

Estimating the Number of Nodes in
Wireless Sensor Networks

Björn Andersson
Nuno Pereira
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

TR-060702

Version: 1.0

Date: July 2006

Estimating the Number of Nodes in Wireless Sensor Networks
Björn ANDERSSON, Nuno PEREIRA, Eduardo TOVAR

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {bandersson, npereira, emt}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
We propose an efficient algorithm to estimate the number of live computer nodes in a network. This algorithm
is fully distributed, and has a time-complexity which is independent of the number of computer nodes. The
algorithm is designed to take advantage of a medium access control (MAC) protocol which is prioritized; that
is, if two or more messages on different nodes contend for the medium, then the node contending with the
highest priority will win, and all nodes will know the priority of the winner.

Estimating the Number of Nodes in

Wireless Sensor Networks

Björn Andersson, Nuno Pereira and Eduardo Tovar

Department of Computer Engineering, School of Engineering,
Polytechnic Institute of Porto (ISEP-IPP),

Rua Dr. António Bernardino de Almeida 431,
4200-072 Porto, Portugal

{bandersson, npereira, emt}@dei.isep.ipp.pt

Abstract. We propose an efficient algorithm to estimate the number
of live computer nodes in a network. This algorithm is fully distributed,
and has a time-complexity which is independent of the number of com-
puter nodes. The algorithm is designed to take advantage of a medium
access control (MAC) protocol which is prioritized; that is, if two or more
messages on different nodes contend for the medium, then the node con-
tending with the highest priority will win, and all nodes will know the
priority of the winner.

1 Introduction

Wireless sensor networks operate in unpredictable environments. When nodes
are deployed, for example dropped from a helicopter, it is not known how many
nodes will crash when they hit the ground. During operation, nodes stop working
because their energy supply is exhausted or they suffer from physical faults.
Hence, the number of live nodes is not the same as the number of nodes deployed
and the number of live nodes changes with time.

Nonetheless, it is often necessary for a computer node to know the number of
live computer nodes at a particular point in time, or to know the number of live
nodes with certain characteristics; this is a related problem. Consider a sensor
network that detects and reports important events, such as earthquakes [1]. It
is often assumed that individual sensor readings cannot be trusted and hence
an event should only be reported if many (more than a certain threshold) of
sensors have detected the event or a certain fraction of all live nodes detect the
event. This decision must be made quickly (typically with a delay less than a
few seconds).

The problem of finding the number of nodes can be solved trivially by simply
letting each node transmit a message with its identifier and let all nodes count the
number of messages with unique identifiers. It has a time-complexity of O(m),
where m is the number of nodes. This is unfortunate because sensor networks
are large; today, sensor networks with more than a thousand nodes [2] have been
built and networks with a hundred thousand nodes are expected soon. Hence, it
is important that the time-complexity does not depend on the number of nodes.

1

In this paper, a distributed algorithm which estimates the number of com-
puter nodes is designed. The main idea of the algorithm is that all nodes gener-
ate random numbers and the minimum of these random numbers can be found
efficiently by using a prioritized medium access control (MAC) protocol. An es-
timate of the number of nodes can be obtained from the minimum of the random
numbers. The algorithm performs this k times (k is a design parameter). This
gives our algorithm a time-complexity which is independent of m; it only needs
the time to transmit k messages, and hence the time-complexity is O(k).

We advocate this algorithm to be significant, not only for estimating the
number of nodes, but also because it serves as a useful building block for other
calculations such as approximate majority voting, calculating the median of
sensor readings and calculating the sum of all sensor readings.

The remainder of this paper is structured as follows. Section 2 presents the
system model and properties of the MAC protocol used. The algorithm to esti-
mate the number of nodes and the reasoning behind its design is presented in
Section 3. A performance evaluation of the proposed algorithm is in Section 4,
and Section 5 discusses related work and practical aspects of our work. Finally,
Section 6, gives conclusions.

2 System model

Consider a computer system comprised of m computing nodes that communicate
over a wireless channel. Nodes do not have a shared memory; all data variables
are local to each node.

