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Abstract 
 

Business and mission critical real-time systems 
need to be fully predictable, in order that their 
behaviour is known before deployment, even in the 
presence of faults. The Open Ravenscar Real Time 
Kernel (ORK) is a small size with reduced complexity 
kernel designed to be used in this type of applications. 
This kernel was implemented to be fully compliant with 
the Ravenscar profile, which defines a subset of the 
tasking features of Ada which can be used to 
implement a small and reliable kernel. Critical 
Software has recently conducted an evaluation on this 
kernel as well as started a new project to provide a 
monitoring tool for ORK, thus further enhancing the 
already existing range of hard real-time verification 
and validation tools. This paper summarizes the 
objectives and results of the ORK evaluation and 
presents the main goals and functionalities of the 
monitoring tool.  

1 Introduction 

The consequences of failures in hard real-time 
computer systems are, unfortunately, well known. 
Examples of these are the Mars Pathfinder mission that 
began experiencing total system resets, which resulted 
in losses of data due to a priority inversion problem 
[1], and, particularly important due to the severe nature 
of the consequences, the Therac-25 medical system, 
that caused the lost of three lives due to radiation over 

dosage [2]. Therefore , computer systems , and in 
particular hard real-time systems , must be subject to 
intensive testing activities before their deployment. 
However, assuring that these systems behave 
appropriately to unusual or exceptional events requires 
more than traditional testing. Furthermore, when safety 
critical software products are concerned, characteristics 
other than functional, such as  safety and reliability 
should also be expressly verified.  

Critical Software in a consortium with SoftWcare 
is presently conducting a project (STADY) that aims to 
research and demonstrate an innovative technique for 
the verification of the safety and reliability 
characteristics of software. As part of this study an 
evaluation of the Open Ravenscar Real-Time Kernel 
(ORK) [3] was performed.  

Within a different approach, a monitoring and 
profiling tool for ORK is also being developed, which 
will allow the observation of the dynamic behaviour 
and results of an implemented system, consequently 
allowing the system's engineers to have a more in 
depth view of the system behaviour. This tool will 
enhance the already existing range of hard real-time 
verification and validation tools (Xception™ [4]), in  
order to non-intrusively monitor and profile business 
and mission critical real-time systems.  

This paper is organized as follows. Section 2 
presents an overview of the technologies involved in 
these projects, namely the ORK and the Ravenscar 
profile. Section 3 provides a description of the STADY 
project particularly considering the ORK evaluation, 
the problems that were found and potential 



improvements. Section 4 provides an introduction to 
the monitoring and profiling tool, as well as an 
overview of the involved technologies. Finally, Section 
5 provides some conclusions. 

2 Open Ravenscar Real Time Kernel 

The ORK [3] is an open source Real Time 
Operating System (RTOS) of small size and 
complexity, developed with sponsorship of ESA to be 
used in space based applications. ESA is assessing the 
use of this RTOS as a base layer of On -Board Software 
for future missions. 

The ORK aims to be fully compliant with the 
Ravenscar profile [5], which defines a restricted set of 
Ada tasking features that are allowed and features that 
are dis allowed.  

2.1 Ravenscar profile  

The Ravenscar profile (Reliable Ada Verifiable 
Executive Needed for Scheduling Critical 
Applications) is the result of the 8th International Real 
Time Ada Workshop (IRTAW). Since then it as 
already been revised at least two more times, namely at 
the 9th and 10th IRTAW. The goal of the Ravenscar 
profile is to achieve: 

• Improved memory and execution time 
efficiency, by removing features with a high 
over head. 

• Improved reliability, by removing non-
deterministic and non-formally analysable 
features. 

• Improved timing analysis, by removing non-
deterministic and non-analysable features. 

• Security certifiability for both the kernel and 
the software running on top of it. 

A description of this profile can be found in [5] 
and the rationale in [6], but, in a nutshell, this profile 
forbids the use of task entries, dynamic allocation and 
unchecked deallocation of protected and task objects 
and dynamic priorities on programs. Although all these 
and more restrictions are defined in this profile, some 
other features are supported by it like ceiling locking 
protocol, FIFO within priorities dispatching and 
protected procedures as statically bound interrupt 
handlers.  

 
 
Most of the profile’s restrictions can be enforced 

at compile time by using the appropriate set of 
identifiers with the pragma restrictions available in the 
GNAT. However, since not all Ravenscar restrictions 
can be enforced by these standard restriction 

identifiers, another approach was adopted by ORK 
developers, which consisted in the implementation of a 
defined pragma, pragma Ravenscar, so it could 
establish the complete set of restrictions.   

