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Abstract

We consider the problem of assigning a team of autonomous robots to target locations in the context of a disaster management

scenario while optimizing several objectives. This problem can be cast as a multiple traveling salesman problem, where

several robots must visit designated locations. This paper provides an analytical hierarchy process (AHP)-based approach

to this problem, while minimizing three objectives: the total traveled distance, the maximum tour, and the deviation rate.

The AHP-based approach involves three phases. In the first phase, we use the AHP process to define a specific weight for

each objective. The second phase consists in allocating the available targets, wherein we define and use three approaches:

market-based, robot and task mean allocation-based, and balanced-based. Finally, the third phase involves the improvement

in the solutions generated in the second phase. To validate the efficiency of the AHP-based approach, we used MATLAB

to conduct an extensive comparative simulation study with other algorithms reported in the literature. The performance

comparison of the three approaches shows a gap between the market-based approach and the other two approaches of up to

30%. Further, the results show that the AHP-based approach provides a better balance between the objectives, as compared

to other state-of-the-art approaches. In particular, we observed an improvement in the total traveled distance when using the

AHP-based approach in comparison with the distance traveled when using a clustering-based approach.
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1 Introduction

Motivation The multiple traveling salesman problem

(MTSP) [2] is a generalized form of the well-known traveling

salesman problem (TSP) [14,31], where two or more sales-

men, sharing the same workspace, are involved in visiting a

set of cities. The TSP consists of finding the best route for the

salesmen while going through all cities, with the condition of

visiting each city only once, and then returning to the depot

position. In the case of the MTSP, however, the objective is

to find a set of routes with the shortest cost for all salesmen

to visit all cities. As for the TSP, each city must be explored

by only one salesman. It has been proved that both the TSP

and MTSP are NP-hard. There exist several variations of the

MTSP, including single or multiple depots. In addition, the

routes can either have closed or open paths. A closed path

starts from and ends at the home city, whereas in the case
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of an open path, the salesmen do not need to return to the

home city [43]. In the MTSP, the cities are identical. In other

words, each city is accessible for any salesman [25]. Bektas

[2] provided a comprehensive survey of the MTSP and its

applications. Exact and heuristic solution procedures have

been proposed for solving this problem. Genetic algorithms

(GA) have been widely used to solve the MTSP [4,5,36],

and ant colony optimization (ACO) algorithms have been

proposed in [13,26,46]. Venkatesh and Singh [41] presented

two approaches for solving the MTSP based on the use of

two new swarm intelligence metaheuristic techniques: the

artificial bee colony (ABC) [18] algorithm and the invasive

weed optimization (IWO) algorithm [28]. Compared to the

TSP, the MTSP is more appropriate for modeling real-world

applications such as logistics transportation, job planning,

and vehicle scheduling.

Disaster management is one of the most challenging appli-

cations for multi-robot systems. The problem is how to assign

the robots to specific areas affected by disaster events, such

as fires, earthquakes, or water floods. In such applications,

there is a crucial need to optimize several metrics, also known

as objectives, that can be conflicting in nature. In its abstract

form, the problem can be mapped to a multi-objective MTSP,

where a set of agents must visit a set of locations while con-

sidering a set of objectives.

Recently, several evolutionary algorithms [19,30,33,34]

have been used to solve the multi-objective MTSP including

GA, ACO, artificial neural networks, and particle swarm opti-

mization. These algorithms usually work on a set of solutions

that provide a trade-off between the objectives. Such solu-

tions are called Pareto optimal solutions [29]. Although in

many cases metaheuristic-based algorithms (including evo-

lutionary algorithms) can be very effective in solving hard

optimization problems, in some cases they have extensive

computation overheads, and their convergence is challeng-

ing, especially when applied to large problem instances.

This work investigates the multi-objective multiple-depot

multiple traveling salesman problem in a disaster manage-

ment application while optimizing three objectives: the sum

of the costs of all robots, the maximum cost among all robots,

and the workload among the robots. We propose the use of

the analytical hierarchy process (AHP) [32] to systematically

determine the optimized weights for the different objectives.

The benefit of using AHP is that it allows effective assign-

ment of weights to objective functions. Instead of assigning

weights while relying on heuristic knowledge of the problem

domain, AHP relies on the rigor of statistical analysis.

Contributions This paper proposes the following contribu-

tions:

– We provide a comprehensive literature review of the rel-

evant works that solve the MTSP.

– We propose a solution that uses the AHP to systematically

determine a precise weight for each objective.

– We assess three different approaches to solve the prob-

lem.

– We compare our solution approach against multi-

objective algorithms.

2 Related work

2.1 Single-objective algorithms

GA-based heuristics GA [17] are among the most widely

used algorithms to solve hard combinatorial optimization

problems such as the MTSP [20,25,37,38].

To solve the MTSP, Yuan et. al [35] used a two-part

chromosome representation and proposed a new crossover

operator. The new solution was compared to other crossover

methods, including the ordered crossover operator (ORX),

the cycle crossover operator (CYX), and the partially

matched crossover operator (PMX). The authors used two

different objective functions: the total distance traveled by

all salesmen and the longest route among all the salesmen.

The experiments of Yuan et al. showed that the new crossover

method enables the genetic algorithm to produce better solu-

tion quality.

Grouping genetic algorithms (GGA) [12] are a variation

of the GA. In [4], a GGA was developed for the MTSP. The

concept is to group the cities into routes and then order the

cities on each route. For the comparison, the authors consid-

ered two objectives: the maximum tour length and the total

tour length. The simulation study showed that the GGA pro-

duces better solutions when the objective is to minimize the

maximum tour length as the GGA is designed for grouping

problems. When the objective is to minimize the total tour

length, however, the performance of the GGA degrades.

Another GGA called the steady-state grouping genetic

algorithm (GGA-SS) was proposed in [36]. The chromo-

some representation and genetic operators used in that paper

are different from those used in [4]. Similar to several other

works in the literature, the aim was to minimize the total

distance traveled by all the salesmen, as well as the distance

traveled by any salesmen. The authors used the test problems

proposed in [4,5], and the results showed that the GGA-SS

is able to produce better solutions for the adopted objectives

than those found in [4,5].

