
Verifying, Validating and Monitoring the Open Ravenscar Real Time Kernel1

R. Maia, F. Moreira, R. Barbosa, D. Costa Patricia Rodriguez
Critical Software, SA SoftWcare, S.L.
Coimbra, Portugal Vigo, Spain

rmaia@criticalsoftware.com rodriguezdapena@softwcare.com

Kjeld Hjortnaes Luis Miguel Pinho
ESTEC/ESA Polytecnique Institute of Porto

Noordwijk, The Netherlands Porto, Portugal
Kjeld.Hjortnaes@esa.int lpinho@dei.isep.ipp.pt

1 This work is being supported by ESA/ESTEC (project STADY – Applied Static And Dynamic Verification Of
Critical Software, Contract Nr. 15751/02/NL/LvH), by ADI (project BSCAN4FI, ref. ADI-POSI-BSCAN4FI) and
by FCT (project TERRA, ref. POSI/2001/38932).

Abstract

Business and mission critical real-time systems
need to be fully predictable, in order that their
behaviour is known before deployment, even in the
presence of faults. The Open Ravenscar Real Time
Kernel (ORK) is a small size with reduced complexity
kernel designed to be used in this type of applications.
This kernel was implemented to be fully compliant with
the Ravenscar profile, which defines a subset of the
tasking features of Ada which can be used to
implement a small and reliable kernel. Critical
Software has recently conducted an evaluation on this
kernel as well as started a new project to provide a
monitoring tool for ORK, thus further enhancing the
already existing range of hard real-time verification
and validation tools. This paper summarizes the
objectives and results of the ORK evaluation and
presents the main goals and functionalities of the
monitoring tool.

1 Introduction

The consequences of failures in hard real-time
computer systems are, unfortunately, well known.
Examples of these are the Mars Pathfinder mission that
began experiencing total system resets, which resulted
in losses of data due to a priority inversion problem
[1], and, particularly important due to the severe nature
of the consequences, the Therac-25 medical system,
that caused the lost of three lives due to radiation over

dosage [2]. Therefore , computer systems , and in
particular hard real-time systems , must be subject to
intensive testing activities before their deployment.
However, assuring that these systems behave
appropriately to unusual or exceptional events requires
more than traditional testing. Furthermore, when safety
critical software products are concerned, characteristics
other than functional, such as safety and reliability
should also be expressly verified.

Critical Software in a consortium with SoftWcare
is presently conducting a project (STADY) that aims to
research and demonstrate an innovative technique for
the verification of the safety and reliability
characteristics of software. As part of this study an
evaluation of the Open Ravenscar Real-Time Kernel
(ORK) [3] was performed.

Within a different approach, a monitoring and
profiling tool for ORK is also being developed, which
will allow the observation of the dynamic behaviour
and results of an implemented system, consequently
allowing the system's engineers to have a more in
depth view of the system behaviour. This tool will
enhance the already existing range of hard real-time
verification and validation tools (Xception™ [4]), in
order to non-intrusively monitor and profile business
and mission critical real-time systems.

This paper is organized as follows. Section 2
presents an overview of the technologies involved in
these projects, namely the ORK and the Ravenscar
profile. Section 3 provides a description of the STADY
project particularly considering the ORK evaluation,
the problems that were found and potential

improvements. Section 4 provides an introduction to
the monitoring and profiling tool, as well as an
overview of the involved technologies. Finally, Section
5 provides some conclusions.

2 Open Ravenscar Real Time Kernel

The ORK [3] is an open source Real Time
Operating System (RTOS) of small size and
complexity, developed with sponsorship of ESA to be
used in space based applications. ESA is assessing the
use of this RTOS as a base layer of On -Board Software
for future missions.

The ORK aims to be fully compliant with the
Ravenscar profile [5], which defines a restricted set of
Ada tasking features that are allowed and features that
are dis allowed.

2.1 Ravenscar profile

The Ravenscar profile (Reliable Ada Verifiable
Executive Needed for Scheduling Critical
Applications) is the result of the 8th International Real
Time Ada Workshop (IRTAW). Since then it as
already been revised at least two more times, namely at
the 9th and 10th IRTAW. The goal of the Ravenscar
profile is to achieve:

• Improved memory and execution time
efficiency, by removing features with a high
over head.