2.2 ORK Architecture  

ORK was built on top of GNAT compilation 
system. The GNAT/ORK runtime system includes the 
following components which were subjected to the 
STADY methodology (see Figure 1): 

• A specialized version of GNARL, the GNU 
Ada Runtime Library. 

• A specialized version of GNULL, the GNU 
Low-Level Library. 

• The ORK kernel itself. 

 

Figure 1. GNAT/ORK run-time system architecture. 
 

The ORK Kernel Layer consists of the following 
packages: 

• Kernel – which is the root package (empty 
interface) 

• Kernel.Threads – this package provides the 
necessary thread management, including 
synchronization and scheduling control 
functions; 

• Kernel.Time – this package provides clock 
and delay services; 

• Kernel.Memory – this package provides the 
necessary functions for storage management; 

• Kernel.Interrupts – this package provides 
the functions for Interrupt handling; 

• Kernel.Parameters – this package contains 
the base parameters for kernel configuration; 

• Kernel.CPU_Primitives – this package 
provides the processor dependent definitions 
and operations; 



• Kernel.Peripherals – this package provides 
the support for peripherals in the target board; 

• Kernel.Peripherals.Registers – this 
package contains the necessary definitions 
related to input-output registers of the 
peripheral devices; and 

• Kernel.Serial_Output – this package 
provides the support for serial output to a 
console. 

Although all these functionalities that are 
provided, they are not intended to be used directly 
from Ada programs. The interface to these 
functionalities is provided by the GNU Ada Runtime 
Library (GNARL). This library is used so that Ada95 
tasking constructs can be directly accessed by the real-
time application programmer. 

3 ORK Evaluation 

3.1 The Verification and Validation Method 

The main goal of the STADY project [7] is to 
demonstrate that the combined use of static analysis 
techniques , like Software Failure mode and Effect 
Analysis (SFMEA) or Software Fault Tree Analysis 
(SFTA), with the dynamic analysis  methods, like  
robustness/stress testing, is applicable to the 
verification of safety and reliability characteristics of 
critical software, in the domain of high integrity 
applications. 
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Figure 2.  Workflow of the STADY method. 

The run-time system of ORK has been selected as 
the product to be evaluated as a case study of the 
STADY project. The evaluation consists in a sequence 
of steps (Figure 2), beginning with a static analysis 
which results in a set of software faults with associated 
recommendations for improvements of the product 
under evaluation. This is followed by a dynamic 
verification which has two main purposes: 

1. Confirm the set of software faults really 
comprise the system and evaluate the effect of 
the appropriate recommendations providing 
the feedback to the static analysis process; 

2. Analyze the product dynamically (under 
execution) exercising the system by injecting 
software faults; 

3.2 Evaluation Results  

This section presents the most relevant ORK faults 
found during the application of the STADY method 
and provides some general comments for ORK runtime 
system improvement. 

The following table provides a statistical view of 
the results achieved. Faults were grouped according to 
their types and classified as minor or critical. The 
classification is performed based on the possible 
impact of the fault concerning mission critical systems. 

 
Fault Type Minor Critical  Total  

Ravenscar profile violations   3 3 

Missing Variable or Parameter 
Test Conditions  

 26 26 

Incorrect Initialized variables   1 1 

Use of variables not initialised  1 1 
Performance 1  1 

Dead or Unreachable code 7 10 17 

Documentation faults  10  10 

Total Faults  18 41 59 

Table 1 - Number of faults found according to type and 
criticality. 

 

3.3 Ravenscar Profile violations  

3.3.1 Tasks do not terminate 

The Ravenscar profile requires that tasks do not 
terminate (RP30 – Dynamic Semantics). ORK 
Software Requirements Specification [8] states that the 
default action of invoking a task termination is to raise 
a Program_Error exception (RQ4 – Effect of task 
termination). What was found during this study was 
that the implementation does not obey the requirements 
and the default task termination action is  to remove the 
thread’s descriptor from the running queue when the 
execution falls back to the Kernel.  

Did ORK developers judge this not to be the best 
termination action and implemented in a different way?  

By forcing the default task termination to be the 
raising of a program error, the whole application will 
stop when a single task terminates. The question raised 
here is: “Is the raising of an exception the best 
approach?” Other options might be considered, e.g. 



putting tasks that invoke termination in a wait queue 
permanently. 

