AdaCore

The GNAT Pro Company

Panel on Ada & Parallelism:
Ada Container Iterators for
Parallelism and Map/Reduce

Tucker Taft Brad Moore
AdaCore Inc General Dynamics

Canada

based on work with

Stephen Michell Luis Miguel Pinho
Maurya Software ISEP, Portugal

www.adacore.com

Outline

e Motivation

e Parallel Blocks
— Tasklet model

o Parallelized Loops over Arrays
— Might use chunking

e Parallelized Chunked Loops over Containers
e Hyper-objects for Reduction
e Summary

Parallel Container Iterators 2

AdaCore

The GNAT Pro Company

Why Parallel?
The Right Turn in Single-Processor Performance

1,000,000
100,000

= 10,000
= Courtesy IEEE
) Computer,
5 100 January 2011,
= page 33.

100

10

1985 1990 1995 2000 2005 2010 2015 2020
Year of introduction

Parallel Container Iterators 3

Ada

The GNAT Pro Company

Our Goal: Safe, Simple, Parallel Programming

e What do we mean by “parallel” programming as opposed
to “concurrent” programming?

— “concurrent” programming constructs allow programmer to simplify
by using multiple threads to reflect the natural concurrency in the
problem domain - heavier weight constructs OK

- “parallel” programming constructs allow a programmer to divide and
conqguer a problem, using multiple (pico) threads (aka tasklets) to
work in parallel on independent parts of the problem - constructs
need to be light weight both syntactically and at run-time

Parallel Container Iterators 4

Earlier Proposals for
Parallel Ada Extensions

Parallel Container Iterators 6

Ada

Parallel Blocks

parallel_block statement ::=

parallel

sequence_of statements
and

sequence_of statements

{and

sequence_of statements}

end parallel;

« Compiler may spawn each
sequence as a separate
tasklet but need not;

 May combine two, or run all
sequentially

Example:
declare
X, Y : Integer;
Z : Float;
begin
parallel
X = Foo(100);
and
Z =3qrt(3.14) / 2.0;
Y := Bar(Z);
end parallel; -- Implicit join point
Put_Line("X + Y=" &
Integer'image(X + Y));
end;

Parallel Container Iterators 7

AdaCore

The GNAT Pro Company

Tasklet Model - Fork/Join parallelism within Ada task

1
Applitation/Partit

1
1
1
i
1
1

\ v
1

\ —_

\

\

\
\
\
\ Task 1
\
AY
\\

=<

‘ICE

Parallel Container Iterators 8

Parallelized Loops — Might be split into “"chunks”

for I in parallel 1 .. 1000 loop
Process (I);
end loop;

Chunk 1 Chunk 2 Chunk 3 Chunk 4
/____f___\ A A A
4 L N iF b

1 |..[250|251| .. [500(501] .. |750{751| ... {1000

Ada

Parallelized Loop with Parallel Arrays for Partial Reduction

declare
Partial_ Sum : array (parallel <>) of Float := (others => 0.0);
Sum : Float := 0.0;
begin
for | in parallel Arr'Range loop
Partial_ Sum(<>) := Partial_Sum(<>) + Arr(l);
end loop;

for J in Partial_Sum'Range loop
Sum := Sum + Partial_Sum(J);
end loop;

Put_Line ("Sum over Arr =" & Float'Image (Sum));
end;

« Compiler chooses number of chunks because of “array (parallel <>)”
« Partial_Sum automatically ends up with one element per chunk
« Partial_Sum(<>) selects appropriate element when inside loop

Parallel Container Iterators 10

The GNAT Pro

Company

Automatic final reduction step using '‘Reduced(...) attribute

declare
Partial_ Sum : array (parallel <>) of Float := (others => 0.0);
Sum : Float := 0.0;
begin
for | in parallel Arr'Range loop
Partial_ Sum(<>) := Partial_Sum(<>) + Arr(l);
end loop;

for J in Partial_Sum'Range loop
Sum := Sum + Partial_Sum(J);
end loop;