Computer nodes can make wireless broadcasts. These broadcasts can be a
message of data bits or an unmodulated carrier wave. It is assumed that every
signal transmitted (modulated data bits or unmodulated carriers) is received
by all computer nodes. This implies that there are no hidden stations and the
network provides reliable broadcast. A node can transmit an empty message;
that is, a node can request to the MAC protocol to perform the contention for
the medium, but not send any data. This is clarified later in this section.

It is assumed that all messages sent by nodes are related to the estimation
of the number of nodes; hence nodes do not transmit any other kind of mes-
sages. It is also assumed that nodes are requested to compute the number of
nodes simultaneously. Both of these assumptions can be relaxed; this is done in
Section 5.2.

Every node has an implementation of a prioritized MAC protocol [3, 4]. The
fact that it is prioritized means that the MAC protocol assures that of all nodes
requesting to transmit at a given moment, the ones with the highest priority will
win; nodes that win will transmit their data bits (if they have any).

The MAC protocol performs a tournament as depicted in Figure 1. The
nodes start by agreeing on an instant when the tournament starts. Then nodes
transmit the priority bits starting with the most significant bit. A bit is assigned
a time interval. If a node contends with a dominant bit (“0”), then a carrier
wave is transmitted in this time interval; if the node contends with a recessive

2

Node 1 priority
01011111

Node 2 priority
01110011

Node 3 priority
01010111

Beginning of
tournament

Node 2 hears a carrier
sent by node 3. Node
2 lost the tournament

Node 1 hears a carrier
sent by node 3. Node
1 lost the tournament

Node 3 is the only
node that finishes
the tournament
without losing

Send Carrier

Listen

End of
tournament

Fig. 1. The MAC protocol tournament.

bit (“1”), it transmits nothing but listens. At the beginning of the tournament,
all nodes have the potential to win, but if a node contends with a recessive bit
and perceives a dominant bit then it withdraws from the tournament and cannot
win. If a node has lost the tournament then it continues to listen in order to know
the priority of the winner. When a node finishes sending all priority bits without
hearing a dominant bit, then it has won the tournament and clearly knows the
priority of the winner. Hence, lower numbers represent higher priorities. This is
similar to the CAN bus [5], but nodes in a CAN network are usually assigned
unique priorities; that assumption is not made here.

Let NPRIOBITS denote the number of priority bits. It is the same for all
nodes. Since NPRIOBITS are used to denote the priority, the priority repre-
sents a number from 0 to 2NPRIOBITS - 1. Let MAXV denote 2NPRIOBITS - 1.
A function which generates a uniformly distributed random integer variable in
the range [0, MAXV] is denoted by random(0, MAXV).

The operating system offers systems calls for interacting with other nodes.
The send system call takes two parameters, one describing the priority of the
message and one describing the data bits to be transmitted. If send loses the
tournament then it waits until a new tournament starts. The program making
this system call blocks until a message is successfully transmitted. The func-
tion send empty takes only one parameter and it is a priority. Interestingly,
send empty does not take any parameter describing the data. The system call
send empty also results in the MAC protocol performing the contention for the
medium, but if the node wins, it does not send anything. In addition, when the
tournament is over (regardless of whether the node wins or loses), the function
send empty gives the control back to the application and returns the priority of
the winner. The send empty system call will be used in environments where two
nodes may have the same priority and hence there may be more than one node

3

Algorithm 1 Estimating the number of nodes

Require: All computer nodes start their execution simultaneously.
1: r : array[1..k] of integer
2: x : array[1..k] of integer
3: q : integer
4: for q ← 1 to k
5: r[q] ← random(0, MAXV)
6: x[q] ← send empty(r[q])
7: end for

8: est nodes ← ML estimation(x[1], x[2], ..., x[k])
9: return est nodes // the estimation of the number of nodes

that declares itself as a winner. This is acceptable since they do not send any
data, so there is no collision of the data.

Let P (E) denote the probability that event E occurs, and P (E1 | E2) denote
the conditional probability of event E1, given the occurrence of event E2.