ACO-based solutions The ACO algorithm is an iterative

search technique inspired by the behavior of real ant colonies.

In the literature, the ACO algorithm has been used to solve

several robotic problems, such as path planning [6,7] and

coordination [24]. In [26], an ACO algorithm was used to

solve the MTSP with the objective of minimizing both the
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total maximum tour length of all the salesmen and the maxi-

mum tour length of each salesman. The simulation results of

the algorithm showed that the ACO algorithm outperforms

the GA-based algorithms proposed in [4,5,36].

Additionally, a modified ACO algorithm (NMACO) was

proposed in [46]. To improve the quality of the solution, the

authors suggested modifications including the transition rule,

the candidate list, the global pheromone updating rules, and

several local search techniques. The aim of the algorithm is

to minimize the distance traveled by the salesmen. The solu-

tion was tested on standard benchmarks available from the

literature, and performance results showed that the NMACO

algorithm gives better solutions than the existing solutions

for the MTSP.

Other heuristic solutions In [41], the authors studied the

MTSP and proposed two metaheuristic approaches. The first

approach is based on the ABC algorithm [18], and the second

approach is based on IWO algorithm [28]. Both approaches

were evaluated using benchmark instances available in the

literature. The results were comparable to state-of-the-art

solutions in terms of total distance traveled by all the sales-

persons, and the maximum distance traveled by anyone

salesperson demonstrated that the ABC and IWO algorithms

give better results for both objectives.

Market-based approaches Other solution approaches

known as market-based approaches have been used to solve

the MTSP. In [9], the authors proposed a new approach called

move and improve. The approach includes four steps: initial

target allocation, tour construction, elimination of conflicting

targets, and solution improvement. To measure the perfor-

mance of the algorithm, two metrics were used: the total cost

and maximum cost. The simulation results demonstrated the

superiority of the move and improve algorithm in comparison

with a centralized GA.

The solution proposed in [23] consists of four steps: mar-

ket auction, agent-to-agent trade, agent switch, and agent

relinquish. Three performance criteria were considered: the

quality of the solution, the number of iterations required

to obtain a solution, and the execution time. It was shown

that the approach generates better solutions than other sub-

optimal solutions.

As several real-world applications must optimize multi-

ple objectives, we address the multi-objective problem and

propose an approach that provides trade-off solutions while

trying to optimize several objectives simultaneously, includ-

ing the total traveled distance and the maximum tour length.

2.2 Multi-objective algorithms

In the literature, few researchers have considered the MTSP

as a multi-objective optimization problem.

In [3], the authors proposed a multi-objective, non-

dominated sorting genetic algorithm (NSGA-II) to solve the

MTSP. The objectives to be optimized were: the total trav-

eled distance and the working times of the salesmen. The

authors sought to find a set of non-dominated solutions that,

when compared, were better for certain objectives, while

others were better for other objectives. To evaluate the perfor-

mance of the proposed approach, two different test instances

(three salesmen with 29 nodes and three salesmen with 75

customers) were considered. The results showed the effec-

tiveness of the NSGA-II in minimizing both objectives.

In [44], the authors used the ACO algorithm to solve a

task assignment problem for multiple unmanned underwa-

ter vehicles. The authors aimed to optimize two objectives:

the total distance necessary to visit all targets and the total

turning angle while considering the constraint of balancing

the number of targets visited by each vehicle. The solution

approach consisted of two phases. The first phase is the task

number assignment phase, which consists of specifying the

number of targets for each vehicle. The second phase solves

the MTSP using an ant colony for each objective. Perfor-

mance evaluation showed that the algorithm generates good

solutions.

The market-based approach has been widely used to solve

a number of problems, including the MTSP. In [11], the

reported approach consisted of using a clustering technique

with an auction process. The objectives are to minimize the

distance traveled by all the robots and to balance the work-

load equally between the robots. The first step is meant to

decompose N tasks into n groups, in such a way that the dis-

tance inside each cluster is minimized. The cost for each robot

to visit n clusters is then computed. Finally, in the auction

step, each cluster is allocated to the robot that provides the

lowest bid. We noticed that the complexity of the algorithm

is relatively high because all possible combinations of the

assignment of clusters to robots are considered. This means

that the approach can only be used with a very small number

of clusters. To evaluate the performance of the algorithm, the

authors used the benchmark VRP data set “A-n32-K5.vrp.”

The total cost used for the assignment is equal to the sum

of the cost of visiting the tasks in the cluster and the idle

cost (i.e., sum of the difference in cost of travel between any

two robots). Two scenarios were considered: one with two

clusters and the other with three clusters. We noticed that

the scenarios that were used are not sufficient to prove the

effectiveness of the algorithm.

Recently, another clustering market-based approach (CM-

MTSP) [40] was presented to solve the multi-objective

MTSP. The algorithm consists of grouping the targets into

clusters and then allocating each cluster to the best robot.

In that work, the authors assumed that the number of clus-

ters is equal to the number of robots. The comparison results

showed that the CM-MTSP provides a good balance between
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conflicting objectives and reduces the execution time as com-

pared to a greedy market-based solution.

We focused on comparing our approach with the clustering

approaches proposed in [11,40] in terms of total traveled

distance and maximum tour length.

In [15], an auction algorithm using a clustering technique

has been proposed with the objective of minimizing both the

maximum traveled distance of each robot and the sum of the

distance traveled by all robots. The algorithm proceeds as

follows. Initially, it is assumed that all robots have a list of

allocated tasks. In the case where a robot reaches the position

of a task, it sends a specific signal to the other robots to be able

to make an auction. After all auction offers are completed, the

robot re-plans its path and moves to the next task. If a robot

receives a message to make an auction offer, it forms a new set

of clusters of its assigned tasks and then an auction process

starts for the newly formed clusters, with the exception of

the cluster that contains its currently initialized task. When a

robot receives an auction message for a cluster, it bids for that

cluster. Finally, the robot with the best bid wins the cluster.