• Improved reliability, by removing non-
deterministic and non-formally analysable
features.

• Improved timing analysis, by removing non-
deterministic and non-analysable features.

• Security certifiability for both the kernel and
the software running on top of it.

A description of this profile can be found in [5]
and the rationale in [6], but, in a nutshell, this profile
forbids the use of task entries, dynamic allocation and
unchecked deallocation of protected and task objects
and dynamic priorities on programs. Although all these
and more restrictions are defined in this profile, some
other features are supported by it like ceiling locking
protocol, FIFO within priorities dispatching and
protected procedures as statically bound interrupt
handlers.

Most of the profile’s restrictions can be enforced

at compile time by using the appropriate set of
identifiers with the pragma restrictions available in the
GNAT. However, since not all Ravenscar restrictions
can be enforced by these standard restriction

identifiers, another approach was adopted by ORK
developers, which consisted in the implementation of a
defined pragma, pragma Ravenscar, so it could
establish the complete set of restrictions.

2.2 ORK Architecture

ORK was built on top of GNAT compilation
system. The GNAT/ORK runtime system includes the
following components which were subjected to the
STADY methodology (see Figure 1):

• A specialized version of GNARL, the GNU
Ada Runtime Library.

• A specialized version of GNULL, the GNU
Low-Level Library.

• The ORK kernel itself.

Figure 1. GNAT/ORK run-time system architecture.

The ORK Kernel Layer consists of the following
packages:

• Kernel – which is the root package (empty
interface)

• Kernel.Threads – this package provides the
necessary thread management, including
synchronization and scheduling control
functions;

• Kernel.Time – this package provides clock
and delay services;

• Kernel.Memory – this package provides the
necessary functions for storage management;

• Kernel.Interrupts – this package provides
the functions for Interrupt handling;

• Kernel.Parameters – this package contains
the base parameters for kernel configuration;

• Kernel.CPU_Primitives – this package
provides the processor dependent definitions
and operations;

• Kernel.Peripherals – this package provides
the support for peripherals in the target board;

• Kernel.Peripherals.Registers – this
package contains the necessary definitions
related to input-output registers of the
peripheral devices; and

• Kernel.Serial_Output – this package
provides the support for serial output to a
console.

Although all these functionalities that are
provided, they are not intended to be used directly
from Ada programs. The interface to these
functionalities is provided by the GNU Ada Runtime
Library (GNARL). This library is used so that Ada95
tasking constructs can be directly accessed by the real-
time application programmer.

3 ORK Evaluation

3.1 The Verification and Validation Method

The main goal of the STADY project [7] is to
demonstrate that the combined use of static analysis
techniques , like Software Failure mode and Effect
Analysis (SFMEA) or Software Fault Tree Analysis
(SFTA), with the dynamic analysis methods, like
robustness/stress testing, is applicable to the
verification of safety and reliability characteristics of
critical software, in the domain of high integrity
applications.

Dynamic Verification

Static Analysis

Preparation
SFMEA + SFTA

Results evaluation
and Reporting

Systematic Fault
Injection

Dynamic
verification of SA

results

Preparation

Results evaluation
and Reporting

Figure 2. Workflow of the STADY method.

The run-time system of ORK has been selected as
the product to be evaluated as a case study of the
STADY project. The evaluation consists in a sequence
of steps (Figure 2), beginning with a static analysis
which results in a set of software faults with associated
recommendations for improvements of the product
under evaluation. This is followed by a dynamic
verification which has two main purposes:

1. Confirm the set of software faults really
comprise the system and evaluate the effect of
the appropriate recommendations providing
the feedback to the static analysis process;

2. Analyze the product dynamically (under
execution) exercising the system by injecting
software faults;

3.2 Evaluation Results

This section presents the most relevant ORK faults
found during the application of the STADY method
and provides some general comments for ORK runtime
system improvement.

The following table provides a statistical view of
the results achieved. Faults were grouped according to
their types and classified as minor or critical. The
classification is performed based on the possible
impact of the fault concerning mission critical systems.