3.3.2 Use of forbidden features 

Several features not allowed by the Ravenscar 
profile are provided by the kernel and can be called 
from the user application level. A few examples are 
described below. 

The Ravenscar profile specifically states that 
dynamic priorities are not allowed (RP7 – Forbidden 
features - Dynamic Priorities) but a user task can 
change its own Base_Priority using either kernel level 
procedure  Kernel_Threads.Set_Priority or 
System.Task_Primitives.Operations.Set_Priorty. 

The Kernel.Memory.Protect_Segment procedure 
used by the kernel during the initialisation can be 
called by user level applications violating the 
Ravenscar profile (RP50 – Static_Storage_Size). 

Dynamic creation of threads is possible contrary to 
what is stated by requirement RQ1: Task creation and 
requirement RQ2: Static tasks only. This can be 
achieved by calling one of the following procedures: 

 Kernel.Threads.Thread_Create 

 System.Task_Primitives.Operations.Create_Task 

The restriction of forbidden features should be 
enforced at compilation time not allowing these 
features to be used at the application level. 

3.4 Missing Variable or Parameter Test 
Conditions 

During the analysis some cases were found where 
checks for invalid/unexpected parameters values are 
missing, e.g. null pointers. The systematic check to 
overcome the usage of these invalid/unexpected values 
(defensive programming) is a good practice that should 
be enforced. A few examples are described below. 

3.4.1 Null Parameters Check  

In procedure Kernel.Threads.Thread_Create no 
check for null pointer is done regarding parameter 
code. If a null pointer is given as argument to 
Thread_Create procedure, then when the new created 
thread is schedule the system hangs. 

No check for null pointer is made in procedure 
System.Task_Primitives.Operations.Create_Task 
regarding to parameter wrapper. If a null pointer is 
given as an argument then when the new created thread 
is scheduled to run the system hangs. 

3.4.2 Return value check  

In procedure Thread_Create in the 
Kernel.Threads package after getting the first free 
position to the new thread: 

 Id := Queues.Get_New_Thread_Descriptor; 

if the Id variable is Null_Thread_Id, it should not be 
reserved any space for the stack. Stack space should 
only be reserved if a Thread descriptor is successfully 
obtained. 

3.4.3 Range validity 

Since GNAT/ORK is compiled with the runtime 
constraint checks disabled, it is imperative that simple 
range checking is done on functions and procedures 
parameters (defensive programming). The 
recommendation is that GNAT/ORK specify clearly 
the policy to be followed regarding to the verification 
of input data. Either user applications are required to 
validate the inputs before performing API calls or 
GNAT/ORK shall validate the parameters provided 
with the user application calls. In the latter case the 
layer at which the inputs shall be verified shall be 
specified. Otherwise out of range values passed to 
internal functions might lead to unexpected results.  

Parameter Priority is not being checked, thus it is 
possible create a thread with any Integer value for its 
priority (instead of a value fitting in the defined ORK 
priority range). 

Integer values (including negative values) values 
are accepted for pragma Priority when defining a 
task. Priorities are defined as an Integer value ranging 
from 0 to 255 in the settings used. 

No checks in priority parameter value are made in 
procedure Mutex_Init and the mutex is effectively 
created with any value passed. 

No checks are made in procedure New_Stack. The 
new stack is created with any value passed. Tests 
revealed that a negative number really forces the stack 
index to go back. 

In case procedure Mutex_Unlock in Kernel.Threads 
is not well used (e.g. it is called before first acquiring 
the lock), the Lock_Nesting_Level field of the ATCB 
running task (Natural type) with a 0 value can be 
decremented causing unexpected results. For instance, 
tests concluded that task/thread can actually change its 
Active_Priority misusing procedure Mutex_Unlock. 

In procedure Protect_Segment if base or ending 
input parameters are not greater than 16#2000000#, 
after these operations: 

 Base_Address_Aux := (Base_Address_Aux - 
          16#2000000#) / 4; 

 End_Address_Aux := (End_Address_Aux -  
       16#2000000#) / 4; 

considering that type Segment_Address has the range: 

 type Segment_Address is range 0 .. 2**23-1;  



the following type conversions might cause unexpected 
results: 

Base_Register_Aux.SEGBASE :=  
  KPR.Segment_Address (Base_Address_Aux); 

 End_Register_Aux.SEGEND :=  
   KPR.Segment_Address (End_Address_Aux); 

During test cases execution it was verified that if 
procedure Protect_Segment is called with parameter 
base equal to 16#200_0000#, regardless of parameter 
ending’s value, the application hangs and the processor 
entered in HALT mode. There is a comment in the 
source code stating that this procedure is to be used 
only during the initialization and that the user should 
not be able to access this procedure. If this is correct, 
then it should be enforced by design or compilation 
time. 