The performance evaluation has shown the percentage of

improvement in the initial assignment in comparison with

the final assignment.

To solve the multi-objective TSP, Lust and Teghem [27]

presented a new method called two-phase Pareto local search.

The solution consists of two phases. The first one concerns

the resolution of each single-objective problem separately

using the Lin–Kernighan heuristic. In the second phase, a

Pareto local search method is adopted. A 2-opt neighbor-

hood with candidate lists is applied to improve the solutions

generated in the first phase. It is important to note that a

high number of weighted single-objective problems must be

solved before applying the Pareto local search, which may

cause efficient degradation. Additionally, the integration of

the 2-opt process may achieve poor effectiveness with low

efficiency when the number of feasible objective vectors is

small, whereas it obtains the desired effectiveness with low

efficiency when the number of feasible objective vectors is

large.

In [19], a MOEA/D-ACO algorithm was proposed to

solve the multi-objective MTSP. The proposed algorithm is

a combination of ACO algorithm with the multi-objective

evolutionary algorithm based on decomposition (MOEA/D).

The problem is decomposed into a number of mono-objective

subproblems. Each ant is assigned to solve one of the mono-

objective subproblems. The ants are split into groups, and

each one has multiple neighboring ants. Each group has a

pheromone matrix, and each single ant has a heuristic infor-

mation matrix. Each ant is responsible for finding the best

solution for its assigned subproblem. For that purpose, the ant

uses its heuristic information matrix, the pheromone matrix

of its group, and its current solution. The main issues related

to this approach are the uncertainty of the time convergence

and the implementation complexity.

In [30], a detailed comparison between two multi-

objective evolutionary algorithms, MOEA/D and NSGA-II,

was presented. Also, the authors studied the effect of local

search on the performance of MOEA/D. The test problem

used was the multi-objective TSP. Compared to MOEA/D,

NSGA-II has no bias in searching any particular part of

the Pareto front. All non-dominated solutions in the current

population have an equal chance of being selected for repro-

duction. However, this might not be efficient when sampling

offspring solutions, for the following reasons. First, the non-

dominated solutions might have very different structures in

the decision space. Therefore, the possibility of generating

high-quality offspring solutions by recombining these solu-

tions is low. Second, designing recombination operators is

often problem dependent. In MOEA/D, weight vectors and

aggregate functions play a very important role in solving var-

ious kinds of problems. Overall MOEA/D has been shown

to be much better algorithmic improvement than NSGA-II.

A new fuzzy logic-based approach (FL-MTSP) was pro-

posed to solve the multi-objective MTSP [39]. This approach

consists of the combination of two objectives, the maximum

traveled distance and the total traveled distance, to reduce

the problem to a single-objective optimization problem. A

comparative study of the FL-MTSP approach proved its

effectiveness in comparison with an existing MTSP solver

based on the GA [22] and with a NSGA-II for MTSP. In the

simulation, we compare the FL-MTSP approach with our

solution.

Most of the existing proposed approaches have been

criticized mainly for their computational complexity, their

necessity for prior system knowledge to define a weight for

each objective, and their lack of specifying sharing parame-

ters.

In this work, we followed a three-phase mechanism based

on the AHP to define weights systematically for each objec-

tive, depending on the application characteristics.

3 Problem formulation

We address the multi-objective multiple-depot MTSP. We

consider a set of m robots {R1, . . . , Rm}, initially located at

different depots {T1, . . . , Tm}, which must visit a set of n tar-

get locations {Tm +1, . . . , Tm +n} and return to their depots

after mission completion. The objective is to find an effec-

tive assignment of robots to the set of target locations, such

that each target is visited only once by exactly one robot. We

define tourRi
as the tour of robot Ri starting from and ending

at its depot Ti and going through the list of its allocated targets

{Ti1, . . . , Tini
} in that order. The tour cost of robot Ri may

be any of several things, including Euclidean distance, time,
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and consumed energy. In the context of the multi-objective

optimization problem, the goal is to generate solutions that

provide a good trade-off between the objectives.

The objective functions can be classified into three cat-

egories. The first category includes objective functions that

minimize the sum of the costs of all robots, such as mini-

mizing the total distance traveled and minimizing the total

consumed energy. This category of objective functions is

defined as:

minimize

m
∑

k=1

n+m
∑

i=1

n+m
∑

j=1

xi jkC(Ti , T j ) (1)

subject to :

m
∑

k=1

n+m
∑

i=1

xi jk = 1; ∀ j = 1, . . . , n + m (2)

m
∑

k=1

n+m
∑

j=1

xi jk = 1; ∀i = 1, . . . , n + m (3)

n+m
∑

i=1

xkik = 1; ∀k = 1, . . . , m (4)

n+m
∑

i=1

xikk = 1; ∀k = 1, . . . , m (5)

xi jk ∈ {0, 1}; ∀i, j = 1, . . . , n + m and k = 1, . . . , m

(6)

Equations (2) and (3) ensure that each node is visited only

once by a single robot, whereas Eqs. (4) and (5) ensure that

each robot starts from each corresponding depot and returns

back to it. Finally, constraint (6) ensures that the decision

variables are binary, where xi jk = 1 if robot Rk is assigned

to target Ti and 0 otherwise.

The second category includes objective functions that

minimize the maximum cost among all robots, so as to

minimize the maximum tour, and the mission time, which

corresponds to the maximum time. This category of objec-

tive functions can be modeled as:

minimize max
k∈1...m

⎛

⎝

n+m
∑

i=1

n+m
∑

j=1

xi jkC(Ti , T j )

⎞

⎠ (7)

subject to the same constraints defined in Eq. (2)–(6).