Fault Type Minor Critical Total

Ravenscar profile violations 3 3

Missing Variable or Parameter
Test Conditions

 26 26

Incorrect Initialized variables 1 1

Use of variables not initialised 1 1
Performance 1 1

Dead or Unreachable code 7 10 17

Documentation faults 10 10

Total Faults 18 41 59

Table 1 - Number of faults found according to type and
criticality.

3.3 Ravenscar Profile violations

3.3.1 Tasks do not terminate

The Ravenscar profile requires that tasks do not
terminate (RP30 – Dynamic Semantics). ORK
Software Requirements Specification [8] states that the
default action of invoking a task termination is to raise
a Program_Error exception (RQ4 – Effect of task
termination). What was found during this study was
that the implementation does not obey the requirements
and the default task termination action is to remove the
thread’s descriptor from the running queue when the
execution falls back to the Kernel.

Did ORK developers judge this not to be the best
termination action and implemented in a different way?

By forcing the default task termination to be the
raising of a program error, the whole application will
stop when a single task terminates. The question raised
here is: “Is the raising of an exception the best
approach?” Other options might be considered, e.g.

putting tasks that invoke termination in a wait queue
permanently.

3.3.2 Use of forbidden features

Several features not allowed by the Ravenscar
profile are provided by the kernel and can be called
from the user application level. A few examples are
described below.

The Ravenscar profile specifically states that
dynamic priorities are not allowed (RP7 – Forbidden
features - Dynamic Priorities) but a user task can
change its own Base_Priority using either kernel level
procedure Kernel_Threads.Set_Priority or
System.Task_Primitives.Operations.Set_Priorty.

The Kernel.Memory.Protect_Segment procedure
used by the kernel during the initialisation can be
called by user level applications violating the
Ravenscar profile (RP50 – Static_Storage_Size).

Dynamic creation of threads is possible contrary to
what is stated by requirement RQ1: Task creation and
requirement RQ2: Static tasks only. This can be
achieved by calling one of the following procedures:

 Kernel.Threads.Thread_Create

 System.Task_Primitives.Operations.Create_Task

The restriction of forbidden features should be
enforced at compilation time not allowing these
features to be used at the application level.

3.4 Missing Variable or Parameter Test
Conditions

During the analysis some cases were found where
checks for invalid/unexpected parameters values are
missing, e.g. null pointers. The systematic check to
overcome the usage of these invalid/unexpected values
(defensive programming) is a good practice that should
be enforced. A few examples are described below.

3.4.1 Null Parameters Check

In procedure Kernel.Threads.Thread_Create no
check for null pointer is done regarding parameter
code. If a null pointer is given as argument to
Thread_Create procedure, then when the new created
thread is schedule the system hangs.

No check for null pointer is made in procedure
System.Task_Primitives.Operations.Create_Task
regarding to parameter wrapper. If a null pointer is
given as an argument then when the new created thread
is scheduled to run the system hangs.

3.4.2 Return value check

In procedure Thread_Create in the
Kernel.Threads package after getting the first free
position to the new thread:

 Id := Queues.Get_New_Thread_Descriptor;

if the Id variable is Null_Thread_Id, it should not be
reserved any space for the stack. Stack space should
only be reserved if a Thread descriptor is successfully
obtained.

3.4.3 Range validity

Since GNAT/ORK is compiled with the runtime
constraint checks disabled, it is imperative that simple
range checking is done on functions and procedures
parameters (defensive programming). The
recommendation is that GNAT/ORK specify clearly
the policy to be followed regarding to the verification
of input data. Either user applications are required to
validate the inputs before performing API calls or
GNAT/ORK shall validate the parameters provided
with the user application calls. In the latter case the
layer at which the inputs shall be verified shall be
specified. Otherwise out of range values passed to
internal functions might lead to unexpected results.

Parameter Priority is not being checked, thus it is
possible create a thread with any Integer value for its
priority (instead of a value fitting in the defined ORK
priority range).

Integer values (including negative values) values
are accepted for pragma Priority when defining a
task. Priorities are defined as an Integer value ranging
from 0 to 255 in the settings used.