The number of nodes m is unknown; m is a uniformly distributed random
variable which is an integer. Hence, for the a priori probability it holds that:

∀x ≥ 1 : P (m = 1) = P (m = x) (1)

It is also assumed that no faults occur during the execution of the algorithm.

3 Estimating the Number of Nodes

Section 3.1 presents an algorithm that estimates the number of nodes. Section 3.2
considers an interval and computes the a posteriori probability that the number
of nodes is in this interval.

3.1 Estimating a Single Value

The pseudo code of the algorithm for estimating the number of nodes is shown
in Algorithms 1, 2 and 3. The main algorithm (Algorithm 1) assumes that all
computer nodes start their execution simultaneously and they do the following.
First, on line 5, the algorithm generates a random number in the range [0,
MAXV] and all nodes send their random number and find the minimum random
number (line 6). This is performed k times. The line 8 computes the estimation
of the number of nodes based on the minimum obtained on line 6. Line 8 uses a
function, shown in Algorithm 2.

The design of the function in Algoritm 2 can be explained as follows. Con-
sider m independent random variables which are integers and are uniformly
distributed in the range [0, MAXV]. The random variables will be denoted r1,
r2,. . . ,rm. It holds that (see Appendix A for details):

P (min (r1, r2, ..., rm) ≤ x) = 1 −
(

1 −
x

MAXV

)m

(2)

4

Algorithm 2 Function ML estimation

Require: The division of two integers (as is done in line 6) returns a real number.
1: function ML estimation(x : array[1..k] of integer) return an integer
2: v : array[1..k] of real
3: sumv, q, h1, h2 : integer
4: sumv ← 0
5: for q ← 1 to k

6: v[q] ← ln

(

1

1−
x[q]

MAXV

)

7: sumv ← sumv + v[q]
8: end for

9: h1 ← ceil(k / sumv)
10: h2 ← floor(k / sumv)
11: if numerator probability(h1, x) > numerator probability(h2, x)
12: return h1
13: else

14: return h2
15: end if

16: end function

Algorithm 3 Function numerator probability

1: function numerator probability(j : integer, x : array[1..k] of integer) return a real
2: return compute (8)
3: end function

Exploiting the fact that x is an integer variable gives us:

P (min (r1, r2, ..., rm) = x) =

(

1 −
x − 1

MAXV

)m

−
(

1 −
x

MAXV

)m

(3)

Clearly (3) can be rewritten as a conditional probability as follows:

P (min (r1, r2, ..., rm) = x |m = j) =

(

1 −
x − 1

MAXV

)j

−
(

1 −
x

MAXV

)j

(4)

From Bayes’ theorem it results that:

P (m = j |min (r1, r2, ..., rm) = x) = P (min(r1,r2,...,rm)=x|m=j)×P (m=j)
∞
∑

l=1

P (min(r1,r2,...,rm)=x|m=l)×P (m=l) (5)

Using the assumption stated by (1) on (5), and using (4):

P (m = j |min (r1, r2, ..., rm) = x) =
(1− x−1

MAXV)
j
−(1− x

MAXV)
j

∞
∑

l=1
(1− x−1

MAXV)
l
−(1− x

MAXV)
l (6)

Observe from Algorithm 1 that each node will generate k random numbers.
Let r1

1, r1
2, . . . , r1

m denote the first random numbers, and let r2
1, r2

2, . . . , r2
m denote

5

the second random numbers, and so on. Let xq denote min(rq
1, r

q
2, . . . , rq

m). By
rewriting (6), it follows that:

P (m = j |rmin1 = x1 ∧ rmin2 = x2 ∧ ... ∧ rminm = xm) =
∏k

q=1

(

(

1 −
xq−1

MAXV

)j

−
(

1 −
xq

MAXV

)j

)

∞
∑

l=1

(

∏k

q=1

(

(

1 −
xq−1

MAXV

)l

−
(

1 −
xq

MAXV

)l

))

(7)

The goal is to make a maximum likelihood estimation of m. Hence, it is
necessary to find the value of j such that (7) is maximized. Observe that the
denominator remains constant for all values of j. Then, it is possible to state
that the objective is to maximize:

∏k

q=1

(

(

1 −
xq − 1

MAXV

)j

−
(

1 −
xq

MAXV

)j

)

(8)

This can be found by iterating values of j. However computing j in this
manner is computationally expensive, and thus another method to find a value
of j that maximizes (7) is devised next.

