real-time-Systems-Sebastian-Altmeyer-/142397905969
http://www.ebay.de/itm/Analysis-of-Preemptively-Scheduled-Hard-Real-time-Systems-Sebastian-Altmeyer-/142397905969
http://www.ebay.de/itm/Analysis-of-Preemptively-Scheduled-Hard-Real-time-Systems-Sebastian-Altmeyer-/142397905969
http://dx.doi.org/10.1007/s11241-015-9246-8

656 Real-Time Syst (2018) 54:607–661

Atanassov P, Puschner P (2001) Impact of DRAM refresh on the execution time of real-time tasks. In: IEEE

international workshop on application of reliable computing and communication, pp 29–34

Audsley N, Burns A, Richardson M, Tindell K, Wellings AJ (1993) Applying new scheduling theory to

static priority pre-emptive scheduling. Softw Eng J 8:284–292

Baker TP (1991) Stack-based scheduling for realtime processes. Real-Time Syst 3:67–99

Baruah S, Burns A (2006) Sustainable scheduling analysis. In: Proceedings of the real-time systems sym-

posium (RTSS), pp 159–168

Bastoni A, Brandenburg B, Anderson J (2010) Cache-related preemption and migration delays: empirical

approximation and impact on schedulability. In: Proceedings of the workshop on operating systems

platforms for embedded real-time applications (OSPERT), pp 33–44

Bertogna M, Cirinei M (2007) Response-time analysis for globally scheduled symmetric multiprocessor

platforms. In: Proceedings of the Real-Time Systems Symposium (RTSS), pp 149–160

Bhat B, Mueller F (2011) Making DRAM refresh predictable. Real-Time Syst 47(5):430–453

Bini E, Buttazzo G (2005) Measuring the performance of schedulability tests. Real-Time Syst 30:129–154

Binkert N et al (2011) The gem5 simulator. SIGARCH Comput Archit News 39(2):1–7

Blass T, Hahn S, Reineke J (2017) Write-back caches in WCET analysis. In: Proceedings of the euromicro

conference on real-time systems (ECRTS)

Bril RJ, Altmeyer S, van den Heuvel MMHP, Davis RI, Behnam M (2014) Integrating cache-related pre-

emption delays into analysis of fixed priority scheduling with pre-emption thresholds. In: Proceedings

of the real-time systems symposium (RTSS), pp 161–172

Bril RJ, Altmeyer S, van den Heuvel MM, Davis RI, Behnam M (2017) Fixed priority scheduling with

pre-emption thresholds and cache-related pre-emption delays: integrated analysis and evaluation. Real-

Time Syst. doi:10.1007/s11241-016-9266-z

Bui D, Lee E, Liu I, Patel H, Reineke J (2011) Temporal isolation on multiprocessing architectures. In:

Proceedings of the design automation conference (DAC), pp 274–279

Burns A, Wellings AJ (2013) A schedulability compatible multiprocessor resource sharing protocol—

MRSP. In: Proceedings of the euromicro conference on real-time systems (ECRTS), pp 282–291

Cai L, Gajski D (2003) Transaction level modeling: an overview. In: Proceedings of the international

conference on hardware/software codesign and system synthesis (CODES), pp 19–24

Chattopadhyay S, Roychoudhury A, Mitra T (2010) Modeling shared cache and bus in multi-cores for

timing analysis. In: Proceedings of the international workshop on software and compilers for embedded

systems (SCOPES), pp 6:1–6:10

Choi J, Kang D, Ha S (2016) Conservative modeling of shared resource contention for dependent tasks in

partitioned multi-core systems. In: Proceedings of design, automation, and test in Europe (DATE), pp

181–186

Dasari D, Nelis V, Akesson B (2016) A framework for memory contention analysis in multi-core platforms.