No checks in priority parameter value are made in
procedure Mutex_Init and the mutex is effectively
created with any value passed.

No checks are made in procedure New_Stack. The
new stack is created with any value passed. Tests
revealed that a negative number really forces the stack
index to go back.

In case procedure Mutex_Unlock in Kernel.Threads
is not well used (e.g. it is called before first acquiring
the lock), the Lock_Nesting_Level field of the ATCB
running task (Natural type) with a 0 value can be
decremented causing unexpected results. For instance,
tests concluded that task/thread can actually change its
Active_Priority misusing procedure Mutex_Unlock.

In procedure Protect_Segment if base or ending
input parameters are not greater than 16#2000000#,
after these operations:

 Base_Address_Aux := (Base_Address_Aux -
 16#2000000#) / 4;

 End_Address_Aux := (End_Address_Aux -
 16#2000000#) / 4;

considering that type Segment_Address has the range:

 type Segment_Address is range 0 .. 2**23-1;

the following type conversions might cause unexpected
results:

Base_Register_Aux.SEGBASE :=
 KPR.Segment_Address (Base_Address_Aux);

 End_Register_Aux.SEGEND :=
 KPR.Segment_Address (End_Address_Aux);

During test cases execution it was verified that if
procedure Protect_Segment is called with parameter
base equal to 16#200_0000#, regardless of parameter
ending’s value, the application hangs and the processor
entered in HALT mode. There is a comment in the
source code stating that this procedure is to be used
only during the initialization and that the user should
not be able to access this procedure. If this is correct,
then it should be enforced by design or compilation
time.

3.4.4 Unchecked conversions

To prevent the truncation effect or any other kind
of type conversion problems, the use of instantiations
of the Unchecked_Conversion generic function should
be avoided.

In Procedure Initialize_Protection_Entry in
System.Tasking.Protected_Objects.Single_Entry,
variable Init_Priority is defined as Integer. The
Ceiling field in the Object record is Integer range
0 .. Standard'Max_Interrupt_Priority.

Therefore, a type conversion in next sentence may
cause unexpected results:

 Object.Ceiling :=
 System.Any_Priority (Init_Priority);

In Procedure Create_Restricted_Task in
System.Tasking.Restricted.Stages the parameter
Priority is Integer and System.Any_Priority is an
Integer subtype starting at 0. Unexpected results may
happen in next sentence:

 Base_Priority :=
 System.Any_Priority (Priority)

In Procedure Task_Wrapper in
System.Tasking.Restricted.Stages the following
function call is made:

 SST.SS_Init (Secondary_Stack_Address,
 Integer (Secondary_Stack'Last));

Since variable Secondary_Stack is an array
defined as:

Secondary_Stack : aliased SSE.Storage_Array
 1..SSE.Storage_Offset(ID.Common.Stack_Size *
 Parameters.Sec_Stack_Ratio / 100));

If Parameters.Sec_Stack_Ratio is non-natural
value then the Secondary_Stack variable will be an
empty array (without any elements) which means that
the thread might not have any stack at all. Also,
unexpected results may occur from the call:

 SST.SS_Init (Secondary_Stack_Address,
 Integer (Secondary_Stack'Last);

3.5 Considerations

Several problems were uncovered during this
evaluation of the ORK. The most serious problems
found are related with the access to the ORK Kernel.

The ORK Kernel layer is a very sensitive part of
the system (as it would be expected) and it does not
include any parameter validation. As demonstrated by
the results, it is very simple to inadvertently crash the
whole system or compromise Ravenscar profile
restrictions.

In our opinion some of the problems found during
the evaluation, and addressed in this paper, should be
carefully analyzed/corrected before using ORK in a
specific mission.

4 Non-Intrusive Monitoring

One of the fundamental aspects of software testing
is the capability of non-intrusive observation. The goal
of the Xpy project is to develop a non-intrusive
application of monitoring and profiling using the
technological solutions developed in a currently
undergoing project (Exploiting IEEE 1149.1 Boundary
Scan for Fault Injection), with specific functionalities
for the SPARC/ERC32 [9] and ORK target system.