3.4.4 Unchecked conversions  

To prevent the truncation effect or any other kind 
of type conversion problems, the use of instantiations 
of the Unchecked_Conversion generic function should 
be avoided. 

In Procedure Initialize_Protection_Entry in 
System.Tasking.Protected_Objects.Single_Entry, 
variable Init_Priority is defined as Integer. The 
Ceiling field in the Object record is Integer range  
0 .. Standard'Max_Interrupt_Priority. 

Therefore, a type conversion in next sentence may 
cause unexpected results: 

 Object.Ceiling :=  
   System.Any_Priority (Init_Priority); 

In Procedure Create_Restricted_Task in 
System.Tasking.Restricted.Stages the parameter 
Priority is Integer and System.Any_Priority is an 
Integer subtype starting at 0. Unexpected results may 
happen in next sentence: 

 Base_Priority :=  
   System.Any_Priority (Priority) 

In Procedure Task_Wrapper in 
System.Tasking.Restricted.Stages the following 
function call is made: 

 SST.SS_Init (Secondary_Stack_Address,  
     Integer (Secondary_Stack'Last)); 

Since variable Secondary_Stack is an array 
defined as: 

Secondary_Stack : aliased SSE.Storage_Array  
  1..SSE.Storage_Offset(ID.Common.Stack_Size *  
    Parameters.Sec_Stack_Ratio / 100)); 

If Parameters.Sec_Stack_Ratio is non-natural 
value then the Secondary_Stack variable will be an 
empty array (without any elements) which means that 
the thread might not have any stack at all. Also, 
unexpected results may occur from the call: 

 SST.SS_Init (Secondary_Stack_Address,  
     Integer (Secondary_Stack'Last);
 

3.5 Considerations 

Several problems were uncovered during this 
evaluation of the ORK. The most serious problems 
found are related with the access to the ORK Kernel. 

The ORK Kernel layer is a very sensitive part of 
the system (as it would be expected) and it does not 
include any parameter validation. As demonstrated by 
the results, it is very simple to inadvertently crash the 
whole system or compromise Ravenscar profile  
restrictions. 

In our opinion some of the problems found during 
the evaluation, and addressed in this paper, should be 
carefully analyzed/corrected before using ORK in a 
specific mission. 

4 Non-Intrusive Monitoring  

One of the fundamental aspects of software testing 
is the capability of non-intrusive observation. The goal 
of the Xpy project is to develop a non-intrusive 
application of monitoring and profiling using the 
technological solutions developed in a currently 
undergoing project (Exploiting IEEE 1149.1 Boundary 
Scan for Fault Injection), with specific functionalities 
for the SPARC/ERC32 [9] and ORK target system. 

4.1 SPARC/ERC32 

The SPARC/ERC32 is a processor developed in 
the scope of the European Space Agency (ESA) space 
based applications. This processor is being developed 
using Radiation Hard technology, and it contains 
appropriate fault tolerance mechanisms. The 
SPARC/ERC32 has a hardware module for application 
support (OCD –  On-Chip Debugger) that is accessible 
through Boundary Scan. 

4.2 BSCAN4FI 

One of the projects currently being developed in 
Critical Software, the BSCAN4FI (Exploiting IEEE 
1149.1 Boundary Scan for Fault Injection), aims to 
develop new technologic solutions for advanced 
critical systems testing, which involve fault injection. 
The platform used in this project is the SPARC/ERC32 
processor. Testing and fault injection are made by 
accessing the processor through boundary scan 



technology. The OCD is also used as a support 
mechanism for testing. 

 

 

Figure 3.  Xception Architecture. 

4.3 XCEPTION™ 

The Xpy tool is being developed to integrate an 
already existing fault injection line of products in 
Critical Software, namely the Xception™ [4]. 

Xception™ is an automated fault injection 
environment that enables accurate and flexible V&V 
(verification & validation) and evaluation of mission 
and business critical computer systems using fault 
injection. Xception is designed to accommodate a 
variety of fault injection techniques (according to a 
wide range of configurations of the tool) and emulates 
in this way different classes of faults, with particular 
emphasis to hardware and software faults. One key 
aspect of Xception is the high degree of automation 
provided by the fault injection environment, which 
enables the users to plan and perform fault injection 
experiments in a straightforward way. Figure 3 shows 
the Xception’s architecture.  