The third category of objective functions is related to bal-

ancing the workload among the robots, such as balancing

the length of tours, the mission times, and the number of

allocated targets. This category of objective functions can be

expressed as follows:

minimize

m
∑

k=1

∣

∣Ck − Cavg

∣

∣

Ck =

⎛

⎝

n+m
∑

i=1

n+m
∑

j=1

xi jkC(Ti , T j )

⎞

⎠ , k ∈ [1, m]

Cavg =

∑m
k=1

∑n+m
i=1

∑n+m
j=1 xi jkC(Ti , T j )

m
(8)

Ck represents the tour cost for robot k. As previously men-

tioned, the cost can refer to time, traveled distance, or energy.

Cavg represents the average tour cost.

In the system model, it is assumed that every robot has

a global knowledge of the targets positions. In addition,

each robot has the capability to estimate the cost to reach

a position. This cost can be the Euclidean distance, time, or

energy.

4 Multi-objective multiple-depot MTSP
solution

The idea of our proposal is based on the use of a weight-based

approach with the aim of assigning appropriate weights to

the objectives using the AHP approach [32]. We define the

global cost as the sum of the weighted costs of the different

objective functions under consideration. The cost function is

computed using Eq. (9):

g(x |W ) =

p
∑

i=1

wi fi (x)

subject to : x ∈ �

(9)

where W = (w1, . . . , wp), 0 < wi < 1 ∀i = 1, . . . , p, wi

is the weight of the objective function fi (),
∑p

i=1 wi = 1,

and � is the decision space.

The proposed solution approach comprises three main

steps: (1) determination of the relative weights for the

individual objective functions using the AHP approach,

(2) determination of optimum tours for the robots using

selected solution approach, market-based, RTMA-based, or

balanced-based approach, and (3) an improvement phase (see

Fig. 1).

We define a comparison matrix that represents the prior-

ity of each objective function relative to the other objectives.

This matrix is used as an input for the AHP process, which

generates a weighted vector. This vector is then used to com-

pute the global cost (Eq. 9). After applying all the approaches,

the best solution will be selected (Algorithm 1).
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Fig. 1 Flowchart of the proposed solution

Algorithm 1 Proposed Solution General Algorithm

Input: Comparison matrix, Targets, Robots

Output: Best tours assignment

1: Begin

2: Generate weight vector using AHP

3: Market-Based approach

4: RTMA approach

5: Balanced-based approach

6: Select the best solution

7: End

4.1 The analytical hierarchy process

The AHP is a structured technique developed in 1970s to

solve complex decision-making problems [32]. The AHP

helps decision makers quantify the elements of a decision

problem. The decision problem is, firstly, decomposed into a

hierarchy of subproblems. Then, the elements of the hierar-

chy will be evaluated via pairwise comparisons to construct

a comparison matrix. The input data can be either an actual

measurement (e.g., price, weight) or a subjective opinion

(e.g., preference, satisfaction, feeling).

Regarding a disaster management application, we con-

sider three objective functions: the total traveled distance

(TTD), the maximum tour (MT), and the deviation rate of

tour lengths (DR). Mission time is the most important metric

in applications like fire disasters. However, it is proportional

to the MT. In addition, the minimization of both the TTD and

the DR leads to minimize the energy consumed by the team

and to balance the workloads among all the team members.

We then consider the following comparison matrix:

Ai, j =

⎛

⎜

⎜

⎝

TTD MT DR

TTD 1 1/2 1/3

MT 2 1 1/2

DR 3 2 1

⎞

⎟

⎟

⎠

(10)

Regarding the comparison matrix, the MT is twice as

important as TTD, and the DR is three times as important as

TTD and twice as important as the MT. Note that the values

of the comparison matrix describe the user preferences and

are generally related to the applications use case. For exam-

ple, in case of a disaster management application, the most

important criterion is the mission time which is proportional

to the MT.

Suppose that ai, j is the element of i th row and j th column

of the comparison matrix, then ai, j = 1
a j,i

,∀i, j and ai,i = 1.

The eigenvector W is computed according to: Ai, j W = λW ,

where λ is the eigenvalue.

In this work, we use the eig() MATLAB function to com-

pute the eigenvector, which gives W = {0.2565, 0.4660,

0.8468}. The three numbers in the eigenvector are propor-

tional to the relative weights of the three criteria. Because

the relative weights must sum up to 1, we normalized the

eigenvector W by dividing each number in it by the sum

of all numbers. The corresponding weight vector is W =

{0.1634, 0.2970, 0.5396}.

4.2 Market-based approach

The market-based approach consists of an auction process

for targets. All robots compete to win the best target. More

precisely, each robot selects the best target (i.e., the target

that has the minimum local cost) and sends a bid for that

target to a central machine. The local cost is defined as the

weighted sum of the objective function costs for that robot.

For example, to bid for target T 1, the robotR1 computes its

tour cost, including T 1, using the Lin–Kernighan heuristic

TSP solver [16]. The bid contains the selected target and

the corresponding costs for each objective function. Note

that each robot bids independently from the others. More

precisely, the target to bid for can differ from one robot to

another. For example, R1 bids for T 1, while R2 bids for T 2

simultaneously.

Upon receiving bids from the different robots, the central

machine computes the global cost for each corresponding bid

and then assigns the best target to its corresponding robot.

The best target refers to the target with the minimum global

cost. Unlike local cost, the global cost considers all tour costs,

such as the sum of all tour lengths, the maximum tour length,

and the tours length deviation rate. Robots continue the pro-

cess of bidding until all targets are assigned (Algorithm 2).
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Algorithm 2 Market-based approach

Input:

Robots Ri (1 < i < m), Targets T j (1 < j < n), weights,

Available_T argets_List = non allocated targets

1: while Available_T argets_List �= ∅ do

2: for each robot Ri do

3: if tourRi
is changed then

4: Compute cand_tourRi
cost including each available target

5: Select the target with the lowest local cost to cand_tourRi

6: Bid on the selected target

7: else

8: if Ri bids for last allocated target then

9: Remove the last allocated target from cand_tourRi

10: Choose another best target

11: else

12: Bid for the last chosen target

13: end if

14: end if

15: end for

16: for each robot Ri do

17: Compute the global cost

18: end for

19: Select the robot R j with the lowest global cost

20: Add the allocated target to tourR j

21: Remove the allocated target from the Available_T argets_List

22: end while

Output:

tourRi
, T T D, MT , DR

Figure 2a illustrates the market-based approach. Consider

a scenario with two robots and six targets, and two objective

functions TTD and MT with the assumption that the priority

of TTD is twice that of MT. Assume the weight vector as

W={0.66, 0.33}. Table 1 shows the stepwise execution of

the market-based approach for that example. First, R1 selects

T 1 and R2 selects T 5. As the global cost when assigning T 1

to R1 is less than the global cost when assigning T 5 to R2,

the assignment will be made to R1. The assignment process

continues until all targets are allocated (Fig. 2a).