Maximizing an expression expr is equivalent to maximizing the logarithm of
expr. Then, the goal is to maximize:

k
∑

q=1

ln

(

(

1 −
xq − 1

MAXV

)j

−
(

1 −
xq

MAXV

)j

)

(9)

where ln means natural logarithm.
If 1 << MAXV , then (9) can be approximated by:

k
∑

q=1

ln

(

(

1 −
xq

MAXV

)j−1

×
j

MAXV

)

(10)

By applying the rules of logarithms to (10), it holds that:

k
∑

q=1

((

− (j − 1) × ln
1

1 −
xq

MAXV

)

+ ln

(

j

MAXV

))

(11)

The variable j in (11) is an integer. Let us replace j in (11) by a real valued
variable j′:

k
∑

q=1

((

− (j′ − 1) × ln
1

1 −
xq

MAXV

)

+ ln

(

j′

MAXV

))

(12)

The 1st derivative of (12) with respect to j′ is:

k
∑

q=1

((

− ln
1

1 −
xq

MAXV

)

+
1

j′

)

(13)

6

and the 2nd derivative of (12) with respect to j′ is:

k
∑

q=1

−
1

j′2
(14)

Since (14) is negative, finding the j
′

that sets (13) equal to 0 is a maximizer
of (12). Doing this gives:

k
∑

q=1

1

j′
=

k
∑

q=1

ln
1

1 −
xq

MAXV

(15)

and simplifying (15) leads to:

j′ =
k

k
∑

q=1
ln 1

1−
xq

MAXV

(16)

Since (14) is negative, the integer j′ that maximizes (12) is either the ceiling
or the floor of (16). This results in a j which is very close to the j that maximizes
(7). This is what the function in Algorithm 2 does.

3.2 Estimating an Interval

It is sometimes necessary to know the probability that the number of nodes is
less than or equal to j2. On the other hand, it is sometimes necessary to know
if the number of nodes is greater than or equal to j1. And we want to know this
with a certain confidence. Since there is diversity in what application developers
might want, we will only design a simple generic function. We will design a
function that computes the probability that: j1 ≤ m ≤ j2, where j1 and j2 are
parameters selected by the designer. If the probability is not large enough, then
it is up to the application program to decrease j1 or increase j2, or perform an
estimation with a larger k.

Let us now present the reasoning for such probability estimation. From (7):

P (j1 ≤ m ≤ j2 |rmin1 = x1 ∧ rmin2 = x2 ∧ ... ∧ rminm = xm) =
j2
∑

l=j1

(

∏k
q=1

(

(

1−
xq−1

MAXV

)l
−(1− xq

MAXV)
l
))

∞
∑

l=1

(

∏

k
q=1

(

(

1−
xq−1

MAXV

)l
−(1− xq

MAXV)
l
))

(17)

If 1 << MAXV , then (17) can be approximated as:

P (j1 ≤ m ≤ j2 |rmin1 = x1 ∧ rmin2 = x2 ∧ ... ∧ rminm = xm) =
j2
∑

l=j1

(

∏k
q=1

(

l
MAXV

×(1− xq
MAXV)

l−1
))

∞
∑

l=1

(

∏

k
q=1

(

l
MAXV

×(1− xq
MAXV)

l−1
))

(18)

7

Let Q be defined as:

Q =
k

∏

q=1

(

1 −
xq

MAXV

)

(19)

Let us rewrite (18) as:

P (j1 ≤ m ≤ j2 |rmin1 = x1 ∧ rmin2 = x2 ∧ ... ∧ rminm = xm) =
j2
∑

l=j1

(

(l
MAXV)

k
×

(

∏k
q=1 (1− xq

MAXV)
l−1

))

∞
∑

l=1

(

(l
MAXV)

k
×

(

∏

k
q=1 (1− xq

MAXV)
l−1

))