4.1 SPARC/ERC32

The SPARC/ERC32 is a processor developed in
the scope of the European Space Agency (ESA) space
based applications. This processor is being developed
using Radiation Hard technology, and it contains
appropriate fault tolerance mechanisms. The
SPARC/ERC32 has a hardware module for application
support (OCD – On-Chip Debugger) that is accessible
through Boundary Scan.

4.2 BSCAN4FI

One of the projects currently being developed in
Critical Software, the BSCAN4FI (Exploiting IEEE
1149.1 Boundary Scan for Fault Injection), aims to
develop new technologic solutions for advanced
critical systems testing, which involve fault injection.
The platform used in this project is the SPARC/ERC32
processor. Testing and fault injection are made by
accessing the processor through boundary scan

technology. The OCD is also used as a support
mechanism for testing.

Figure 3. Xception Architecture.

4.3 XCEPTION™

The Xpy tool is being developed to integrate an
already existing fault injection line of products in
Critical Software, namely the Xception™ [4].

Xception™ is an automated fault injection
environment that enables accurate and flexible V&V
(verification & validation) and evaluation of mission
and business critical computer systems using fault
injection. Xception is designed to accommodate a
variety of fault injection techniques (according to a
wide range of configurations of the tool) and emulates
in this way different classes of faults, with particular
emphasis to hardware and software faults. One key
aspect of Xception is the high degree of automation
provided by the fault injection environment, which
enables the users to plan and perform fault injection
experiments in a straightforward way. Figure 3 shows
the Xception’s architecture.

4.4 Xpy in Xception

Xception is composed of two software
components, namely the Experiment Management
Environment (EME) and the EME Proxy. EME is the
graphical user interface of Xception™, allowing the
user to define, execute and control experiments and
perform result analysis. EME Proxy is the middleware
software component that handles the communications
within Xception. For each target system, a target
specific plug-in must be implemented, allowing.
Xception™ to support different target systems.

Although this product is being developed to
integrate the Xception™ line of products in Critical
Software, there is the goal to provide a general-purpose
tool for monitoring and profiling. Therefore, the tool

will be added to Xception using one plug-ins (Figure
4).

EME - Experiment
Management
Environment

SPARC/ERC32 - ORK
Xpy Plug-in

Figure 4. Xpy in Xception EME

4.5 Xpy Requirements

This project is being developed assuming that the
target environment is based on the SPARC/ERC32
processor. Some characteristics that will be designed
and implemented will be particularly related for this
processor. Particularly, the access will be made
through Boundary Scan and the Test Access Port, and
the On-Chip Debugger is also planned to be used as a
support mechanism.

It is also assumed that the base kernel for which
this application is being developed is the ORK.
Although this assumption is being made, the choice is
still under discussion. Therefore, although currently
being developed to operate in a specific target
environment (composed by the SPARC/ERC32
processor running the ORK real time kernel), it is the
goal to maintain its kernel independence as much as
possible.

Due to the requirements imposed by the target,
Xpy is also currently being developed as an instrument
of analysis compliant with the “ISO – Guide for the
Use of the Ada Programming Language in High
Integrity Systems” [10] and the “Guide for the use of
the Ada Ravenscar Profile in High Integrity Systems”
[6].

4.6 Requirements Process

In order to get the highest quality, reliability and
usability for this application, the basic requirements
went by a rigorous selection criterion. Figure 3 shows
the selection process used.

The process was started by a search for
commercially available profiling and monitoring
applications and applications with similar
characteristics. Another search was made for standards
and legislation regarding high integrity hard real time
application development. From these searches the more
important and relevant results were select and
analyzed. After a cross check between the two searches
the first Xpy requirements were found. Afterwards an
analysis was made to the uncross-checked
requirements between the standards and legislation
survey and the commercial survey, and from that
analysis, some requirements that are until know
commercially unimplemented were added to the
project.

With this process we were able to select the most
important requirements in terms of usability for hard
real time system analysis.

Figure 5. Requirements Selection Process

4.7 Xpy Architecture and Functionalities

Figure 6 presents the foreseen architecture of Xpy.
This architecture is still a work in progress. Some
changes may occur but the basic layout will in general
remain the same.