Put_Line ("Sum over Arr =" & Float'Image (Sum));

end: ﬁ

Put_Line ("Sum over Arr =" &
Float'iImage (Partial_Sum’Reduced));

Parallel Container Iterators 11

New Proposals for
Generalizing to Containers

Parallel Container Iterators 12

The GNAT Pie S _

Generalizing Chunked Parallel Iterators to Containers

for Elem of parallel (Num_Chunks) My Map loop
Put Line (Elem_Type'lmage (Elem));
end loop; @
declare
Iter : Parallel_Iterator’Class := Iterate (My_ Map);
Cursors : Cursor_Array (1 .. Num_Chunks);
begin
Split (Iter, Cursors); -- Get starting points for each chunk
for | in parallel Cursors’Range loop -- One tasklet per chunk
declare

Curs : Cursor := Cursors (l);
End_Curs : constant Cursor := (if | = Cursors’Last then No_Element else Cursors (I+1));

begin
while Curs /= End_Curs loop -- Process the chunk sequentially
declare
Elem : Elem_Type renames My Map (Curs);
begin

Put_Line (Elem_Type’lmage (Elem));
Curs := lter.Next (Curs);
end;
end loop;
end;

end loop;
end; p, Parallel Container Iterators 13

Split Operation supported by Parallel_Iterator

o Split operation defined for Iterator objects that
implement the Parallel_Iterator interface:

(in addition to First and Next)

procedure Split (Object : Parallel_Iterator;
Cursors : out Cursor_Array);

e Length of Cursors array determines number of chunks
o Split initializes Cursors array with starting points

e Chunks need not all be of the same size

— Split should divide overall iteration into reasonably similarly-sized
sub-iteration chunks

— For example, might break into chunks based on convenient sub-
tree partitioning

Parallel Container Iterators 14

Hyper-Objects for Reduction

e We provide support for Map/Reduce over Containers using the
notion of a Hyper-Object

e Hyper-Object provides a vector for partial results with an
element-per-chunk, plus a reduction operation

e Hyper-Object is indexable, using the chunk number as the
index

e Hyper-Object has Reduce operation to produce a final value
generic
type Element_Type [(<>)] is private;
Identity : in Element_Type;
with function Reducer (Left, Right : Element_Type)
return Element_Type;
package [Indefinite_]Hyper_Objects is ...

Parallel Container Iterators 15

Example of Hyper-Objects — Integer Sum and String Concatenate

declare
package Int_Sums is
new Hyper_Objects (String, Identity => 0, Reducer => “+");
package Str_Cats is
new Indefinite_Hyper_Objects (String, Identity => “”, Reducer => “&");
Hyp_Str : Str_Cats.Accumulator (Num_Chunks);
Hyp_Int : Int_Sums.Accumulator (Num_Chunks);
begin
for Elem of parallel (Num_Chunks) My_Str_Vec loop
Hyp_Int(<>) := Hyp_Int(<>) + Elem’Length; -- Explicit reduction
Hyp_Str.Update (<>, Elem); -- Reduction performed by Update
end loop;
declare -- Do the final reductions across the chunks
Combined_Str : String (1 .. Hyp_Int.Reduce) := Hyp_Str.Reduce;
begin
Put_Line (Combined_5Str);

end;
end;

Parallel Container Iterators 16

Summary

e Support for Fine-Grained Parallelism can help make
best use of new multicore hardware

e Parallel blocks and Parallel loops over arrays are the
first step

e Supporting Parallel iteration over Containers is natural
next step

e Proposed “Split” operation provides an array of cursors
as starting points for chunk-based parallel iteration

e Proposed syntactic sugar uses Split operation

e Proposed "Hyper_Objects” generic supports user-
defined chunk-based parallel reduction operation

e Presumes "<>" to refer to chunk index inside loop body
e More syntactic sugar to support reduction is TBD.

Parallel Container Iterators 17