(20)

Now, applying (19) on (20) leads to:

P (j1 ≤ m ≤ j2 |rmin1 = x1 ∧ rmin2 = x2 ∧ ... ∧ rminm = xm) =
j2
∑

l=j1

(

(l
MAXV)

k
×Ql−1

)

∞
∑

l=1

(

(l
MAXV)

k
×Ql−1

)

(21)

Given that (21) can be approximated by:

P (j1 ≤ m ≤ j2 |rmin1 = x1 ∧ rmin2 = x2 ∧ ... ∧ rminm = xm) =
j2
∫

j1

(j
MAXV)

k
×Qj−1dj

∞
∫

1
(j

MAXV)
k
×Qj−1dj

(22)

and that, from Appendix C:

∫

jk × Qj−1dj =

k
∑

q=0

(k)k−q×jq×
1

(lnQ)
k−q

×Qj−1×(−1)
k−q

+CONST (23)

applying (23) on (22) leads to:

P (j1 ≤ m ≤ j2 |rmin1 = x1 ∧ rmin2 = x2 ∧ ... ∧ rminm = xm) =
[

1

MAXV k ×
k
∑

q=0
(k)k−q×jq× 1

(ln Q)k−q ×Qj−1×(−1)k−q

]j=j2

j=j1
[

1

MAXV k ×
k
∑

q=0
(k)k−q×jq× 1

(ln Q)k−q ×Qj−1×(−1)k−q

]j→∞

j=1

(24)

Observe that the sum in (24) does not need to iterate over the interval j1..j2.
It is only k iterations, and k is typically small. Also observe that many terms in
(24) change in a similar way. Hence, applying the idea of Horner’s rule (normally
used for polynomial evaluation) enables a more efficient computation of (24).
Algorithms 4 and 5 do this. Now we have an algorithm that can compute the
probability that the number of nodes is within j1 ≤ m ≤ j2.

8

Algorithm 4 The a posteriori probability that m satisfies j1 ≤ m ≤ j2
Require: Lines 1-7 in Algorithm 1 have been executed.
1: Q, fj1, fj2, denom : real
2: Q ← compute Q according to (19) using x
3: fj1 ← computef(j1, Q)
4: fj2 ← computef(j2, Q)
5: denom ← computef(1, Q)
6: return (fj1 − fj2) / denom // a real number with the a posteriori probability

Algorithm 5 Function computef

Require: pow(r, n) computes rn.
1: function computef (j : integer, x : array[1..k] of integer, Q : real) return an integer
2: sum, term : real
3: sum ← 0
4: term ← pow(j

MAXV
, k) × pow(Q, j − 1)

5: sum ← sum + term
6: for q ← (k − 1) downto 0
7: term ← term × (q + 1) × 1

j
× 1

ln Q
× (−1)

8: sum ← sum + term
9: end for

10: return sum
11: end function

4 Performance Evaluation

Several experiments were developed to show different characteristics of the al-
gorithm. First, to show how the execution time of the algorithm compares with
a näıve algorithm (as mentioned in the introduction), the time to execute the
algorithm was acquired by using data from previous research [4], and running
the proposed algorithm on a cycle accurate simulator for a mote platform, called
Avrora [6]. From [4], it is possible to know that the time to run the tournament
Ctrt is 45 ms. Running the algorithm in Avrora, provided a measurement on
the time to generate a random number (≈ 0.003 ms, which together with all
computations other than the estimation itself, was considered negligible) and
the time to compute the function ML estimation, as depicted in Algorithm 2
(Cest ≈ 86 ms, for k = 5). Therefore, for k = 5, the time to perform the
algorithm is k × Ctrt + Cest = 5 × 45 + 86 = 316 ms.

Let us assume a very simplified model for assessing the overhead of the näıve
algorithm. Only the time to transmit messages was considered and everything
else is regarded as negligible. Considering a radio transmitting at 38.4 Kbps (a
typical value for mote platforms [7]), a message with 2 bytes of data and 3 bytes

for header/preamble would take Cmsg = (2+3)×8
38400 ≈ 1 ms. Let us assume that

nodes have set up a scheme to orderly access the medium and thus there are no
collisions. The time to run a näıve protocol is then m × Cmsg.