Real-Time Syst 52(3):272–322

Davis RI, Burns A (2010) Improved priority assignment for global fixed priority pre-emptive scheduling in

multiprocessor real-time systems. Real-Time Syst 47(1):1–40

Davis RI, Burns A, Marinho J, Nelis V, Petters SM, Bertogna M (2013) Global fixed priority scheduling

with deferred pre-emption. In: Proceedings of the international conference on embedded and real-time

computing systems and applications (RTCSA), pp 1–11

Davis RI, Burns A, Marinho J, Nelis V, Petters SM, Bertogna M (2015) Global and partitioned multiprocessor

fixed priority scheduling with deferred preemption. ACM TECS 14(3):47:1–47:28

Davis RI, Altmeyer S, Reineke J (2016) Analysis of write-back caches under fixed-priority preemptive and

non-preemptive scheduling. In: Proceedings of the international conference on real-time networks and

systems (RTNS), pp 309–318

Falk H, Kleinsorge J (2009) Optimal static WCET-aware scratchpad allocation of program code. In: Pro-

ceedings of the design automation conference (DAC), pp 732–737

Ferdinand C, Wilhelm R (1999) Efficient and precise cache behavior prediction for real-time systems.

Real-Time Syst 17(2–3):131–181

Ferdinand C, Martin F, Wilhelm R, Alt M (1999) Cache behavior prediction by abstract interpretation. Sci

Comput Program 35(2–3):163–189

Gai P, Lipari G, Natale MD (2001) Minimizing memory utilization of real-time task sets in single and

multi-processor systems-on-a-chip. In: Proceedings of the real-time systems symposium (RTSS), pp

73–83

123

http://dx.doi.org/10.1007/s11241-016-9266-z

Real-Time Syst (2018) 54:607–661 657

Gustafsson J, Betts A, Ermedahl A, Lisper B (2010) The Mälardalen WCET benchmarks—past, present and

future. In: Proceedings of the international workshop on worst-case execution time analysis (WCET),

pp 137–147

Gustavsson A, Ermedahl A, Lisper B, Pettersson P (2010) Towards WCET analysis of multicore archi-

tectures using UPPAAL. In: Proceedings of the international workshop on worst-case execution time

analysis (WCET), pp 101–112

Hahn S, Reineke J, Wilhelm R (2013) Towards compositionality in execution time analysis—definition and

challenges. In: Proceedings of the international workshop on compositional theory and technology for

real-time embedded systems (CRTS)

Hahn S, Reineke J, Wilhelm R (2015) Toward compact abstractions for processor pipelines. In: Proceedings

of the correct system design—symposium in honor of Ernst-Rüdiger Olderog on the occasion of his

60th birthday, pp 205–220

Hahn S, Jacobs M, Reineke J (2016) Enabling compositionality for multicore timing analysis. In: Proceed-

ings of the international conference on real time and networks systems (RTNS)

Huang WH, Chen JJ, Reineke J (2016) MIRROR: symmetric timing analysis for real-time tasks on multicore

platforms with shared resources. In: Proceedings of the design automation conference (DAC), pp 1–6

Jacobs M, Hahn S, Hack S (2016) A framework for the derivation of WCET analyses for multi-core

processors. In: Proceedings of the euromicro conference on real-time systems (ECRTS), pp 141–151

Joseph M, Pandya P (1986) Finding response times in a real-time system. Comput J 29(5):390–395

Kelter T, Falk H, Marwedel P, Chattopadhyay S, Roychoudhury A (2011) Bus-aware multicore WCET

analysis through TDMA offset bounds. In: Proceedings of the euromicro conference on real-time

systems (ECRTS), pp 3–12

Kelter T, Falk H, Marwedel P, Chattopadhyay S, Roychoudhury A (2014) Static analysis of multi-core