4.4 Xpy in Xception 

Xception is composed of two software 
components, namely the Experiment Management 
Environment (EME) and the EME Proxy. EME is the 
graphical user interface of Xception™, allowing the 
user to define, execute and control experiments and 
perform result analysis. EME Proxy is the middleware 
software component that handles the communications 
within Xception. For each target system, a target 
specific plug-in must be implemented, allowing. 
Xception™ to support different target systems.  

Although this product is being developed to 
integrate the Xception™ line of products in Critical 
Software, there is the goal to provide a general-purpose 
tool for monitoring and profiling. Therefore, the tool 

will be added to Xception using one plug-ins (Figure 
4).  

EME - Experiment 
Management 
Environment

SPARC/ERC32 - ORK 
Xpy Plug-in

 
Figure 4. Xpy in Xception EME  

4.5 Xpy Requirements 

This project is being developed assuming that the 
target environment is based on the SPARC/ERC32 
processor. Some characteristics that will be designed 
and implemented will be particularly related for this 
processor. Particularly, the access will be made 
through Boundary Scan and the Test Access Port, and 
the On-Chip Debugger is also planned to be used as a 
support mechanism.  

It is also assumed that the base kernel for which 
this application is being developed is the ORK. 
Although this assumption is being made, the choice is 
still under discussion. Therefore, although currently 
being developed to operate in a specific target 
environment (composed by the SPARC/ERC32 
processor running the ORK real time kernel), it is  the 
goal to maintain its kernel independence as much as 
possible. 

Due to the requirements imposed by the target, 
Xpy is also currently being developed as an instrument 
of analysis compliant with the “ISO – Guide for the 
Use of the Ada Programming Language in High 
Integrity Systems” [10] and the “Guide for the use of 
the Ada Ravenscar Profile in High Integrity Systems” 
[6]. 

4.6 Requirements Process 

In order to get the highest quality, reliability and 
usability for this application, the basic requirements 
went by a rigorous selection criterion. Figure 3 shows 
the selection process used. 

The process was started by a search for 
commercially available profiling and monitoring 
applications and applications with similar 
characteristics. Another search was made for standards 
and legislation regarding high integrity hard real time 
application development. From these searches the more 
important and relevant results were select and 
analyzed. After a cross check between the two searches 
the first Xpy requirements were found. Afterwards an 
analysis was made to the uncross-checked 
requirements between the standards and legislation 
survey and the commercial survey, and from that 
analysis, some requirements that are until know 
commercially unimplemented were added to the 
project.  



With this process we were able to select the most 
important requirements in terms of usability for hard 
real time system analysis.  

 

Figure 5. Requirements Selection Process 

4.7 Xpy Architecture and Functionalities  

Figure 6 presents the foreseen architecture of Xpy. 
This architecture is still a work in progress. Some 
changes may occur but the basic layout will in general 
remain the same. 
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Figure 6. Xpy Architecture 
 

The Xpy is divided into five groups of monitoring 
and profiling (M/P) features, each one with specific 
characteristics:  

• Memory M/P Features: such as Kernel 
memory usage, per task memory usage, 
contents of the Execution Stack and the 
Interrupt Stack, …; 

• Program Execution M/P Features: Code 
sequence, ready and wait Queues, what code 
is executing in the processor and if it is either 
kernel or user code, …; 

• Task Scheduling M/P Features: Graphical 
tasks scheduling, worst case measured times, 
timing forecasts of sporadic tasks, ...; 

• Hardware M/P Features: Processor usage, 
context switches, processor resources 
(UARTs, GPI, Interrupt controller) usage, ...; 

• Data Collection and Post-Mortem Analysis 
M/P Features: collect and store data on 
predefined events, both default and user 
defined data; 

Currently, the Xpy tool is on the early stages of 
development. The architecture and the system design 
are almost complete. 

5 Conclusions  

It is well known that the testing of critical real-
time systems is an extremely important procedure in 
order to assure the safety and reliability requirements 
imposed by the system environment. In this paper two 
different approaches for testing the ORK were 
presented.  

In the first approach, and evaluation of the ORK 
itself was presented, which allowed detecting the 
possibility of misbehaviour both in the Kernel itself 
and at the application level. This paper provided a 
summary of this approach, and of the evaluation 
results. 

The second approach considers that in order to 
monitor and profile the ORK together with the 
application, a non-intrusive tool is an important 
requirement. This paper provided also an overview of 
such tool, which is currently being developed. 
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