9

1

4

18

68

277

1093

4390

18304

69828

1

10

100

1000

10000

100000

1000000

1 4 16 64 256 1024 4096 16384 65536
m

n
u
m

b
e
r

o
f
n
o
d
e
s

(a) k = 5

1

4

16

66

264

1046

4190

16683

67515

1

10

100

1000

10000

100000

1000000

1 4 16 64 256 1024 4096 16384 65536
m

n
u
m

b
e
r

o
f
n
o
d
e
s

(b) k = 20

Fig. 2. Estimation of the number of nodes for different values of m and k.

From this, it is obvious that, with k = 5, our algorithm always runs faster
when m > 316, and, more importantly, our protocol has a time complexity which
only depends on k. We emphasize that this comparison is greatly biased towards
favouring the näıve algorithm, since assuming that there is no delay for messages
to access the medium is a very optimistic assumption.

Next was studied how the error of the protocol varies as a function of m and
k. A simulation of the algorithm proposed in this paper1 was run with k = 5
and k = 20, for different numbers of nodes (m = 1, 4, 16, ..., 216). The boxplots
in Figure 2 are presented in a logarithmic scale and depict the distribution of
1000 estimations for the different numbers of nodes. In these boxplots, the box
stretches from 25th percentile to the 75th percentile. The value of the median is
shown and depicted as a line across the box. The minimum values are depicted
below the box and the maximum is above.

From the box plots in Figure 2, it is possible to observe that the quality of
the estimation improves significantly by increasing k.

5 Discussion and Previous work

5.1 Previous work

The problem of estimating the number of nodes in a network can be viewed
from different perspectives. Gossip, rumour spreading and infectious algorithms,
all have in common that they use randomized local computations repeatedly
to achieve a global computation. Originally these algorithms were developed to
propagate data, but recently they have been reworked to calculate aggregated
quantities. These algorithms are robust in face of node and link failures and they
can operate in multihop networks. Such algorithms are available for a large num-
ber of distributed calculations, such as MIN, MAX, SUM, AVERAGE (see for

1
The source code for the simulation can be found at http://www.hurray.isep.ipp.pt/widom/

10

example [8, 9]). These calculations can be used to calculate/estimate the number
of nodes as well. Two techniques are known. The first technique populates the
value of zero on all nodes but one; this special node is populated the value of one.
Then the protocol calculates the average and taking the inverse of the average
gives the number of nodes. The second technique calculates the minimum value
and applies maximum likelihood estimation to obtain the number of nodes.

Deterministic algorithms for unstructured environments have also been pro-
posed. The algorithm in [10] performs repeated local operations to compute
an average and it works in multihop environments. The algorithm in [11] com-
putes the average in a single-hop network. It is designed to perform well against
an adversary that injects faults but unfortunately, its time complexity is high.
These techniques that compute averages could (as mentioned above) be used to
compute the number of nodes.

Data aggregation protocols for WSN can compute the number of nodes, typ-
ically using a convergecast tree [12, 13]. The same problem has been addressed
by researchers in data communications with the goal of estimating the size of
the audience of a multicast [14, 15].

Common to all these works [8–15] is that their time complexity is O(m) or
more whereas our techique has a time complexity which is independent of m.

5.2 Practical issues

So far, it was assumed that all messages transmitted are used to find the number
of nodes. This assumption can be easily relaxed. The priority field can be divided
into two subfields. The most significant bits are called service identifier and the
least significant bits are called data bits. For example, for 20 priority bits; the
2 most significant bits could be the service identifiers and the remaining 18 bits
are priority bits. The MAC protocol runs the tournament based on all 20 bits.
If the 2 services bits are 00 then the following 18 bits denote the priority of a
normal message and these 18 bit number represents a unique priority and it has
normal payload and it is collision free. If the 2 bits are 01 it means that the 18
remaining contains data that should be used to compute the number of nodes.
An application can make a function call send empty(01, 20) which proposes the
value 20 and returns the minimum value.

