
Using Ada's Visibility Rules and Static Analysis

to Enforce Segregation

of Safety Critical Components

J-P. Rosen

ADALOG
rosen@adalog.fr

J-C. Van-Den-Hende
ALSTOM Transport

jean-christophe.van-den-hende@transport.alstom.com



Safety Integrity Levels and Segregation

Railway systems: EN50128 defines 5 “integrity levels”

From SIL0 (not critical) to SIL4 (highest criticality)

Similar to DO178B/C levels reverse A ..E

Constraints (and costs!) increase with SIL level

Mixed criticality:

Same computer running various criticality applications

Same application with various criticality components

How to make sure that unsafe components do not alter safe ones?

Possible solutions

Validate all components at highest level (expensive!)

Hardware protection

Proofs
Segregation

hardware

software



Alstom Segregation Requirements

Components based architecture with only two levels: SIL0 (not certified) 

and SIL4 (certified) components

Data can be passed from SIL0 to SIL4

Deemed unreliable

✔SIL4 access must go through special gateways to check validity

No direct access of SIL4 data by SIL0 components

Some components are not by themselves SIL4, but may be called by SIL0 

as well as SIL4 components

Classified as SIL4

SIL4 components shall call SIL0 components only through special isolation 

components

SIL0 components shall not call other SIL4 components



Structure

Safe_Components Unsafe_Components

Shared_Services

Safe_1 Safe_2 Unsafe_1 Unsafe_2

X-MemoryData Data

Public 

unit/child
Private child



Other Checks

No unchecked programming

Verified by AdaControl

No removal of language checks, including in SIL0 

components

Verified by AdaControl

No visible variable in package specifications

Verified by AdaControl



Achievements

Criticality of a component is immediately identifiable 

from its full name

The name defines applicable rules

Cross-criticality accessors are easily identified

The most important rules of segregation are enforced 

by proper usage of language features

Violations don't compile!

Remaining rules are checkable by static analysis

Name another language that can achieve that...