TDMA resource arbitration delays. Real-Time Syst J 50(2):185–229

Kim H, de Niz D, Andersson B, Klein M, Mutlu O, Rajkumar R (2014a) Bounding memory interference

delay in COTS-based multi-core systems. In: Proceedings of the real-time and embedded technology

and applications symposium (RTAS), pp 145–154

Kim Y, Broman D, Cai J, Shrivastaval A (2014b) Wcet-aware dynamic code management on scratchpads

for software-managed multicores. In: Proceedings of the real-time and embedded technology and

applications symposium (RTAS), pp 179–188

Kim H, de Niz D, Andersson B, Klein M, Mutlu O, Rajkumar R (2016) Bounding and reducing memory

interference in cots-based multi-core systems. Real-Time Syst 52(3):356–395

Lampka K, Giannopoulou G, Pellizzoni R, Wu Z, Stoimenov N (2014) A formal approach to the WCRT

analysis of multicore systems with memory contention under phase-structured task sets. Real-Time

Syst 50(5–6):736–773

Lee CG, Hahn J, Seo YM, Min S, Ha R, Hong S, Park CY, Lee M, Kim CS (1998) Analysis of cache-related

preemption delay in fixed-priority preemptive scheduling. IEEE Trans Comput 47(6):700–713

Lee C, Lee K, Hahn J, Seo YM, Min SL, Ha R, Hong S, Park CY, Lee M, Kim CS (2001) Bounding

cache-related preemption delay for real-time systems. IEEE Trans Softw Eng 27(9):805–826

Li YTS, Malik S (1995) Performance analysis of embedded software using implicit path enumeration. In:

Proceedings of the design automation conference (DAC), pp 456–461

Li L, Mayer A (2016) Trace-based analysis methodology of program flash contention in embedded multicore

systems. In: Proceedings of design, automation, and test in Europe (DATE), pp 199–204

Li Y, Suhendra V, Liang Y, Mitra T, Roychoudhury A (2009a) Timing analysis of concurrent programs

running on shared cache multi-cores. In: Proceedings of the real-time systems symposium (RTSS), pp

57–67

Li Y, Suhendra V, Liang Y, Mitra T, Roychoudhury A (2009b) Timing analysis of concurrent programs

running on shared cache multi-cores. In: Proceedings of the real-time systems symposium, pp 57–67

Liu I, Reineke J, Broman D, Zimmer M, Lee EA (2012) A PRET microarchitecture implementation with

repeatable timing and competitive performance. In: Proceeedings of the international conference on

computer design (ICCD), pp 87–93

Lu J, Bai K, Shrivastava A (2013) Ssdm: Smart stack data management for software managed multicores

(SMMS). In: Proceedings of the design automation conference (DAC), pp 1–8

Lundqvist T, Stenström P (1999) Timing anomalies in dynamically scheduled microprocessors. In: Pro-

ceedings of the real-time systems symposium (RTSS), pp 12–21

123

658 Real-Time Syst (2018) 54:607–661

Lunniss W, Altmeyer S, Davis RI (2012) Optimising task layout to increase schedulability via reduced cache

related pre-emption delays. In: Proceedings of the international conference on real-time networks and

systems (RTNS), pp 161–170

Lunniss W, Altmeyer S, Maiza C, Davis R (2013) Integrating cache related pre-emption delay analysis

into EDF scheduling. In: Proceedings of the real-time and embedded technology and applications

symposium (RTAS), pp 75–84

Lv M, Yi W, Guan N, Yu G (2010) Combining abstract interpretation with model checking for timing analysis

of multicore software. In: Proceedings of the real-time systems symposium (RTSS), pp 339–349

Mancuso R, Dudko R, Betti E, Cesati M, Caccamo M, Pellizzoni R (2013) Real-time cache management

framework for multi-core architectures. In: Proceedings of the real-time and embedded technology

and applications symposium (RTAS), pp 45–54

Melani A, Bertogna M, Bonifaci V, Marchetti-Spaccamela A, Buttazzo G (2015) Memory-processor co-

scheduling in fixed priority systems. In: Proceedings of the international conference on real-time

networks and systems (RTNS), pp 87–96

Melani A, Bertogna M, Davis RI, Bonifaci V, Marchetti-Spaccamela A, Buttazzo G (2016) Exact response

time analysis for fixed priority memory-processor co-scheduling. IEEE Trans Comput. doi:10.1109/