Xpy User Interface
(EME)

M
em

or
y

C
om

po
ne

nt

Pr
og

ra
m

 E
xe

cu
tio

n
C

om
po

ne
nt

T
as

k
Sc

he
du

lin
g

C
om

po
ne

nt

H
ar

dw
ar

e
C

om
po

ne
nt

D
at

a
C

ol
le

ct
io

n
an

d
Po

st
-M

or
te

m
 A

na
ly

si
s

C
om

po
ne

nt

BSCAN4FI API
(EME Proxy)

SPARC/ERC32 - ORK

Figure 6. Xpy Architecture

The Xpy is divided into five groups of monitoring
and profiling (M/P) features, each one with specific
characteristics:

• Memory M/P Features: such as Kernel
memory usage, per task memory usage,
contents of the Execution Stack and the
Interrupt Stack, …;

• Program Execution M/P Features: Code
sequence, ready and wait Queues, what code
is executing in the processor and if it is either
kernel or user code, …;

• Task Scheduling M/P Features: Graphical
tasks scheduling, worst case measured times,
timing forecasts of sporadic tasks, ...;

• Hardware M/P Features: Processor usage,
context switches, processor resources
(UARTs, GPI, Interrupt controller) usage, ...;

• Data Collection and Post-Mortem Analysis
M/P Features: collect and store data on
predefined events, both default and user
defined data;

Currently, the Xpy tool is on the early stages of
development. The architecture and the system design
are almost complete.

5 Conclusions

It is well known that the testing of critical real-
time systems is an extremely important procedure in
order to assure the safety and reliability requirements
imposed by the system environment. In this paper two
different approaches for testing the ORK were
presented.

In the first approach, and evaluation of the ORK
itself was presented, which allowed detecting the
possibility of misbehaviour both in the Kernel itself
and at the application level. This paper provided a
summary of this approach, and of the evaluation
results.

The second approach considers that in order to
monitor and profile the ORK together with the
application, a non-intrusive tool is an important
requirement. This paper provided also an overview of
such tool, which is currently being developed.

References
[1] Mike Jones, “What really happened on Mars Rover

Pathfinder”, Risks Digest, December 1997.

[2] N. Levenson, C. Turner. “An Investigation of the Therac-25
Accidents”, IEEE Computer, Vol.26, No.7, July 1993.

[3] Juan A. de la Puente, José F. Ruiz. “Open Ravenscar Real-
Time Kernel – Operations Manual”, March 2001.
www.openravenscar.org

Survey for commercial
available monitoring and
profiling software

Xpy basic requirements

Survey for standards and
legislation regarding high
integrity systems
development

Search results analysis
regarding high integrity
systems development
standards and legislation

Cross check between the
two surveys

Analysis of the cross
check results

Analysis of
unchecked
standards and
legislation
requirements

[4] R.Maia, L. Henriques, D. Costa. “Xception™ - Enhanced
Automated Fault-Injection Environment”, 2002.
www.xception.org

[5] B. Dobbing, A. Burns. “The Ravenscar Tasking Profile for
High Integrity Real-Time Programs”. In Proc. of
SIGAda’98 Conference, Washington, USA, pp. 1-6.

[6] A. Burns, B. Dobbing, T. Vardanega. “Guide for the use of
the Ada Ravenscar Profile in High Integrity Systems”,
Technical Report Nr.YCS-2003-348, January 2003.

[7] ESA Contract 15751/02/NL/LvH. “Applied Static and
Dynamic Verification of Critical Software”. ESA, March
2002

[8] Juan A. de la Puente, José F. Ruiz. “Open Ravenscar Real-
Time Kernel - Software Requirements Specification”,
version 1.6, 05.05.2000, UPM.

[9] Atmel, “TSC695F Rad-Hard Embedded Processor 32-bit
SPARC User’s Manual”, March 2001.
www.temic-semi.com

[10] ISO/IEC JTC1/SC22/WG9, “Guide for the use of the Ada
Programming Language in High Integrity Systems”, July
1999.