4.3 RTMA-based approach

The idea of this approach is inspired by the robot and task

mean allocation algorithm (RTMA) method proposed in [42].

We extend the original RTMA-based approach to solve a

multi-objective optimization problem.

The idea of the RTMA-based approach is to make the

robot choose the target that leads to the best cost for the

group, instead of choosing the one that results in minimum

cost for the robot itself. In other words, each robot selects the

target that appears to give an optimized RTMA cost, instead

of choosing the target that would give an optimized local

cost. The RTMA cost is computed as the difference between

the cost of the robot visiting a target and the mean cost for

this robot to visit all the targets. Formally, for a given robot,

the RTMA cost to move from target Ti to target T j is:

CostRTMA(Ti , T j ) = C(Ti , T j ) −

∑n
t=1 C(Ti , Tt )

n
(11)

where C(Ti , T j ) is the (normal) cost to move the robot from

Ti to T j and n is the number of targets.

To better illustrate the RTMA cost, consider as an example

the Euclidean distance between two targets as the value of

cost. The RTMA cost is:

CostRTMA(Ti , T j ) = D(Ti , T j ) −

∑n
t=1 D(Ti , Tt )

n
(12)

where D(Ti , T j ) is the Euclidean distance between Ti and

T j .

We compute the RTMA cost for each robot to travel from

its depot to each target. Each target is then assigned to the

robot having the lowest global cost.

To illustrate the effectiveness of the RTMA-based app-

roach, let us consider the example shown in Fig. 2. We define
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Fig. 2 Example of specific scenario (two robots and six tasks), solved using either a the market-based approach or b the robot and task mean

allocation algorithm (RTMA)-based approach
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Table 1 Step-by-step execution

of the market-based approach

for the scenario illustrated in

Fig. 2 (two robots and six tasks);

TTD total travelled distance, MT

maximum tour

Step Robots Bidding Server side Winner

Target Tour TTD MT Global cost

1 R1 T 1 280 280 280 280 R1

R2 T 5 486 486 486 486

2 R1 T 5 537 537 537 537 R1

R2 T 5 486 766 486 673

3 R1 T 6 748 748 748 748 R1

R2 T 6 562 1099 562 920

4 R1 T 2 1254 1254 1254 1254 R1

R2 T 2 1316 2065 1316 1815

Table 2 Robot and task mean allocation algorithm (RTMA) assignment

for the scenario illustrated in Fig. 2 (two robots and six tasks)

Targets RTMA cost Winner

R1 R2

T 1 − 147.1609 − 173.9680 R2

T 2 38.0983 134.7985 R1

T 3 14.5316 249.0928 R1

T 4 129.5453 313.1256 R1

T 5 − 24.0174 − 280.4695 R2

T 6 − 10.9970 − 242.5793 R2

the cost between two targets or between a robot and a target

as the Euclidean distance. In this example, it is shown that

the market-based approach does not give the best solution

and that the RTMA-based approach outperforms the market-

based one in this particular scenario. Indeed, when following

the market-based approach, the global cost is 2033; however,

with the RTMA-based approach, the global cost is 1979, with

a weight vector of W = {0.66, 0.33}. Table 2 reports the

distances between the targets and the robots.

4.4 Balanced-based approach

The idea of the balanced-based approach is to fairly balance

the number of assigned targets among all robots. More pre-

cisely, if we have m robots and n targets, each robot will be

assigned approximately n
m

targets.

The balanced-based approach process is similar to the

market-based one, with the addition of the assumption that

a robot exits the bidding process when it is assigned a suffi-

cient number of targets. The sufficient number of targets is

no more than n
m

. This allows us to fairly balance the work-

load between the robots in terms of the number of targets

allocated to each robot and also in terms of their tour length

(Algorithm 3).

Algorithm 3 Balanced-based approach

Input:

Robots Ri (1 < i < m), Targets T j (1 < j <

n), weights, Available_T argets_List = non allocated targets,

Available_Robots_List = available robots, targets_portion

1: while Available_T argets_List �= ∅ and

Available_Robots_List �= ∅ do

2: for each robot Ri do

3: if tourRi
is changed then

4: Compute cand_tourRi
cost including each available target

5: Select the target with the lowest local cost to cand_tourRi

6: Bid on the selected target

7: else

8: if Ri bids for last allocated target then

9: Remove the last allocated target from cand_tourRi

10: Choose another best target

11: else

12: Bid for the last chosen target

13: end if

14: end if

15: end for

16: for each robot Ri do

17: Compute the global cost

18: end for

19: Select the robot R j with the lowest global cost

20: Add the allocated target to tourR j

21: Remove the allocated target from the Available_T argets_List

22: if number of allocated targets to R j = targets_portion then

23: Remove robot R j from Available_Robots_List

24: end if

25: end while

Output:

tourRi
, T T D, MT , DR

Figure 3 shows an illustrative example where the balanced-

based approach outperforms the market-based one, giving

a better solution. In this case, the use of the market-based

approach resulted in the assignment of all targets to one robot,

here R1, However, the balanced-based approach ensures that

the targets will be assigned uniformly between robots R1

and R2. This will lead to a reduction in the global cost in

comparison with the global cost found when applying the

market-based approach. More precisely, with the market-

based approach, the tour lengths of R1 and R2 are 3362.5 and
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Fig. 3 Example of specific scenario (two robots and 16 tasks); a initial configuration of tasks and robots; scenario solved following one of two

approaches: b market-based approach and c balanced-based approach

0, respectively, whereas with the balanced-based approach,

they are 1978.16 and 1271.33, respectively.