TC.2016.2614819

Micron Technologies, Inc (1999) Various methods of DRAM refresh. Tech. rep

Muliadi L (1999) Discrete event modeling in ptolemy II. Master’s report, University of California, Berkeley.

http://ptolemy.eecs.berkeley.edu/publications/papers/99/deModeling/

Nowotsch J, Paulitsch M, Buhler D, Theiling H, Wegener S, Schmidt M (2014) Multi-core interference-

sensitive WCET analysis leveraging runtime resource capacity enforcement. In: Proceedings of the

euromicro conference on real-time systems (ECRTS), pp 109–118

Paolieri M, Quiñones E, Cazorla FJ, Bernat G, Valero M (2009) Hardware support for WCET analysis of

hard real-time multicore systems. SIGARCH Comput Archit News 37(3):57–68

Paolieri M, Quiñones E, Cazorla FJ, Davis RI, Valero M (2011) Iâ 3: An interference aware allocation algo-

rithm for multicore hard real-time systems. In: Proceedings of the real-time and embedded technology

and applications symposium (RTAS), pp 280–290

Pellizzoni R, Schranzhofer A, Chen JJ, Caccamo M, Thiele L (2010) Worst case delay analysis for memory

interference in multicore systems. In: Proceedings of design automation and test in Europe (DATE),

pp 741–746

Pellizzoni R, Betti E, Bak S, Criswell J, Caccamo M, Kegley R (2011) A predictable execution model

for COTS-based embedded systems. In: Proceedings of the real-time and embedded technology and

applications symposium (RTAS), pp 269–279

Radojković P, Girbal S, Grasset A, Quiñones E, Yehia S, Cazorla FJ (2012) On the evaluation of the impact

of shared resources in multithreaded COTS processors in time-critical environments. ACM TACO

8(4):34

Reineke J, Doerfert J (2014) Architecture-parametric timing analysis. In: Proceedings of the real-time and

embedded technology and applications symposium (RTAS), pp 189–200. doi:10.1109/RTAS.2014.

6926002

Rihani H, Moy M, Maiza C, Davis RI, Altmeyer S (2016) Response time analysis of synchronous data

flow programs on a many-core processor. In: Proceedings of the international conference on real-time

networks and systems (RTNS), ACM, pp 67–76

Rosen J, Andrei A, Eles P, Peng Z (2007) Bus access optimization for predictable implementation of

real-time applications on multiprocessor systems-on-chip. In: proceedings of the real-time systems

symposium (RTSS), pp 49–60

Schliecker S, Negrean M, Ernst R (2010) Bounding the shared resource load for the performance analysis

of multiprocessor systems. In: Proceedings of the design automation conference (DAC), pp 759–764

Schranzhofer A, Chen JJ, Thiele L (2010) Timing analysis for TDMA arbitration in resource sharing systems.

In: Proceedings of the real-time and embedded technology and applications symposium (RTAS), pp

215–224

Schranzhofer A, Pellizzoni R, Chen JJ, Thiele L, Caccamo M (2011) Timing analysis for resource access

interference on adaptive resource arbiters. In: Proceedings of the real-time and embedded technology

and applications symposium (RTAS), pp 213–222

Slijepcevic M, Kosmidis L, Abella J, Quiones E, Cazorla FJ (2014) Time-analysable non-partitioned shared

caches for real-time multicore systems. In: Proceedings of the design automation conference (DAC),

pp 1–6

123

http://dx.doi.org/10.1109/TC.2016.2614819
http://dx.doi.org/10.1109/TC.2016.2614819
http://ptolemy.eecs.berkeley.edu/publications/papers/99/deModeling/
http://dx.doi.org/10.1109/RTAS.2014.6926002
http://dx.doi.org/10.1109/RTAS.2014.6926002

Real-Time Syst (2018) 54:607–661 659

Trilla D, Jalle J, Fernandez M, Abella J, Cazorla FJ (2016) Improving early design stage timing modeling

in multicore based real-time systems. In: Proceedings of the real-time and embedded technology and

applications symposium (RTAS), pp 1–12

Valsan PK, Yun H, Farshchi F (2016) Taming non-blocking caches to improve isolation in multicore real-

time systems. In: Proceedings of the real-time and embedded technology and applications symposium