We have also assumed that all nodes start the execution of the protocol
simultaneously. This can be dealt easily by letting a node broadcast a message
containing a request to compute the number of nodes. All nodes receive this at
approximately the same time. There are small differences in time when nodes
start the protocol, but the MAC protocol (see [4]) synchronizes so that the
tournament on all nodes executes simultaneously, so this poses no problem.

The overhead introduced by the MAC protocol is to a large extent due to
the transition time between transmission and reception. The platform used to
implement the MAC protocol in [4] had a switching time of 192µs. But this is
a technological parameter that can be improved with better radio hardware, as
witnessed by the fact that the Hiperlan standard [16] required a switching time
of 2µs.

11

6 Conclusions and Future work

A technique for efficiently estimating the number of nodes was proposed. It has a
time-complexity which does not depend on the number of nodes. The algorithm
depends on a prioritized MAC protocol. This has already been implemented and
tested. Our protocol requires that no faults occur; in general this is difficult to
achieve in practice in wireless networks. However, it was observed that in short
distance communication, using a spread spectrum transceiver, it is possible to
achieve good reliability [4].

We belive that it is in scenarios with a very large number of nodes (say
100 000) in a small area that our protocol and our estimation technique is the
most useful.

The efficiency of this technique greatly depends on the overhead of the MAC
protocol. If a transceiver with faster transmit/receive switching times were avail-
able, and it offered the flexibility to design the MAC protocol in software then
the overhead of the protocol could be reduced greatly.

References

1. J. Elson and D. Estrin. Sensor networks: a bridge to the physical world. Wireless Sensor
Networks, pages 3–20, 2004.

2. A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Kulathumani, H. Zhang,
H. Cao, M. Sridharan, S. Kumar, N. Seddon, C. Anderson, T. Herman, N. Trivedi, C. Zhang,
M. Nesterenko, R. Shah, S. Kulkarni, M. Aramugam, L. Wang, M. Gouda, Y. Choi, D. Culler,
P. Dutta, C. Sharp, G. Tolle, M. Grimmer, B. Ferriera, and K. Parker. Exscal: Elements of
an extreme scale wireless sensor network. In Proceedings of the 11th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05),
pages 102–108, Washington, DC, USA, 2005. IEEE Computer Society.

3. B. Andersson and E. Tovar. Static-priority scheduling of sporadic messages on a wireless chan-
nel. In Proceedings of the 9th International Conference on Principles of Distributed Systems
(OPODIS’05), Pisa, Italy, 2005.

4. N. Pereira, B. Andersson, and E. Tovar. Implementation of a dominance protocol for wireless
medium access. In Proceedings of the 12th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA’06), to appear, Sydney, Australia,
2006.

5. Bosch. CAN Specification, ver. 2.0, Robert Bosch GmbH, Stuttgart, 1991.
6. AVRORA - the AVR simulation and analysis framework, 2005.
7. Crossbow. MICA2 - wireless measurement system product datasheet, 2005.
8. D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information.

In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’03), pages 482–491, Washington, DC, USA, 2003. IEEE Computer Society.

9. M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation in large dynamic net-
works. ACM Transactions on Computer Systems, 23(3):219–252, 2005.

10. D.S. Scherber and H.C. Papadopoulos. Distributed computation of averages over ad hoc net-
works. IEEE Journal on Selected Areas in Communications, 23(4):776– 787, 2005.

11. M. Kutylwski and D. Letkiewicz. Computing average value in ad hoc networks. In Proceedings
of the 28th International Symposium on Mathematical Foundations of Computer Science
(MFCS’03), pages 511–520. Springer, 2003.

12. Y. Yao and J. Gehrke. Query processing in sensor networks. In Proceedings of the 1st Biennial
Conference on Innovative Data Systems Research (CIDR’03), 2003.

13. S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. TAG: a tiny aggregation service for
ad-hoc sensor networks. In Proceedings of the 5th symposium on Operating systems design
and implementation (OSDI’02), 2002.