4.5 Improvement phase

The aim of this phase is to improve the solutions gener-

ated after applying the approaches described above. The

improvement consists in minimizing the global cost. Each

robot selects its worst target, i.e., the target that introduces

the largest cost, and then all robots bid on this target. For

example, if a robot R1 is able to visit robot R2’s worst target

with a lower global cost, the target will be added to R1’s tour

and deleted from R2’s tour.

5 Simulation study

In this section, we present the performance evaluation of

the proposed strategy to solve the multi-objective MTSP. We

conduct our simulation using MATLAB. We evaluated the

total traveled distance, the maximum tour, and the deviation

rate objectives. The global cost is computed as follows:

Global cost = w1

m
∑

k=1

Ck + w2 max
k∈1...m

(Ck)

+w3

m
∑

k=1

∣

∣Ck − Cavg

∣

∣ (13)

where Ck , Cavg are computed as indicated in Eq. 8 and

C(Ti , T j ) is the Euclidean distance between the two targets

Ti and T j . We used the LKH-TSP solver [16] to compute

the tour cost of a robot. The LKH-TSP solver has shown

its ability to produce optimal solutions to most problem

instances. Also, the LKH-TSP is efficient for large-scale

problems[1,45]. For all simulations, the weight vector used

is W = {0.1634, 0.2970, 0.5396}.

5.1 Comparison between themarket-based,
RTMA-based, and balanced-based approaches

We adopted the test problems where the number of target

locations is equal to 3 × number of robots and the number of

robots varies in the interval [3 5 10 15]. Robots and targets

positions are placed in a 1000 ∗ 1000 space. For each con-
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Fig. 4 Comparison between the proposed approaches and impact of

the improvement phase

figuration of a number of robots and number of targets, we

generate randomly 30 scenarios and then we plot the mean

of the obtained results from these scenarios.

Figure 4 presents a comparison between the market-based,

RTMA-based and balanced-based approaches used for the

solution and the impact of the improvement phase. The

market-based approach decreases the global cost as com-

pared to the balanced-based and RTMA-based approaches,

especially in large scenarios. For example, in the case of

15 robots and 45 targets, the gap between the market-based

approach and the other two approaches is in the range of

[5%, 30%].

In addition, we observe that the improvement phase

significantly minimizes the global cost, especially for the

balanced-based approach where the reduction is around 19%

in the case of nine targets and 30% in the case of 45 tar-

gets. For the market-based approach, the enhancement of the

improvement phase did not exceed 11%. This demonstrates

the feasibility of this approach to solve the MTSP.

5.2 Comparison withmulti-objective solutions

5.2.1 Comparison with the FL-MTSP solution

Overviewof the FL-MTSP The FL-MTSP approach [39] uses

the fuzzy logic algebra to combine two objectives: the total

traveled distance by all the robots and the maximum traveled

distance by any robot. The solution consists of two phases:

the assignment phase and the tour construction phase. In the

first phase, the inputs of the fuzzy logic system were com-

puted. Then, the output of the fuzzy logic system is used to

assign the targets to the robots. Each target will be assigned

to the robot with the minimum output value. After allocating

all targets, an improvement process starts. If the number of

targets won by a robot is larger than the ratio of the num-

ber of targets to the number of robots, the farthest target is
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Fig. 5 Comparison between AHP-based solution and FL-MTSP [39]

selected and added to the nearest robot. For the tour con-

struction phase, a GA TSP solver [21] was used. A detailed

description of the FL-MTSP is provided in [39].

Simulation Setting To compare the AHP-based solution

with the FL-MTSP approach, we adopted the same test prob-

lem described in Sect. 5.1.

Results Figure 5 shows the comparison of the AHP-based

approach and the FL-MTSP approach [39]. We mention that

the FL-MTSP solution considers only two objectives: the

total traveled distance and the maximum distance. For the

comparison, the global cost of the FL-MTSP is computed

as the weighted sum of these objectives. It is clear from the

figure that the gap between the two approaches in terms of

global cost is very small. This is due to the fact that the FL-

MTSP and AHP-based approaches consider the optimization

of multiple objectives when solving the MTSP. Also, the TTD

and the MT of our solution were decreased in comparison

with the FL-MTSP solution. For example, in the case of 45

targets, the TTD is reduced by around 9%. This means that

our solution provides a better trade-off in satisfying the appli-

cation objectives. Also, the quality of the solution becomes

better with the increase in the number of objectives.

5.2.2 Comparison with the clustering market-based

solution (CM-MTSP)

Overviewof the CM-MTSP The CM-MTSP solution [40] is a

hybrid approach that combines a clustering technique with an

auction process with the goal of minimizing the total traveled

distance and the maximum traveled distance and the mission

time. The algorithm includes three steps: a clustering step, an

auction-based step, and an improvement step. The clustering

step consists in grouping the targets into n clusters. For that

purpose, the K -means technique was used [8]. Note that the
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Fig. 6 Comparison results of the AHP-based solution and CM-MTSP solution in terms of TTD and MT

number of clusters is equal to the number of robots and the

number of targets in each cluster is equal as much as possible.

In the auction-based step, the robots compete to take the

cluster with the minimum cost. The clusters are announced

one by one, and each robot bids for each cluster separately.

The bid cost is defined as the time necessary to reach all the

target locations into the cluster starting from and ending at

the initial position. In the case where a robot has already won

a cluster, it has the possibility to bid for another cluster with a

lower cost. A server unit is responsible to decide which robot

to assign to which cluster. It evaluates all the bids received

from the robots and selects the winner.