(RTAS), pp 1–12

Ward BC, Herman JL, Kenna CJ, Anderson JH (2013) Making shared caches more predictable on multicore

platforms. In: Proceedings of the euromicro conference on real-time systems, pp 157–167

Wasly S, Pellizzoni R (2014) Hiding memory latency using fixed priority scheduling. In: Proceedings of

the IEEE real-time and embedded technology and applications symposium (RTAS), pp 75–86

Whitham J, Davis RI, Audsley N, Altmeyer S, Maiza C (2012) Investigation of scratchpad memory for

preemptive multitasking. In: Proceedings of the real-time systems symposium (RTSS), pp 3–13

Whitham J, Audsley N, Davis RI (2014) Explicit reservation of cache memory in a predictable, preemptive

multitasking real-time system. ACM Trans Embed Comput Syst 13(4s):120:1–120:25

Yan J, Zhang W (2008) WCET analysis for multi-core processors with shared L2 instruction caches. In:

Proceedings of the real-time and embedded technology and applications symposium (RTAS), pp 80–89

Yao G, Pellizzoni R, Bak S, Betti E, Caccamo M (2012) Memory-centric scheduling for multicore hard

real-time systems. Real-Time Syst J 48(6):681–715

Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2012) Memory access control in multiprocessor for real-

time systems with mixed criticality. In: Proceedings of the euromicro conference on real-time systems

(ECRTS), pp 299–308

Yun H, Pellizzoni R, Valsan PK (2015) Parallelism-aware memory interference delay analysis for COTS

multicore systems. In: Proceedings of the euromicro conference on real-time Systems, pp 184–195

Robert I. Davis is a Senior Research Fellow in the Real-Time Sys-

tems Research Group at the University of York, UK, and an Inria

International Chair with Inria, Paris, France. Robert received his

DPhil in Computer Science from the University of York in 1995.

Since then he has founded three start-up companies, all of which have

succeeded in transferring real-time systems research into commercial

products. Robert’s research interests include the following aspects

of real-time systems: scheduling algorithms and analysis for single

processor, multiprocessor and networked systems; analysis of cache

related pre-emption delays, mixed criticality systems, and probabilis-

tic hard real-time systems.

Sebastian Altmeyer is a researcher at the University of Amsterdam,

where he has received a 2015 NWO Veni grant on the timing ver-

ification of real-time multicore systems. Prior to this he has been a

postdoctoral researcher at the University of Luxembourg and the Uni-

versity of Amsterdam. He has received his PhD in Computer Science

in 2012 from Saarland University, Germany with a thesis on the anal-

ysis of pre-emptively scheduled hard real-time systems. His research

focuses on various aspects on the design, analysis and verification of

hard real-time systems, with a particular focus timing verification.

123

660 Real-Time Syst (2018) 54:607–661

Leandro S. Indrusiak graduated in Electrical Engineering from the

Federal University of Santa Maria (UFSM, Brazil) and obtained a

MSc in Computer Science from the Federal University of Rio Grande

do Sul (UFRGS, Brazil) in 1995 and 1998, respectively. He held a

tenured assistant professorship at the Informatics department of the

Catholic University of Rio Grande do Sul (Brazil) from 1998 to 2000.

From 2001 to 2008 he worked as a researcher at the Technische

Universitaet Darmstadt (Germany) where he worked towards a PhD

and then led a research team on the area of System-on-Chip design.

His binational doctoral degree was jointly awarded by UFRGS and

TU Darmstadt in 2003. Since 2008, he is a permanent faculty mem-

ber of University of York’s Computer Science department (Lecturer

2008, Senior Lecturer 2013, Reader 2016), and a member of the Real-

Time Systems (RTS) research group. His current research interests

include on-chip multiprocessor systems, distributed embedded sys-

tems, resource allocation, cloud computing, and real-time networks,

having published more than 120 peer-reviewed papers in the main international conferences and journals

covering those topics (seven of them received best paper awards). He has graduated seven doctoral stu-

dents, currently supervises three doctoral students and three post-doc research associates. He is a principal

investigator of EU-funded SAFIRE project, and a co-investigator in a number of other funded projects. He

serves as the department’s Internationalisation coordinator, and has held visiting faculty positions in five

different countries. He is a member of the EPSRC College, a member of the HiPEAC European Network

of Excellence, and a senior member of the IEEE.