14. K. Horowitz and D. Malkhi. Estimating network size from local information. Information
Processing Letters, 88(5):237–243, 2003.

15. M. Nekovee, A. Soppera, and T. Burbridge. An adaptive method for dynamic audience size
estimation in multicast. In Lecture Notes in Computer Science, volume 2816, pages 23–33,
2003.

16. ETSI (European Telecommunications Standards Institute). Broadband Radio Access Net-
works(BRAN);HIPERACCESS; PHY protocol specification.

12

Appendix A

For ri it holds that:

P (ri ≤ x) =
x

MAXV

Exploiting the fact that ri is an integer:

P (x + 1 ≤ ri) = 1 −
x

MAXV

Since r1, r2,. . . ,rm are independent random variables:

P (x + 1 ≤ min (r1, r2, ..., rm)) =
(

1 −
x

MAXV

)m

Since r1, r2,. . . ,rm are independent random variables:

P (min (r1, r2, ..., rm) ≤ x) = 1 −
(

1 −
x

MAXV

)m

Appendix B

We can reason about conditional probabilities as follows:

P (m = j |min (r1, r2, ..., rm) = x) =
P (m = j ∧ min (r1, r2, ..., rm) = x)

P (min (r1, r2, ..., rm) = x)

and like this:

P (m = j ∧ min (r1, r2, ..., rm) = x)

P (min (r1, r2, ..., rm) = x)
=

P (min (r1, r2, ..., rm) = x ∧ m = j)

P (min (r1, r2, ..., rm) = x)

and like this:

P (min (r1, r2, ..., rm) = x ∧ m = j)

P (min (r1, r2, ..., rm) = x)
=

P (min (r1, r2, ..., rm) = x |m = j) × P (m = j)

P (min (r1, r2, ..., rm) = x)

Now, combining the three previous equalities:

P (m = j |min (r1, r2, ..., rm) = x) =
P (min (r1, r2, ..., rm) = x |m = j) × P (m = j)

P (min (r1, r2, ..., rm) = x)

The previous expression can be rewritten as:

P (m = j |min (r1, r2, ..., rm) = x) =
P (min (r1, r2, ..., rm) = x |m = j) × P (m = j)
∞
∑

l=1

P (min (r1, r2, ..., rm) = x |m = l) × P (m = l)

13

Appendix C

Let us define (a)b for integers a and b as:

(a)b =
a!

(a − b)!

Let f be defined as follows (observe that ln means natural logarithm):

f (j) =
k

∑

q=0

(k)k−q × jq ×
1

(lnQ)
k−q−1

×
Qj−1

lnQ
× (−1)

k−q

Let us take the derivative of f with respect to j:

df
dj

=

(

k
∑

q=0
(k)k−q × q × jq−1 × 1

(ln Q)k−q−1 × Qj−1

ln Q
× (−1)

k−q
+

k
∑

q=0
(k)k−q × jq × 1

(ln Q)k−q−1 × Qj−1 × (−1)
k−q

)

Let us insert q = p in the upper term of df
dj

and study that. We have:

(k)k−p × p × jp−1 ×
1

(lnQ)
k−p−1

×
Qj−1

lnQ
× (−1)

k−p

Now, inserting q = p-1 in the lower term of df
dj

and study that. We have:

(k)k−q+1 × jp−1 ×
1

(lnQ)
k−p

× Qj−1 × (−1)
k−p+1

It can be seen that these terms have the same magnitude but with opposite
sign. Hence, they cancel out. Also observe that the upper term of df

dj
becomes

zero for q=0. Hence:
df

dj
= jk × Qj−1

Naturally this results that:

∫

jk × Qj−1dj = f + CONST

Using the definition of f yields:

∫

jk × Qj−1dj =

k
∑

q=0

(k)k−q × jq ×
1

(lnQ)
k−q−1

×
Qj−1

lnQ
× (−1)

k−q
+ CONST

Finally, this can be rewritten to:

∫

jk × Qj−1dj =

k
∑

q=0

(k)k−q × jq ×
1

(lnQ)
k−q

× Qj−1 × (−1)
k−q

+ CONST

14