After allocating all clusters, the server evaluates the whole

assignment and tries to optimize the solution. The improve-

ment is achieved by exchanging clusters between robots in

the case where the mission time and the maximum traveled

distance will be minimized.

Simulation Setting To compare the performance of both

solutions AHP and the CM-MTSP, we selected six instances

(eil51, eil76, eil101, berlin52, rat99, and kroA200) from

TSPLIB (http://www.iwr.uni-heidelberg.de/groups/comopt/

software/TSPLIB95/) with a different number of cities. In

our performance evaluation study, these cities are considered

as the targets (i.e., 51, 76, 101, 52, 99, and 200 targets). The

number of robots is randomly generated and varies depend-

ing on the scenario [3, 5, 10, 15, 20], which gives a total of 30

instances. The obtained results have been averaged over ten

independent runs. In each run, we randomly generated the

depots’ positions of the robots. We mention that each robot

has its own depot.

Results In Fig. 6, we show the obtained results for the eil51,

eil76, and eil101 instances in terms of TTD and MT. It is

clearly shown that the gap between the AHP-based solution

and the CM-MTSP solution in terms of TTD is large espe-

cially when the number of robots is large. For example, for

instance eil51, the gap between the two solutions increases

from around 60% in the case of three robots to around 65%

in the case of 20 robots. This is due to the fact that in the

CM-MTSP solution, all the robots are involved and assigned

to clusters, whereas in the AHP-based solution, not all robots

are assigned to targets. This will significantly reduce the TTD

especially in the cases of a large number of robots. For the
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Table 3 The total traveled

distance obtained by the two

algorithms on the benchmark

problems

No Instances n m AHP CM-MTSP

avgn,m bestn,m avgn,m bestn,m

1 berlin52 52 3 10,305.9 9380.2 9397.26 8770.8

2 52 5 10,940.4 9777.7 11,384.1 10,221

3 52 10 11,574.5 9407.4 15,083 12,830

4 52 15 11,117.2 9872.7 19,242.8 15,429

5 52 20 10,292.9 8920.7 20,910.3 16,611

6 rat99 99 3 4466.71 1518.6 5111.38 3877.2

7 99 5 5430.91 1250.3 7354.08 5414.1

8 99 10 11,020.6 7343.6 13,533.3 10,664

9 99 15 11,260.9 7467.9 19,770.8 15,856

10 99 20 11,941 8928 27,318.7 19,147

11 kroA200 200 3 39,371.6 37,773 36,769.5 36,029

12 200 5 46,432.8 43,463 43,686.9 39,137

13 200 10 56,051.1 52,485 58,479.5 52,015

14 200 15 63,950.6 58,057 76,035.8 68,472

15 200 20 65,906.5 60,584 91,479.9 85,151

Table 4 The maximum traveled

distance obtained by the two

algorithms on the benchmark

problems

No Instances n m AHP CM-MTSP

avgn,m bestn,m avgn,m bestn,m

1 berlin52 52 3 3565.48 3152.3 3920.48 3346.2

2 52 5 2957.42 2614.3 2926.52 2622.6

3 52 10 3344.65 2078 2319.31 1871.9

4 52 15 2629.73 1954.8 2091.23 1735

5 52 20 2176.5 1722.6 1833.73 1588.7

6 rat99 99 3 1740.72 1348 2105.1 1619.5

7 99 5 1640.6 1199 1929.89 1360

8 99 10 1989.53 1539.9 2005.1 1640

9 99 15 2148.78 1855.9 2044.79 1779.4

10 99 20 2171.34 1702.1 2118.46 1687.8

11 kroA200 200 3 13,461.2 12,920 12,673.8 12,486

12 200 5 11,164.5 10,071 11,183 10,413

13 200 10 10,082 9364.3 8705.3 7779.7

14 200 15 9328.12 8818.9 7578.28 6553.7

15 200 20 8814.18 8428.4 7228.01 6553.7

MT, the gap between the two solutions is very small. This is

because both solutions considered the MT as an objective to

be optimized.

In addition, we noticed that, for the AHP-based solution,

the gap between the TTD and the MT is large. The solu-

tions with a good value for the MT have a higher TTD. This

improves the conflicting nature of the objectives, such that

it is not possible to obtain good values for both objectives

at the same time, without degrading the value of at least one

of the objectives. Moreover, the increase in the TTD with

the increase in the number of robots in comparison with the

small increase in the MT indicates the balance of workload

among the robots. From Fig. 6c, we noticed that our solution

decreases the TTD as compared to the CM-MTSP approach

for around 45% in the case of three robots and around 55% in

the case of 20 robots. This means that the AHP-based solution

improves the TTD as compared to the CM-MTSP solution

for around 10% when increasing the number of robots. The

result of the ten runs of berlin52, rat99, and kroA200 is sum-

marized in Tables 3 and 4. We used the avgn,m to represent the

mean result of the runs and the bestn,m to represent the short-

est result among the ten runs of each scenario. According

to Table 3, we can see that the AHP-based solution has the

largest number of the avgn,m and bestn,m . More precisely,
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Table 5 Wilcoxon ranking test for the average total traveled distance

of both solutions AHP and CM-MTSP

No. AHP CM-MTSP d Rank P value

1 10,305.9 9397.26 908.64 3

2 10,940.4 11,384.1 − 443.7 − 1

3 11,574.5 15,083 − 3508.5 − 9

4 11,117.2 19,242.8 − 8125.6 − 10

5 10,292.9 20,910.3 − 10, 617.4 − 12

6 4466.71 5111.38 − 644.67 − 2

7 5430.91 7354.08 − 1923.17 − 4

8 11,020.6 13,533.3 − 2512.7 − 6

9 11,260.9 19,770.8 − 8509.9 − 11

10 11,941 27,318.7 − 15, 377.7 − 14

11 39,371.6 36,769.5 2602.1 7

12 46,432.8 43,686.9 2745.9 8

13 56,051.1 58,479.5 − 2428.4 − 5

14 63,950.6 76,035.8 − 12, 085.2 − 13

15 65,906.5 91,479.9 − 25, 573.4 − 15

0.0151

there are 12 and 11 benchmark problems where the AHP-

based solution generates the shortest avgn,m and bestn,m ,

respectively. This is consistent with the decision made for

the eil51, eil76 and eil101 instances. According to Table 4,

there are 5 and 6 benchmark problems where the AHP-based

solution generates the shortest avgn,m and bestn,m , respec-

tively. This is due to the fact that the CM-MTSP algorithm

generates m tours and each salesman is assigned to a tour.