Claire Maiza is an assistant professor of Computer Science at

Grenoble INP (France) since 2010. She received her PhD degree in

computer science from the university of Toulouse, France in 2008.

Her research activities are with the VERIMAG laboratory in the

“synchrone” group. Her research interests include timing analysis,

abstract interpretation, cache analysis, predictable multi-core archi-

tecture of real-time systems.

Vincent Nelis received his PhD degree in 2010 at the Computer

Science Department of the Université Libre de Bruxelles, Belgium.

Since then, Vincent has been working at the CISTER Research

Center of Porto, Portugal. Throughout his career, he has published

65+ articles in international journals, conferences, and workshops,

received 7 international awards for his work, contributed to 3 R&D

projects, led a Work Package in a European FP7 STREP project,

chaired 3 international workshops, and he has been member of the

program committee of more than 30 international journals, confer-

ences and workshops. His research work has been focused mainly

on developing resource allocation techniques (mapping, scheduling,

partitioning, and sharing algorithms) for embedded real-time systems

and guaranteeing their expected temporal behavior through extensive

simulations and timing analyses.

123

Real-Time Syst (2018) 54:607–661 661

Jan Reineke is an assistant professor of computer science at Saar-

land University. Previously, he was a postdoctoral scholar at UC

Berkeley in the Ptolemy group from 2009 to 2011. He completed

his PhD in Computer Science at Saarland University in 2008. His

research interests include static analysis by abstract interpretation

with applications to the verification of cyber-physical systems, static

timing analysis, shape analysis, and side-channel analysis. He is also

interested in automatic methods to obtain faithful models of microar-

chitectures and in the design of timing-predictable microarchitectures

for use in hard real-time systems. In 2012, he was selected as an

Intel Early Career Faculty Honor Program awardee. He was the pro-

gram committee co-chair of EMSOFT, the International Conference

on Embedded Software, in 2014.

123

	An extensible framework for multicore response time analysis
	Abstract
	1 Introduction
	1.1 Organisation

	2 Related work
	2.1 Related work with a focus on the memory bus
	2.2 Related work with a focus on main memory
	2.3 Related work with a focus on shared caches and scratchpads
	2.4 Related work with a focus on parameterized WCETs
	2.5 Related work assuming different application models
	2.6 Related work assuming COTS hardware components

	3 System model
	3.1 Multicore architectural model
	3.2 Task model
	3.2.1 Using traces to model the tasks' behaviour

	3.3 Pre-emption cost model
	3.4 Table of notation

	4 Memory modelling
	4.1 Uncached
	4.2 Scratchpads
	4.2.1 Static scratchpads
	4.2.2 Dynamic scratchpads

	4.3 Caches
	4.3.1 Cold caches
	4.3.2 Warmed-up caches

	4.4 Memory combinations

	5 Bus modelling
	6 Response time analysis
	6.1 Interference on the core
	6.2 Interference on the local memory
	6.3 Interference on the bus
	6.4 Global memory—DRAM
	6.5 Multicore response time analysis

	7 Extensions to the task model
	7.1 RTOS and interrupts
	7.2 Sharing software resources
	7.3 Open systems and incremental verification

	8 Multicore simulator
	9 Experimental evaluation
	9.1 Bus arbitration policies
	9.1.1 Weighted schedulability measure

	9.2 Local memory types
	9.2.1 Weighted schedulability measure

	9.3 Predictable multicore architecture
	9.4 Precision

	10 Conclusions
	Acknowledgements
	Appendix: priority level-i busy periods and the validity of Sxi(t)
	References