This result is also consistent with the results obtained for

the eil51, eil76 and eil101 instances. Furthermore, we have

employed the Wilcoxon ranking test [10] to prove that there

is a significant difference between the average total distance

obtained by the AHP-based solution and the CM-MTSP solu-

tion. After computing the difference d between each pair, we

rank all of them regardless of their sign.

These results are listed in Table 5. As we can see, P value

(i.e., the probability of observing a test statistic) is small

than the threshold value fixed to 0.05. We deduce that the

difference between the solutions is significant. Table 6 shows

the Wilcoxon ranking test for the maximum traveled distance

and demonstrates that the maximum distance obtained by the

AHP and the CM-MTSP is close (i.e., P value = 0.0554 >

0.05).

5.2.3 Comparison with balancedmulti-robot task allocation

(BMRTA) [11]

Overview of the BMRTA The solution is based on the use

of the clustering method with an auction process. The objec-

tives are to minimize the distance traveled by all robots and

Table 6 Wilcoxon ranking test for the average maximum traveled dis-

tance of both solutions AHP and CM-MTSP

No. AHP CM-MTSP d Rank P value

1 3565.48 3920.48 −355 8

2 2957.42 2926.52 30.9 3

3 3344.65 2319.31 1025.34 12

4 2629.73 2091.23 538.5 10

5 2176.5 1833.73 342.77 7

6 1740.72 2105.1 −364.38 9

7 1640.6 1929.89 −289.29 6

8 1989.53 2005.1 −15.57 1

9 2148.78 2044.79 103.99 5

10 2171.34 2118.46 52.88 4

11 13,461.2 12,673.8 787.4 11

12 11,164.5 11,183 −18.5 2

13 10,082 8705.3 1376.7 13

14 9328.12 7578.28 1749.84 15

15 8814.18 7228.01 1586.17 14

0.0554

equally balance the workload between robots. The solution

is very simple. First, the tasks are decomposed into clusters

using K -means algorithm. Second, the possible number of

combinations of robots to win clusters is obtained. Then, the

total cost for each robot to perform any cluster is computed

using the following equation:

Total cost (TC) = Travel cost
(

∑

Ci, j

)

+ Idle cost (IC)

(14)

The travel cost Ci, j is the cost needed to reach location j from

location i . The idle cost (IC) is the summation of the differ-

ence of travel cost between every two robots. The assignment

of clusters to robots is based on the least total cost.

Simulation Setting We have tested our AHP-based approach

using the benchmark data set A-n32-K5.vrp (http://www.

iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/).

The number of targets is set to 32. In this simulation, we

used two robots with the following positions: (20, 20) and

(80, 20). In [11], two analyses were performed. The first one

comprises two robots and two clusters. It will be referred

to as BMRTA-2C. The second analysis involves two robots

and three clusters. It will be referred to as BMRTA-3C. For

the AHP-based approach, we compute the total cost as it is

mentioned in Eq. (14).

Results Table 7 reports the results obtained of the BMRTA-

2C, BMRTA-3C, and AHP-based approaches in terms of

travel cost, idle cost, and total cost. Data for BMRTA-2C and
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Table 7 Comparison results of the BMRTA-2C, BMRTA-3C, and

AHP-based approaches

Travel cost Idle cost Total cost

BMRTA-2C 492.595 53.885 546.48

BMRTA-3C 504.696 59.04 563.736

AHP-based approach 527.55 10 537.55

BMRTA-3C are taken from [11]. Table 7 shows the superi-

ority of the AHP-based approach over the BMRTA approach

in terms of total cost. This is due to the fact that our approach

allocates targets one by one to the robot with the lowest cost,

in contrast to the BMRTA solution, that groups the targets

into clusters and then allocates each cluster to the best robot.

We noticed from the table that the travel cost of the BMRTA

is decreased in comparison with the AHP-based approach,

but the gap is very small (4% for BMRTA-3C and 7% for

BMRTA-2C) in comparison with the gap of the idle cost.

The smaller value obtained for the idle cost proves that our

approach balances the workload between the robots much

better than the BMRTA solution.

5.3 Lessons learned

We have learned several lessons from the simulation study.

First, we observe that centralized approaches are not tractable

for a large-scale system where the number of robots and

targets is very large. In such case, distributed approaches

are more appropriate. We also learned that clustering-based

approaches are not efficient, especially in the case of large-

scale system where the targets and robots are far from one

another, as this will lead to a decrease in system performance.

6 Computational complexity

In this section, we compute the computational complexity

of the AHP-based approach. The complexity of each of the

market-based, balanced-based, and RTMA-based algorithms

is given as follows:

– The complexity of bidding for each target by the m robots

is O(m).

– The complexity of computing the global cost for each

robot is O(m).

– The complexity of allocating a target is O(2 ∗ m) =

O(m).

– Thus, the complexity of allocating all the n targets is

O(n ∗ m).

The complexity of the improvement phase is O(n2).

7 Conclusion

To solve the multi-objective MTSP, we proposed an AHP-

based solution where each objective has a specific weight.

The aim of our work is to find a solution that simultaneously

optimizes three objectives: the total traveled distance, the

maximum tour length, and the deviation rate. We designed

three different approaches: market-based, RTMA-based, and

balanced-based. From the simulation study, we observed that

in most cases the market-based approach generates the best

solution. Furthermore, our comparison of the AHP-based

solution with existing multi-objective approaches shows that

our solution outperforms the FL-MTSP and the CM-MTSP

solutions, and provides a good trade-off between the objec-

tives.
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